
© 2011 Adobe Systems Incorporated. All Rights Reserved.

Bryan Sullivan, Senior Security Researcher, Adobe Systems

Hey You, Get Off of My Cloud
Application-Level Denial of Service Attacks and Defenses

© 2011 Adobe Systems Incorporated. All Rights Reserved. 2

DoS is the new EoP.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Exploitable privilege escalations are getting rare

“It’s harder to find exploitable bugs now…it used to be
that if you found ten bugs, nine of them would be
exploitable.”

- Charlie Miller

 NVD shows a 20% decrease in reported vulnerabilities last year

 Platform defenses (ASLR, NX, stack canaries) are working

 Secure development methodologies (SDL, SPLC) are working

3

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Political motivation

4

vs

vs

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Economic motivation

 For *aaS targets, economically-motivated DoS is less about
crashing systems, more about bankrupting service owners

 Typical cloud computing costs:

 US $0.15/instance-hour for processing time

 US $0.15/GB-month for storage

 US $0.01/10K-transactions

 US $0.10/GB incoming bandwidth

 US $0.15/GB outgoing bandwidth

 Sounds small but adds up quickly…

5

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application-level (OSI Layer 7+) DoS

6

Traditional DoS

• Slowloris
• RUDY
• Xerxes?

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Characteristics of application-level DoS vulnerabilities

Traditional DoS/DDoS

 Very easy to find

 Fairly even in terms of
attacker resources vs
target impact

 Solve the problem with
IPS/QoS firewall

7

Application-level DoS

• Difficult to find

• Extremely asymmetric in
terms of attacker effort vs
impact

• Solve the problem with
code changes/redesign

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application DoS Example 1

8

Synchronization

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Intentionally induced deadlocks and livelocks

 Pseudocode for a banking SaaS application:

AcquireLock(payee_account)

AcquireLock(payer_account)

DebitPayer

CreditPayee

ReleaseLock(payer_account)

ReleaseLock(payee_account)

9

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Alice and Bob collude to DoS the bank

Alice pays Bob $50

AcquireLock(Alice)

AcquireLock(Bob)

Debit Alice $50

Credit Bob $50

ReleaseLock(Bob)

ReleaseLock(Alice)

10

Bob pays Alice $50

AcquireLock(Bob)

AcquireLock(Alice)

Debit Bob $50

Credit Alice $50

ReleaseLock(Alice)

ReleaseLock(Bob)

© 2011 Adobe Systems Incorporated. All Rights Reserved.

DoS’ing a plane

 Ajax Security talk @
BlackHat, RSA

 Hacker Vacations site

11

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Mitigating the attack: Avoid the domino effect

12

holdSeat

makeOffer

chargeAccount

bookSeat

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application DoS Example 2

13

PHP 2.22505 Infinite Loop

© 2011 Adobe Systems Incorporated. All Rights Reserved.

String-to-double conversion

 Vulnerability occurs when a string is converted to a floating point
value:

<?php $number = (float) $_GET['number']; ?>

 Code execution path leads to the C function strtod()

14

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Demonstration

15

PHP “Number of the Beast”

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Mitigating the attack

 Upgrade to 5.2.17 or 5.3.5

 Or recompile with –ffloat-store compiler flag

 Or blacklist-validate* for the malicious string

if (strstr(str_replace('.','',serialize($_REQUEST)), '22250738585072011'))

{

// request is malicious, abort processing

}

16

* Yes, I know you’re not supposed to do this. But for now, it’s the best alternative.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application DoS Example 3

17

Decompression (Zip Bombs)

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Zip compresses text very efficiently

18

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA…

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Nesting Zips

19

© 2011 Adobe Systems Incorporated. All Rights Reserved.

42.zip

20

42.zip

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Decompression explosion

21

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAA…

42.zip

4.2 petabytes of A’s!

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application DoS Example 4

22

XML Entity Attacks

© 2011 Adobe Systems Incorporated. All Rights Reserved.

XML entities

 Like macros for XML documents

<!DOCTYPE employees [

<!ENTITY companyname "Adobe Systems, Inc.">

]>

<employees>

<employee>Bryan S, &companyname;</employee>

<employee>Lucas N, &companyname;</employee>

<employee>Peleus U, &companyname;</employee>

</employees>

23

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Nesting entities

 You can nest entities, too

<!DOCTYPE employees [

<!ENTITY companyname "Adobe Systems, Inc.">

<!ENTITY divisionname "Adobe Secure Software Engineering Team,
&companyname;">

]>

<employees>

<employee>Bryan S, &divisionname;</employee>

<employee>Lucas N, &divisionname;</employee>

<employee>Peleus U, &divisionname;</employee>

</employees>

24

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Exponential Entity Expansion attack

 Aka “The Billion Laughs Attack”

<!DOCTYPE lolz [

<!ENTITY lol "lol">

<!ENTITY lol2 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">

<!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">

<!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">

…

<!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">

]>

<lolz>&lol9;</lolz>

25

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Expansion explosion

26

lollollollollollollollollollollollollollollollollollollo
llollollollollollollollollollollollollollollollollolloll
ollollollollollollollollollollollollollollollollollollol
lollollollollollollollollollollollollollollollollollollo
llollollolollollollollollollollollollollollollollollollo
llollollolollollollollollollollollollollollollollollol…

<lolz>&lol9;<lolz>

3GB of LOLs

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Demonstration

27

Billion Laughs Attack

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Infinite entity recursion?

<!DOCTYPE lolz [

<!ENTITY lol1 “&lol2;">

<!ENTITY lol2 "&lol1;">

]>

<lolz>&lol1;</lolz>

 Fortunately, not legal!

28

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Quadratic Entity Blowup

<!DOCTYPE kaboom [

<!ENTITY a "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa…">

]>

<kaboom>&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;…</kaboom>

29

© 2011 Adobe Systems Incorporated. All Rights Reserved.

External entity resolution attacks

<!ENTITY stockprice SYSTEM "http://www.mysite.cxx/stockticker.ashx">

 Some attack ideas:

 Infinite delay

 Infinite streaming data pipe

 Very large file downloads

 Intranet redirection

30

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Application DoS Example 5

31

Regular Expression DoS

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Expert advice?

32

 “…the developer should be able to define a very strong
validation pattern, usually based on regular expressions, for
validating [user] input.”

 OWASP SQL Injection Prevention Cheat Sheet

 “Regular expressions are a good way to validate text fields
such as names, addresses, phone numbers, and other user
information.”

 MSDN Patterns & Practices

 “Regex is a perfect tool for input validation.”
 Bryan Sullivan, Ajax Security

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Backtracking (NFA) regular expression engines

33

 Example 1: ^\d+$
 Evaluate this pattern against test input: 123456X

123456 [no match, backtrack]

12345 [no match, backtrack]

1234 [no match, backtrack]

123 [no match, backtrack]

12 [no match, backtrack]

1 [no match]

 Fails in 13 steps (including backtracks)
 Operates in O(n) time

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Backtracking (NFA) regular expression engines continued

34

 Example 2: ^(\d+)+$
 Evaluate this pattern against test input: 123456X

123456 [no match, backtrack]

12345

123456 [no match, backtrack]

12345

123456 [no match, backtrack]

…

 Fails in 223 steps
 Operates in O(2n) time

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Demonstration

35

ReDoS

© 2011 Adobe Systems Incorporated. All Rights Reserved.

More irony…

36

 “Just as we perform whitelist input validation on the server
for security purposes, developers must perform client-side
validation to ensure security of their offline applications.”

 Ajax Security

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Detecting vulnerable regexes

37

 Look for:
 Grouping expressions

containing repetition that is
itself repeated

 Groups containing
alternation where the
alternate subexpressions
overlap each other

 This is harder than it
sounds, and it doesn’t
sound easy

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Regex testing strategies

38

 Test each regex clause with a large, valid sample
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test.com
 bryan@aaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com

 Add one invalid character to the end of the sample
 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa@test.com!
 bryan@aaaaaaaaaaaaaaaaaaaaaaaaaaaaa.com!

 Why does this work?

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Demonstration

39

SDL Regex Fuzzer

© 2011 Adobe Systems Incorporated. All Rights Reserved.

A truth about regular expressions

40

“Some people, when confronted with a problem, think,
‘I know, I’ll use regular expressions.’ Now they have
two problems.”

- Jamie Zawinski

© 2011 Adobe Systems Incorporated. All Rights Reserved. 41

Conclusions

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Defend yourself

 Don’t focus solely on EoP or Confidentiality/Integrity
issues
 DoS is the next battleground

 Follow established patterns for synchronization

 Avoid discretely callable transaction state changes
 I.e., HoldSeat, ReleaseSeat, BookSeat

 Deploy antivirus on systems processing user uploads

 Decompress asynchronously, kill the thread if
necessary

42

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Defend yourself

43

 For XML parsing code:
 When possible, disable inline DTD processing entirely

 If not possible, disable external entity resolution entirely

 If not possible, throttle external entity resolution requests

 For regular expressions:
 Avoid group expressions with repetition that are

themselves repeated

 Avoid alternation within groups where the alternate
subexpressions overlap each other

 Use dynamic testing tools along with manual code review

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Special thanks

 Special thanks to the following people for their excellent original
research in the areas discussed today:

 Steve Orrin

 Amit Klein

 Alex Roichman

 Adar Weidman

 Rick Regan

44

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Q&A

 Adobe Secure Software Engineering Team (ASSET) blog

 http://blogs.adobe.com/asset

 My alias

 brsulliv

45

http://blogs.adobe.com/asset

© 2011 Adobe Systems Incorporated. All Rights Reserved. 46

	Hey You, Get Off of My Cloud
	Slide Number 2
	Exploitable privilege escalations are getting rare
	Political motivation
	Economic motivation
	Application-level (OSI Layer 7+) DoS
	Characteristics of application-level DoS vulnerabilities
	Application DoS Example 1
	Intentionally induced deadlocks and livelocks
	Alice and Bob collude to DoS the bank
	DoS’ing a plane
	Mitigating the attack: Avoid the domino effect
	Application DoS Example 2
	String-to-double conversion
	Demonstration
	Mitigating the attack
	Application DoS Example 3
	Zip compresses text very efficiently
	Nesting Zips
	42.zip
	Decompression explosion
	Application DoS Example 4
	XML entities
	Nesting entities
	Exponential Entity Expansion attack
	Expansion explosion
	Demonstration
	Infinite entity recursion?
	Quadratic Entity Blowup
	External entity resolution attacks
	Application DoS Example 5
	Expert advice?
	Backtracking (NFA) regular expression engines
	Backtracking (NFA) regular expression engines continued
	Demonstration
	More irony…
	Detecting vulnerable regexes
	Regex testing strategies
	Demonstration
	A truth about regular expressions
	Slide Number 41
	Defend yourself
	Defend yourself
	Special thanks
	Q&A
	Slide Number 46

