List of Transparencies

Chapter 1 Pointers, Arrays, and Structures 1

Pointer illustration 2

Result of*Ptr=10 3

Uninitialized pointer 4

(a) Initial state; (blPtr1=Ptr2 starting from initial state; (¢Ptrl=*Ptr2 starting from

initial state 5
Memory model for arrays (assumes 4 byte); declaration isnt A[3]; int i; 6
Some of the string routines #string.h> 7

Two ways to allocate arrays; one leaks mem@&y

Memory reclamation9

Array expansion: (a) starting poiit2 points at 10 integers; (b) after stepOtiginal
points at the 10 integers; (c) after steps 2 aW@ Rioints at 12 integers, the first 10
of which are copied fror@riginal ; (d) after step 4: the 10 integers are fregd

Pointer arithmeticX=&A[3]; Y=X+4 11

First eight lines fronprof for program 12

First eight lines fronprof with highest optimization12

Student structure 13

lllustration of a shallow copy in which only pointers are copigd

lllustration of a simple linked list15

Chapter 2 Objects and Classes 16

A complete declaration ofemoryCell class 17

MemoryCell membersRead andWrite are accessible, b68toredValue is hidden
18

A simple test routine to show havlemoryCell objects are accessetl9

A more typicalMemoryCell declaration in which interface and implementation are sepa-
rated 20

Interface forBitArray class 21

Copyrighll 1996 by Addison-Wesley Publishing Company ii

BitArray = member 22
Construction exampl 23

Chapter 3 Templates 24

Basic action of insertion sort (shaded part is sc 29)

Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where
new element was place 26

Typical layout for template interface and member func 27%

Chapter 4 Inheritance 28

General layout of public inheritar 29

Access rules that depend on wM ’s visibility is in the base cla 30

Friendship is not inherite 31

Vector andBoundedVector classes with calls toperator]] that are done automatically
and correctl 32

Vector andBoundedVector classe 33

The hierarchy of shapes used in an inheritance ex. 34le

Summary of nonvirtual, virtual, and pure virtual functi 35

Programmer responsibilities for derived ¢ 36

Chapter 5 Algorithm Analysis 37

Running times for small inp. 38

Running time for moderate inpr 39

Functions in order of increasing growth | 40

The subsequences used in Theorer 412

The subsequences used in Theorem 5.3. The sequencp to g has sum at most that of the sub-
sequence frori to g. On the left, the sequence frd to q is itself not the maximum (by
Theorem 5.2). On the right, the sequence fi to q has already been se 42

Meanings of the various growth functic 44

Observed running times (in seconds) for various maximum contiguous subsequence sum algo-
rithms 45

Empirical running time foN binary searches in iN-item arra: 46

Chapter 6 Data Structures 47
Sample stack program; output is
Contents: 43210 48

Stack model: input to a stack is Push, output is byTop, deletion is byPop 49
Sample queue program; output is

Contents:01 234 50
Queue model: input is kEnqueue , output is byFront , deletion is byDequeue 51
Sample list program; output Contents: 4 32 1 0 end 52

Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-

Copyrighl 1996 by Addison-Wesley Publishing Company iii

ed, but this data structure is not time-effic 53
A simple linked lis 54

Atree 55
Expression tree fc(a+b)*(c-d) 56
Sample search tree program;
output isFound Becky; Mark not found; 57

Binary search tree model; the binary search is extended to allow insertions and ¢ 58&ions
Sample hash table program;

output isFound Becky; Mark not found; 59
The hash table model: any named item can be accessed or deleted in essentially cor 6Mnt time
Sample program for priority queues;

output isContents: 012 3 4 61
Priority queue model: only the minimum element is acces 62e
Summary of some data structt 63

Chapter 7 Recursion 64

Stack of activation recor 65

Trace of the recursive calculation of the Fibonacci nun 66s

Divide-and-conquer algorithr 67

Dividing the maximum contiguous subsequence problem intot 6&s

Trace of recursive calls for recursive maximum contiguous subsequence sum a 69thm
Basic divide-and-conquer running time thea 70

General divide-and-conquer running time thec 71

Some of the subproblems that are solved recursively in Figur 7215

Alternative recursive algorithm for coin-changing prokt 73

Chapter 8 Sorting Algorithms 74

Examples of sortir 75

Deriving the relational and equality operators floperator< 76

Shellsort after each pass, if increment sequence is {1 77}

Running time (milliseconds) of the insertion sort and Shellsort with various increment se Jences
78

Linear-time merging of sorted arrays (first four st 79

Linear-time merging of sorted arrays (last four st 80)

Basic quicksort algorith 81

The steps of quicksc 82

Correctness of quickst 83

Partitioning algorithm: pivot element 6 is placed at the 84

Partitioning algorithmi stops at large elementj stops at small elemen 84

Partitioning algorithm: out-of-order elements 8 and 2 are swi 84d

Partitioning algorithm:i stops at large element;j stops at small elemen 84

Partitioning algorithm: out-of-order elements 9 and 5 are swi 84d

Partitioning algorithmi stops at large elementj stops at small elemen 84

Partitioning algorithm: swap pivot and element in posii 84

Copyrighll 1996 by Addison-Wesley Publishing Company iv

Original arrar 85

Result of sorting three elements (first, middle, and 85)
Result of swapping the pivot with next to last eler 8%
Median-of-three partitioning optimizatic 86
Quickselect algorithi 87

Using an array of pointers to < 88

Data structure used for in-place rearrange 89t

Chapter 9 Randomization 90

Distribution of lottery winners if expected number of winners 92
Poisson distributic 92

Chapter 10 Fun and Games 93

Sample word search g 94

Brute-force algorithm for word search pu: 95

Alternate algorithm for word search puz 96

Improved algorithm for word search puzzle; incorporates a pref 97st

Basic minimax algorithi 98

Alpha-beta pruning: After 2A is evaluated, 2, which is the minimum of the?2's, is at best a
draw. Consequently, it cannot be an improvement o1. We therefore do not need to
evaluate 2B, H2C, and 2D, and can proceed directly t3 99

Two searches that arrive at identical posit 100

Chapter 11 Stacks and Compilers 101

Stack operations in balanced symbol algor 102
Steps in evaluation of a postfix expres: 103
Associativity rule 104

Various cases in operator precedence pe 105
Infix to postfix conversio 106

Expression tree fc(a+b)*(c-d) 107

Chapter 12 Utilites 108

A standard coding schel 109

Representation of the original code by a 110

A slightly better tre 111

Optimal prefix code tre 112

Optimal prefix cod 113

Huffman’s algorithm after each of first three melr 114

Huffman’s algorithm after each of last three me 115

Encoding table (numbers on left are array ind 116

IdNode data memberWord is aString ; Lines is a pointer to Queue 117

The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is

Copyrighl 1996 by Addison-Wesley Publishing Company %

called for the tempora 118

Chapter 13 Simulation 119

The Josephus proble 120

Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; av-
erage connect time is 5 minutes; simulation is run for 19 mi 12%

Steps in the simulatic 122

Priority queue for modem bank after each 123

Chapter 14 Graphs and Paths 124

A directed grap 125

Adjacency list representation of graph in Figure 14.1; nodes i represent vertices adjacent to
I and the cost of the connecting e 126

Information maintained by the Graph te 127

Data structures used in a shortest path calculation, with input graph taken from a file: shortest
weighted path fronAtoCis:AtoBtoEtoDtoC (cost 76 128

Graph after marking the start node as reachable in zero 122s

Graph after finding all vertices whose path length from the sta 13Q

Graph after finding all vertices whose shortest path from the ste 1312

Final shortest patl 132

How the graph is searched in unweighted shortest path comp 133n

Eyeball is av; w is adjacentDw should be lowered tc 134

If Dv is minimal among all unseen vertices and all edge costs are nonnegative, then it represents
the shortest pa 135

Stages of Dijkstra’s algorith 136

Graph with negative cost cyt 137

Topological soi 138

Stages of acyclic graph algoritl 139

Activity-node grap 140

Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-
tional edge iten 141

Chapter 15 Stacks and Queues 142

How the stack routines work: empty staPush(A) , Push(B) , Pop 143
Basic array implementation of the qu 144

Array implementation of the queue with wraparc 145

Linked list implementation of the ste 146

Linked list implementation of the que 147

Enqueue operation for linked-list-based implementa 148

Chapter 16 Linked Lists 149
Basic linked lis 150

Copyrighll 1996 by Addison-Wesley Publishing Company Vi

Insertion into a linked list: create new noTmrg), copy inX, setTmg’s next pointer, seCur-
rent 's next pointe 151

Deletion from a linked li¢ 152

Using a header node for the linked 153

Empty list when header node isu 154

Doubly linked lis 155

Empty doubly linked lic 156

Insertion into a doubly linked list by getting new node and then changing pointers in order indicat-
ec 157

Circular doubly linked lis 158

Chapter 17 Trees 159

Atree 160

Tree viewed recursive 161

First child/next sibling representation of tree in Figure 162

UNIX directory 163

The directory listing for tree in Figure 1 164

UNIX directory with file size 165

Trace of theSize functior 166

Uses of binary trees: left is an expression tree and right is a Huffman cod 167e
Result of a naivMerge operatiol 168

Aliasing problems in thMerge operationT1 is also the current obje 169
Recursive view used to calculate the size ofaST=SL+SR+1 170
Recursive view of node height calculatiHT = Max(HL+1,HR+1) 171
Preorder, postorder, and inorder visitation rc 172

Stack states during postorder trave 173

Chapter 18 Binary Search Trees 174

Two binary trees (only the left tree is a search 175

Binary search trees before and after insert 176

Deletion of node 5 with one child, before and ¢ 177

Deletion of node 2 with two children, before and ¢ 178

Using theSize data member to implemeFindKth 179

Balanced tree on the left has a depth oiN; unbalanced tree on the right has a depN-1 180

Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the
middle is twice as likely as any otl 181

Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are
darkenec 182

Minimum tree of heighH 183

Single rotation to fix case 184

Single rotation fixes AVL tree after insertion ¢ 185

Symmetric single rotation to fix cas 186

Single rotation does not fix cas 187

Left-right double rotation to fix case 188

Copyrighl 1996 by Addison-Wesley Publishing Company vii

Double rotation fixes AVL tree after insertion ¢ 189

Left-right double rotation to fix case 190

Red black tree properti 191

Example of a red black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5,
55) 192

If Sis black, then a single rotation between the parent and grandparent, with appropriate color
changes, restores property X is an outside grandch 193

If Sis black, then a double rotation involviX, the parent, and the grandparent, with appropriate
color changes, restores property X is an inside grandchi 194

If Sis red, then a single rotation between the parent and grandparent, with appropriate color chang-
es, restores property 3 betweX andP 195

Color flip; only if X's parent is red do we continue with a rota 196

Color flip at 50 induces a violation; because it is outside, a single rotation 197it

Result of single rotation that fixes violation at nod 198

Insertion of 45 as a red nc 199

Deletion:X has two black children, and both of its sibling’s children are black; do a co 20(

Deletion:X has two black children, and the outer child of its sibling is red; do a single r 20Dbn

Deletion:X has two black children, and the inner child of its sibling is red; do a double r 202n

X'is black and at least one child is red; if we fall through to next level and land on a red child, ev-
erything is good; if not, we rotate a sibling and p: 203

AA-tree propertie 204

AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40,5 2035

Skew is a simple rotation betweX andP 206

Split is a simple rotation betweiX andR; note thaR'’s level increase 207

After inserting 45 into sample tree; consecutive horizontal links are introduced startir 20835

After Split at 35; introduces a left horizontal link ai 208

After Skew at 50; introduces consecutive horizontal nodes starting 208

After Split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizor al link
209

After Skew at 70; this introduces consecutive horizontal links . 209

After Split at 30; insertion is comple 209

When 1 is deleted, all nodes become level 1, introducing horizontal lee 210s

Five-ary tree of 31 nodes has only three le 211

B-tree of order 212

B-tree propertie 213

B-tree after insertion of 57 into tree in Figure 1t 214

Insertion of 55 in B-tree in Figure 18.71 causes a splitinto two | 215

Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent
node 216

B-tree after deletion of 99 from Figure 1€ 217

Chapter 19 Hash Tables 218

Linear probing hash table after each inse 219
Quadratic probing hash table after each insertion (note that the table size is poorly chosen because
it is not a prime numbe 220

Copyrighll 1996 by Addison-Wesley Publishing Company viii

Chapter 20 A Priority Queue: The Binary Heap 221

A complete binary tree and its array represent 222

Heap order proper 223

Two complete trees (only the lefttreeisa h 224

Attempt to insert 14, creating the hole and bubbling the hc 225

The remaining two steps to insert 14 in previous 226

Creation of the hole at the rc 227

Next two steps iDeleteMin 228

Last two steps iDeleteMin 229

Recursive view of the he 230

Initial heap (left); aftePercolateDown(7) (right) 231

After PercolateDown(6) (left); afterPercolateDown(5) (right) 231

After PercolateDown(4) (left); afterPercolateDown(3) (right) 232

After PercolateDown(2) (left); afterPercolateDown(1l) andFixHeap terminates (righ
232

Marking of left edges for height one no 233

Marking of first left and subsequent right edge for height two r 233

Marking of first left and subsequent two right edges for height three 234s

Marking of first left and subsequent right edges for height 4 234

(Max) Heap afteFixHeap phas 235

Heapsort algorithi 236

Heap after firsDeleteMax 237

Heap after secorDeleteMax 237

Initial tape configuratio 238

Distribution of length 3 runs onto two ta; 239

Tapes after first round of merging (run length 239

Tapes after second round of merging (run length - 239

Tapes after third round of merg 239

Initial distribution of length 3 runs onto three ta 240

After one round of three-way merging (run length 240

After two rounds of three-way mergi 240

Number of runs using polyphase me 241

Example of run constructic 242

Chapter 21 Splay Trees 243

Rotate-to-root strategy applied when node 3 is acc 244

Insertion of 4 using rotate-to-r¢ 245

Sequential access of items takes quadratic 246

Zig case (normal single rotatic 247

Zig-zag case (same as a double rotation); symmetric case « 247%d

Zig-zig case (this is unique to the splay tree); symmetric case o 241

Result of splaying at node 1 (three zig-zigs and ¢ 248

The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a
FindMax on the left subtree is performed, raising 5 to the root of the left subtree; then the
right subtree can be attached (not shc 249

Copyrighl 1996 by Addison-Wesley Publishing Company ¢

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bo 250
Simplified top-down zig-ze 251

Final arrangement for top-down splay 252

Steps in top-down splay (accessing 19 intop 253

Chapter 22 Merging Priority Queues 254

Simplistic merging of heap-ordered trees; right paths are m 254

Merging of skew heap; right paths are merged, and the result is made a 25@th

Skew heap algorithm (recursive viewpo 257

Change in heavy/light status after a m: 258

Abstract representation of sample pairing | 259

Actual representation of above pairing heap; dark line represents a pair of pointers that connect
nodes in both directio 259

Recombination of siblings afteiDeleteMin ; in each merge the larger root tree is made the left
child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
merge of the second pass; (d) after the second merge of the sect 260ass

CompareAndLink merges two tret 261

Chapter 23 The Disjoint Set Class 262

Definition of equivalence relatic 263

A graphG (left) and its minimum spanning ti 264

Kruskal's algorithm after each edge is consid 265

The nearest common ancestor for each request in the pair sewx,y), (U,2), (W,X), (z,w), (W,y),
isA, C, A, B, andy, respectivel 266

The sets immediately prior to the return from the recursive cD); D is marked as visited and
NCA(D, v) isv’s anchor to the current pi 267

After the recursive call frorD returns, we merge the set anchoreD into the set anchored by
C and then compute éeNCA(C, v) for nodesv that are marked prior to completiC’s re-
cursive ca 268

Forest and its eight elements, initially in different 269

Forest afteUnion of trees with roots 4 anc 269

Forest afteUnion of trees with roots 6 anc 270

Forest afteUnion of trees with roots 4 anc 270

Forest formed by union-by-size, with size encoded as a negative r 271er

Worst-case tree f(N=1€ 272

Forest formed by union-by-height, with height encoded as a negative r 273er

Path compression resulting fronFind (14) on the tree in Figure 23. 274

Ackerman’s function and its inver 275

Accounting used in union-find prc 276

Actual partitioning of ranks into groups used in the union-find | 277

