
List of Transparencies

Chapter 1 Pointers, Arrays, and Structures 1

Pointer illustration 2
Result of *Ptr=10 3
Uninitialized pointer 4
(a) Initial state; (b) Ptr1=Ptr2 starting from initial state; (c) *Ptr1=*Ptr2 starting from

initial state 5
Memory model for arrays (assumes 4 byte int); declaration is int A[3]; int i; 6
Some of the string routines in <string.h> 7
Two ways to allocate arrays; one leaks memory 8
Memory reclamation 9
Array expansion: (a) starting point: A2 points at 10 integers; (b) after step 1: Original

points at the 10 integers; (c) after steps 2 and 3: A2 points at 12 integers, the first 10
of which are copied from Original ; (d) after step 4: the 10 integers are freed 10

Pointer arithmetic: X=&A[3]; Y=X+4 11
First eight lines from prof for program 12
First eight lines from prof with highest optimization 12
Student structure 13
Illustration of a shallow copy in which only pointers are copied 14
Illustration of a simple linked list 15

Chapter 2 Objects and Classes 16

A complete declaration of a MemoryCell class 17
MemoryCell members: Read and Write are accessible, but StoredValue is hidden

18
A simple test routine to show how MemoryCell objects are accessed 19
A more typical MemoryCell declaration in which interface and implementation are sepa-

rated 20
Interface for BitArray class 21

Copyright 1996 by Addison-Wesley Publishing Company ii

BitArray members 22
Construction examples 23

Chapter 3 Templates 24

Basic action of insertion sort (shaded part is sorted) 25
Closer look at action of insertion sort (dark shading indicates sorted area; light shading is where

new element was placed) 26
Typical layout for template interface and member functions 27

Chapter 4 Inheritance 28

General layout of public inheritance 29
Access rules that depend on what M ’s visibility is in the base class 30
Friendship is not inherited 31
Vector and BoundedVector classes with calls to operator[] that are done automatically

and correctly 32
Vector and BoundedVector classes 33
The hierarchy of shapes used in an inheritance example 34
Summary of nonvirtual, virtual, and pure virtual functions 35
Programmer responsibilities for derived class 36

Chapter 5 Algorithm Analysis 37

Running times for small inputs 38
Running time for moderate inputs 39
Functions in order of increasing growth rate 40
The subsequences used in Theorem 5.2 41
The subsequences used in Theorem 5.3. The sequence from p to q has sum at most that of the sub-

sequence from i to q. On the left, the sequence from i to q is itself not the maximum (by
Theorem 5.2). On the right, the sequence from i to q has already been seen. 42

Meanings of the various growth functions 44
Observed running times (in seconds) for various maximum contiguous subsequence sum algo-

rithms 45
Empirical running time for N binary searches in an N-item array 46

Chapter 6 Data Structures 47

Sample stack program; output is
Contents: 4 3 2 1 0 48

Stack model: input to a stack is by Push , output is by Top, deletion is by Pop 49
Sample queue program; output is

Contents:0 1 2 3 4 50
Queue model: input is by Enqueue , output is by Front , deletion is by Dequeue 51
Sample list program; output is Contents: 4 3 2 1 0 end 52
Link list model: inputs are arbitrary and ordered, any item may be output, and iteration is support-

Copyright 1996 by Addison-Wesley Publishing Company iii

ed, but this data structure is not time-efficient 53
A simple linked list 54
A tree 55
Expression tree for (a+b)*(c-d) 56
Sample search tree program;

output is Found Becky; Mark not found; 57
Binary search tree model; the binary search is extended to allow insertions and deletions 58
Sample hash table program;

output is Found Becky; Mark not found; 59
The hash table model: any named item can be accessed or deleted in essentially constant time 60
Sample program for priority queues;

output is Contents: 0 1 2 3 4 61
Priority queue model: only the minimum element is accessible 62
Summary of some data structures 63

Chapter 7 Recursion 64

Stack of activation records 65
Trace of the recursive calculation of the Fibonacci numbers 66
Divide-and-conquer algorithms 67
Dividing the maximum contiguous subsequence problem into halves 68
Trace of recursive calls for recursive maximum contiguous subsequence sum algorithm 69
Basic divide-and-conquer running time theorem 70
General divide-and-conquer running time theorem 71
Some of the subproblems that are solved recursively in Figure 7.15 72
Alternative recursive algorithm for coin-changing problem 73

Chapter 8 Sorting Algorithms 74

Examples of sorting 75
Deriving the relational and equality operators from operator< 76
Shellsort after each pass, if increment sequence is {1, 3, 5} 77
Running time (milliseconds) of the insertion sort and Shellsort with various increment sequences

78
Linear-time merging of sorted arrays (first four steps) 79
Linear-time merging of sorted arrays (last four steps) 80
Basic quicksort algorithm 81
The steps of quicksort 82
Correctness of quicksort 83
Partitioning algorithm: pivot element 6 is placed at the end 84
Partitioning algorithm: i stops at large element 8; j stops at small element 2 84
Partitioning algorithm: out-of-order elements 8 and 2 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element 5 84
Partitioning algorithm: out-of-order elements 9 and 5 are swapped 84
Partitioning algorithm: i stops at large element 9; j stops at small element 3 84
Partitioning algorithm: swap pivot and element in position i 84

Copyright 1996 by Addison-Wesley Publishing Company iv

Original array 85
Result of sorting three elements (first, middle, and last) 85
Result of swapping the pivot with next to last element 85
Median-of-three partitioning optimizations 86
Quickselect algorithm 87
Using an array of pointers to sort 88
Data structure used for in-place rearrangement 89

Chapter 9 Randomization 90

Distribution of lottery winners if expected number of winners is 2 91
Poisson distribution 92

Chapter 10 Fun and Games 93

Sample word search grid 94
Brute-force algorithm for word search puzzle 95
Alternate algorithm for word search puzzle 96
Improved algorithm for word search puzzle; incorporates a prefix test 97
Basic minimax algorithm 98
Alpha-beta pruning: After H2A is evaluated, C2, which is the minimum of the H2’s, is at best a

draw. Consequently, it cannot be an improvement over C1. We therefore do not need to
evaluate H2B, H2C, and H2D, and can proceed directly to C3 99

Two searches that arrive at identical positions 100

Chapter 11 Stacks and Compilers 101

Stack operations in balanced symbol algorithm 102
Steps in evaluation of a postfix expression 103
Associativity rules 104
Various cases in operator precedence parsing 105
Infix to postfix conversion 106
Expression tree for (a+b)*(c-d) 107

Chapter 12 Utilities 108

A standard coding scheme 109
Representation of the original code by a tree 110
A slightly better tree 111
Optimal prefix code tree 112
Optimal prefix code 113
Huffman’s algorithm after each of first three merges 114
Huffman’s algorithm after each of last three merges 115
Encoding table (numbers on left are array indices) 116
IdNode data members: Word is a String ; Lines is a pointer to a Queue 117
The object in the tree is a copy of the temporary; after the insertion is complete, the destructor is

Copyright 1996 by Addison-Wesley Publishing Company v

called for the temporary 118

Chapter 13 Simulation 119

The Josephus problem 120
Sample output for the modem bank simulation: 3 modems; a dial in is attempted every minute; av-

erage connect time is 5 minutes; simulation is run for 19 minutes 121
Steps in the simulation 122
Priority queue for modem bank after each step 123

Chapter 14 Graphs and Paths 124

A directed graph 125
Adjacency list representation of graph in Figure 14.1; nodes in list i represent vertices adjacent to

i and the cost of the connecting edge 126
Information maintained by the Graph table 127
Data structures used in a shortest path calculation, with input graph taken from a file: shortest

weighted path from A to C is: A to B to E to D to C (cost 76) 128
Graph after marking the start node as reachable in zero edges 129
Graph after finding all vertices whose path length from the start is 1 130
Graph after finding all vertices whose shortest path from the start is 2 131
Final shortest paths 132
How the graph is searched in unweighted shortest path computation 133
Eyeball is at v; w is adjacent; Dw should be lowered to 6 134
If Dv is minimal among all unseen vertices and all edge costs are nonnegative, then it represents

the shortest path 135
Stages of Dijkstra’s algorithm 136
Graph with negative cost cycle 137
Topological sort 138
Stages of acyclic graph algorithm 139
Activity-node graph 140
Top: Event node grap; Bottom: Earliest completion time, latest completion time, and slack (addi-

tional edge item) 141

Chapter 15 Stacks and Queues 142

How the stack routines work: empty stack, Push(A) , Push(B) , Pop 143
Basic array implementation of the queue 144
Array implementation of the queue with wraparound 145
Linked list implementation of the stack 146
Linked list implementation of the queue 147
Enqueue operation for linked-list-based implementation 148

Chapter 16 Linked Lists 149

Basic linked list 150

Copyright 1996 by Addison-Wesley Publishing Company vi

Insertion into a linked list: create new node (Tmp), copy in X, set Tmp’s next pointer, set Cur-
rent ’s next pointer 151

Deletion from a linked list 152
Using a header node for the linked list 153
Empty list when header node is used 154
Doubly linked list 155
Empty doubly linked list 156
Insertion into a doubly linked list by getting new node and then changing pointers in order indicat-

ed 157
Circular doubly linked list 158

Chapter 17 Trees 159

A tree 160
Tree viewed recursively 161
First child/next sibling representation of tree in Figure 17.1 162
UNIX directory 163
The directory listing for tree in Figure 17.4 164
UNIX directory with file sizes 165
Trace of the Size function 166
Uses of binary trees: left is an expression tree and right is a Huffman coding tree 167
Result of a naive Merge operation 168
Aliasing problems in the Merge operation; T1 is also the current object 169
Recursive view used to calculate the size of a tree: ST = SL + SR + 1 170
Recursive view of node height calculation: HT = Max(HL+1, HR +1) 171
Preorder, postorder, and inorder visitation routes 172
Stack states during postorder traversal 173

Chapter 18 Binary Search Trees 174

Two binary trees (only the left tree is a search tree) 175
Binary search trees before and after inserting 6 176
Deletion of node 5 with one child, before and after 177
Deletion of node 2 with two children, before and after 178
Using the Size data member to implement FindKth 179
Balanced tree on the left has a depth of log N; unbalanced tree on the right has a depth of N–1 180
Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree in the

middle is twice as likely as any other 181
Two binary search trees: the left tree is an AVL tree, but the right tree is not (unbalanced nodes are

darkened) 182
Minimum tree of height H 183
Single rotation to fix case 1 184
Single rotation fixes AVL tree after insertion of 1 185
Symmetric single rotation to fix case 4 186
Single rotation does not fix case 2 187
Left-right double rotation to fix case 2 188

Copyright 1996 by Addison-Wesley Publishing Company vii

Double rotation fixes AVL tree after insertion of 5 189
Left-right double rotation to fix case 3 190
Red black tree properties 191
Example of a red black tree; insertion sequence is 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5,

55) 192
If S is black, then a single rotation between the parent and grandparent, with appropriate color

changes, restores property 3 if X is an outside grandchild 193
If S is black, then a double rotation involving X, the parent, and the grandparent, with appropriate

color changes, restores property 3 if X is an inside grandchild 194
If S is red, then a single rotation between the parent and grandparent, with appropriate color chang-

es, restores property 3 between X and P 195
Color flip; only if X’s parent is red do we continue with a rotation 196
Color flip at 50 induces a violation; because it is outside, a single rotation fixes it 197
Result of single rotation that fixes violation at node 50 198
Insertion of 45 as a red node 199
Deletion: X has two black children, and both of its sibling’s children are black; do a color flip 200
Deletion: X has two black children, and the outer child of its sibling is red; do a single rotation 201
Deletion: X has two black children, and the inner child of its sibling is red; do a double rotation 202
X is black and at least one child is red; if we fall through to next level and land on a red child, ev-

erything is good; if not, we rotate a sibling and parent 203
AA-tree properties 204
AA-tree resulting from insertion of 10, 85, 15, 70, 20, 60, 30, 50, 65, 80, 90, 40, 5, 55, 35 205
Skew is a simple rotation between X and P 206
Split is a simple rotation between X and R; note that R’s level increases 207
After inserting 45 into sample tree; consecutive horizontal links are introduced starting at 35 208
After Split at 35; introduces a left horizontal link at 50 208
After Skew at 50; introduces consecutive horizontal nodes starting at 40 208
After Split at 40; 50 is now on the same level as 70, thus inducing an illegal left horizontal link

209
After Skew at 70; this introduces consecutive horizontal links at 30 209
After Split at 30; insertion is complete 209
When 1 is deleted, all nodes become level 1, introducing horizontal left links 210
Five-ary tree of 31 nodes has only three levels 211
B-tree of order 5 212
B-tree properties 213
B-tree after insertion of 57 into tree in Figure 18.70 214
Insertion of 55 in B-tree in Figure 18.71 causes a split into two leaves 215
Insertion of 40 in B-tree in Figure 18.72 causes a split into two leaves and then a split of the parent

node 216
B-tree after deletion of 99 from Figure 18.73 217

Chapter 19 Hash Tables 218

Linear probing hash table after each insertion 219
Quadratic probing hash table after each insertion (note that the table size is poorly chosen because

it is not a prime number) 220

Copyright 1996 by Addison-Wesley Publishing Company viii

Chapter 20 A Priority Queue: The Binary Heap 221

A complete binary tree and its array representation 222
Heap order property 223
Two complete trees (only the left tree is a heap) 224
Attempt to insert 14, creating the hole and bubbling the hole up 225
The remaining two steps to insert 14 in previous heap 226
Creation of the hole at the root 227
Next two steps in DeleteMin 228
Last two steps in DeleteMin 229
Recursive view of the heap 230
Initial heap (left); after PercolateDown(7) (right) 231
After PercolateDown(6) (left); after PercolateDown(5) (right) 231
After PercolateDown(4) (left); after PercolateDown(3) (right) 232
After PercolateDown(2) (left); after PercolateDown(1) and FixHeap terminates (right)

232
Marking of left edges for height one nodes 233
Marking of first left and subsequent right edge for height two nodes 233
Marking of first left and subsequent two right edges for height three nodes 234
Marking of first left and subsequent right edges for height 4 node 234
(Max) Heap after FixHeap phase 235
Heapsort algorithm 236
Heap after first DeleteMax 237
Heap after second DeleteMax 237
Initial tape configuration 238
Distribution of length 3 runs onto two tapes 239
Tapes after first round of merging (run length = 6) 239
Tapes after second round of merging (run length = 12) 239
Tapes after third round of merging 239
Initial distribution of length 3 runs onto three tapes 240
After one round of three-way merging (run length = 9) 240
After two rounds of three-way merging 240
Number of runs using polyphase merge 241
Example of run construction 242

Chapter 21 Splay Trees 243

Rotate-to-root strategy applied when node 3 is accessed 244
Insertion of 4 using rotate-to-root 245
Sequential access of items takes quadratic time 246
Zig case (normal single rotation) 247
Zig-zag case (same as a double rotation); symmetric case omitted 247
Zig-zig case (this is unique to the splay tree); symmetric case omitted 247
Result of splaying at node 1 (three zig-zigs and a zig) 248
The Remove operation applied to node 6: First 6 is splayed to the root, leaving two subtrees; a

FindMax on the left subtree is performed, raising 5 to the root of the left subtree; then the
right subtree can be attached (not shown) 249

Copyright 1996 by Addison-Wesley Publishing Company ix

Top-down splay rotations: zig (top), zig-zig (middle), and zig-zag (bottom) 250
Simplified top-down zig-zag 251
Final arrangement for top-down splaying 252
Steps in top-down splay (accessing 19 in top tree) 253

Chapter 22 Merging Priority Queues 254

Simplistic merging of heap-ordered trees; right paths are merged 255
Merging of skew heap; right paths are merged, and the result is made a left path 256
Skew heap algorithm (recursive viewpoint) 257
Change in heavy/light status after a merge 258
Abstract representation of sample pairing heap 259
Actual representation of above pairing heap; dark line represents a pair of pointers that connect

nodes in both directions 259
Recombination of siblings after a DeleteMin ; in each merge the larger root tree is made the left

child of the smaller root tree: (a) the resulting trees; (b) after the first pass; (c) after the first
merge of the second pass; (d) after the second merge of the second pass 260

CompareAndLink merges two trees 261

Chapter 23 The Disjoint Set Class 262

Definition of equivalence relation 263
A graph G (left) and its minimum spanning tree 264
Kruskal’s algorithm after each edge is considered 265
The nearest common ancestor for each request in the pair sequence (x,y), (u,z), (w,x), (z,w), (w,y),

is A, C, A, B, and y, respectively 266
The sets immediately prior to the return from the recursive call to D ; D is marked as visited and

NCA(D, v) is v ’s anchor to the current path 267
After the recursive call from D returns, we merge the set anchored by D into the set anchored by

C and then compute all NCA(C, v) for nodes v that are marked prior to completing C’s re-
cursive call 268

Forest and its eight elements, initially in different sets 269
Forest after Union of trees with roots 4 and 5 269
Forest after Union of trees with roots 6 and 7 270
Forest after Union of trees with roots 4 and 6 270
Forest formed by union-by-size, with size encoded as a negative number 271
Worst-case tree for N=16 272
Forest formed by union-by-height, with height encoded as a negative number 273
Path compression resulting from a Find (14) on the tree in Figure 23.12 274
Ackerman’s function and its inverse 275
Accounting used in union-find proof 276
Actual partitioning of ranks into groups used in the union-find proof 277

