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ABSTRACT
Background: RBC long-chain omega-3 (n–3) fatty acid (FA)
percentages (of total fatty acids) are associated with lower risk for
total mortality, but it is unknown if a suite of FAs could improve risk
prediction.
Objectives: The objective of this study was to compare a combina-
tion of RBC FA levels with standard risk factors for cardiovascular
disease (CVD) in predicting risk of all-cause mortality.
Methods: Framingham Offspring Cohort participants without preva-
lent CVD having RBC FA measurements and relevant baseline
clinical covariates (n = 2240) were evaluated during 11 y of follow-
up. A forward, stepwise approach was used to systematically evaluate
the association of 8 standard risk factors (age, sex, total cholesterol,
HDL cholesterol, hypertension treatment, systolic blood pressure,
smoking status, and prevalent diabetes) and 28 FA metrics with all-
cause mortality. A 10-fold cross-validation process was used to build
and validate models adjusted for age and sex.
Results: Four of 28 FA metrics [14:0, 16:1n–7, 22:0, and omega-3
index (O3I; 20:5n–3 + 22:6n–3)] appeared in ≥5 of the discovery
models as significant predictors of all-cause mortality. In age- and
sex-adjusted models, a model with 4 FA metrics was at least as good
at predicting all-cause mortality as a model including the remaining
6 standard risk factors (C-statistic: 0.778; 95% CI: 0.759, 0.797;
compared with C-statistic: 0.777; 95% CI: 0.753, 0.802). A model
with 4 FA metrics plus smoking and diabetes (FA + Sm + D) had a
higher C-statistic (0.790; 95% CI: 0.770, 0.811) compared with the
FA (P < 0.01) or Sm + D models alone (C-statistic: 0.766; 95%
CI: 0.739, 0.794; P < 0.001). A variety of other highly correlated
FAs could be substituted for 14:0, 16:1n–7, 22:0, or O3I with similar
predicted outcomes.
Conclusions: In this community-based population in their mid-60s,
RBC FA patterns were as predictive of risk for death during the next
11 y as standard risk factors. Replication is needed in other cohorts
to validate this FA fingerprint as a predictor of all-cause mortality.
Am J Clin Nutr 2021;114:1447–1454.
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Introduction
The Framingham Heart Study provided unique insights

into cardiovascular disease (CVD) risk factors (1) and led
to the development of the Framingham Risk Score based on
8 baseline standard risk factors—that is, age, sex, smoking,
hypertension treatment, diabetes status, systolic blood pressure,
total cholesterol (TC), and HDL cholesterol (2). CVD is still the
leading cause of death globally (3), and risk can be reduced by
changing behavioral risk factors such as unhealthy diet, physical
inactivity, and use of tobacco and alcohol. Therefore, biomarkers
integrating lifestyle choices might help identify individuals at risk
and be useful to assess treatment approaches, prevent morbidity,
and delay death.

Among the diet-based biomarkers are fatty acids (FAs),
whether measured in plasma or RBC membranes. The FAs
most clearly associated with reduced risk for CVD and for total
mortality (i.e., death from any cause) are the omega-3 FAs,
EPA (20:5n–3) and DHA (22:6n–3) (4, 5). In a 2018 report (6)
including 2500 participants in the Framingham Offspring Cohort
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followed for a median of 7.3 y (i.e., between ages ∼66 and 73 y),
the baseline RBC EPA + DHA content [the omega-3 index (O3I)]
was significantly and inversely associated with risk for death from
all causes. Individuals in the highest quintile were 33% less likely
to succumb during the follow-up years compared with those in
the lowest quintile. Similar associations have been seen in the
Women’s Health Initiative Memory Study (7), the Heart and
Soul Study (4), and the Ludwigshafen Risk and Cardiovascular
Health Study (8). However, these prior investigations evaluated
only 1 FA metric (i.e., the O3I) as an exposure variable. Other
FA biomarker-based studies have focused only on linoleic acid
(9, 10), FAs in the de novo lipogenesis pathway (11), trans FAs
(12), dairy-derived FAs (13), or very-long-chain saturated FAs
(VLCFAs) (14) in relation to select disease outcomes.

In 2009, Shearer et al. (15) attempted to define an “FA
risk fingerprint” using a cross-sectional design with ∼1350
individuals, half of whom were confirmed acute coronary
syndrome patients and half were outpatient controls. In that study,
RBC FA profiles were quantified, and the association of each
FA with acute coronary syndrome was systematically evaluated.
A suite of 10 FAs was identified and compared with a suite of
standard risk factors—that is, age, sex, TC, HDL cholesterol,
smoking status, and self-reported history of hypertension and
diabetes (16). The RBC FA profile discriminated cases from
controls significantly better than did standard risk factors.
However, that approach is not easily translated into clinical use,
partly because it was cross-sectional and used a case–control
design. In the current investigation, we posed a similar question
in a prospective setting using the Framingham Offspring Cohort,
which was followed for clinical events for 11 y after RBC FAs
were measured. Here, we explore how a fingerprint or pattern of
RBC FAs measured in older Americans compares with standard
risk factors as predictors of risk of all-cause mortality.

Methods
This study was conducted in the framework of the Framingham

Offspring Cohort (17). Participants (n = 3021) who attended
their 8th examination cycle (2005–2008) were evaluated. They
were excluded in hierarchical order if they were missing RBC FA
measurements, were missing relevant clinical covariates, or had
prevalent CVD (total exclusion n = 781), leaving 2240 eligible
for the current investigation (Supplemental Figure 1). The study
protocol was approved by the Institutional Review Board of the
Boston University Medical Center. Written informed consent was
provided by all participants.

Covariates and mortality outcomes

The primary endpoint was risk of all-cause mortality during
11 y of follow-up.

RBC fatty acid analysis

After a 10- to 12-h fast, blood was drawn into an EDTA
tube, and RBCs were separated from plasma by centrifugation.
The RBC fraction was frozen at –80◦C immediately after
collection. RBC FA composition was determined as described
previously (18). Briefly, RBCs were incubated at 100◦C with
boron trifluoride–methanol and hexane to generate FA methyl

esters that were then analyzed by GC with flame ionization
detection. Twenty-seven FAs were quantified and expressed as
a percentage of total RBC FAs, and the O3I was computed as the
sum of EPA and DHA. For modeling purposes, we used the O3I
(instead of its constituent FAs) and the remaining 25 FAs for a
total of 26 FA metrics (Supplemental Table 1).

Statistical analysis

Sample characteristics were summarized using standard sta-
tistical metrics (e.g., means, SDs, and correlations). HRs were
estimated on a per quintile basis using the survival package in
R version 3.6.2 (R Foundation for Statistical Computing) (19).
Primary analyses related quintiles of FAs to mortality established
from reported date of death or date of censoring. Specifically, a
forward, stepwise approach was used to systematically evaluate,
in age- and sex-adjusted models, the association of additional
risk factors (i.e., 6 standard risk factors and 26 FA metrics) with
risk of death from all causes. We used 10-fold cross-validation
to build and validate models. Specifically, the data set is divided
into 10 randomly selected discovery data sets consisting of
nonoverlapping sets of 90% of the data and 10 validation data
sets corresponding to the other 10% of the data. This exercise
builds 10 pairs of discovery–validation data sets, each composed
of 90% (discovery) and 10% (validation).

We then applied the model-building process to each of the
10 discovery sets, each of which identified predictors (i.e., FAs
and/or standard risk factors) to be potentially included in the
final model. To be included in the final model, a predictor had
to be statistically significant in ≥5 of the 10 discovery data
sets. Models were constructed in a forward, stepwise approach
using a predictor entry criterion of P < 0.05; adjusting for age
and sex in all models, and then evaluating the 26 FA metrics
and the 6 remaining standard risk factors (i.e., smoking status,
hypertensive treatment, diabetes status, systolic blood pressure,
TC, and HDL cholesterol). FA predictors used quintiles coded
1–5. Reported HRs and concordances (via Harrell’s C-statistic)
were averaged across the 10 validation data sets. C-statistics
were compared between resulting models and the standard risk
factors from Framingham using paired t tests across the 10
validation data sets. Kaplan–Meier survival curves were used
to estimate survival proportions by age given different risk
profiles. Sensitivity analyses explored 1) how concordance and
HRs changed when using highly correlated FAs in place of
model-selected FAs; 2) continuous and nonlinear, quintile-based
analyses for model-selected FAs; and 3) how the addition of
BMI, alcohol intake, and educational status into the final models
affected outcomes.

Results
The average age at baseline was 65 y, with slightly more

women (57%) than men (43%). The final data set consisted of
2240 individuals meeting the study inclusion/exclusion criteria
(Table 1), and 384 participants died during the 11-y follow-up.

FA and standard risk factor models

The simplest model predicted all-cause mortality by only age
and sex (A + S), with HRs of 1.12 per additional year and 0.66
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TABLE 1 Sample characteristics at baseline (n = 2240)1

Characteristic

Male 43% (972)
Age, y 65.3 ± 8.7
Systolic blood pressure, mm Hg 128.1 ± 16.8
Total cholesterol, mg/dL 190.2 ± 35.7
HDL cholesterol, mg/dL 58.8 ± 18.4
Current smoker 9.3% (209)
Treatment for hypertension 43.8% (981/2240)
Prevalent diabetes 12.8% (286/2240)

1Values are percentage (n) or means ± SDs.

for being female (Table 2). In an age- and sex-adjusted model
including the remaining 6 standard FAs, only current smoking
and prevalent diabetes were selected as significant predictors of
total mortality, with average HRs of 1.89 and 1.65, respectively
(model Sm + D). Using the same age- and sex-adjusted approach,
only 4 of 26 FA metrics (i.e., 14:0, 16:1n–7, 22:0, and O3I)
appeared in ≥5 of the discovery models as significant predictors
of total mortality. Four metrics were selected into the model
(FA), with HRs ranging between 0.85 and 1.25 (Table 2). Finally,
in a model that simultaneously considered age, sex, and all
26 FA metrics and all 6 remaining standard risk factors, the
forward selection procedure selected the same 4 FA metrics,
again with similarly sized HRs (0.84–1.23), and the 2 standard
risk factors—that is, current smoking (HR = 1.81) and prevalent
diabetes (HR = 1.63). This latter model is hereafter called the
FA + Sm + D model (Table 2).

Concordances for 5 predictive models, 4 models from Table 2
and a fifth model [all SRFs that forced in all standard risk factors],
are presented in Figure 1. The addition of a combination of 4 FA
metrics improved concordance compared with the A + S model
alone (0.778; 95% CI: 0.759, 0.797 compared with 0.748; 95%
CI: 0.721, 0.775; paired t test, P = 0.001), as did the addition
of smoking status and prevalent diabetes (Sm + D) compared
with A + S alone (0.766; 95% CI: 0.739, 0.794 compared
with 0.748; 95% CI: 0.721, 0.775; paired t test, P = 0.01).
The age- and sex-adjusted FA and Sm + D models had similar
concordances (0.778; 95% CI: 0.759, 0.797 compared with
0.766; 95% CI: 0.739, 0.794; paired t test, P = 0.22), whereas
the combined age- and sex-adjusted model (FA + Sm + D)
had significantly better concordance than either model alone
(0.790; 95% CI: 0.770, 0.811 compared with 0.778; 95% CI:
0.759, 0.797; paired t test, P = 0.04; and 0.790; 95% CI: 0.770,
0.811 compared with 0.766; 95% CI: 0.739, 0.794; paired t test,
P = 0.001, respectively). The FA + Sm + D model also had
significantly better concordance than the age- and sex-adjusted
all SRFs model (0.790; 95% CI: 0.770, 0.811 compared with
0.777; 95% CI: 0.753, 0.802; paired t test, P = 0.01) and
an age- and sex-adjusted model with Sm + D + O3I only
(0.790; 95% CI: 0.770, 0.811 compared with 0.772; 95% CI:
0.743, 0.801; paired t test, P = 0.007) (the latter comparison
is not presented in Figure 1). When BMI, alcohol intake, or
educational status were added to the FA + Sm + D model,
they were not significant predictors of all-cause mortality, and
all other predictors (A, S, FA, Sm, and D) remained statistically
significant.

TABLE 2 FA and standard risk factors in predictive models for total mortality after forward selection (P < 0.05)1

Risk factors in model Model name
FA or standard risk factors

(average HR; 95% CI)

Age and sex A + S Age (1.12; 1.11, 1.14)
Female sex (0.66; 0.54, 0.81)

Age and sex + selected standard
risk factors2,3

Sm + D Age (1.12; 1.11, 1.14)
Female sex (0.69; 0.55, 0.85)
Smoking status (1.89; 1.24, 2.88)
Prevalent diabetes (1.65; 1.31, 2.07)

Age and sex + selected FAs2,4 FA Age (1.13; 1.11, 1.15)
Female sex (0.61; 0.48, 0.77)
14:0 (0.85; 0.74, 0.96)
16:1n–7 (1.25; 1.11, 1.41)
22:0 (0.93; 0.85, 1.01)
O3I (0.85 0.79, 0.91)

Age and sex + selected
FA + selected standard risk
factors2,3,4

FA + Sm + D Age (1.13; 1.11, 1.15)
Female sex (0.64; 0.49, 0.82)
14:0 (0.84; 0.73, 0.96)
16:1n–7 (1.23; 1.09, 1.39)
22:0 (0.91; 0.83, 0.99)
O3I (0.86; 0.81, 0.92)
Current smoker (1.81; 1.14, 2.86)
Prevalent diabetes (1.63; 1.24, 2.14)

1Average HRs across 10 validity models (n = 2240). A, age; D, diabetes; FA, fatty acid; O3I, omega-3 index; S,
sex; Sm, smoking.

2Model adjusted for age and sex.
3Of the 6 standard risk factors (smoking status, hypertensive treatment, diabetes status, systolic blood pressure,

total cholesterol, and HDL cholesterol), only smoking and prevalent diabetes from Table 1 were selected into the
model.

4Of the 26 FA metrics tested, only the 4 listed FA metrics [14:0, 16:1n–7, 22:0, and O3I (20:5n–3 + 22:6n–3)]
remained as significant predictors. HR is per FA quintile or per presence/absence of Sm and D.
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FIGURE 1 Concordance and SEs for 5 different predictive models for
all-cause mortality (n = 2,240). A + S model includes only age and sex.
Sm + D model includes age, sex, current smoking status, and prevalent
diabetes. The FA model includes age, sex, and the 4 FA metrics [14:0, 16:1n–
7, 22:0, and O3I (20:5n–3 + 22:6n–3)]. The FA + Sm + D model includes
age, sex, 4 FA metrics, smoking status, and prevalent diabetes. The all SRFs
model includes all of the standard risk factors (age, sex, current smoking
status, prevalent diabetes, hypertensive treatment, systolic blood pressure,
total cholesterol, and HDL cholesterol). ∗P < 0.01, ∗∗P < 0.001. A, age;
D, diabetes; FA, fatty acid; O3I, omega-3 index; S, sex; Sm, smoking; SRF,
standard risk factor.

Predicted effects of changing model-selected FAs or
Standard Risk Factors on risk of death

Theoretical effects on risk of death during the 11 y of follow-
up per a 1-quintile change in percentage of the 4 selected FA
metrics were compared with the estimated effects of smoking
(compared with nonsmoking) and prevalent (or not prevalent)
diabetes (Table 3). A 1-quintile increase in 14:0, 22:0, or O3I was
associated with an estimated increase in life span of 1.41, 0.79, or

FIGURE 2 Estimated Kaplan–Meier survival curves by age using
estimated HRs per year according to the highest/lowest O3I quintile and
smoking status for individuals reaching 65 y (average baseline age). O3I,
omega-3 index.

1.18 y, respectively. The reverse held for RBC 16:1n–7, where a
1-quintile reduction was associated with 1.66 additional years of
life. Regarding the standard risk factors, being female (compared
with male) was associated with an additional 3.42 y, prevalent
diabetes (compared with not prevalent) was associated with living
3.9 fewer y, and smoking (compared with not smoking) was
associated with living 4.73 fewer years. To estimate effects on
risk of death during follow-up associated with changes in 2 of the
most modifiable factors in this study—the O3I and smoking—
we compared risk for death in the highest compared with the
lowest quintile O3I, with and without smoking (Figure 2). In
this analysis, 11-y survival was predicted to range from ∼85%
for nonsmokers with a high O3I to ∼71% for either alone and
∼47% for current smokers with a low O3I.

TABLE 3 Theoretical implications on risk of death during follow-up in the FA + Sm + D model1

Risk factor β (HR) β ÷ 0.1252 Interpretation

Age (per year) 0.125 (1.13)3 1.00
Sex (female) –0.453 (0.64) –3.62 Being female changes risk of death equivalent to adding 3.62 years of life

expectancy vs being male
14:0 –0.176 (0.84) –1.41 Having a 14:0 level 1 quintile higher changes risk of death equivalent to

adding 1.41 years (or 5.63 years for four quintiles higher)
16:1n–7 0.207 (1.23) 1.66 Having a 16:1n-7 level 1 quintile lower changes risk of death equivalent to

adding 1.66 years of life expectancy (or 6.62 years for four quintiles lower)
22:0 –0.099 (0.91) –0.79 Having a 22:0 level 1 quintile higher changes risk of death equivalent to

adding 0.79 years (or 3.17 years for four quintiles higher)
O3I –0.148 (0.86) –1.18 Having a O3I level 1 quintile higher changes risk of death equivalent to

adding 1.18 years younger (or 4.74 y for four quintiles higher)
Current smoker 0.591 (1.81) 4.73 Being a nonsmoker changes risk of death equivalent to adding 4.73 y
Prevalent diabetes 0.487 (1.63) 3.90 Not having diabetes changes risk of death equivalent to adding 3.90 y

1The FA + Sm + D model consists of age, sex, 4 FA metrics [14:0, 16:1n–7, 22:0, and O3I (20:5n–3 + 22:6n–3)], current smoking status, and prevalent
diabetes. The model (Figure 1) has a concordance = 0.790 and n = 2240. A, age; D, diabetes; FA, fatty acid; O3I, omega-3 index; S, sex; Sm, smoking.

2Dividing β by 0.125 yields a value indicating how the relative risk of death changes for a risk factor compared to the change in risk from being 1 y older
(i.e., smoking status or diabetes prevalence) relative to the change in risk for death from being 1 y younger. These estimates are from a model (Figure 1) that
uses age, sex, 4 FA metrics, smoking status, and prevalent diabetes.

3The HR per year for age is 1.13, or 13% more likely to die for each additional year of age.
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TABLE 4 Sensitivity analysis of the FA + Sm + D model1 using highly correlated FAs

FA2 (HR from FA + Sm + D model)
Highly correlated3

FA (correlation)
Average HR ± SE with
highly correlated FA4

Average concordance ± SE
using highly correlated FA4

16:1n–7 (1.25) 16:0 (0.62) 1.12 ± 0.06 0.786 ± 0.01
22:0 (0.93) 24:0 (0.80) 0.91 ± 0.03 0.787 ± 0.01

24:1n–9 (0.73) 0.90 ± 0.03 0.789 ± 0.01
O3I (0.85) 22:4n–6 (–0.59) 1.09 ± 0.06 0.789 ± 0.01

22:5n–6 (–0.52) 1.12 ± 0.04 0.791 ± 0.01

1The FA + Sm + D model consists of age, sex, 4 FA metrics [14:0, 16:1n–7, 22:0, and O3I (20:5n–3 + 22:6n–3)], current smoking status, and prevalent
diabetes. The model (Figure 1) has a concordance ± SE = 0.790 ± 0.01 and n = 2240. A, age; D, diabetes; FA, fatty acid; O3I, omega-3 index; S, sex; Sm,
smoking.

214:0 had no highly correlated FAs except 16:1n–7, which was already in the model.
3Correlation of ≥0.5 from Supplemental Table 2 (except for 20:5n–3 and 22:6n–3 because these 2 FAs constitute the O3I).
4Across the 10 validation models.

Sensitivity analysis

Because some FA metrics in this study were highly correlated
with others (Supplemental Table 2), the sensitivity of the
FA + Sm + D model was evaluated by exchanging 16:1n–7, 22:0,
and O3I with other highly correlated FAs (r > 0.50) (Table 4).
In almost all cases, concordances decreased (as expected), but
not by a statistically significant amount (P > 0.05), and never by
more than a concordance change of >0.0001. None of the FA
metrics in the final model (FA + Sm + D) was highly correlated
(r > 0.50) with any of the standard risk factors. Finally, sensitivity
analyses forcing BMI and alcohol intake [which have both been
associated with risk for death (20, 21)] did not materially change
the original estimates associated with the FA or FA + Sm + D
models (Supplemental Table 3). For each of the 4 FA metrics, we
tested whether there was evidence of nonlinearity using quintiles
(separate estimates per quintile or quadratic fit across quintiles)
or continuous versions of FAs (using a cubic spline); there was no
statistically significant evidence of improved fit for any model for
any of the 4 FA metrics (P > 0.20 in all cases). Linear models for
the continuous versions of the 4 metrics yielded similar results to
the quintile analysis presented previously.

Discussion
Identifying individuals without known pre-existing conditions

who may be at increased risk of dying is a serious public
health challenge. The current study examined RBC FAs as a
potential biomarker to improve upon standard risk factor–based
predictions of risk of death during 11-y follow-up for individuals
in their mid-60s. We found that a suite of 4 RBC FA metrics
had the same predictive power as the standard risk factors
originally identified in the Framingham study (albeit for CVD
events) and that adding select RBC FA percentages produced a
small but statistically significantly improvement in total mortality
prediction. The finding that any FA-based metric would have
predictive power similar to that of these well-established standard
risk factors was unexpected, and it suggests that RBC FA—via
unknown mechanisms—somehow reflects an in vivo milieu that
consolidates into 1 measure the impact on the body of all these
standard risk factors.

As noted in a previous cross-sectional, case–control study in
patients with acute coronary syndrome (15), a suite of 10 RBC
FAs discriminated cases from controls better than did a model
based on standard risk factors (15), but only 16:1n–7 and DHA

(the primary constituent of the O3I) were included in that suite;
neither 14:0 nor 22:0 was examined, and the FA most strongly
associated with case status [i.e., linoleic acid (18:2n–6)] was
not selected in the current analysis. Hence, although Shearer
et al. (15) identified a different suite of RBC FAs (and for a
different outcome), our findings support their general conclusion
that RBC FA patterns appear to carry heretofore underappreciated
prognostic information.

Three of the 4 FA metrics identified in this study (14:0, 16:1n–
7, and 22:0) each comprises <0.4% of RBC FAs, and the mean
O3I is only ∼5%. It is remarkable that FAs present in such
low percentages could carry such predictive power; however, it
is possible that other highly correlated FAs might serve nearly
as well (Supplemental Table 2, Table 3). RBC membrane FA
percentages can be influenced by metabolic as well as dietary
factors. Next, we consider each of the model-selected RBC FA
metrics in that light.

The mean RBC percentage of 14:0 (myristic acid) in this
cohort was 0.37%, and it was inversely related to risk for all-cause
mortality. The average intake of this FA is estimated to be ∼2 g/d
(22), and sources include dairy products, coconut milk, and
baked goods (23). Feeding 14:0 to rats leads to a dose-dependent
increase in tissue and plasma concentrations of 14:0 and 16:1n–
7 (24) (consistent with the high correlation between these 2
FAs observed in this study) (Supplemental Table 1). Studies
in healthy adults found a higher 14:0 intake to be associated
with higher plasma triglycerides and apoCIII concentrations (25),
and sometimes HDL cholesterol, LDL cholesterol, 20:5n–3, and
20:3n–6 concentrations (26, 27). Twenty-five-year mortality data
from the Seven Countries Study (initiated between 1958 and
1964) associated 14:0 intake with increased TC concentrations
(28), but evidence linking circulating 14:0 percentages to
clinical coronary outcomes is heterogeneous (29). Although 14:0
constitutes 11% of the FA in cow milk (30), it is not known if
increased dairy fat intake raises RBC 14:0 percentages [although
15:0 percentages do increase in this setting (31)]. We speculate
that the association of 14:0 with dairy intake and the observation
that dairy intake is associated with lower risk for type 2 diabetes
mellitus (13) and possibly CVD (32) may explain its beneficial
association with total mortality observed in this study.

The mean RBC percentage of 16:1n–7 (palmitoleic acid) was
similar to that of 14:0 (i.e., 0.39%), but unlike 14:0, 16:1n–7 was
directly linked with total mortality risk. The average intake of this
FA is estimated to be ∼2 g/d (33), and the single richest source is
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macadamia oil. Most 16:1n–7 is believed to arise from de novo
lipogenesis in the liver and adipose tissue (34, 35), although this
is somewhat controversial (36). Palmitoleic acid percentages do
respond directly to carbohydrate intake (37), but the extent to
which an effect on mortality risk could be attributed to the FA or
to other metabolic responses to such a dietary change is unknown.

The mean RBC percentage of 22:0 (behenic acid) in this cohort
was 0.23%. Very little 22:0 is consumed directly from the few
foods that contain it (e.g., canola oil, peanuts, and macadamia
nuts). The primary source of 22:0 is via metabolism of 18:0
by elongases 1 and 3 (38). Our results are in agreement with
reports in which higher percentages of VLCFAs in RBC were
associated with lower risk of coronary heart disease (39, 40) or
sudden cardiac arrest (41). VLCFAs are important constituent
of sphingolipids, such as ceramides and sphingomyelins. The
high correlation between 22:0 and 24:0 and 24:1 observed here
confirms that this FA is a surrogate of a suite of these complex
lipid molecules. In a previous study in Framingham Offspring
(examination 8, the same as in the current study), Walker et
al. (42) found an inverse relation between the 22:0/16:0 ratio
in plasma ceramides with both CV and total mortality. Zhao et
al. (43) reported an inverse relation between plasma VLCFA,
including 22:0, and risk of metabolic syndrome. Although the
relation between VLCFAs in RBC and plasma has not been
thoroughly explored, a higher RBC 22:0 could reasonably reflect
a lower risk milieu.

The mean O3I in this cohort was 5.8%, similar to 5.2%
measured in US family physicians, where 78% reported using
an ω-3 supplement ≤1/wk and 57% reported consuming <2
servings/wk of fish (44). Among US adults aged ≥19 y, the
average daily amount of EPA and DHA consumed from food
and dietary supplements is 113 mg (45). The O3I is primarily
determined by the direct intake of these 2 FAs (46, 47). In this
Framingham cohort, dietary factors and “heritability” have been
reported to explain 40% and 24% of the variation in percentages
(48), respectively, but heritability could be as high as 70%
(49). On the other hand, in genome-wide association studies,
very few single-nucleotide polymorphisms were significantly
associated with 20:5n–3 or 22:6n–3 percentages (50). The O3I
(and RBC 20:5n–3 and 22:6n–3 percentages individually) has
been inversely associated with total mortality in this cohort (6)
and the Women’s Health Initiative Memory Study (7). Multiple
mechanisms of action have been documented to support evidence
for beneficial relations of the long-chain n–3 PUFAs on human
health (51–54). These FAs have hypolipidemic, antihypertensive,
and antiplatelet effects and can improve endothelial function and
autonomic balance. Together, these are mediated by effects on
membrane physiochemistry, gene expression, and the production
of a myriad of bioactive oxylipins. Hence, finding that the O3I
was selected into the final model was not unexpected, but whether
other RBC FA associations would have modified that relation was
not known and motivated this investigation. Although we had no
a priori hypothesis regarding which other FAs, if any, would add
to the predictive power of the O3I, it is fair to say that none of the
3 FAs we identified would have been among our obvious choices.

In the final combined model (FA + Sm + D), smoking and
the O3I seem to be the most easily modified risk factors. Being
a current smoker (at age 65 y) is predicted to subtract ∼4.7 y of
life (compared with not smoking), a life shortening equivalent to
being in the lowest compared with highest O3I quintile. In the

current cohort, the O3I cutoff for quintile 1 was <4.2%, and it
was >6.8% for quintile 5 (6). It is interesting to note that in Japan,
where the mean O3I is >8% (55), the expected life span is ∼5 y
longer than it is in the United States (56), where the mean O3I
is ∼5%. Hence, in practice, dietary choices that change the O3I
may prolong life (4, 57).

The most obvious limitation of this study is applying standard
risk factors originally identified in Framingham for CVD risk by
following younger individuals (baseline age 49 y) to estimate
risk of all-cause mortality in an older population (baseline age
65 y). Other risk markers, such as plasma C-reactive protein (58,
59) and ankle brachial index (60), might have been considered
in efforts to improve prediction of all-cause mortality. Another
limitation is the definition of “diabetes” used in this analysis,
which includes type 1 diabetes—a disease that cannot be reverted.
We acknowledge that diabetes is a modifiable risk factor with
weight loss typically required to achieve normoglycemia. We are
unaware of any other set of surrogate endpoints or biomarkers
that have been shown to be superior to these standard risk factors
in a cohort similar to that studied here. The FA + Sm + D model
predictions for risk of death should be limited to individuals
between the ages of ∼65 and 76 y (Figure 2); extrapolating
to younger people or beyond the years of observation included
here is unwarranted. Model predictions in the upper age range
should be done with care because data are available from fewer
individuals. Finally, comparing the potential effects of a change
in a continuous variable (O3I) with a dichotomous variable (e.g.,
smoking) is challenging, but continuous data for smoking were
not available for comparison.

In conclusion, in this cohort followed for 11 y, the information
carried in the concentrations of 4 RBC FA metrics was as useful
as that carried in lipid levels, blood pressure, smoking, and
diabetic status with regard to predicting total mortality. The best
predictions were made with the FA metrics and smoking/diabetes
status. In the future, when larger data sets are available, additional
model-building approaches may be worth exploring (e.g., random
forest, partial least-squares–discriminant analysis, and principal
component analysis), along with replication in other cohorts;
however, the cross-validation approach is robust and suggests a
strong association between this RBC FA fingerprint and risk for
all-cause mortality.
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