GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

Game Programming Genesis Part 1l : Using Resources in Win32 Programs “#) GameDev.net

Game Programming Genesis
Part Il : Using Resources in Win32 Programs
by Joseph "lronblayde" Farrell

Introduction

Welcome back! As you may have guessed by the title, in this article I'm going to show you how to use resources in
your Windows programs. Simply put, resources are binary data that's appended to your . EXE file after the actual
program code. Using resources is easy to learn and has a lot of advantages. It allows the developer to consolidate
a lot of data into one file, include custom icons and such things with their programs, and prevent users from
altering that data. Windows supports a large number of resource types, so I'm just going to cover the ones | think
are most convenient and easiest to learn: bitmaps, cursors, icons, menus, and string tables. After that, I'll show
you how to create a custom resource type, so you can include anything you want.

Again, all you need to understand this article is a basic understanding of the C language. C++ always helps since
Windows itself is object-oriented, but most of my code is straight C. Also, | will assume that you have read my
previous article, "Beginning Windows Programming," or have the equivalent knowledge. | use and recommend the
Microsoft Visual C++ compiler, but if you're using a different one, it's not a big deal. Ready? Here we go!

Resource Scripts

Before we get into any of the specific resource types, we need to go over the method used to tell the compiler
what resources to include, and how. This method is to use a special file called a resource script, which is simply a
text file either written by the developer or automatically generated by Visual C++, or whatever IDE you happen to
be using. Your script file should have the file extension . r c. Most of a script file is taken up by lines which define

or specify the resources to include. The simplest of these lines is used by several resource types, and looks like
this:

[identifier] [resource type] [filenane]

The identifier can be one of two things: a string representing the resource, or a numeric constant that's #def i ned

in a header file meant to accompany the resource script file. If you use numeric constants, which is usually a good
idea, you can use the #i ncl ude directive in your script file to include the header that corresponds to it. You can

also use C-style comments to make things a little easier to understand. That said, here's what a very simple
resource script file might look like:

#i ncl ude "resource. h"

/1 icons
| CON_MAI N | CON nyi con.ico

/1 bitmaps
| MG_TILESET1 BITMAP tileset.bnp
| MG TILESET2 BITMAP tileset2. bnp

That's not too bad, right? There's one thing that can be confusing, though. Just by looking at my brief example,
you can't tell if | CON_MAI Nand | MG _TI LESET are meant to be strings or numeric constants. The file would appear

the same no matter which case were true. At compile time, your compiler will look at the identifiers you're using
and search through your header files looking for their definitions. If no matching #def i ne statements are found,

it's assumed that you're using string identifiers.

http://www.gamedev.net/reference/articles/article1240.asp (1 of 10) [5/12/2001 6:46:23 PM]

http://www.gamedev.net/
mailto:ironblayde@aeon-software.com

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

Don't worry about the actual lines themselves just yet; I'll explain each type of entry when | get to that particular

resource. If you don't want to bother with resource scripting at all, you can just insert the resources from your IDE
(in Visual C++, go to "Resource..." under the Insert menu) and a resource script will be generated automatically. |
prefer to do it myself with good old Notepad, but don't ask me why because | can't think of a good reason. :) Now
that you know the basics of creating a resource script, let's get started on the specific resource types.

Icons and Cursors

Most of the Windows programs you use every day have their own icons built in, and now you know how it works:
they're simply resources included in the EXE file. Custom cursors that are used by those programs are also
included as resources. You've already seen an example of the script line that includes an icon resource, and the
line for cursors is very similar. Here they are:

[identifier] CURSOR [filenane]
[identifier] | CON [fil enane]

After adding a line such as this to your script file -- make sure to include the script file in your project -- the icon
or cursor specified by [fi | enanme] will be included as a resource in your EXE file. That's all there is to it! You can

use any icon/cursor editor to generate the files you want to include. | use the one that's included in Visual C++.

Including the resources doesn't do a whole lot for your program, though, because you don't know how to use them
yet! To get an idea for how icon and cursor resources are utilized in a program, let's revisit the window class we
developed in the last article:

VWADCLASSEX sanpl ed ass; /1 declare structure variable
sanpl e ass. cbhSi ze = si zeof (WNDCLASSEX) ; /1 al ways use this!
sanpl eCl ass. style = CS DBLCLKS | CS_OWNDC |

CS_HREDRAW | CS_VREDRAW /1l standard settings
sanpl eCl ass. | pf nWhdProc = MsgHandl er; /1 message handl er function
sanpl eCl ass. cbCl sExtra = 0; /1l extra class info, not used
sanpl eCl ass. cbWwhdExtra = 0; /!l extra wi ndow i nfo, not used
sanpl eCl ass. hl nstance = hi nst ance; /] paranmeter passed to W nMin()
sanpl e ass. hl con = Loadl con(NULL, | DI _W NLOGO); /1 W ndows | ogo
sanpl eC ass. hCursor = LoadCur sor (NULL, | DC_ARROW ; /1l standard cursor
sanpl eCl ass. hbr Background = (HBRUSH) Get St ockObj ect (BLACK BRUSH); // a sinple black brush
sanpl eC ass. | pszMenuName = NULL; /1 no menu
sanpl eC ass. | pszC assNane = "Sanpl e d ass” /'l class name
sanpl eCl ass. hl conSm = Loadl con(NULL, D _WNLOGO) ; /1 Wndows | ogo again

You remember this, don't you? The hl con field specifies the icon to be used to represent the program, and the
hl conSmfield is the icon used on the Start Menu and the window's title bar. The hCur sor field sets the cursor to be

used when the mouse is within the boundaries of the window you create. | promised you we'd take a look at the
functions used to fill these fields a little more closely, so here are their prototypes:

HI CON Loadl con(
HI NSTANCE hl nstance, // handle to application instance
LPCTSTR | pl conNarne /1l icon-name string or icon resource identifier

)

HCURSOR LoadCur sor (
HI NSTANCE hl nst ance, /1 handl e to application instance

http://www.gamedev.net/reference/articles/article1240.asp (2 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

LPCTSTR | pCur sor Nane /1 name string or cursor resource identifier

)

The return type is a handle to the cursor you're loading. The parameters are very straightforward:

HI NSTANCE hl nst ance: This is a handle to the instance of your application. To load resources from your program,
just pass the H NSTANCE that is passed to your W nMai n() function when the program is executed. To use standard
Windows resources like we did in the window class above, set this to NULL.

LPCTSTR | pl conNane, | pCursor Nane: This is a string identifier that identifies the resource you want to load. If

your script file refers to resources by string, simply pass the string. But if you're using numeric constants, the
Windows header files include a macro that changes an integer to a form compatible with this parameter called
MAKEI NTRESOURCE() .

As an example, let's look at the line that sets the icon to represent the program. Suppose your resource script file
looks like this:

#i ncl ude "resource. h"

| CON_MAI N | CON nyi con.ico
CURSOR_ARROW CURSOR arrow. cur

If the identifiers | CON_MAI N and CURSOR_ARROWdo not have matching #def i ne statements somewhere in
resource.h, then you would pass the corresponding string to the appropriate resource-loading function, like this:

sanpl eC ass. hl con = Loadl con(hi nstance, "I CON_MAIN');

Now let's say that resource.h contains a few #def i ne directives:

#define | CON_MAIN 1000
#defi ne CURSOR_ARROW 2000

Now you have to use the MAKEI NTRESOURCE() macro to turn the numerical identifier into something of type
LPCTSTR. This gives you a little more ease of flexibility in loading resources. Any of the following calls would be
correct:

sanpl ed ass. hl con

or...
sanpl eC ass. hl con

or...
int ident = 1000;
sanpl eC ass. hl con = Loadl con(hi nstance, MAKElI NTRESOURCE(i dent));

Loadl con(hi nstance, MAKElI NTRESOURCE(| CON_MAI N)) ;

Loadl con(hi nst ance, MAKElI NTRESOURCE(1000));

That's about all you need to know about including icons and cursors in your programs, but I'll mention one more
thing while we're on the topic. If you want to set a cursor sometime other than at the beginning of the program,
there's a simple Windows function you can use to accomplish this:

HCURSOR Set Cur sor (HCURSOR hCur sor) ;

http://www.gamedev.net/reference/articles/article1240.asp (3 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

The one parameter is the handle you get by calling LoadCur sor (), and the handle that is returned is a handle to
the previous cursor. If no previous cursor was set, the return value is NULL. Relatively painless, wouldn't you say?
Let's move on to something a bit more interesting.

Bitmaps

Including bitmap resources is probably the easiest way to add images to your program. Bitmaps are native to
Windows and so there are functions included to deal with loading and manipulating them, but remember, if you
include too many, you'll end up with an enormous . EXE file. In any case, you include bitmaps in your resource

script file in basically the same way you handle icons and cursors:

[identifier] BITMAP [fil enane]

There is a function called LoadBi t map() that is analagous to LoadCur sor () and Loadl con() ; it is used to retrieve

a handle to a bitmap, but since | haven't talked about graphics yet, | won't describe this function here. You can
probably guess exactly how it works, but once you have a handle to a bitmap, what would you do with it? More to
come on that in the future, don't worry! For now, | just wanted to show you how to include a bitmap resource.
Now let's look at something you can use right away.

String Tables

The string table is one of my favorite resource types. It's exactly what you're thinking: a giant table full of strings.
There are any number of purposes for using a string table. You can use it to store data filenames, character
dialogue for a game, message-box text, text for menus that are generated by the program, anything you want.
Creating a string table in your script file is easy. Here's what it looks like:

STRI NGTABLE

{

/1l entries go here
}

An entry in a string table consists of a number to identify the string, followed by a comma, then the string itself,
enclosed in double quotation marks. The strings in a string table can include escape sequences like \ n or \t . Note

that the string table itself does not have an identifier, so each program you write can include only one string table.
A simple string table might look something like this:

/1 program i nformation
STRI NGTABLE

{
1, "3D Space Gane vl1.0"

2, "Witten by The Masked Coder"
3, "(C 2000 WenerDog Software"

}

To load a string from your program's string table, you use the -- you guessed it -- LoadSt ri ng() function. Here is
its prototype:

int LoadString(

http://www.gamedev.net/reference/articles/article1240.asp (4 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

HI NSTANCE hl nstance, // handle to nodul e containing string resource

Ul NT ul D, /!l resource identifier
LPTSTR | pBuf fer, /1 pointer to buffer for resource
i nt nBuffer Max /Il size of buffer

)

The integer returned by the function is the number of characters, excluding the terminating null character, that
were successfully copied into the buffer. This corresponds to the length of the string. If you load a blank string, or
if the function fails, the return value is 0. Take a look at the parameters:

HI NSTANCE hl nst ance: Once again, this is the instance of your application.
Ul NT ul D: This is the number that identifies the particular string you want to load.
LPTSTR | pBuf f er : This is a pointer to the location you want the string copied to.

i nt nBuf ferMax: This is the size of the buffer in bytes. If the string to be loaded is longer than the buffer can
hold, the string is truncated and null-terminated.

For example, to load WienerDog Software's copyright message, the following code would be used:

char buffer[80];
LoadStri ng(hi nstance, 3, buffer, sizeof(buffer));

Even though the declaration of a string table in your script file has to use numbers and not identifiers, | usually
#def i ne a number of string table constants in one of my header files when using a string table. For instance, to

accompany the string table above, | might have a line like:

#def i ne ST_W ENERDOGCOPYRI GHT 3

Your code will be much easier to read if you have LoadStri ng() calls that use readable constants for the ul D

parameter, rather than just having the index numbers. This doesn't mean you should have a constant for every
string table entry; that would take ages if you have a large string table. Usually | like to use one #def i ne per

"section" of the string table. For instance, ST_FI LENAMES for the first index where filenames are stored,
ST_DI ALOGUE for the first index of the character dialog strings, etc.

Menus

This is the last type of Windows resource I'll go over, and it's also one of the most useful. Menu resources are used
to define the menu bar that would appear underneath the title bar of your application, and are loaded during the
definition of the window class. Looking back, in the window class we developed during the last article, there was a
line that looked like this:

sanpl ed ass. | pszMenuNanme = NULL;

If you're creating a windowed application, chances are that you'll want to have a menu bar of some sort. This is
done using the menu resource. The script file entry for this one can get a little complicated, but here is its most
basic form:

http://www.gamedev.net/reference/articles/article1240.asp (5 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

[identifier] MENU

{
POPUP [nenu nane]
{
MENUI TEM [item nane], [identifier]
}
}

The identifier is what you're used to: either a string or a numeric constant that is used to refer to the menu. Within
the MENU brackets, there can be one or more POPUP menus, each of which represent a pull-down menu, whose

name is given by [nenu nane] . Within the POPUP brackets, there can be one or more MENUl TEMs, each of which
represents a final menu selection, with a name given by [i t em nane] and an identifier that must be a numeric

constant. Within the menu and item names, if you want that option to be accessible by a keyboard shortcut, you
precede the letter of the shortcut with the ampersand (&). For instance, if you want to create a File menu
accessible by pressing Alt+F, the menu name should be &Fi | e. Menu and item names should be enclosed in

double quotation marks. With that, here is an example of a simple menu resource:

MAI N_MENU MENU

{
POPUP " &Fi | e"
{
MENUI TEM " &New" , MENUI D_NEW
MENUI TEM " &Open. . . ", MENUI D_OPEN
MENUI TEM " &Save" MENUI D_SAVE
MENUI TEM " Save &As...", MENU D_SAVEAS
MENU TEM " E&xi t ", MENUI D EXI'T
}
POPUP " &Hel p"
{
MENUI TEM " &Cont ent s", MENUI D_CONTENTS
MENU TEM " &l ndex. .. ", MENUI D_I NDEX
MENUl TEM " &About ", MENUI D_ABOUT
}
}

You can also create submenus by including one POPUP inside of another, specify menu items as being initially

grayed or checked, or do several other more advanced things, but I'm not going to go into that here. To obtain a
handle to a menu resource, use the LoadMenu() function whose prototype is shown here:

HVENU LoadMenu(
H NSTANCE hl nstance, // handle to application instance
LPCTSTR | pMenuNarme /! menu nane string or nenu-resource identifier

)

You should be used to these parameters by now. The first one is the instance of your application, and the second
is the identifier you assigned to the menu. Remember to use MAKEI NTRESOURCE() if you used a numerical

constant. Now, to attach a menu to a window, you have two options. The first is to set the menu as the default for
your window class, like this:

sanpl eCl ass. | pszMenuNanme = LoadMenu(hi nst ance, MAKEI NTRESOURCE(MAI N_MENU)) ;

http://www.gamedev.net/reference/articles/article1240.asp (6 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

The second option is to leave | pszMenuNane equal to NULL, and attach a menu yourself later. This can be useful if

you want to create two windows with different menus, but don't want to define two separate window classes. To
attach a menu, use the Set Menu() function:

BOOL Set Menu(
HWAD hWhd, // handl e to w ndow
HVENU hMenu, // handle to nmenu

The return value is TRUE if the function succeeds, or FALSE if it fails. The parameters are pretty easy to figure out:

HWND hwhd: This is the handle to the window to which you want to attach the menu. Pass the handle that was
returned when you called Cr eat eW ndowEx () .

HVENU hMenu: To identify the menu, pass the handle returned by LoadMenu() . If you pass NULL, the specified
window's menu is removed.

This resource is particularly nice because all the functionality of the menu is defined by that simple scripting. But
what happens when the user selects a menu option? The answer is that Windows sends a W, _COMVAND message

informing the program that it must take action. Let's pay a visit to our message-handling function and see if we
can't figure out how to handle this.

Handling Menu Events

As you probably remember, Windows messages are handled by a special callback function usually called
W ndowPr oc() or something similar. The simple one we wrote last time was called MsgHandl er (), and its

prototype looked like this:

LRESULT CALLBACK MsgHandl er (
HAND hwnd, /1 wi ndow handl e
U NT nsg, /1l the message identifier
WPARAM wpar am // mnessage paraneters
LPARAM | param // nore nessage paraneters

s

When a menu message is sent, msg will be WM_COWMVAND, and the menu item that was selected will be contained in
wpar am This is why menu item identifiers can't be strings; they need to fit into the wpar amparameter. More
specifically, the menu item identifier is the low word of wpar am To extract the low or high word of a 32-bit variable
type like WPARAM, LPARAM, int, etc. Windows provides macros called LOANORD() and H WORD() that do the job. They
are shown here:

#define LOMORD(I) ((WORD) (1)) #define HIWORD(1) ((WORD) (((DWORD) (1) >> 16) & OxFFFF))

In the case of LONORD() , the typecast to WORD simply truncates the value to the lower 16 bits. H WORD() shifts the
upper 16 bits to the right, then performs a logical AND with OxFFFF just to be sure any bits above the lower 16 are
all set to zero. If you're not familiar with the >> and << operators, they are bit shifts. The << operator shifts all the
bits of a variable a number of positions to the left, and the >> operator shifts to the right. For example, suppose
you had a 16-bit variable x whose value was 244. In binary this is 0000 0000 1111 0100. The following example

http://www.gamedev.net/reference/articles/article1240.asp (7 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

shows a bit shift, and the effect on x:

short int x = 244, vy;
y = X << 4;

Contents of x: 0000 0000 1111 0100
Contents of y: 0000 1111 0100 0000

Anyway, use LOANORD() to extract the low word of wpar am and you have the ID of the menu item that was
selected. So, somewhere in your MsgHandl er () function, you should have something like this:

/1 handl e nmenu sel ections
if (nmeg == WJ_COMVAND)
{

swi tch (LONORD(wpar am)

{
case MENUI D_NEW

/1 code to handl e File->New goes here
br eak;

case MENUI D_OPEN:

/1 code to handl e File->Qpen goes here
br eak;

/1 the rest of the option handlers go here

}

/1l tell Wndows you took care of it
return(0);

Make sense? Good. That about wraps it up for the specific resource types I'm going to cover. There are others,
such as accelerator tables (tables full of keyboard shortcuts), HTML pages, WAV files etc. but I think these are the
most useful. Before | wrap this up, though, there's one more very powerful feature of Windows programs I'm
going to show you, and that's defining a custom resource type.

Custom Resources

The standard Windows resources are those which have special functions for loading and handling them, but they
are not the only types you can use. Resources can be any data you want them to be! Working with custom
resources requires a little more work since you must locate and read the resource data manually, but it's not too
bad. The script file entry for a custom type follows the basic format you're already used to:

[identifier] [resource type nane] [filenane]

The resource type name is a string that defines your custom resource, and can be whatever you want. For the
purposes of this example, let's say you want to include a data file called plconfi g. dat that contains information

necessary to initialize a character in a game program. We'll call the custom resource type CHARCONFI G. With that in
mind, here's an example of what the script file entry might look like for your data file:

http://www.gamedev.net/reference/articles/article1240.asp (8 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

DATA PLAYERINIT CHARCONFI G plconfig. dat

Pretty simple, hey? Now that you've included your file, there are three steps you must take in order to retrieve a
pointer to the resource data. Each involves calling a function we haven't talked about yet, so let's go through them
one at a time. The first thing you must do is to find the resource with a call to Fi ndResour ce() . Here's the

prototype:

HRSRC Fi ndResour ce(
HMODULE hModul e, // nodul e handl e
LPCTSTR | pNane, // pointer to resource hane
LPCTSTR | pType // pointer to resource type

);
The return value is a handle to the resource's information block, or NULL if the function fails. The parameters are
as follows:
HMODULE hModul e: The HMODULE data type is simply an HI NSTANCE. Don't ask me why they felt they needed
another name for it, but you should simply pass the instance of your application. You don't even need a typecast

because the data types are exactly the same.

LPCTSTR | pNane: This is the resource identifier. Remember to use MAKEI NTRESOURCE() on this one if you're using
numeric constants to define your resources.

LPCTSTR | pType: This is the resource type, so pass the string you used to define your resource type. In our case,
this is CHARCONFI G.

A sample function call looks like this:

HRSRC hRsrc = Fi ndResour ce(hi nstance, MAKEI NTRESOURCE(DATA PLAYERI NI T), " CHARCONFI G');

This is a handle to the info block the resource resides in. The next step to getting a pointer to the data is to take
this handle and pass it to LoadResour ce() to actually load the data. This yields a handle to the resource itself.

Here is the function prototype:

HGLOBAL LoadResour ce(
HMODULE hMbdul e, // resource-npdul e handl e
HRSRC hResl nf o /] resource handl e

)

The return type, HGLOBAL, is a pretty general handle type, as opposed to the other load functions we've covered,
which returned specific handle types like HBI TMAP or HI CON. If the function fails, this value will be NULL. The
parameters are straightforward:

HMODULE hMbdul e: Again, simply the application instance.
HRSRC hResl nf o: Pass the handle that was returned by Fi ndResour ce() .

Now that you have a handle to the resource, you can finally get a pointer to the data that was in the resource file

http://www.gamedev.net/reference/articles/article1240.asp (9 of 10) [5/12/2001 6:46:23 PM]

GameDev.net - Game Programming Genesis Part 11 : Using Resources in Win32 Programs

you included. This is achieved with a call to LockResour ce(), shown here:

LPVO D LockResour ce(HELOBAL hResDat a) ;

Simply pass the handle that was returned by LoadResour ce() . If the return value is NULL, the function call failed.

If not, you've got your pointer! Now you're free to do whatever you like with the data. Note that the return type is
LPVA D (Windows-speak for voi d*), so if you want to use array notation on the pointer, you need to cast it to

something like a BYTE*. Now that we've gone through all the steps, I'll show you an example of a function you
might write to return a pointer to a specified resource:

UCHAR* LoadCust onmResource(int reslD)

{
HRSRC hResl nf o;
HGLOBAL hResour ce;
/1 first find the resource info bl ock
if ((hReslnfo = FindResource(hinstance, MAKEI NTRESOURCE(resl D), "CUSTOVRESOURCETYPE"))
== NULL)
return(NULL) ;
/1 now get a handle to the resource
if ((hResource = LoadResource(hinstance, hReslnfo)) == NULL)
return(NULL) ;
/1l finally get and return a pointer to the resource
return ((UCHAR*) LockResour ce(hResource));
}
Closing

Well, that about does it for resources! See, programming for Windows is fun. :) Even with all this knowledge of
resources, you're still pretty limited in what you can actually get your programs to do, so next time I'll be going
over some basic Windows GDI (Graphics Device Interface) functions, so you can start using all this stuff to put
some demo programs together. As always, send me your comments, your ideas, your death threats:

E-mail: ironblayde@aeon-software.com
ICQ: UIN #53210499

Farewell everyone, until we meet again...

Discuss this article in the forums

© 1999-2001 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

http://www.gamedev.net/reference/articles/article1240.asp (10 of 10) [5/12/2001 6:46:23 PM]

mailto:ironblayde@aeon-software.com
http://www.gamedev.net/community/forums/topic.asp?key=featart&uid=1240&forum_id=35&Topic_Title=Game+Programming+Genesis+Part+II+%3A+Using+Resources+in+Win32+Programs
http://www.gamedev.net/legal/legal.htm#copyright
http://www.gamedev.net/legal/legal.htm#privacy
mailto:webmaster@gamedev.net

	gamedev.net
	GameDev.net - Game Programming Genesis Part II : Using Resources in Win32 Programs

