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A B S T R A C T   

Background: Temperature fluctuations can affect human health independent of the effect of mean temperature. 
However, no study has evaluated whether short-term temperature fluctuations could affect DNA methylation. 
Methods: Peripheral blood DNA methylation for 479 female siblings of 130 families were analysed. Gridded daily 
temperatures data were obtained, linked to each participant’s home address, and used to calculate nine different 
metrics of short-term temperature fluctuations: temperature variabilities (TVs) within the day of blood draw and 
preceding one to seven days (TV 0–1 to TV 0–7), diurnal temperature range (DTR), and temperature change 
between neighbouring days (TCN). Within-sibship design was used to perform epigenome-wide association 
analyses, adjusting for daily mean temperatures, and other important covariates (e.g., smoking, alcohol use, cell- 
type proportions). Differentially methylated regions (DMRs) were further identified. Multiple-testing compari-
sons with a significant threshold of 0.01 for cytosine-guanine dinucleotides (CpGs) and 0.05 for DMRs were 
applied. 
Results: Among 479 participants (mean age ± SD, 56.4 ± 7.9 years), we identified significant changes in 
methylation levels in 14 CpGs and 70 DMRs associated with temperature fluctuations. Almost all identified CpGs 
were associated with exposure to temperature fluctuations within three days. Differentially methylated signals 
were mapped to 68 genes that were linked to human diseases such as cancer (e.g., colorectal carcinoma, breast 
carcinoma, and metastatic neoplasms) and mental disorder (e.g., schizophrenia, mental depression, and bipolar 
disorder). The top three most significantly enriched gene ontology terms were Response to bacterium (TV 0–3), 
followed by Hydrolase activity, acting on ester bonds (TCN), and Oxidoreductase activity (TV 0–3). 
Conclusions: Short-term temperature fluctuations were associated with differentially methylated signals across 
the human genome, which provides evidence on the potential biological mechanisms underlying the health 
impact of temperature fluctuations. Future studies are needed to further clarify the roles of DNA methylation in 
diseases associated with temperature fluctuations.   

1. Introduction 

Climate change is already exacerbating unstable weather conditions 

across the globe (IPCC, 2012). In the past two decades, temperature 
fluctuations have been identified as a risk factor for both mortality and 
morbidity independent of the effect of mean temperature (Cheng et al., 
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2014). The health impact of temperature fluctuations can be multi- 
faceted. For example, the diurnal temperature range (DTR), represent-
ing the changes in temperature during a day, has been widely reported 
to increase mortality/morbidity risk, particularly for cardiovascular and 
respiratory diseases (Cheng et al., 2014). Another indica-
tor––––temperature change between the neighbouring days (TCN), has 
been associated with increased mortality risk (Zhan et al., 2017). To 
capture the combined and lagged effects of both DTR and TCN, tem-
perature variability (TV) has been increasingly used to assess the health 
impact of temperature fluctuations within a short exposure window (e. 
g., from two to seven days) (Guo et al., 2016). Numerous studies have 
reported a persistent association between TV (up to seven days) and 
mortality/morbidity risk and identified children, the elderly, people 
with respiratory disease as vulnerable populations (Wu et al., 2021b; 
Zhao et al., 2018). 

The pathophysiological mechanism underlying the health impact of 
temperature fluctuations remains unclear. Current hypotheses involve 
limited thermoregulation and acclimatization to unstable weather, 
following inflammatory response and oxidative stress (Chen et al., 2018; 
Halonen et al., 2010; Liu et al., 2015; Schneider et al., 2008; Zhao et al., 
2019). DNA methylation is an epigenetic modification that is associated 
with the normal regulation of gene expression and cellular processes 
(Suzuki and Bird 2008). The alterations of DNA methylation are highly 
associated with many environmental exposures, such as greenness, air 
pollution, and ambient temperature (Martin and Fry 2018; Rider and 
Carlsten 2019; Xu et al., 2021a; b). Previous studies have described the 
critical role of DNA methylation in the regulation of inflammation and 
oxidative stress (Hedman et al., 2016; Wierda et al., 2010), such role has 
been proposed as the potential mechanisms behind the health impact of 
temperature (Bind et al., 2014; Bui et al., 2020; Lechner et al., 2005). 

An increasing number of studies have linked the environmental 
temperature to human epigenetic modifications, identifying 15 genes 
that are differentially methylated in response to temperature exposure 
(Xu et al., 2020). However, previous studies focused primarily on the 
mean temperature during different exposure windows (e.g., daily, 
monthly, or yearly mean temperature) (Xu et al., 2020). Given that the 
health impacts of temperature fluctuation are independent of mean 
temperature, the former might show independent epigenetic effect of 
mean temperature. To the best of our knowledge, no study to date has 
assessed the association between short-term temperature fluctuations 
and DNA methylation, which could have great importance to reveal the 
underlying mechanisms behind the health impact of temperature fluc-
tuations. In this study, we aimed to assess the association between short- 
term exposure to temperature fluctuations and genome-wide DNA 
methylation using data from a twin and family study in Australia. 

2. Methods 

2.1. Study population 

The study sample consisted of participants from the Australian 
Mammographic Density Twins and Sisters Study (AMDTSS). Details of 
the AMDTSS have been described previously (Li et al., 2019b; Li et al., 
2018; Li et al., 2015; Odefrey et al., 2010; Xu et al., 2021a; b; Xu et al., 
2021c). Briefly, female twins and their sisters were recruited through the 
Australian Twin Registry between 2004 and 2009. The inclusion criteria 
were as follows: (1) aged between 40 and 70; (2) not pregnant or 
breastfeeding; (3) without breast cancer. The present analyses included 
479 women from 130 families with DNA methylation measurements, 
comprising 66 monozygotic (MZ) twin pairs, 66 dizygotic (DZ) twin 
pairs, and 215 sisters of these twins. 

The study was approved by the Human Research Ethics Committee of 
The University of Melbourne and the Monash University Human 
Research Ethics Committee. Written informed consents were signed by 
every participant. 

2.2. Data collection 

2.2.1. DNA methylation data 
Peripheral blood was drawn from participants for DNA methylation 

measurements. Genomic DNA was first isolated from dried blood spots 
(or Guthrie Cards) and then used for methylation measurement by the 
Infinium HumanMethylation450K BeadChip array. Under a standard 
pipeline from the Bioconductor minifi package, we processed the raw 
methylation data following procedures below: background correction 
and control normalization using Illumina’s reference factor-based 
normalization methods (preprocessIllumina), subset-quantile within 
array normalization correction for the technical differences between the 
type I and II array designs (Maksimovic et al., 2012), and minimising 
technical batch effects (or non-biological experimental variation) using 
an empirical Bayes method (ComBat) (Johnson et al., 2007). Quality 
control was performed by several procedures: removing cytosine- 
guanine dinucleotides (CpGs) with a detection p-value > 0.01 (indi-
cating a poor-quality signal) in one or more samples; filtering out the 
probes from the sex chromosomes, probes binding to documented SNPs, 
probes mapping to multiple places in the genome (cross-reactive), 
negative control probes, and probes with bead count<3 in at least 5 % of 
samples. Eventually, a total of 411,394 CpGs were included for down-
stream analyses. For each CpG, methylated and unmethylated intensity 
values were used to measure DNA methylation levels and generate Beta 
values for analysis. Beta value quantifies the proportion of methylation 
and has a value range between 0 (completely unmethylated) and 1 (fully 
methylated). Outliers were defined as DNA methylation levels at any 
one CpG site that are three times beyond the inter-quartile range from 
the 25th or 75th percentiles compared to the rest of the population and 
were removed during analyses (Seeboth et al., 2020). 

2.2.2. Meteorological data 
We obtained daily temperatures (maximum temperature and mini-

mum temperature [Tmax and Tmin]) and relative humidity data at a 
spatial resolution of 0.05◦×0.05◦ across Australia from the SILO data-
base hosted by the Queensland Department of Environment and Science 
(DES) (SILO 2020). All data were linked to each participant’s home 
address. The daily mean temperature was computed as the average of 
the daily Tmax and Tmin. We applied several widely used indices to reflect 
short-term temperature fluctuation: DTR, TCN, and TV (from TV 0–1 to 
TV 0–7) (Cheng et al., 2014; Guo et al., 2016; Zhan et al., 2017). DTR 
was the difference between daily Tmax and Tmin. TCN was calculated as 
the difference of mean temperature between two neighbouring days. TV 
was defined as the standard deviation (SD) of Tmax and Tmin within 
different exposure windows (Guo et al., 2016). For example, we calcu-
lated TV 0–3 as the SD of all Tmax and Tmin for the current and preceding 
three days (Tmax-lag0, Tmin-lag0, Tmax-lag1, Tmin-lag1, Tmax-lag2, Tmin-lag2, 
Tmax-lag3, Tmin-lag3). All values were calculated based on the date of the 
blood draw. 

2.2.3. Assessment of covariates 
Demographic and lifestyle characteristics data including birth date, 

education level, weight, height, smoking history, and alcohol use habits 
were collected using telephone-administered questionnaires by trained 
interviewers. As described previously (Xu et al., 2021c), both smoking 
and alcohol use were categorized into three groups (never, past, and 
current) by asking the frequency of cigarettes and alcohol consumed. 
Body mass index (BMI) was defined as weight divided by squared height 
(kg/m2). Chronological age was calculated as the number of years from 
the birth date to the day when the blood sample was collected. As DNA 
methylation levels vary by the leukocyte composition, we estimated the 
cell-type makeup (CD8+ T, CD4+ T, natural killer [NK], B cells, mono-
cytes, and granulocytes) of each sample using the Houseman algorithm, 
with the function estimateCellCounts embedded in the minfi package 
(Houseman et al., 2012). The survey year and season (spring, summer, 
autumn, winter) were defined based on the date of the blood draw and 
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the official season definition provided by the Australia Bureau of 
Meteorology. 

2.3. Statistical analyses 

2.3.1. CpG-specific analyses 
We applied a within-sibship design to control for complex sources of 

confounders, including shared familial effects which shaped the envi-
ronmental exposure and population stratification. For each of nine 
temperature indices, we fitted a generalized estimating equation (GEE) 
model to assess the associations between each of nine temperature 
indices and CpG-specific DNA methylation level whilst handling corre-
lated data structures arising from similarities between family members. 
The equation was as follows: 

E
(
Methij

)
= β0 + βwithin*(Expoij − Expoi)+ βbetween*Expoi + β*Xij (1)  

where E
(
Methij

)
stands for the expected value of DNA methylation level 

at one CpG site of subject j in family i. Expoij denotes the exposure level 
of subject j in family i. Expoi is the average exposure level of all subjects 
in family i. βwithin and βbetween stand for the within- and between-family 
effect estimates associated with every one-unit increase in exposure, 
respectively. We also added a set of covariates (Xij) to the model, 
including mean temperature, relative humidity, proportions of six cell 
types, chronological age, education level, BMI, smoking and drinking 
habits, survey year, and season. Mean temperature and relative hu-
midity were added to the model as potential confounders because they 
have a relationship with both the temperature fluctuation and DNA 
methylation (Bind et al., 2014). Chronological age, BMI, smoking and 
drinking habits were regressed out as they were known covariates 
associating with DNA methylation (Ryan et al., 2020). Blood cell 
composition was added to the model to account for potential con-
founding by cell type due to their distinct methylation signatures 
(Montano et al., 2016). We also performed sensitivity analysis by 
removing cell composition in the model to check whether cell type 
adjustment changed effect size significantly. We adjusted for survey year 
and season to account for long-term trends and seasonal variation. We 
adopted a natural cubic spline with 4 degrees of freedom for the 21-day 
moving average of both relative humidity and mean temperature. We 
focused on within-family effects (βwithin) which were less biased by both 
measured and unmeasured shared familial factors than inter-family ef-
fect estimates (βbetween) (Xu et al., 2021c). 

For each exposure index, p-values for all CpG sites were adjusted for 
epigenome-wide multiple testing using the Benjamini–Hochberg 
method (Benjamini and Hochberg 1995). CpG sites with a false discov-
ery rate (FDR) < 0.05 were considered to be significant. A Quantile- 
Quantile (Q-Q) plot with a genomic inflation factor (known as λ) was 
used to assess the degree of test statistic inflation (Li et al., 2018; Van der 
Most et al., 2017). 

2.3.2. Differentially methylated region (DMR) analyses 
We used two methods with different algorithms to investigate 

differentially methylated regions (DMRs): DMRcate and comb-p (Lent 
et al., 2018; Pedersen et al., 2012; Peters et al., 2015; Xu et al., 2021d). 
The DMRcate statistical model identifies the regions of enrichment by 
computing a smoothed kernel association z-statistics of all CpGs in a 
seed region against a null comparison, then ranks them by Fisher’s 
multiple comparison statistics. The recommended bandwidth of 1000 
and scaling factor for bandwidth of 2 were used for DMRcate. For in-
dividual CpGs, we used a FDR < 0.05 as the significance threshold. DMR 
was defined as consisting of at least two consecutive CpGs and having a 
FDR < 0.01. The comb-p method, on the contrary, identifies DMRs based 
on the output of a probe-by-probe analysis (Pedersen et al., 2012; 
Vangeel et al., 2017). Briefly, Comb-p calculates Stouffer-Liptak-Kechris 
(SLK)-corrected p-values for each CpG based on autocorrelation be-
tween CpGs, then identifies regions of enrichment using a peak-finding 

algorithm. Finally, one-step Šidák multiple-testing correction is applied 
to SLK-corrected p-values. We used a FDR threshold of 0.05 for the 
initial selection of enriched regions, and a Šidák significant threshold of 
0.01 for the final identification of DMRs consisting of at least two 
consecutive CpGs. As DMRcate and Comb-p apply distinct statistical 
algorithms to identify DMRs, significant DMRs were defined as DMRs 
identified by both MDRcate and comb-p methods to reduce false- 
positive results. 

2.3.3. Gene-diseases associations 
We mapped significant CpGs to gene Entrez identifiers using 450 K 

array annotation, then evaluated gene-disease associations (GDAs) using 
DisGeNET database (Version 7.0 https://www.disgenet.org/) (Piñero 
et al., 2016). DisGeNET is an open-access platform containing over one 
billion gene-disease associations between >21 thousand genes and over 
30 thousand diseases, disorders, traits, or phenotypes. We selected the 
top five associated diseases for each gene according to GDA scores which 
consider the number and type of curated sources, and the number of 
publications reporting the association. 

2.3.4. Functional characterization of CpG sites 
For each temperature fluctuation index, gene set enrichment analysis 

for differentially methylated CpG sites and regions was performed based 
on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 
Gene Ontology (GO) terms. We included all significant CpGs identified 
from CpG-specific analysis and CpGs located in the significant DMRs. A 
standard hypergeometric test (HGT) was applied to explore GO terms 
and KEGG pathways, accounting for probe number and multi-gene bias 
(Maksimovic et al., 2021). Gene-specific p-values for over- 
representation were produced. ClusterProfiler (version 4.0) was used to 
eliminate redundant GO terms resulting from the parent–child semantic 
relationship and obtain a representative term (Wu et al., 2021a). GO 
terms or KEGG pathways with a FDR for enrichment < 0.05 were 
considered significant. 

All analyses were performed in R software (version 4.1.0) with 
packages “geepack” (for GEE, version 1.3–2), “ENmix” (for comb-p an-
alyses, version 1.28.8), “DMRcate” (for DMRcate analyses, version 
2.6.0), “missMethyl” (for gene set enrichment analyses, version 1.26.1) 
and “ClusterProfiler” (version 4.0.5). 

3. Results 

3.1. Characteristics of study participants and measurement of exposure 

The characteristics of participants are shown in Table 1. The average 
age of 479 participants was 56.4 years (SD: 7.9 years). Most of the 
participants (60.8 %) had never smoked and less than a third (30.7 %) 
were former smokers. There were 235 current drinkers, accounting for 
nearly 50 % of all participants. The education level of participants 
ranged from primary and secondary schools (41.3 %) to university (28.2 
%). Most of the participants were located in the southeast and east 
coastal regions of Australia (Fig. 1). 

Table 2 shows the distribution of nine temperature fluctuation 
metrics and other meteorological conditions. All environmental expo-
sures were matched with the date of blood draw. Among 479 partici-
pants, the mean (±SD) was 11.2 (±4.3) ̊C for DTR, ranging from 0.3 ̊C to 
23.9 ̊C; and − 0.2 (±2.4) ̊C for TCN, ranging from − 10.7 ̊C to 6.1 ̊C; and 
6.7 (±2.1) C̊ for TV 0–1, ranging from 2.1 C̊ to 13.3 C̊. TV decreased 
slightly with longer lengths of exposure and became minimal on TV 0–7. 
The daily mean temperature varied from 4.1 ̊ C to 31.8 ̊ C, with an 
average daily value of 17.6 ̊C. The exposure indices were correlated with 
each other, with the highest Pearson correlation observed for TV 0–6 
and TV 0–7 (0.98) (Fig. S1). Correlation coefficients between nine 
exposure indices and cell types were statistically non-significant or weak 
(Table S1). Compared to TCN, both DTR and TV showed larger vari-
ability (Fig. 1). 
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3.2. Findings from CpG-specific analyses 

We identified 14 CpGs significantly (FDR < 0.05) associated with 
different temperature fluctuations indices after epigenome-wide multi-
ple testing adjustment. These CpGs were located in 10 unique genes 
(Fig. 2). The most significant association (with the lowest p-value) was 
observed for cg08485565 (KCNK4), corresponding to a 0.27 % increase 
in methylation level associated with per IQR increase in TCN. Both TV 
0–1 and TV 0–2 were associated with cg06811300 (ATXN1) and 
cg13148126 (NTN1). No significant associations were found for longer 
TV exposures (from TV 0–3 to TV 0–7) (Figure S2 and Table 3). The 
calculated lambdas and QQ plots suggested no signficant inflation of p- 
values (Figure S3). For most CpGs identified, the directions of the co-
efficients for TV of different exposure windows were the same, but 
opposite of the direction of TCN (Figure S4). After removing cell types in 
the model, the effect sizes changed slightly (Table S2). 

3.3. Findings from DMR analyses 

As summarized in Table 4, we identified 161 DMRs using DMRcate 
and 80 DMRs using comb-p significantly associated with different tem-
perature fluctuation exposures. Among them, 70 DMRs were identified 
by both DMRcate and comb-p (both Šidák p-value < 0.01 and FDR <
0.01). Most of 70 DMRs were associated with exposure to TCN (27 
DMRs), followed by TV 0–5 exposure (16 DMRs). Detailed information 
on identified DMRs is shown in Table S3. For example, CIZ1 DMRs 
(untranslated regions and promoter) showed an average increase in 
methylation level of 1.72 % associated with per IQR increase in TCN. 
Methylation levels of DMRs located in GNA12 (gene body) decreased by 
about 1.48 % with per IQR increase in TV 0–4. Among all the identified 
DMRs, the association with the lowest p-value was observed for DMRs 
located in intergenic regions, showing a mean methylation difference of 

2.17 % associated with per IQR increase in TV 0–3. There were no 
differentially methylated positions overlapping with DMRs. 

3.4. Annotated genes and their related human diseases or phenotypes 

All the identified CpGs and DMRs mapped to 68 genes. A total of 32 
genes with changed methylation levels were found in relation to TCN, 
while only 5 genes were found to be associated with DTR. As shown by 
Fig. 3, DTR and TCN were associated with non-overlapping genes, while 
both TV with short exposure window (TV 0–2 and TV 0–3) and TV with 
long exposure window (TV 0–5 to TV 0–7) were more likely to be 
associated with same genes. 

As for gene-disease associations, 51 out of 68 genes were linked to 
124 diseases and 47 phenotypes. For example, we identified ZNF518B, a 
protein coding gene functioning in gene silencing, associated with 
arthritis; PTPRN2, coding for the protein tyrosine phosphatase family, 
associated with atopic dermatitis; and NTN1 associated with subarachnoid 
hemorrhage. Except for LGALS9C, NT5M, and PLD6, all genes were 
related to multiple diseases. Most identified diseases were associated 
with cancer (e.g., colorectal carcinoma, breast carcinoma, and meta-
static neoplasms) and mental disorder (e.g., schizophrenia, mental 
depression, and bipolar disorder) (Table S4). 

3.5. Gene set enrichment analyses 

Based on our GO term and KEGG pathway analyses, 24 enriched GO 
annotations were identified, while no significant KEGG pathways were 
observed (all FDR > 0.05). Most identified GO terms were related to DTR 
(nine GO terms), followed by TV 0–4 (seven GO terms) and TV 0–2/TV 
0–5 (both five GO terms). TV 0–2 were more likely to share GO terms 
with TV 0–3; TV 0–4 shared three GO terms with TV 0–5. The top 3 most 
significantly enriched GO terms were Response to bacterium (TV 0–3), 
followed by Hydrolase activity, acting on ester bonds (TCN), and Oxido-
reductase activity (TV 0–3) (Fig. 4). 

4. Discussion 

To the best of our knowledge, this is the first study of genome-wide 
DNA methylation in relation to temperature fluctuations. Our study 
identified significant changes in methylation levels in 14 CpGs and 70 
DMRs associated with short-term temperature fluctuations. Almost all 
identified CpGs were associated with exposure to temperature fluctua-
tions within 3 days. Differentially methylated signals were mapped to 51 
genes linked to human diseases like cancer and mental disorders. 

Although no previous studies have analysed the DNA methylation in 
relation to temperature fluctuations, similar magnitudes of methylation 
changes associated with mean temperature were found in a previous 
study (Xu et al., 2021a). According to the epigenome-wide association 
study (EWAS) Atlas, many CpGs identified in our study have been linked 
with diseases associated with temperature fluctuations (Li et al., 2019a). 
For example, the DNA methylation level of cg07618733 was found to 
display a large, but not significant, difference between adolescent boys 
suffering from depressive and sleep symptoms and healthy controls 
(Ammala et al., 2019). However, no clear evidence was found for fe-
males in previous studies. Another study from Poland showed that rapid 
temperature changes were more likely to be associated with an 
increased risk of mental disorders (Lickiewicz et al., 2020). The top 
differentially methylated CpG site associated with metabolic syndrome 
was cg04457354 (Burghardt et al., 2018). Fasting blood glucose, one of 
the components of metabolic syndrome, was shown to be associated 
with outdoor temperature, with adipose tissue being the potential 
mediator. As temperature increases, brown adipose tissue, a cold- 
activated tissue with a high rate of glucose uptake (Cannon and 
Nedergaard 2004; Poher et al., 2015), may be inactivated and thus 
leading to insulin resistance (Lichtenbelt et al., 2009). Notably, our 
analyses didn’t replicate the results for CpGs identified by a previous 

Table 1 
Characteristics of participants.  

Variables ALL DZ MZ Sister 
(n = 479) (n = 132) (n = 132) (n = 215) 

Age, mean (SD) 56.4 (7.9) 57.0 (7.2) 55.6 (8.4) 56.56 (8.0) 
BMI, mean (SD) 26.8 (5.7) 26.8 (5.7) 26.3 (5.4) 27.11 (5.9) 
Smoking status (%)     
Current 41 (8.6) 10 (7.6) 12 (9.1) 19 (8.8) 
Former 147 (30.7) 37 (28.0) 37 (28.0) 73 (34.0) 
Never 291 (60.8) 85 (64.4) 83 (62.9) 123 (57.2) 
Drinking status (%)     
Current 235 (49.1) 65 (49.2) 69 (52.3) 101 (47.0) 
Former 52 (10.9) 15 (11.4) 8 (6.1) 29 (13.5) 
Never 192 (40.1) 52 (39.4) 55 (41.7) 85 (39.5) 
Education level, %     
Secondary or below 198 (41.3) 63 (47.7) 50 (38.2) 85 (39.7) 
Vocational 144 (30.1) 29 (22.0) 37 (28.2) 69 (32.2) 
University 135 (28.2) 40 (30.3) 44 (33.6) 60 (28.0) 
Cell type, mean (SD)     
CD8 + T 9.0 (3.7) 8.7 (4.0) 9.1 (3.6) 9.0 (3.6) 
CD4 + T 15.2 (5.7) 15.1 (5.6) 15.4 (6.3) 15.1 (5.5) 
Natural killer (NK) 6.5 (4.3) 7.0 (4.3) 6.7 (4.7) 6.0 (4.0) 
B cells 5.4 (2.3) 5.7 (2.7) 5.2 (2.1) 5.4 (2.2) 
Monocytes 6.8 (2.2) 7.0 (2.4) 6.5 (2.0) 6.9 (2.2) 
Granulocytes 59.4 (7.9) 58.9 (8.2) 59.3 (8.3) 59.8 (7.6) 
Survey year, %     
2005 139 (29.0) 31 (23.5) 55 (41.7) 53 (24.7) 
2006 223 (46.6) 77 (58.3) 51 (38.6) 95 (44.2) 
2007 98 (20.5) 18 (13.6) 24 (18.2) 56 (26.0) 
2008 19 (4.0) 6 (4.5) 2 (1.5) 11 (5.1) 
Season, %     
Spring 158 (33.0) 31 (23.5) 46 (34.8) 81 (37.7) 
Summer 99 (20.7) 38 (28.8) 21 (15.9) 40 (18.6) 
Autumn 119 (24.8) 35 (26.5) 36 (27.3) 48 (22.3) 
Winter 103 (21.5) 28 (21.2) 29 (22.0) 46 (21.4) 

Definition of abbreviations: SD, standard deviation; DZ, monozygotic; MZ, 
dizygotic. 
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study on the association between mean temperature and DNA methyl-
ation (Xu et al., 2021a), implying that temperature fluctuation might act 
by a different mechanism from mean temperature, or at least, target 
different CpGs. We did not observe an overlap between differentially 

methylated positions and regions. The possible reason is that DMRcate 
considers all neighbouring CpGs when smoothing and Comb-p examines 
regional clustering of neighbouring CpGs with low p-values. The two 
methods perform best when series of CpG-specific estimates were 

Fig. 1. Address of 479 participants and distribution of TCN, DTR, TV 0–1, and TV 0–7. Definition of abbreviations: TV, temperature variability; DTR, diurnal 
temperature range; TCN, temperature change between the neighbouring days. 

Table 2 
Summary statistics of nine temperature fluctuation metrics and other meteorological factors.  

Variables Mean Standard deviation Minimum Percentiles Maximum 

25th 50th 75th 

Mean temperature, ̊C  17.6  5.4  4.1  13.5  17.4  21.5  31.8 
Relative humidity, %  69.6  11.4  25.5  62.9  71.7  77.0  97.9 
Temperature fluctuations, ̊C        
DTR  11.2  4.3  0.3  8.1  11.1  14.0  23.9 
TCN  − 0.2  2.4  − 10.7  − 1.1  0.1  1.2  6.1 
TV 0–1  6.7  2.1  2.1  5.3  6.6  8.1  13.3 
TV 0–2  6.5  1.8  2.7  5.2  6.4  7.7  12.1 
TV 0–3  6.5  1.7  2.6  5.2  6.3  7.8  11.7 
TV 0–4  6.4  1.6  2.4  5.2  6.3  7.6  11.2 
TV 0–5  6.4  1.6  2.6  5.2  6.2  7.6  11.0 
TV 0–6  6.4  1.6  2.6  5.2  6.2  7.5  11.0 
TV 0–7  6.4  1.5  2.5  5.2  6.3  7.5  11.0 

Definition of abbreviations: TV, temperature variability; DTR, diurnal temperature range; TCN, temperature change between the neighbouring days. 
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consistent but small. As both DMRcate and comb-p identify DMRs based 
on association results of neighbouring probes, a significant DMR does 
not necessarily overlap a significant CpG site in that region (Lee et al., 
2019). 

Several studies found that cg21074347 and cg18550847 were 
differentially methylated between samples (newborns, children, and 
adults) with asthma and healthy controls (Cardenas et al., 2019; Forno 
et al., 2019; Hoang et al., 2020; Nicodemus-Johnson et al., 2016; Peng 
et al., 2019; Reese et al., 2019). As reported in a previous study (Wu 
et al., 2021b), TV was identified as a risk factor for asthma. Sudden 

temperature change may induce the desquamation of mucosal epithelial 
cells followed by the cooling of the upper respiratory tract, resulting in 
the dysfunction of local respiratory defences. Nevertheless, we cannot 
conclude that the above CpGs mediate the association between tem-
perature fluctuations and relevant diseases, more studies are needed to 
explore the roles of DNA methylation in the health impact of tempera-
ture fluctuations. 

Our study also found that several differentially methylated signals 
were located within genes with either temperature sensitivity or a 
known biochemical process involved in temperature fluctuation-related 

Fig. 2. Manhattan plots for the association between temperature variation and genome-wide DNA methylation. Notes: The red horizontal line represents the 
threshold where false discovery rate = 0.05. Definition of abbreviations: TV, temperature variability; DTR, diurnal temperature range; TCN, temperature change 
between the neighbouring days. 

Table 3 
Differentially methylated CpGs significantly associated with different exposure of temperature fluctuation.  

Exposure CpG CHR Position Gene/nearest 
gene 

Location in 
gene 

Relation to CpG 
islands 

Coefficient (per IQR 
increase) 

SE p-value FDR 

DTR cg07618733 Chr5 145,562,428 LARS TSS200 Open sea 2.17 × 10− 3 4.18 ×
10− 4 

2.01 ×
10− 7  

0.041  

cg04457354 Chr6 20,447,442 E2F3 Body Open sea − 1.22 × 10− 2 2.22 ×
10− 3 

3.64 ×
10− 8  

0.015 

TCN cg21074347 Chr11 9,115,009 FLJ46111 TSS1500 Shore 1.29 × 10− 2 2.46 ×
10− 3 

1.71 ×
10− 7  

0.018  

cg08485565 Chr11 64,057,771 KCNK4 TSS1500 Shore 2.67 × 10− 3 4.42 ×
10− 4 

1.43 ×
10− 9  

0.001  

cg18550847 Chr14 100,610,570 EVL 3′UTR Island 5.34 × 10− 3 9.59 ×
10− 4 

2.60 ×
10− 8  

0.005  

cg06433895 Chr16 68,873,850 TANGO6# IGR Shelf − 6.08 × 10− 3 1.15 ×
10− 3 

1.28 ×
10− 7  

0.018  

cg12244325 Chr21 45,883,864 LRRC3# IGR Island 7.08 × 10− 3 1.39 ×
10− 3 

3.35 ×
10− 7  

0.028 

TV 0–1 cg06811300 Chr6 16,504,474 ATXN1 5′UTR Open sea − 8.81 × 10− 3 1.65 ×
10− 3 

1.00 ×
10− 7  

0.041  

cg24847685 chr3 147,087,652  IGR opensea − 6.64 × 10− 3 1.34 ×
10− 3 

5.42 ×
10− 7  

0.045  

cg20697394 chr12 132,918,304  IGR shelf − 1.33 × 10− 2 2.65 ×
10− 3 

4.40 ×
10− 7  

0.045  

cg02702515 chr13 100,008,029 UBAC2 Body opensea 5.05 × 10− 3 1.02 ×
10− 3 

5.09 ×
10− 7  

0.045  

cg13973816 chr15 85,174,718 SCAND2 Body island 2.73 × 10− 3 5.37 ×
10− 4 

2.74 ×
10− 7  

0.045  

cg13148126 chr17 8,924,758 NTN1 TSS200 island − 1.65 × 10− 3 3.37 ×
10− 4 

6.87 ×
10− 7  

0.047 

TV 0–2 cg06811300 Chr6 16,504,474 ATXN1 5′UTR Open sea − 1.01 × 10− 2 1.82 ×
10− 3 

3.27 ×
10− 8  

0.007  

cg13148126 Chr17 8,924,759 NTN1 TSS200 Island − 1.89 × 10− 3 3.39 ×
10− 4 

2.68 ×
10− 8  

0.007  

cg00155609 Chr19 12,912,527 PRDX2 5′UTR Island 3.77 × 10− 3 7.27 ×
10− 4 

2.12 ×
10− 7  

0.029 

Definition of abbreviations: CpG, cytosine-guanine dinucleotide; CHR, chromosome; SE, standard error; IGR, intergenic region; FDR, false discovery rate; TSS, 
transcription starting site; 3′UTR, the three prime untranslated region. 
* Position refers to Genome Research Consortium human genome build 37 (GRCh37)/UCSC human genome 19 (hg19). # Nearest gene. 
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diseases. For example, KCNK4 (Potassium Two Pore Domain Channel 
Subfamily K Member 4) encodes a protein that functions as a voltage- 
insensitive potassium channel. A rising temperature (above 37 ̊ C), 
within the range of ambient temperature, could increase the frequency 
of channel opening (Plant 2012). Another gene, PRDX2 (Peroxiredoxin 
2), encodes a member of the peroxiredoxin family of antioxidant en-
zymes that work against oxidative stress (De Franceschi et al., 2011). 
When the DNA methylation levels were higher, the expression of PRDX2 
decreased, which could limit the antioxidant capacity (Hong et al., 
2018). Previous animal studies found that increased temperature was 
associated with oxidative stress (Castro et al., 2020; Madeira et al., 
2013; Wiens et al., 2017). Our results suggested PRDX2 could be 
involved in the oxidative stress response induced by temperature fluc-
tuations, especially TCN. Besides, several genes identified in our studies 
were linked to breast cancer risk locus, such as FGFR2 and ATXN1 
(Fletcher et al., 2013; Ke et al., 2015). Although there was no evidence of 
the association between temperature fluctuation and breast cancer, 
previous studies showed that females and those aged 45–65 years 
generated higher cancer mortality risks associated with TV compared 
with males and those aged above 65 years (Yi et al., 2021). 

As suggested by our results, differentially methylated signals asso-
ciated with temperature fluctuations were found at multiple genomic 
regions mapped to genes related to mental diseases. Numerous studies 
have reported the association between ambient temperature and mental 
diseases. A study in China showed declined mental health attributable to 
increase in long-term temperature fluctuation (Xue et al., 2019). 
Another study reviewed the association between extreme weather and 
mental health, and showed that weather changes could induce psycho-
pathological phenomena such as seasonal affective disorders to weather 
sensitivity and weather-related pain (Cianconi et al., 2020). More 
commonly, a strong link between weather fluctuations and specific 
mental symptom patterns was found, although the latter was below the 
pathological threshold in most of the cases (Thompson et al., 2018). 
Although no previous studies, to our knowledge, have directly assessed 
the association between temperature fluctuations within a short period 
and mental diseases, we can also speculate, based on our findings, that 
DNA methylation might be involved in the health impact of unstable 
weather. 

The potential biological implication of the health impacts of tem-
perature fluctuations could also be supported by our knowledge-based 
gene set enrichment analyses. Our results showed that TV 0–2 shared 
3 GO terms with TV 0–3, and TV 0–4 shared 3 GO terms with TV 0–5. 
Although both high correlation and functional similarities among TV 
indices could lead to the overlap in GO terms, our findings suggest 
functional similarities of TV with nearby exposure windows contributed 

more to the overlapped terms because of the relatively less overlapped 
results among other TV indices (Wang et al., 2007). On the contrary, 
there might exist fewer functional similarities between TV and DTR, as 
no overlaps were found between them. Several identified GO terms in 
our study have been described to involve inflammatory responses and 
oxidative stress. For example, oxidoreductase (term: oxidoreductase ac-
tivity) is responsible for the generation of oxidants that are implicated in 
the development of many diseases (Kotera et al., 2009). One of the 
subclasses of oxidoreductase, xanthine oxidoreductase, was found to 
regulate the intracellular generation of reactive oxygen species (Ives 
et al., 2015). The latter acts as a mediator of NLRP3 inflammasome 
activation (Gross et al., 2011; Ives et al., 2015). Immune regulatory 
cytokine (term: immune effector) could exacerbate allergic inflammatory 
responses in airway (Lacy and Moqbel 2001). Secretory granules (term: 
secretory granule) provided a place to store histamine during the in-
flammatory process (White 1999). There was also a close linkage among 
oxidant products, inflammation, and immune responses. For example, 
the redox milieu contributes to the adaptive immune response induced 
by T cells that are integral to the inflammatory responses (Ohl et al., 
2016). As the inflammatory response and oxidative stress were reported 
as a potential pathophysiological mechanism underlying the health 
impact of temperature fluctuations (D’Amato et al., 2018; Halonen 
et al., 2010; Liu et al., 2015; Schneider et al., 2008; Zhao et al., 2019), 
significantly enriched GO terms in relation to inflammation and oxida-
tive stress identified in this study supported previous findings of health 
outcomes associated with temperature fluctuations and suggest addi-
tional biological relevance of our differential methylation signals. 

Our study has several strengths. First, this is the first study of DNA 
methylation in relation to temperature fluctuation. This study suggests 
potential biochemical mechanisms underlying the association between 
temperature fluctuations and mortality/morbidity, which could 
improve the understanding of the health impact of temperature fluctu-
ations. Second, we are benefiting from using twin families that can 
control for shared familial genetic factors. As a result, we can obtain a 
less biased within-family association of temperature fluctuations with 
DNA methylation. Third, we evaluated the impact of inter-day and intra- 
day temperature fluctuations using DTR, TCN, and TV of multiple 
exposure windows ranging from two to eight days. By doing this, we 
captured a comprehensive impact of short-term temperature fluctua-
tions on DNA methylation. 

However, some limitations should be acknowledged. All participants 
in this study were female. Our study had a relatively small sample size, 
which prevent us from exploring the modification effect of season. Be-
sides, considering that the power to discover new temperature 
fluctuation-associated differentially methylated signals depends on the 
sample size, more studies with large sample sizes are needed to further 
identify locus or DMRs with small effect sizes. As global null hypothesis, 
that all exposure-specific null hypotheses are true simultaneously, is of 
limited interest in this study, we didn’t correct for multiple comparisons 
across different exposure indices. As a result, the interpretation of results 
was limited by the independent hypotheses with exposure-specific 
EWAS without multiple test adjustments across EWAS. Although the 
adoption of individual strategies (e.g., wearing appropriate clothing and 
staying in an air-conditioned place) could be an important factor to 
explain the variation in the effects of temperature fluctuation, their 
impact had not been taken into account due to the paucity of data. In 
addition, this study was based on blood samples and could not identify 
DNA methylation levels among different cell types and tissues. Although 
we controlled cell-type proportions that can partly control for cellular 
heterogeneity, findings based on peripheral tissues may not be generally 
applicable to other tissues, such as brain and visceral fat (Heijmans and 
Mill 2012). Finally, individual exposure measurement may be inaccu-
rate in our study because we could not obtain individual movement 
data. Finer exposure data accounting for person-specific space–time 
patterns are needed to provide a more accurate association between 
temperature fluctuations and DNA methylation. 

Table 4 
Summary of differentially methylated regions significantly associated with 
different exposure of temperature fluctuation.  

Exposure No. of significant DMRs 

DMRcate 
(FDR <
0.01) 

comb-p 
(Šidák p-value <
0.01) 

comb-p overlaps with 
DMRcate 

DTR 14 9 6 
TCN 62 29 27 
TV 0–1 15 8 6 
TV 0–2 19 12 11 
TV 0–3 19 12 10 
TV 0–4 21 16 13 
TV 0–5 30 16 16 
TV 0–6 29 16 15 
TV 0–7 25 16 14 
Total 

(unique) 
161 80 70 

Definition of abbreviations: DMR, differentially methylated region; TV, tem-
perature variability; DTR, diurnal temperature range; TCN, temperature change 
between the neighbouring days. 
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5. Conclusion 

This study suggests that short-term temperature fluctuations were 
associated with differentiated DNA methylation levels across the human 
genome. Differentially methylated signals varied across different indices 
of temperature fluctuation. Future work is needed to confirm and 
expand our findings. 
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