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Chapter 7

Recursion
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Stack of activation records

main()

S(4)

S(3)

S(2)TOP:



Copyright  1996 by Addison-Wesley Publishing Company 66

Trace of the recursive calculation of the Fibonacci numbers

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F
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• Divide: Smaller problems are solved recursively (except, of 
course, base cases).

• Conquer: The solution to the original problem is then formed 
from the solutions to the subproblems.

Divide-and-conquer algorithms
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First Half Second Half

4 -3 5 -2 -1 2 6 -2 Values

4* 0 3 -2 -1 1 7* 5 Running Sums

Running Sum from the Center (*denotes maxi-
mum for each half)

Dividing the maximum contiguous subsequence problem 
into halves
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Trace of recursive calls for recursive maximum contiguous 
subsequence sum algorithm
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Assuming N is a power of 2, the solution to the equation
, with init ial condit ion  is

.

Basic divide-and-conquer running time theorem

T N(  ) 2T N 2⁄(  ) N+= T 1( ) 1=
T N(  ) N log N N+=



Copyright  1996 by Addison-Wesley Publishing Company 71

The  so lu t i on  to  the  equa t ion
, where  and ,

is

if 

if 

if 

General divide-and-conquer running time theo-
rem

T N(  ) AT N B⁄(  ) O Nk(  )+= A 1≥ B 1>

T N(  )









=

O N ABlog( ) A Bk>

O Nk Nlog( ) A Bk=

O Nk( ) A Bk<
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Some of the subproblems that are solved recursively in 
Figure 7.15

1

1 1

25 25 10 1 21

21

21

21

21 21 10 1062

2

61

21

42

31

32

  1
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Alternative recursive algorithm for coin-changing problem

+

+

+

+

+

1

5

10

21

25

21 21 10 10

25 21 10 1 1

21 21 10 1

21 21

25 10 1 1 1
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Chapter 8

Sorting Algorithms
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• Words in a dictionary are sorted (and case distinctions are 
ignored).

• Files in a directory are often listed in sorted order.
• The index of a book is sorted (and case distinctions are 

ignored).
• The card catalog in a library is sorted by both author and title.
• A listing of course offerings at a university is sorted, first by 

department and then by course number.
• Many banks provide statements that list checks in increasing 

order (by check number).
• In a newspaper, the calendar of events in a schedule is gener-

ally sorted by date.
• Musical compact disks in a record store are generally sorted 

by recording artist.
• In the programs that are printed for graduation ceremonies, 

departments are listed in sorted order, and then students in 
those departments are listed in sorted order.

Examples of sorting
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Operators Definition

operator> ( A, B ) return B < A;

operator>=( A, B ) return !( A < B );

operator<=( A, B ) return !( B < A );

operator!=( A, B ) return A < B || B < A;

operator==( A, B ) return !( A < B || B < A );

Deriving the relational and equality operators from 
operator<
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Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

Shellsort after each pass, if increment sequence is {1, 3, 5}
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N Insertion
sort

Shellsort

Shell’s Odd gaps only Dividing by 2.2

1,000 122 11 11 9
2,000 483 26 21 23
4,000 1,936 61 59 54
8,000 7,950 153 141 114

16,000 32,560 358 322 269
32,000 131,911 869 752 575
64,000 520,000 2,091 1,705 1,249

Running time (milliseconds) of the insertion sort and 
Shellsort with various increment sequences
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Linear-time merging of sorted arrays (first four steps)

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 13 24 26 2 15 27 38

BptrAptr Cptr

1

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2

1 13 24 26 2 15 27 38

BptrAptr Cptr

1 2 13
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Linear-time merging of sorted arrays (last four steps)

1 13 24 26 2 15 27 38

BptrAptr Cp

1 2 13 15

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2

1 13 24 26 2 15 27 38

BptrAptr

1 2 13 15 2
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The basic algorithm Quicksort(S)  consists of the following four
steps:

1. If the number of elements in S is 0 or 1, then return.
2. Pick any element v in S. This is called the pivot.
3. Partition S – {v} (the remaining elements in S) into two dis-

joint groups: L =  and R = 
.

4. Return the result of Quicksort(L) followed by v followed by 
Quicksort(R).

Basic quicksort algorithm

x S v{ }– x v≤∈{ }
x S v{ }–∈ x v≥{ }
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The steps of quicksort

13

81

92

43

65

31
57

26
75

0

Select pivot

13

81

92

43

65

31
57

26
75

0

Partition

13
0

26
43

57

31 65
92

Quicksort Quicksor

0 13 26 31 43 57 65 7

  0 13 26 31 43 57 65 75 81 92

large itemsmall items
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Because recursion allows us to take the giant leap of faith, the
correctness of the algorithm is guaranteed as follows:

• The group of small elements is sorted, by virtue of the recur-
sion.

• The largest element in the group of small elements is not 
larger than the pivot, by virtue of the partition.

• The pivot is not larger than the smallest element in the group 
of large elements, by virtue of the partition.

• The group of large elements is sorted, by virtue of the recur-
sion.

Correctness of quicksort
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8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: pivot element 6 is placed at the end

8 1 4 9 0 3 5 2 7 6

Partitioning algorithm: i  stops at large element 8; j  stops 
at small element 2

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm: out-of-order elements 8 and 2 are 
swapped

2 1 4 9 0 3 5 8 7 6

Partitioning algorithm:  i  stops at large element 9; j  stops 
at small element 5

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: out-of-order elements 9 and 5 are 
swapped

2 1 4 5 0 3 9 8 7 6

Partitioning algorithm: i  stops at large element 9; j  stops 
at small element 3

2 1 4 5 0 3 6 8 7 9

Partitioning algorithm: swap pivot and element in position i
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8 1 4 9 6 3 5 2 7 0

Original array

0 1 4 9 6 3 5 2 7 8

Result of sorting three elements (first, middle, and last)

0 1 4 9 7 3 5 2 6 8

Result of swapping the pivot with next to last element
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• We should not swap the pivot with the element in the last 
position. Instead, we should swap it with the element in the 
next to last position.

• We can start i  at Low+1 and j  at High-2 .
• We are guaranteed that, whenever i  searches for a large ele-

ment, it will stop because in the worst case it will encounter 
the pivot (and we stop on equality).

• We are guaranteed that, whenever j  searches for a small ele-
ment, it will stop because in the worst case it will encounter 
the first element (and we stop on equality).

Median-of-three partitioning optimizations
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1. If the number of elements in S is 1, then presumably k is 
also 1, and we can return the single element in S.

2. Pick any element v in S. This is the pivot.
3. Partition S – {v} into L  and R, exactly as was done for 

quicksort.
4. If k is less than or equal to the number of elements in L, then 

the item we are searching for must be in L. Call Quickselect( 
L, k ) recursively. Otherwise, if k is exactly equal to one 
more than the number of items in L, then the pivot is the kth 
smallest element, and we can return it as the answer. Other-
wise, the kth smallest element lies in R, and it is the (k – |L| – 
1)th smallest element in R. Again, we can make a recursive 
call and return the result.

Quickselect algorithm
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Using an array of pointers to sort

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Ptr[0] Ptr[1] Ptr[2] Ptr[3] Ptr[4]
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Data structure used for in-place rearrangement

200 100 400 500 300

A[0] A[1] A[2] A[3] A[4]

Loc[0] Loc[1] Loc[2] Loc[3] Loc[4]

1 0 4 2 3
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Chapter 9

Randomization
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Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

Distribution of lottery winners if expected number of win-
ners is 2
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An important nonuniform distribution that occurs in simula-
tions is the Poisson distribution. Occurrences that happen under
the following circumstances satisfy the Poisson distribution:

• The probability of one occurrence in a small region is propor-
tional to the size of the region.

• The probability of two occurrences in a small region is pro-
portional to the square of the size of the region and is usually 
small enough to be ignored.

• The event of getting k occurrences in one region and the event 
of getting j occurrences in another region disjoint from the 
first region are independent. (Technically this statement 
means that you can get the probability of both events simulta-
neously occurring by multiplying the probability of individ-
ual events.)

• The mean number of occurrences in a region of some size is 
known.

Then if the mean number of occurrences is the constant a, then
the probability of exactly k occurrences is .

Poisson distribution

ake a– k!⁄
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Chapter 10

Fun and Games
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0 1 2 3
0 t h i s

1 w a t s

2 o a h g

3 f g d t

Sample word search grid
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for each word W in the word list
    for each row R
        for each column C
            for each direction D
                check if W exists at row R, column C
                in direction D

Brute-force algorithm for word search puzzle
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for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column C
                            in direction D form a word

Alternate algorithm for word search puzzle
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for each row R
    for each column C
        for each direction D
            for each word length L
                check if L chars starting at row R column
                            C in direction D form a word
                if they do not form a prefix,
                    break;   // the innermost loop

Improved algorithm for word search puzzle; incorporates a 
prefix test
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1. If the position is terminal (that is, can immediately be evalu-
ated), return its value.

2. Otherwise, if it is the computer’s turn to move, return the 
maximum value of all positions reachable by making one 
move. The reachable values are calculated recursively.

3. Otherwise, it is the human’s turn to move. Return the mini-
mum value of all positions reachable by making one move. 
The reachable values are calculated recursively.

Basic minimax algorithm
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Alpha-beta pruning: After H2A is evaluated, C2, which is the 
minimum of the H2’s, is at best a draw. Consequently, it 
cannot be an improvement over C1. We therefore do not 
need to evaluate H2B, H2C, and H2D, and can proceed 
directly to C3

C1 C3

DRAW

U

U

C2

H2A

DRAW

H2B

?

H2C

?

H2D

?
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Two searches that arrive at identical positions

X

X O X

X O X

O X

X O

X
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Chapter 11

Stacks and Compilers
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Stack operations in balanced symbol algorithm

(
[
( (

( [ ] }* )*

{

[ eof*

Errors (indicated by *):
    } when expecting )
    ) with no matching opening symb o
    [ unmatched at end of input 
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Steps in evaluation of a postfix expression

1
2
1 -1

4
-1

1 2 - 4

1024
-1
^

3
1024

-1
3

3072
-1
*

6
3072

-1
6

18432
-1
*

2
7

18432
-1
2

2
2
7

18432
-1
2

4
7

18432
-1
^

2401
18432

-1
^

7
-1
/

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ 
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Infix expression Postfix expression Associativity

2 + 3 + 4 2 3 + 4 + Left associative: Input + is 
lower than stack +

2 ^ 3 ^ 4 2 3 4 ^ ^ Right associative: Input ^  is 
higher than stack ^

Associativity rules
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• Operands: Immediately output.
• Close parenthesis: Pop stack symbols until an open parenthe-

sis is seen.
• Operator: Pop all stack symbols until we see a symbol of 

lower precedence or a right associative symbol of equal pre-
cedence. Then push the operator.

• End of input: Pop all remaining stack symbols.

Various cases in operator precedence parsing
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Infix to postfix conversion

Infix: 1 - 2 ^ 3 ^ 3 - ( 4 + 5 * 6 ) * 7

1

1

-

-

2

-
2

^

^
-

3

^
-

3

3

^
^
-

3

-

-
^^-

(

(
-

4

(
-

4

+

+
(
-

*

*

+
(
-

*

6

+
(
-

6

)

-
* +

*

*
-

7

*
7
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Expression tree for (a+b)*(c-d)

*

+ -

a b a b



Copyright  1996 by Addison-Wesley Publishing Company 108

Chapter 12

Utilities
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Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
i 010 12 36
s 011  3  9
t 100  4 12

sp 101 13 39
nl 110  1  3

Total 174

A standard coding scheme
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Representation of the original code by a tree

a e i s t sp nl
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A slightly better tree

a e i s t sp

nl
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Optimal prefix code tree

t

a

sp

nl

e

s

i
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Character Code Frequency Total Bits

a 001 10 30
e 01 15 30
i 10 12 24
s 00000 3 15
t 0001  4 16

sp 11 13 26
nl 00001  1  5

Total 146

Optimal prefix code
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Huffman’s algorithm after each of first three merges

i se ta sp
10 15 12 3 4 13

i te spa
10 15 12 4 13

T1

s

4

i spea
10 15 12 13

T2

T1

nls

8

spie
15 12 13

t

T2

T3

T1

nls

1
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Huffman’s algorithm after each of last three merges

e
15

sp

T4

i

25

t

T2

T3

T1

nls

18

sp

T4

i

25

t

T5

aT2

T3

T1

nls

3

t

T5

aT2

T3

T1

T6

nl

e

s

T4

i

58
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Character Weight Parent Child Type

0 a 10 9 1
1 e 15 11 1
2 i 12 10 0
3 s 3 7 0
4 t 4 8 1
5 sp 13 10 1
6 nl 1 7 1
7 T1 4 8 0
8 T2 8 9 0
9 T3 18 11 0

10 T4 25 12 1
11 T5 33 12 0
12 T6 58 0

Encoding table (numbers on left are array indices)
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IdNode  data members: Word is a String ; Lines  is 
a pointer to a Queue

Lines

Word Dynamically al
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The object in the tree is a copy of the temporary; after the 
insertion is complete, the destructor is called for the tempo-
rary

Dynamical

NewWord

Temporary

Object stored in the tree

Tree

143

que
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Chapter 13

Simulation
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1. At the start, the potato is at player 1; after one pass it is at 
player 2.

2. Player 2 is eliminated, player 3 picks up the potato, and 
after one pass it is at player 4.

3. Player 4 is eliminated, player 5 picks up the potato and 
passes it to player 1.

4. Player 1 is eliminated, player 3 picks up the potato, and 
passes it to player 5.

5. Player 5 is eliminated, so player 3 wins.

The Josephus problem

1 2 3

45

1 3

45

31

5

(a) (b) (c)
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1 User 0 dials in at time 0 and connects for 1 minutes
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes
27 User 19 dials in at time 19 but gets busy signal

Sample output for the modem bank simulation: 3 modems; 
a dial in is attempted every minute; average connect time is 
5 minutes; simulation is run for 19 minutes
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1. The first DialIn  request is inserted
2. After DialIn  is removed, the request is connected result-

ing in a Hangup  and a replacement DialIn  request
3. A Hangup  request is processed
4. A DialIn  request is processed resulting in a connect. Thus 

both  a Hangup  and DialIn  event are added (three times)
5. A DialIn  request fails; a replacement DialIn  is gener-

ated (three times)
6. A Hangup  request is processed (twice)
7. A DialIn  request succeeds, Hangup  and DialIn  are 

added.

Steps in the simulation
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Priority queue for modem bank after each step

1 Hangup
User 0, Len 1 1 DialIn

User 1, Len 5

1 DialIn
User 1, Len 5

0 DialIn
User 0, Len 1

6 Hangup
User 1, Len 5 2 DialIn

User 2, Len 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 3 DialIn
User 3, Len 11

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 4

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 5

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 6

6 Hangup
User 2, Len 4 14 Hangup

User 3, Len 11 7 DialIn
User 7, Len 8

6 Hangup
User 1, Len 5 6 Hangup

User 2, Len 4 14 Hangup
User 3, Len 11 7

14 Hangup
User 3, Len 11 7 DialIn

User 7, Len 8

14 Hangup
User 3, Len 11 15 Hangup

User 7, Len 8 8 DialIn
User 8, Len 6
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Chapter 14

Graphs and Paths
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A directed graph

V1V0

V2 V3 V4

V5 V6

2

2 2

1

10         31      4   

5           8 4            6
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Adjacency list representation of graph in Figure 14.1; 
nodes in list i represent vertices adjacent to i and the cost 
of the connecting edge

4 (10)

0 (4)

4 (2)

6 (6)

1 (2)

5 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

3 (1)0

1

2

3

4

5

6
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• Dist : The length of the shortest path (either weighted or 
unweighted, depending on the algorithm) from the starting 
vertex to this vertex. This value is computed by the shortest 
path algorithm.

• Prev : The previous vertex on the shortest path to this vertex.
• Name: The name corresponding to this vertex. This is estab-

lished when the vertex is placed into the dictionary and will 
never change. None of the shortest path algorithms examine 
this member. It is only used to print a final path.

• Adj : A pointer to a list of adjacent vertices. This is estab-
lished when the graph is read. None of the shortest path algo-
rithms will change the pointer or the linked list.

Information maintained by the Graph table
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Data structures used in a shortest path calculation, with 
input graph taken from a file: shortest weighted path from A 
to C is: A to B to E to D to C (cost 76)

D C 10
A B 12
D B 23
A D 87
E D 43
B E 11
C A 19

Input

0

3

4

1

2

Dist Prev Name

D

C

A

B

E

Adj

3 

0 

Dictio

D (0)

B (
A (2)

A B

C D E

12

11

4310

19 2387

Visual representation of graph

66

76

0

12

23

4

0

-1

2

3
Graph table
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Graph after marking the start node as reachable in zero 
edges

V1V0

V2 V3 V4

V5 V6

0
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Graph after finding all vertices whose path length from the 
start is 1

V1V0

V2 V3 V4

V5 V6

1

0

1
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Graph after finding all vertices whose shortest path from 
the start is 2

V1V0

V2 V3 V4

V5 V6

1 2

0

1

2
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Final shortest paths

V1V0

V2 V3 V4

V5 V6

1 2

0 3

1 3

2
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How the graph is searched in unweighted shortest path 
computation

V1V0

V2 V3 V4

V5 V6

0

V0

V2 V3

V5

0

1

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0

1

2

1 2

V1V0

V2 V3 V4

V5 V6

0 3

1 3

2

1 2

V0

V2 V3

V5

0

1

2

1

V0

V2 V3

V5

0

1

2

1

V1V0

V2 V3 V4

V5 V6

0 3

1

2

1 2
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Eyeball is at v; w is adjacent; Dw should be lowered to 6

wv

S

3 8

0

3

2

u

6
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If Dv is minimal among all unseen vertices and all edge 
costs are nonnegative, then it represents the shortest path

v

S
0

Du

u

Dv

d 0≥
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Stages of Dijkstra’s algorithm

V1V0

V2 V3 V4

V5 V6

2
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Graph with negative cost cycle
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Topological sort
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Stages of acyclic graph algorithm
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Activity-node graph
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Top: Event node grap; Bottom: Earliest completion time, 
latest completion time, and slack (additional edge item)
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