
Copyright  1996 by Addison-Wesley Publishing Company 64

Chapter 7

Recursion

Copyright  1996 by Addison-Wesley Publishing Company 65

Stack of activation records

main()

S(4)

S(3)

S(2)TOP:

Copyright  1996 by Addison-Wesley Publishing Company 66

Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F

Copyright  1996 by Addison-Wesley Publishing Company 67

• Divide: Smaller problems are solved recursively (except, of
course, base cases).

• Conquer: The solution to the original problem is then formed
from the solutions to the subproblems.

Divide-and-conquer algorithms

Copyright  1996 by Addison-Wesley Publishing Company 68

First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem
into halves

Copyright  1996 by Addison-Wesley Publishing Company 69

Trace of recursive calls for recursive maximum contiguous
subsequence sum algorithm

Copyright  1996 by Addison-Wesley Publishing Company 70

Assuming N is a power of 2, the solution to the equation
, with init ial condit ion is

.

Basic divide-and-conquer running time theorem

T N() 2T N 2⁄() N+= T 1() 1=
T N() N log N N+=

Copyright  1996 by Addison-Wesley Publishing Company 71

The so lu t i on to the equa t ion
, where and ,

is

if

if

if

General divide-and-conquer running time theo-
rem

T N() AT N B⁄() O Nk()+= A 1≥ B 1>

T N()









=

O N ABlog() A Bk>

O Nk Nlog() A Bk=

O Nk() A Bk<

Copyright  1996 by Addison-Wesley Publishing Company 72

Some of the subproblems that are solved recursively in
Figure 7.15

1

1 1

25 25 10 1 21

21

21

21

21 21 10 1062

2

61

21

42

31

32

 1

Copyright  1996 by Addison-Wesley Publishing Company 73

Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1

Copyright  1996 by Addison-Wesley Publishing Company 74

Chapter 8

Sorting Algorithms

Copyright  1996 by Addison-Wesley Publishing Company 75

• Words in a dictionary are sorted (and case distinctions are
ignored).

• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are

ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by

department and then by course number.
• Many banks provide statements that list checks in increasing

order (by check number).
• In a newspaper, the calendar of events in a schedule is gener-

ally sorted by date.
• Musical compact disks in a record store are generally sorted

by recording artist.
• In the programs that are printed for graduation ceremonies,

departments are listed in sorted order, and then students in
those departments are listed in sorted order.

Examples of sorting

Copyright  1996 by Addison-Wesley Publishing Company 76

Operators Definition

operator> (A, B) return B < A;

operator>=(A, B) return !(A < B);

operator<=(A, B) return !(B < A);

operator!=(A, B) return A < B || B < A;

operator==(A, B) return !(A < B || B < A);

Deriving the relational and equality operators from
operator<

Copyright  1996 by Addison-Wesley Publishing Company 77

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}

Copyright  1996 by Addison-Wesley Publishing Company 78

N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and
Shellsort with various increment sequences

Copyright  1996 by Addison-Wesley Publishing Company 79

Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13

Copyright  1996 by Addison-Wesley Publishing Company 80

Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cp

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

Copyright  1996 by Addison-Wesley Publishing Company 81

The basic algorithm Quicksort(S) consists of the following four
steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two dis-

joint groups: L = and R =
.

4. Return the result of Quicksort(L) followed by v followed by
Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ }
x S v{ }–∈ x v≥{ }

Copyright  1996 by Addison-Wesley Publishing Company 82

The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

Quicksort Quicksor

0 13 26 31 43 57 65 7

 0 13 26 31 43 57 65 75 81 92

large itemsmall items

Copyright  1996 by Addison-Wesley Publishing Company 83

Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recur-
sion.

• The largest element in the group of small elements is not
larger than the pivot, by virtue of the partition.

• The pivot is not larger than the smallest element in the group
of large elements, by virtue of the partition.

• The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort

Copyright  1996 by Addison-Wesley Publishing Company 84

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i stops at large element 8; j stops
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i stops at large element 9; j stops
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i

Copyright  1996 by Addison-Wesley Publishing Company 85

8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next to last element

Copyright  1996 by Addison-Wesley Publishing Company 86

• We should not swap the pivot with the element in the last
position. Instead, we should swap it with the element in the
next to last position.

• We can start i at Low+1 and j at High-2 .
• We are guaranteed that, whenever i searches for a large ele-

ment, it will stop because in the worst case it will encounter
the pivot (and we stop on equality).

• We are guaranteed that, whenever j searches for a small ele-
ment, it will stop because in the worst case it will encounter
the first element (and we stop on equality).

Median-of-three partitioning optimizations

Copyright  1996 by Addison-Wesley Publishing Company 87

1. If the number of elements in S is 1, then presumably k is
also 1, and we can return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L and R, exactly as was done for

quicksort.
4. If k is less than or equal to the number of elements in L, then

the item we are searching for must be in L. Call Quickselect(
L, k) recursively. Otherwise, if k is exactly equal to one
more than the number of items in L, then the pivot is the kth
smallest element, and we can return it as the answer. Other-
wise, the kth smallest element lies in R, and it is the (k – |L| –
1)th smallest element in R. Again, we can make a recursive
call and return the result.

Quickselect algorithm

Copyright  1996 by Addison-Wesley Publishing Company 88

Using an array of pointers to sort

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]

Copyright  1996 by Addison-Wesley Publishing Company 89

Data structure used for in-place rearrangement

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Loc[0] Loc[1] Loc[2] Loc[3] Loc[4]

1 0 4 2 3

Copyright  1996 by Addison-Wesley Publishing Company 90

Chapter 9

Randomization

Copyright  1996 by Addison-Wesley Publishing Company 91

Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of win-
ners is 2

Copyright  1996 by Addison-Wesley Publishing Company 92

An important nonuniform distribution that occurs in simula-
tions is the Poisson distribution. Occurrences that happen under
the following circumstances satisfy the Poisson distribution:

• The probability of one occurrence in a small region is propor-
tional to the size of the region.

• The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually
small enough to be ignored.

• The event of getting k occurrences in one region and the event
of getting j occurrences in another region disjoint from the
first region are independent. (Technically this statement
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

• The mean number of occurrences in a region of some size is
known.

Then if the mean number of occurrences is the constant a, then
the probability of exactly k occurrences is .

Poisson distribution

ake a– k!⁄

Copyright  1996 by Addison-Wesley Publishing Company 93

Chapter 10

Fun and Games

Copyright  1996 by Addison-Wesley Publishing Company 94

0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid

Copyright  1996 by Addison-Wesley Publishing Company 95

for each word W in the word list
 for each row R
 for each column C
 for each direction D
 check if W exists at row R, column C
 in direction D

Brute-force algorithm for word search puzzle

Copyright  1996 by Addison-Wesley Publishing Company 96

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column C
 in direction D form a word

Alternate algorithm for word search puzzle

Copyright  1996 by Addison-Wesley Publishing Company 97

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column
 C in direction D form a word
 if they do not form a prefix,
 break; // the innermost loop

Improved algorithm for word search puzzle; incorporates a
prefix test

Copyright  1996 by Addison-Wesley Publishing Company 98

1. If the position is terminal (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the
maximum value of all positions reachable by making one
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move.
The reachable values are calculated recursively.

Basic minimax algorithm

Copyright  1996 by Addison-Wesley Publishing Company 99

Alpha-beta pruning: After H2A is evaluated, C2, which is the
minimum of the H2’s, is at best a draw. Consequently, it
cannot be an improvement over C1. We therefore do not
need to evaluate H2B, H2C, and H2D, and can proceed
directly to C3

C1 C3

DRAW

U

U

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?

Copyright  1996 by Addison-Wesley Publishing Company 100

Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X

Copyright  1996 by Addison-Wesley Publishing Company 101

Chapter 11

Stacks and Compilers

Copyright  1996 by Addison-Wesley Publishing Company 102

Stack operations in balanced symbol algorithm

(
[
((

([] }*)*

{

[eof*

Errors (indicated by *):
 } when expecting)
) with no matching opening symb o
 [unmatched at end of input

Copyright  1996 by Addison-Wesley Publishing Company 103

Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^

Copyright  1996 by Addison-Wesley Publishing Company 104

Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^ is
higher than stack ^

Associativity rules

Copyright  1996 by Addison-Wesley Publishing Company 105

• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthe-

sis is seen.
• Operator: Pop all stack symbols until we see a symbol of

lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing

Copyright  1996 by Addison-Wesley Publishing Company 106

Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*
-

7

*
7

Copyright  1996 by Addison-Wesley Publishing Company 107

Expression tree for (a+b)*(c-d)

*

+ -

a b a b

Copyright  1996 by Addison-Wesley Publishing Company 108

Chapter 12

Utilities

Copyright  1996 by Addison-Wesley Publishing Company 109

Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011 3 9
t 100 4 12

sp 101 13 39
nl 110 1 3

Total 174

A standard coding scheme

Copyright  1996 by Addison-Wesley Publishing Company 110

Representation of the original code by a tree

a e i s t sp nl

Copyright  1996 by Addison-Wesley Publishing Company 111

A slightly better tree

a e i s t sp

nl

Copyright  1996 by Addison-Wesley Publishing Company 112

Optimal prefix code tree

t

a

sp

nl

e

s

i

Copyright  1996 by Addison-Wesley Publishing Company 113

Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001 4 16

sp 11 13 26
nl 00001 1 5

Total 146

Optimal prefix code

Copyright  1996 by Addison-Wesley Publishing Company 114

Huffman’s algorithm after each of first three merges

i se ta sp
10 15 12 3 4 13

i te spa
10 15 12 4 13

T1

s

4

i spea
10 15 12 13

T2

T1

nls

8

spie
15 12 13

t

T2

T3

T1

nls

1

Copyright  1996 by Addison-Wesley Publishing Company 115

Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

T2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nls

3

t

T5

aT2

T3

T1

T6

nl

e

s

T4

i

58

Copyright  1996 by Addison-Wesley Publishing Company 116

Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)

Copyright  1996 by Addison-Wesley Publishing Company 117

IdNode data members: Word is a String ; Lines is
a pointer to a Queue

Lines

Word Dynamically al

Copyright  1996 by Addison-Wesley Publishing Company 118

The object in the tree is a copy of the temporary; after the
insertion is complete, the destructor is called for the tempo-
rary

Dynamical

NewWord

Temporary

Object stored in the tree

Tree

143

que

Copyright  1996 by Addison-Wesley Publishing Company 119

Chapter 13

Simulation

Copyright  1996 by Addison-Wesley Publishing Company 120

1. At the start, the potato is at player 1; after one pass it is at
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

(a) (b) (c)

Copyright  1996 by Addison-Wesley Publishing Company 121

1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems;
a dial in is attempted every minute; average connect time is
5 minutes; simulation is run for 19 minutes

Copyright  1996 by Addison-Wesley Publishing Company 122

1. The first DialIn request is inserted
2. After DialIn is removed, the request is connected result-

ing in a Hangup and a replacement DialIn request
3. A Hangup request is processed
4. A DialIn request is processed resulting in a connect. Thus

both a Hangup and DialIn event are added (three times)
5. A DialIn request fails; a replacement DialIn is gener-

ated (three times)
6. A Hangup request is processed (twice)
7. A DialIn request succeeds, Hangup and DialIn are

added.

Steps in the simulation

Copyright  1996 by Addison-Wesley Publishing Company 123

Priority queue for modem bank after each step

1 Hangup
User 0, Len 1 1 DialIn

User 1, Len 5

1 DialIn
User 1, Len 5

0 DialIn
User 0, Len 1

6 Hangup
User 1, Len 5 2 DialIn

User 2, Len 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 3 DialIn
User 3, Len 11

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 5

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 6

6 Hangup
User 2, Len 4 14 Hangup

User 3, Len 11 7 DialIn
User 7, Len 8

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 7

14 Hangup
User 3, Len 11 7 DialIn

User 7, Len 8

14 Hangup
User 3, Len 11 15 Hangup

User 7, Len 8 8 DialIn
User 8, Len 6

Copyright  1996 by Addison-Wesley Publishing Company 124

Chapter 14

Graphs and Paths

Copyright  1996 by Addison-Wesley Publishing Company 125

A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10 31 4

5 8 4 6

Copyright  1996 by Addison-Wesley Publishing Company 126

Adjacency list representation of graph in Figure 14.1;
nodes in list i represent vertices adjacent to i and the cost
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6

Copyright  1996 by Addison-Wesley Publishing Company 127

• Dist : The length of the shortest path (either weighted or
unweighted, depending on the algorithm) from the starting
vertex to this vertex. This value is computed by the shortest
path algorithm.

• Prev : The previous vertex on the shortest path to this vertex.
• Name: The name corresponding to this vertex. This is estab-

lished when the vertex is placed into the dictionary and will
never change. None of the shortest path algorithms examine
this member. It is only used to print a final path.

• Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table

Copyright  1996 by Addison-Wesley Publishing Company 128

Data structures used in a shortest path calculation, with
input graph taken from a file: shortest weighted path from A
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

Dist Prev Name

D

C

A

B

E

Adj

3

0

Dictio

D (0)

B (
A (2)

A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table

Copyright  1996 by Addison-Wesley Publishing Company 129

Graph after marking the start node as reachable in zero
edges

V1V0

V2 V3 V4

V5 V6

0

Copyright  1996 by Addison-Wesley Publishing Company 130

Graph after finding all vertices whose path length from the
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1

Copyright  1996 by Addison-Wesley Publishing Company 131

Graph after finding all vertices whose shortest path from
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2

Copyright  1996 by Addison-Wesley Publishing Company 132

Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2

Copyright  1996 by Addison-Wesley Publishing Company 133

How the graph is searched in unweighted shortest path
computation

V1V0

V2 V3 V4

V5 V6

0

V0

V2 V3

V5

0

1

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V0

V2 V3

V5

0

1

2

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2

Copyright  1996 by Addison-Wesley Publishing Company 134

Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6

Copyright  1996 by Addison-Wesley Publishing Company 135

If Dv is minimal among all unseen vertices and all edge
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥

Copyright  1996 by Addison-Wesley Publishing Company 136

Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8

3

9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8

3

6

1

0

V0

V2 V3

V5

2

2

1

14

5 8

3

8

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3 3

9 5

1

0 2

Copyright  1996 by Addison-Wesley Publishing Company 137

Graph with negative cost cycle

V1V0

V2 V3 V4

V5 V6

2

2 2

1

 -10 31 4

5 8 4 6

Copyright  1996 by Addison-Wesley Publishing Company 138

Topological sort

V1V0

V2 V3 V4

V5 V6

0 2

3 2

3

V0

V2 V3

V5

0

2

2

1 0

V0

V2 V3

V5

0

2

0

0

V1V0

V2 V3 V4

V5 V6

0 2

2 2

1

0 0

V1V0

V2 V3 V4

V5 V6

0 0

0 0

0

0 0

V0

V2 V3

V5

0

0

0

0

V0

V2 V3

V5

0

1

0

0

V1V0

V2 V3 V4

V5 V6

0 0

1 1

0

0 0

1

Copyright  1996 by Addison-Wesley Publishing Company 139

Stages of acyclic graph algorithm

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0 0

V0

V2 V3

V5

2

2

1

14

5 8 4

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

1

0 2

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

6 5

1

0 2

V0

V2 V3

V5

2

2

1

14

5 8 4
6

1

0

V0

V2 V3

V5

2

2

1

14

5 8 4
9

1

0

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10314

5 8 4 6

3

9 5

1

0 2

Copyright  1996 by Addison-Wesley Publishing Company 140

Activity-node graph

C 3

B 2

A 3

G 2

K 4

H 1

F 3

E 1

D 2 FinishStart

Copyright  1996 by Addison-Wesley Publishing Company 141

Top: Event node grap; Bottom: Earliest completion time,
latest completion time, and slack (additional edge item)

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3

B 2

0

0

C 3

D 2

E 1 K 4

F 3

G 2

0

0

0

0

0

0

0

1 6d

3

2

8d

7d

5

4

6

9

8

7

A 3 0

B 2 2

0

0

C 3 0

D 2 1

E 1 2 K 4 2

F 3 0

G 2 2

0

0

0

0

0

0

0

3 6 6 9

0 3 5 5 7

2 3 7

3 6 6 9

0 4 6 7 9

4 5 9

