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Hey You, Get Off of My Cloud
Application-Level Denial of Service Attacks and Defenses
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DoS is the new EoP.
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Exploitable privilege escalations are getting rare

“It’s harder to find exploitable bugs now…it used to be 
that if you found ten bugs, nine of them would be 
exploitable.”

- Charlie Miller

 NVD shows a 20% decrease in reported vulnerabilities last year

 Platform defenses (ASLR, NX, stack canaries) are working

 Secure development methodologies (SDL, SPLC) are working
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Political motivation
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Economic motivation

 For *aaS targets, economically-motivated DoS is less about 
crashing systems, more about bankrupting service owners

 Typical cloud computing costs:

 US $0.15/instance-hour for processing time

 US $0.15/GB-month for storage

 US $0.01/10K-transactions

 US $0.10/GB incoming bandwidth

 US $0.15/GB outgoing bandwidth 

 Sounds small but adds up quickly…

5



© 2011 Adobe Systems Incorporated.  All Rights Reserved.

Application-level (OSI Layer 7+) DoS
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Traditional DoS

• Slowloris
• RUDY
• Xerxes?
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Characteristics of application-level DoS vulnerabilities

Traditional DoS/DDoS

 Very easy to find

 Fairly even in terms of 
attacker resources vs
target impact

 Solve the problem with 
IPS/QoS firewall
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Application-level DoS

• Difficult to find

• Extremely asymmetric in 
terms of attacker effort vs
impact

• Solve the problem with 
code changes/redesign
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Application DoS Example 1
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Synchronization
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Intentionally induced deadlocks and livelocks

 Pseudocode for a banking SaaS application:

AcquireLock(payee_account)

AcquireLock(payer_account)

DebitPayer

CreditPayee

ReleaseLock(payer_account)

ReleaseLock(payee_account)
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Alice and Bob collude to DoS the bank

Alice pays Bob $50

AcquireLock(Alice)

AcquireLock(Bob)

Debit Alice $50

Credit Bob $50

ReleaseLock(Bob)

ReleaseLock(Alice)
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Bob pays Alice $50

AcquireLock(Bob)

AcquireLock(Alice)

Debit Bob $50

Credit Alice $50

ReleaseLock(Alice)

ReleaseLock(Bob)
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DoS’ing a plane

 Ajax Security talk @ 
BlackHat, RSA

 Hacker Vacations site
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Mitigating the attack: Avoid the domino effect
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holdSeat

makeOffer

chargeAccount

bookSeat
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Application DoS Example 2

13

PHP 2.22505 Infinite Loop
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String-to-double conversion

 Vulnerability occurs when a string is converted to a floating point 
value:

<?php $number = (float) $_GET['number']; ?>

 Code execution path leads to the C function strtod()
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Demonstration
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PHP “Number of the Beast”
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Mitigating the attack

 Upgrade to 5.2.17 or 5.3.5 

 Or recompile with –ffloat-store compiler flag

 Or blacklist-validate* for the malicious string

if (strstr(str_replace('.','',serialize($_REQUEST)), '22250738585072011'))

{

// request is malicious, abort processing

}
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* Yes, I know you’re not supposed to do this. But for now, it’s the best alternative.
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Application DoS Example 3
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Decompression (Zip Bombs)
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Zip compresses text very efficiently
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA…
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Nesting Zips

19
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42.zip
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42.zip
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Decompression explosion
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA…

42.zip

4.2 petabytes of A’s!
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Application DoS Example 4
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XML Entity Attacks
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XML entities

 Like macros for XML documents

<!DOCTYPE employees [

<!ENTITY companyname "Adobe Systems, Inc.">

]>

<employees>

<employee>Bryan S, &companyname;</employee>

<employee>Lucas N, &companyname;</employee>

<employee>Peleus U, &companyname;</employee>

</employees>
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Nesting entities

 You can nest entities, too

<!DOCTYPE employees [

<!ENTITY companyname "Adobe Systems, Inc.">

<!ENTITY divisionname "Adobe Secure Software Engineering Team, 
&companyname;">

]>

<employees>

<employee>Bryan S, &divisionname;</employee>

<employee>Lucas N, &divisionname;</employee>

<employee>Peleus U, &divisionname;</employee>

</employees>
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Exponential Entity Expansion attack

 Aka “The Billion Laughs Attack”

<!DOCTYPE lolz [

<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

…

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>
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Expansion explosion
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lollollollollollollollollollollollollollollollollollollo
llollollollollollollollollollollollollollollollollolloll
ollollollollollollollollollollollollollollollollollollol
lollollollollollollollollollollollollollollollollollollo
llollollolollollollollollollollollollollollollollollollo
llollollolollollollollollollollollollollollollollollol…

<lolz>&lol9;<lolz>

3GB of LOLs
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Demonstration
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Billion Laughs Attack
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Infinite entity recursion?

<!DOCTYPE lolz [

<!ENTITY lol1 “&lol2;">

<!ENTITY lol2 "&lol1;">

]>

<lolz>&lol1;</lolz>

 Fortunately, not legal!
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Quadratic Entity Blowup

<!DOCTYPE kaboom [

<!ENTITY a "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa…">

]>

<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;…</kaboom>
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External entity resolution attacks

<!ENTITY stockprice SYSTEM  "http://www.mysite.cxx/stockticker.ashx">

 Some attack ideas:

 Infinite delay

 Infinite streaming data pipe

 Very large file downloads

 Intranet redirection

30
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Application DoS Example 5

31

Regular Expression DoS
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Expert advice?

32

 “…the developer should be able to define a very strong 
validation pattern, usually based on regular expressions, for 
validating [user] input.” 

 OWASP SQL Injection Prevention Cheat Sheet

 “Regular expressions are a good way to validate text fields 
such as names, addresses, phone numbers, and other user 
information.”

 MSDN Patterns & Practices

 “Regex is a perfect tool for input validation.”
 Bryan Sullivan, Ajax Security
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Backtracking (NFA) regular expression engines

33

 Example 1: ^\d+$
 Evaluate this pattern against test input: 123456X

123456 [no match, backtrack]

12345 [no match, backtrack]

1234 [no match, backtrack]

123 [no match, backtrack]

12 [no match, backtrack]

1 [no match]

 Fails in 13 steps (including backtracks)
 Operates in O(n) time
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Backtracking (NFA) regular expression engines continued
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 Example 2: ^(\d+)+$
 Evaluate this pattern against test input: 123456X

123456 [no match, backtrack]

12345

123456 [no match, backtrack]

12345

123456 [no match, backtrack]

…

 Fails in 223 steps
 Operates in O(2n) time
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Demonstration
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ReDoS
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More irony…
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 “Just as we perform whitelist input validation on the server 
for security purposes, developers must perform client-side 
validation to ensure security of their offline applications.”

 Ajax Security
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Detecting vulnerable regexes

37

 Look for:
 Grouping expressions 

containing repetition that is 
itself repeated

 Groups containing 
alternation where the 
alternate subexpressions
overlap each other

 This is harder than it 
sounds, and it doesn’t 
sound easy
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Regex testing strategies

38

 Test each regex clause with a large, valid sample
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test.com
 bryan@aaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com

 Add one invalid character to the end of the sample
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test.com!
 bryan@aaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com!

 Why does this work?
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Demonstration
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SDL Regex Fuzzer
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A truth about regular expressions

40

“Some people, when confronted with a problem, think, 
‘I know, I’ll use regular expressions.’ Now they have 
two problems.”

- Jamie Zawinski
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Conclusions
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Defend yourself

 Don’t focus solely on EoP or Confidentiality/Integrity 
issues
 DoS is the next battleground

 Follow established patterns for synchronization

 Avoid discretely callable transaction state changes
 I.e., HoldSeat, ReleaseSeat, BookSeat

 Deploy antivirus on systems processing user uploads

 Decompress asynchronously, kill the thread if 
necessary

42
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Defend yourself

43

 For XML parsing code:
 When possible, disable inline DTD processing entirely

 If not possible, disable external entity resolution entirely

 If not possible, throttle external entity resolution requests

 For regular expressions:
 Avoid group expressions with repetition that are 

themselves repeated

 Avoid alternation within groups where the alternate 
subexpressions overlap each other

 Use dynamic testing tools along with manual code review
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Special thanks

 Special thanks to the following people for their excellent original 
research in the areas discussed today:

 Steve Orrin

 Amit Klein

 Alex Roichman

 Adar Weidman

 Rick Regan
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Q&A

 Adobe Secure Software Engineering Team (ASSET) blog

 http://blogs.adobe.com/asset

 My alias

 brsulliv
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http://blogs.adobe.com/asset
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