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Abstract 

Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk 

image.  Since the filesystem is intact on these images, a number of forensics techniques are available for analysis 

such as file and metadata examination, timelining, deleted file recovery, indexing, and searching. Live CDs present a 

serious problem for this investigative model, however, since the OS and applications execute in a RAM-only 

environment and do not save data on non-volatile storage devices such as the local disk.    In order to solve this 

problem, we present a number of techniques that support complete recovery of a live CD’s in-memory filesystem 

and partial recovery of its deleted contents.  We also present memory analysis of the popular Tor application, since it 

is used by a number of live CDs in an attempt to keep network communications encrypted and anonymous. 

 

1   Introduction 

Traditional digital forensics encompasses the examination of data from an offline or “dead” source such as a disk 

image. Under normal circumstances, evidence is obtained by first creating an exact, bit-for-bit copy of the target 

disk, followed by hashing of both the target disk and the new copy. If these hashes match then it is known that an 

exact copy has been made, and the hash is recorded to later prove that evidence was not modified during the 

investigation. Besides satisfying legal requirements, obtaining a bit-for-bit copy of data provides investigators with a 

wealth of information to examine and makes available a number of forensics techniques. Since the copy will contain 

the entire filesystem, including its metadata, as well as previously deleted data, investigators can then perform a 

number of operations such as timelining, hashing of files, recovery of deleted information via file carving, metadata 

examination for  both the filesystem itself and the files it contains, orderly indexing and searching of data, and more. 

After obtaining a disk image, application specific examination also becomes possible, with popular targets being 

web browser activity, local email storage, recently accessed files, and any backup facilities such as Windows System 

Restore. 

Unfortunately for digital forensics investigators, live CDs disrupt the normal process in which evidence is obtained, 

analyzed, and presented.  Since Live CDs live entirely in RAM, there is no physical disk to image nor is there 

currently a method to get a bit-for-bit copy of the file-system. Instead investigators, after obtaining a memory 

capture, are left with no useful set of tools to perform file-system level analysis. Although primitive techniques such 

as the use of grep and strings can locate relevant information,  these tools do not place results into any context, 

making it difficult to perform deep analysis with them. Similarly, analysis of userland applications is just as difficult 

since there are no logs or history to examine.  The lack of useful tools currently makes examination of live CDs very 

difficult, and for investigators without programming ability, it is almost impossible to perform any meaningful 

analysis.  

The anonymity provided by live CDs has not gone unnoticed in the offensive computing and privacy communities 

and a number of projects have been released leveraging this feature. For instance, “The Amnesic Incognito Live 

System (TAILS)” [15] live CD proudly boasts on its front page that “all outgoing connections to the Internet are 

forced to go through the Tor network” and that “no trace is left on local storage devices unless explicitly asked”.  

The popular Backtrack live CD provides a complete penetration testing environment in which to perform a number 

of network and host based attacks [4]. While this distribution is created for legitimate purposes, it also provides a 

powerful weapon for those wishing to perform malicious attacks.  Consideration of only these two live CD 

distributions is enough to warrant interest by forensics investigators and incident response personnel without even 

considering the large number of other distributions. 



The work presented in this paper is aimed at de-anonymizing the TAILS live CD by enabling traditional forensics 

techniques against it as well as performing memory analysis of Tor as deployed by the distribution.  Forensics 

techniques are enabled by reconstruction of the entire in-memory file system, as well its metadata, and also recovery 

of previously deleted file system structures. As explained in the technical sections of this paper, this requires 

analysis of a number of Linux kernel subsystems in order to piece together all needed information. Memory analysis 

of Tor revealed that it makes minimal effort to securely erase memory after it has been used and this allows  

recovery of historical data such as HTTP headers and requests, downloaded files, visited URLs, and Tor-specific 

data such as the identity of other Tor network nodes.  We also show that the research performed and tools developed 

during this project are applicable against a number of other live CD distributions and not just TAILS. 

 

2   Related Work 

Forensics memory analysis has received considerable attention in the last few years, with most of the work focusing 

on kernel data structures and functionality.  Inspired by the 2005 DFRWS memory challenge [8], a number of 

publications were released that attempted to pull information from Windows systems such as processes, threads, 

files, network connections, and other relevant data [1, 3, 12, 13, 17]. Similar work was performed against Linux 

systems [5-7, 17] after the release of the DFRWS 2008 memory challenge [9].  There has also been substantial work 

in Mac OS X physical memory analysis [14]. The results of these works made possible recovery of a wealth of 

allocated and deallocated information inside the kernel. 

Scanning memory for data structures using signatures has been a large component of these earlier systems, but  

recent work  by a team from Georgia Tech has highlighted the weaknesses in this approach [10]. This work showed 

that all tested scanners could be bypassed by modifying certain structure’s members to avoid signatures. In order to 

solve this problem, the team developed a novel technique in which members of the EPROCESS Windows process 

structure were “fuzzed” in order to determine if the member was vital to the operation of the system, and, if so, what 

value ranges can it hold. After this fuzzing was complete, they were able to build a strong signature that could not be 

bypassed by malware without it introducing serious operating system stability issues.  Since scanning for structures 

is generally required for recovering data to which the kernel or an application no longer has a reference, the ability 

to generate proper signatures is vital. 

 

3   Reconstruction of the In-Memory Filesystem 

To properly reconstruct the filesystem we need precise knowledge of how the filesystem is stored in memory.  To 

illustrate how this knowledge was obtained during our research process, the following sections detail each step. 

3.1   Required Linux Internals 

Since the recovery of information revolves around parsing of kernel data structures, we present a quick introduction 

to relevant structures. The kernel structures involved in filesystem handling and that are necessary for 

comprehension of the presented research include: struct dentry, which represents a directory entry (directory or file); 

struct inode, which corresponds to a physical inode of the filesystem; struct address_space, which links all the 

physical pages of an inode together; and struct page, which represents a physical page. Related to these structures is 

the page cache, which is a store of all in-memory page structures and is required for reconstructing file contents. The 

final item requiring explanation is the kernel's file-grained memory allocator, the kmem_cache. Briefly, this cache is 

used to quickly allocate and deallocate structures of the same type, and is used by a number of kernel subsystems to 

hold structures that are frequently used and have relatively short lifespans. Previously, our team has presented a deep 

examination of kmem_cache internals for memory analysis of general Linux systems and this work showed that it is 

possible to recover previously deallocated processes, memory mappings, and network information from the caches 

[6].  



3.2   Brief Overview of Stackable Filesystems  

In order to coherently present the details of our file system recovery algorithm, we must first discuss stackable 

filesystems. This special filesystem overlays multiple “versions” of a filesystem, called branches or layers and often 

with different read/write permissions, onto a single mountpoint. In the case of live CDs, this is a perfect solution as 

the initial file system contained on the CD needs to be readable, but the boot process and system users also need to 

be able to create, modify, and delete files. To meet these needs, stackable filesystem implement complex logic that 

allows for multiple filesystems to be presented as a normal, single filesystem, hiding the  multiple branches from 

end users. In the case of TAILS, Backtrack, and Ubuntu, the stackable filesystem used is aufs [2] and this is the 

filesystem chosen for our analysis. 

3.3   Userland View of TAILS and aufs 

To demonstrate the use of the aufs stackable filesystem in TAILS, we first present the view of it from userland. The 

following figure shows the mounts and mount points relevant to our work. 

# cat /proc/mounts 

aufs / aufs rw,relatime,si=4ef94245,noxino 

/dev/loop0 /filesystem.squashfs squashfs 

tmpfs /live/cow tmpfs 

tmpfs /live tmpfs rw,relatime 

 

Figure 1 – TAILS Mount Points. 

 

As shown in Figure 1, aufs is mounted as the root filesystem, denoted by “/”. It also shows that /dev/loop0 contains 

the filesystem on the distribution’s CD and that both /live and /live/cow are mounted using the tmpfs filesystem, 

discussed shortly.   

# cat /sys/fs/aufs/si_4ef94245/br0 

/live/cow=rw 

# cat /sys/fs/aufs/si_4ef94245/br1 

/filesystem.squashfs=rr 

 

Figure 2 – Reading the Branch Mount Points. 

 

Figure 2 further expands on this information by showing that /live/cow is the writable branch in the stackable 

filesystem and that /filesystem.squashfs is the read only version.  Note that the bold number after si_ is the same as 

the parameter passed to the aufs root mount. The sysfs output is consistent with the idea presented previously that 

the CD is kept in a read-only state within the branch and that changes by the user will be written inside of the 

writable branch and merged on top of the CD contents. 

3.4   aufs Internals 

aufs implements filesystem branches by creating two sets of data, one that the user sees and a second “hidden” set of 

data that it uses to track the information that is currently at the top of the filesystem stack. This hidden information 

includes directory entries, inodes, superblocks, and everything else needed to implement a filesystem.  Since our 

goal is to enumerate all files and directories within this stacked filesystem, our recovery code must be aware of the  

complex relationships between hidden and non-hidden files and metadata.  



To hide directory entries, each aufs-controlled kernel dentry has its d_fsdata member point to an au_dinfo structure, 

which contains an array of au_hdentry structures. By accessing this array at the branch index of the file of interest, 

the hidden kernel dentry of the exposed dentry can be found.  Figure 3 illustrates this memory layout. 

 

Figure 3. Relationship between in-kernel and aufs directory entries. 

Similarly, inodes are hidden by embedding each kernel inode structure within an aufs_icntnr structure. This 

structure contains an array of au_hinode structures which can be accessed at the branch index to obtain the hidden 

inode.  Figure 4 illustrates this relationship. 

 

Figure 4. Relationship between in-kernel and aufs inodes. 

Note that is important to recover files from the proper branch, since files created and modified since boot are only 

contained in the writable branch, and that recovering the read-only branch would be a waste of time since  imaging 

of the booted CD or DVD would recover the same information.  We note that our project  supports only aufs 

configurations with two branches, since this is the  only configuration used by live CDs. 

3.5 Reconstruction Algorithm 

Our filesystem reconstruction algorithm works by parsing the kernel data structures necessary to recurse directories, 

enumerate files, and gather metadata (such as information normally available via the Unix stat command). The first 

step in this process is enumeration of each superblock until the one representing the aufs filesystem is found.  This 

enumeration occurs over the superblocks list that contains a struct super_block for each active filesystem.  Once the 

target superblock is found, its root directory, contained in the s_root structure member, can then be recursed. 

This recursive procedure starts by gathering each file in the current directory and then walking the d_subdirs 

member of the current dentry. The dentry member is a list of all subdirectories of the directory structure, and for 

each one found, the processing function is recursively called.  To gather relevant metadata information, the name of 

the current file being processed is copied from the d_name.name of the dentry structure and information, such as 

size, mode, inode number, and MAC times, are pulled from the dentry’s inode. A pointer to this inode is contained 

in d_inode member of the structure.  In order to obtain the correct inode information, the hidden inode 

corresponding to the pointer in d_inode must be analyzed.  Otherwise, inaccurate data from the exposed inode will 

be gathered, leading to inconsistent timelining and the inability to gather file contents as discussed next. 



To gather file contents, first the size of the file in question must be obtained from the hidden inode’s i_size member, 

and then each page of the file must be obtained from the page cache. The page cache contains a struct page for each 

active physical page in the system and an inode’s linkage into the page cache is contained within its address_space. 

page_tree member.  In order to gather all contents of a file, this tree must be queried per page, indexed by position 

in the file. The kernel uses this demand-paged method for  handling page requests since, for example, if someone 

requests a page 10MB into a file, only one  particular page needs to be accessed and not all the ones before it. This 

also means that our gathering algorithm iterate over entire files, querying each page and then gluing them together 

into a complete file. 

To properly duplicate the in-memory filesystem, the processing scripts, described later, make an effort to not only 

copy directories and files in the same tree structure as in memory, but they also work to preserve timestamps. Since 

timelining is a vital piece of most investigations and since timestamps must be verifiable in legal proceedings, it is 

imperative that this detail is not overlooked. To preserve timestamps, once a file is written, its timestamps are 

updated to match that of the in-memory filesystem. This occurs by copying the MAC times contained in the 

appropriate hidden inode into the on disk inode created by the scripts.  Assuming that output is directed at a 

mountpoint which can be set to read-only after processing is complete, these extra steps will ensure that all 

timestamps stay accurate. 

3.6   Recovering Deleted Filesystem Information 

Recovery of deleted files is often paramount to an investigation and during this research project an effort was made 

to recover as much deleted information as possible. The good news is that through careful kmem_cache analysis it is 

possible to recover deleted directories and filenames, including all the metadata contained in inodes about these 

files. Since both dentry and inode structures are contained within the kmem_cache, recovery of this information is 

straightforward as either can be used to link to the other. Furthermore, aufs creates its own kmem_cache caches, 

including ones for its structures that contain the hidden directory entries and inodes.  Though the first method, 

dealing directly with native kernel structures, was chosen, either choice would have led to the recovery of previously 

deleted file system structures and metadata. Complete details of the kmem_cache  and recovery of its contents are 

explained in a  previous publication [6]. 

Unfortunately, no orderly method for recovery of the data associated with deleted files was discovered, since pages 

are freed and removed from the page cache upon deallocation. This effectively removes any linkage between files 

and physical pages, making orderly recovery seemingly impossible. Of course this does not prevent examination of 

individual deallocated pages using traditional live forensics techniques. 

 

4   Memory Analysis of Tor 

In order to fully deconstruct the defensive systems of the TAILS distribution, we also chose to perform memory 

analysis of Tor. The combination of filesystem and Tor memory analysis attacks the two key components that 

TAILS and other live CD offer for anti-forensics.  While we currently have some interesting results, this is a work in 

progress. 

4.1   Initial Recovery of Data 

Due to the size and complexity of Tor, complete memory analysis of its data structures and functions would 

consume weeks of work. In order to motivate future work, this section will list the results of our initial analysis of 

Tor and discuss potential future targets of research. 

Before deep analysis of Tor was performed, the classic forensics technique of using strings and grep to find 

interesting information was performed on memory dumps of the Tor process to ensure that useful information is 

indeed not overwritten on deallocation. To test this we installed the privoxy proxy server, configured it to send 

requests through Tor, and then set the http_proxy environment variable to the address of the prixovy server. Once 

this was completed, we then used wget to recursively download information from a number of websites, all of which 

contained tens of web pages, downloads (doc, pdf, etc), and other information. To verify that this information was 

still in Tor’s memory after the requests were completed, we used Michal Zalewski’s memfetch [11] utility to 



download memory regions of the Tor process such as the heap, .data segment, and .bss segment. strings and grep 

were then run across the extracted memory regions and it was confirmed that information such as the HTTP headers, 

file and web pages contents, virtual hosts of requested pages, and more were contained in clear text in memory. 

 

4.2   Recovering the Chunks Freelist  

To support orderly collection of this data, Tor’s source code was analyzed to locate the data structures used to store 

sensitive information. After this analysis, two Python scripts were written to gather data from the targeted data 

structures. The first script targeted the freelists array that links all deallocated chunks of memory previously used by 

Tor. Each element of the freelists array is a chunk_freelist_t structure, which contains the size of the items allocated 

(alloc_size) and a pointer to the beginning of the chunks freelist (head).  Each chunk is represented by a chunk_t 

structure and can be enumerated by walking the next list embedded in the structure until a NULL pointer is found. 

The size of each data member is contained in the chunk’s datalen member and the data member provides the 

address of where the chunk’s data starts. Using these two members, all information from every free chunk can be 

gathered. For clarification, Figure 5 lists the important members of the associated structures. 

 
typedef struct chunk_freelist_t { 

 size_t alloc_size; // size of chunk 

 int cur_length;   // number on list 

   chunk_t *head; // first free chunk on list 

} 

typedef struct chunk_t { 

   struct chunk_t *next;  // pointer in list 

   size_t datalen; // # of used bytes in chunk 

   char *data; 

} chunk_t; 

 

           Figure 5. Tor Chunk Freelists Structure. 

 

4.3   Recovery of the Cell Pool 

The second Python script developed targeted the cell_pool memory pool of packed_cell_t structures. In Tor, every 

incoming and outgoing message is wrapped in a cell and, unless cleaned, the cell pool contains every cell used by 

Tor to perform communications. Enumeration of the cell pool gathers all of these cells, including their full content. 

In order to gather these cells, our script first had to locate the cell_pool address and then walk each of its 

empty_chunks, used_chunks, and full_chunks members. Note that these “chunks” are not the same as the previously 

discussed freelist chunks. Instead, the pool chunks are represented by a mp_chunk_t structure that embeds a doubly 

linked list of chunks (next and prev), contains a backpointer to the owning pool, the size of chunk’s data (mem_size), 

and the address of the dynamically allocated data (mem). Since the memory pool structures are agnostic to the type 

of data stored, the mem buffer stores whatever data is being tracked. In the instance of the cell pool, these are 

packed_cell_t structures which contain a next pointer to the next cell in the list and payload buffer that contains an 

incoming or outgoing message’s content. 

The pool walking script gathers cells by finding the address of cell_pool, and for each of chunk lists (empty, used, 

and full), it walks all contained mp_chunk_t structures and extracts data contained in the mem buffer, which is 

packed_cell_t structures. This effectively recovers every cell that hasn’t been trimmed by the system. Again, for 

reader clarity the structures with relevant members documented is illustrated in the following figure: 

 

 

 

 



struct mp_pool_t { 

 struct mp_chunk_t *empty_chunks; 

 struct mp_chunk_t *used_chunks; 

 struct mp_chunk_t *full_chunks; 

 size_t item_alloc_size; 

} 

struct mp_chunk_t { 

 unsigned long magic;  

 mp_chunk_t *next;  

 mp_chunk_t *prev;  

 mp_pool_t *pool;  

 size_t mem_size; 

 char mem[1]; /*< Storage for this chunk. */                                        

} 

 

typedef struct packed_cell_t { 

struct packed_cell_t *next; 

char body[CELL_NETWORK_SIZE];  

} packed_cell_t; 

 

Figure 6. Structures related to packed cell recovery. 

  

5   Implementation 

In this section the implementation of each of the developed analysis components is briefly discussed. 

5.1   Test System 

Our test system consisted of a VMware workstation installation that was set to boot from a disk image, either TAILS 

or Backtrack, depending on the testing being performed. Special consideration needed to be taken during this project 

due to the volatile state of live CDs and the potential to lose analysis scripts and other post-boot data in the case of 

system hang or reboot. To alleviate this issue, after all necessary development tools were installed during the initial 

live CD boot, a VMware snapshot of the system was taken. This allowed for immediate return to the state of the 

machine within the configured live CD environment.  The proper use of VMware and its snapshots facility saved 

countless hours of research time compared to rebooting the live CD and reinstalling packages each time the VM 

needed to restart. 

5.2   File System Recovery 

The initial implementation of the filesystem recovery modules, including both analysis of allocated and deallocated 

information, used loadable kernel modules. This approach was chosen as it allowed for rapid development, 

debugging, and experimentation with in-memory data. Once the algorithms for recovery of filesystem information 

were developed and tested, they were reimplemented as Volatility[17] plug-ins. Volatility is the most popular tool 

for forensic memory analysis and provides the plug-in developer with a feature-rich API that handles many of the 

low-level details necessary for physical memory processing.  Due to the popularity of Volatility within the forensics 

community and the fact that traditional forensics memory examinations focus on captured memory images, once the 

developed scripts are released publicly, they will be immediately useful to hundreds of investigators.  

5.3   Tor Analysis 

Currently, the Tor analysis scripts are written as standalone Python scripts that parse Tor specific structures from 

memory in order to recover data in an orderly manner. Targeted memory sections of the Tor process were acquired 

using  the memfetch [11] utility, which has the ability to copy arbitrary regions of a running process’s memory to 

disk.  We are now in the process of converting  these scripts to Volatility plugins. 



6   Conclusions 

Live CDs present a difficult problem for forensics investigators equipped with current tools.  Since live CDs 

completely avoid the local disk, they leave no evidence that traditional techniques and tools can discover.  In order 

to address this issue, this whitepaper has presented novel forensics techniques to recover the entire in-memory 

filesystem from a number of popular live CDs as well as the ubiquitous tmpfs Linux filesystem.  This paper also 

presented novel methods that allow for recovery of deleted filesystem information in an orderly manner, and 

discussed some of the downfalls in attempting to recovery previously deleted file contents. An initial Tor memory 

analysis effort was also described and we note that due to the amount and sensitivity of the information discovered, 

future work in this area  looks very promising.  Once the presented research is published and the developed plugins 

distributed with the Volatility project, investigators will have a powerful tool for performing live CD investigations. 

 

7   Future Work 

While we have presented a wealth of forensically interesting information, there are still avenues of related research 

left to be explored.  The first goal is testing of the developed filesystem plugins against a number of other aufs 

configurations, since the TAILs method is only one of many. As an example, an astute reader may have wondered 

why files changed since boot were not simply recovered by copying the TAILS /live/cow directory, which would 

have indeed worked, but would have been useless against Ubuntu and Backtrack as their aufs configurations do not 

expose the writable branch.  The second is the development of plugins that can handle other in-memory filesystems, 

such as unionfs [16], which is also used by popular live CD distributions.  

The previously described Tor research has led to a number of other avenues that will be explored in future research. 

The first is recovery of cells that have been dropped from the cell pool. This will require scanning of heap memory 

for the structures as Tor no longer has a reference to them. We believe this will be possible, however, since the 

magic member of mp_chunk_t is set to a hardcoded value, making it an ideal scanning signature. The second area of 

research will be recovery of cell encryption keys, which would allow for decryption of each cell’s payload data. 

Beyond the clear-text information already contained in Tor memory, this would reveal a wealth of previously sent 

and received network data. 
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