Active Exploit Detection

Marc Eisenbarth
HP TippingPoint

January 7, 2011

1 Introduction

Security professionals have a massive number of acronyms at their disposal:
IPS, VA, VM, STEM, NBAD, and more. This talk is about a tool that resists
classification by these acronyms. The goal of Active Exploitation Detection
(AED) is to actively monitor and identify compromise of arbitrary, remote
systems with the express intent to discover novel exploitation methods, track
down elusive zero-day details, compile a list of known-compromised hosts,
and most importantly get into the mind of today’s cyber criminals. Simplis-
tically, AED correlates changes visible to the remote monitoring system with
external stimuli such as software patch schedules and security media sources
in order to gain unique insight into the security threat landscape on an In-
ternet scale. AED is a framework which is driven by arbitrary pluggable
modules that must provide four high level implementations, namely port
scanning, application identification via static and dynamic methods, and a
data mining engine. The primary goal of this talk is to both present findings
that trend the threat landscape of the Internet as a whole, and the tool it-
self, which is a means to introduce the audience to a number of best-of-breed
open-source tools which have been integrated into this project.

2 Active Exploit Detection

The motivation for this project lies in the desire to increase the number of
Internet systems under surveillance. Unlike many organizations, we do in
fact have a large network of sensors that are monitoring the Internet both



in an inline capacity as well as through network span ports. While this is
useful in its own right and currently scaled out to the degree which allows
the results to be considered statistically viable, the chief limitation of this
approach is that only traffic which crosses this sphere of inspection can be
considered for analysis. Born out of this realization was the concept of an
active monitoring system which could reach out and query an arbitrary host
and could scale to the point that it could track the Internet as a whole. As
a result of additional analysis on the threat landscape and prioritizing the
goals of this project, we decided to focus on web applications and the lifecycle
of exploit in this remarkably unique ecosystem.

2.1 Background and Previous Work

The first major requirement was a method to rapidly identify all the Internet
hosts which are serving web applications of interest. The important thing
here is speed, accuracy and the ability to integrate the results into an analysis
engine. This requirement was split into two tasks, the first being a basic check
to see if a web server is answering on a set of well-known HTTP ports and the
second was to identify any common web applications that might be running
on said host using a web application fingerprinting module. The goal here
is to build a profile for each host which allows further filtering of the data
to include only hosts which are running web applications that we wish to
remotely monitor for exploitation. In other words, we need a way to limit
the scope of the Internet to include web applications which are known at
a given point in time to be vulnerable and as a result increase the odds of
not only remotely detecting compromise but also gaining insight into what
specifically happens to a machine post-compromise and how this informs the
security threat landscape.

While still in the initial phases of development, we became overwhelmed
with this looming sense of the massive amount of data storage that would
be required to carry out this ambitious task. In order to accommodate this
amount of data we found that a traditional relational database approach was
inappropriate, due to the mixture of structured and unstructured data that
did not easily lend itself to normalization, namely the web content itself, as
well as the fact that the processing of this data did not realize the performance
gains traditionally associated with indexing due to the commonality of table
scans in the post-processing analysis routines. At this point we were also
looking into a more robust analysis framework and discovered a striking



resemblance between what we were trying to do with AED and a number of
very elegant solutions which had been worked out in meticulous detail for the
problem of search engine design. The primary difference was that we must
maintain more state in order to track changes and must do full text analysis
on these changes in order to identify malicious modifications. However the
benefits far outweighed the amount of customization we would have to do in
order to accomplish the various tasks required by AED.

In the sections below, we will go into more detail on various open-source
projects that we used to meet the requirements outlined above.

2.2 Port Scanning

When it came time to choose a network scanner, we initially began by writ-
ing our own based on a distributed TCP/IP stack written in Erlang. The
reason that we started down this path was the desire to perform something
called a “scatter connect” [18], although at the time we did not know or use
this specific term. The idea is to have distributed cluster of machines which
are logically grouped in threes, each of which participate in a separate stage
of the TCP three way handshake. This stateless approach offers a number
of speed improvements over traditional use of the underlying operating sys-
tem network stack, given that we have a very specific and limited use case.
The remote execution features of Erlang made implementation easier than it
might seem upon first glance. Once we got to the testing phase, we stumbled
upon unicornscan [18] which amazingly enough aligned with many of my
requirements and methodologies and took things even a step further. Like
our original design, TCP connection state tracking was moved out of kernel
space using three separate user-land processes. The first process is a master
process, which keeps track of which packets need to be sent, which process
needs to send them, and correlates the responses. The second process is in
charge of sending packets and the third process simply listens for responses.
All of this comes to together to implement a basic user-land TCP/IP stack
which is optimized for network scanning. At this point, we did some tests
and found that not only did unicornscan outperform my attempt in Erlang,
but it also bested nmap [19] considering the additional data processing to get
the data into a consumable format for the analysis engine. The next step was
straightforward, albeit not something that you would necessarily call simple:
scan the entire Internet.



2.3 Application Identification

For web applications, specifically open source projects, there is a predictable
correlation between specific point versions of an application and known ex-
ploits that have a very high success rate. This has been shown before and we
believe this to be true. However, one of the questions that we set out to an-
swer with AED was the approximate amount of time that a web application
exploit is leveraged in the wild before it hits mainstream exploit databases
and mailing lists. Furthermore, is it possible to detect more closely guarded
exploits which have been used in conjunction with surgical attack campaigns?
Our hypothesis was that by remotely monitoring web applications and cor-
relating changes to hosts that were known at some point in the past to be
running vulnerable web applications, that we should be able to predict up-
dates to exploit databases and mailing lists and show cases where exploits
are being retired and thus given away for “free” via these security media
outlets. On the other side of this same exploit viability timeline, we should
be able to trend “script kiddy” usage of low- to no-day exploits which are
dropped on these same media outlets.

Thus the task of the web application identification module is to further
filter the host list returned by the scanner module to those hosts which are
running web application versions which we are interested in and then track
changes to these versions over time on a per host basis. In evaluating many of
the current tools which perform remote web application fingerprinting, there
seems to be a major bifurcation in the approaches, which can be described
as either dynamic or static. Static analysis relies of file presence alone to
construct a specific point version fingerprint of a web application. At this
time, the foremost example of a static analysis web application identification
tool is blindelephant [25]. There are a number of strengths to this approach,
namely that it is very fast and gives consistent results. The single largest
downside to this approach that we discovered was its inability to account for
small changes made to default web application installations, which seemed
to be more common than we first thought.

The other option is a dynamic approach which inspects the entire content
of a few carefully chosen pages. At first glance, this approach made a lot more
sense in our application because we needed the rendered pages in order to
perform the change tracking analysis. In this case, the use of static strings,
program control flow and object oriented programming constructs proved to
be a more efficient indicator of an application’s version, given that these pages



were already fetched and available for analysis. Thus, the final point version
calculation could be done offline without network access in a strongly parallel
fashion which leveraged the advanced capabilities of the analysis framework
we had chosen.

In the end we adopted a hybrid approach that did a rough web applica-
tion family identification via static methods, then relied on dynamic analysis
to narrow down the point version. In both approaches, a signature database
must be constructed and maintained. This is a more complex operation
in the dynamic case for sure, as the static method only needs to use the
publically available source code tree to establish file existence. For the pur-
poses of our application, we assume that these attributes are manually chosen
and that the number of web application and version pairs will be kept to a
manageable number. This is definitely an area for improvement and further
recommendations to this end are included at the close of this paper.

2.4 Media Aggregation

The Media aggregation requirement simply asks for a method to be exposed
which can be used to monitor and import data contained on specific security
media outlets. Locations such as Zero Day Initiative [15], Security Focus [24],
ExploitDB [11], Packet Storm [22], CERT [8] and NVD [21] provide a good
start. It should be noted that in theory the entire crawl database that is used
for change tracking could also be used as a media source, as part of a feedback
loop. For example, a recent change in the number of less mainstream web
sites that mention a particular web application or perhaps a code snippet
that is known to be related to a web application could be a stimulus that
could then be correlated back to a outward change on a monitored website.
Along these lines, perhaps it could be argued that changes to a monitored
website are newsworthy in and of themselves and you might wonder why
we felt the need to correlate this back to a media event at all? Initially we
added the media aggregation piece as a way to reduce the scope to a more
manageable size via a time component, as web site changes are extremely
common. However, as we soon found out the data explosion happened at
the start of the pipeline, which makes sense in hindsight. We choose to keep
this piece around for ad hoc queries and as we shall see it has remained very
useful.



2.5 Change Tracking

In order to perform change tracking from afar, we needed to implement a
crawler. The naive solution to this problem was quickly discovered to be in-
adequate. At this point two candidates were investigated which are believed
to be best in class solutions. The first is heritriz [20] which is part of the
Internet Archive project and nutch [7] which is a part of the Apache Soft-
ware Foundation and has an intertwined fate with another Apache project
discussed in the next section, namely hadoop [26]. Both projects are capable
of Internet scale operation and as a result there is an inherent complexity
that may be difficult to break through by the casual user. The advantage
of heritriz is that the problem it solves, namely archiving and search, is
closer to problem of change tracking than say nutch which is a true search
engine implementation. Once the decision was made to build the analysis
engine around hadoop it became apparent that the distributed file system
HDFS [23] as well as the MapReduce [9] computational paradigm would be
requirements as well. We will go into the details behind this decision in the
next section. Suffice it to say, the only reason that heritriz was not removed
from consideration immediately is that there has been work on a third-party
HDFS writer [16] plug-in which we consider a necessary addition for this to
be a viable option.

As we begin looking into these two projects, it became readily apparent
that the designs are focused on first configuring the system and then running
a command to carry out a series of steps in the fashion that the authors
intended, rather than focusing on giving the end user the ability to develop
a custom workflow that solves different or even closely related problems. In
other words, both systems are monolithic rather than a loosely federated set
of tools. Our application does not fall neatly into the problem space which
is solved via the act of performing a vertical crawl to get specific content.
Our needs are more along the lines of a web-mining approach, which requires
the ability to do specialized post-processing of the data, which in the case of
AED is either a comparison to a previous version or evaluation of a signature
engine which detects suspicious or malicious content. To use search engine
terms, our end result is different from that of a lucene [5] index or a list of
inverted links.

Thus, we began work on a new crawler approach that would be more
tailored to the requirements of AED which addresses the problems above and
is compatible with the hadoop framework. During this process, we discovered



a project called bizo [17] which is very similar to what we started from
scratch. Thus, we consider all three of these projects, namely heritriz, nutch
and now bizo viable with the caveats given and are present and operational
in the distributed virtual machine environment.

Despite adopting either the crawler or web-mining philosophy, the basic
workflow is identical. A list of DNS entries, IP addresses, and URLs are
injected into a database. The crawler selects work to be done from this list
and normalizes this data and fetches the appropriate pages. The content is
then saved and the work queue is updated appropriately. Then a pipeline
which consists of content analyzers looks at the data and processes the data
and stores it. Notice no mention of indexing, reverse linking, scoring or
other operations typically associated with a search engine. We do maintain
a feedback loop that allows us to crawl n levels deep from the initial seed
list, something that we have not made extensive use of at this point. It
is important to notice the pipeline nature of this entire process, something
which will be exploited to scale this solution out.

2.6 Scalable Data Mining

Not surprisingly, if one attempts to tackle Internet-scale problems and re-
searches novel solutions to these problems, at some point you will run across
the work of the talented folks at Google. Aided by Google’s seminal ideas of
MapReduce [9] and the Google File System (GFS) [12], Yahoo! helped give
birth to hadoop [26]. It is important to understand these two concepts as they
are pivotal to the operation of hadoop. MapReduce [9] is a framework for pro-
cessing massive datasets which decompose to distributable tasks that can be
reduced to two steps: a map operation that transforms the input into an
intermediate representation and a reduce function that recombines the input
into the final output. The underlying data store used is Hadoop Distributed
File System (HDFS) [23], which like GFS provides a fault-tolerant environ-
ment for working with very large files in a streaming data access model using
inexpensive commodity hardware.

As you might expect, these concepts are almost a perfect fit for what AED
is trying to accomplish. Initial findings showed a performance improvement
over the relational database model that we were using originally. The rea-
son is as follows. Massive updates are extremely efficient and small updates
costly in this new paradigm, which is the inverse of a relational database.
Thus the architecture set forth by hadoop shines in situations where full table



scans are the norm and true read write concurrency can be leveraged. In fact,
comparisons between “redundant array of independent disks” (RAID) in a
relational database context and a “just a bunch of disks” (JBOD) arrange-
ment in a hadoop cluster have shown paradoxical speed improvements in the
later. This is due to the fact that the current trend in disk drive performance
shows that seek time is improving more slowly than transfer rate. Thus if
our data access is dominated by seeks, it will take longer to read or write
large portions of the dataset than streaming through it, which operates at
or near the transfer rate. This can be applied to the problem of updates as
well. Thus we can see that relational databases excel in the areas of point
queries and updates, while the MapReduce strategy excels in cases where
we need to explore the entirety of the dataset in a batch fashion. Finally,
the other difference lies in the ability to handle a mixture of structured and
unstructured data. Databases excel at handling formally structured data,
but fall short in the semi-structured case where there might be a schema,
but that schema is often ignored. This is extremely common in the world of
web application protocols. The ability of MapReduce to interpret the data at
processing time so to speak which is informed by a ad hoc set of input keys
and values for MapReduce is something that we found to be a huge strength
to the MapReduce approach.

While MapReduce is at the core of hadoop, it is by no means the only
game in town. In fact, we leverage a number of other members of the hadoop
ecosystem. Hive [4] is a distributed data warehouse, which manages data in
HDFS and provides a SQL-like query language which is translated by the
runtime engine to MapReduce jobs. Another important player behind the
scenes is hbase [3], which is a distributed, column-oriented database which
uses HDFS for its underlying storage and allows for random reads. Finally,
we use sqoop [14] which is a tool that allows us to efficiently move data
between relational databases and HDFS. As you might guess, this is the
bridge that we use to integrate the PostgreSQL instance which sits on the
backend of wunicornscan [18] and leverages hbase along with hive to easily
manipulate the imported data.

As a side note, the hadoop framework is also naturally suited to log anal-
ysis and processing, a use case we are exploring in parallel with this project
to aid with processing of massive amounts of sensor logs.



3 Results

The scope of this problem is vast. Amortized actuals show that we need
around 1 terabyte to store 100 million pages which can be crawled by a single
machine whose specifications include 1 CPU and 1 gigabyte RAM. Our scan
results have shown that there are approximately 104 million active hosts,
of which 9.2 percent can be identified as running a web application. If we
assume around 10 kilobytes per page and a monthly refresh time, along with
a rough number of 1 billion pages per month, we come up with a bandwidth
requirement of 40 megabits per second inbound and ten crawlers who are
also hosting a piece of the distributed file system which totals around 10
terabytes. Thus, we selected a set of web applications that would reduce
these numbers by a factor of 10. At this point it should be noted that
cloud services such as Amazon Elastic Compute Cloud (EC2) [1] could be
considered an excellent viable option to the more brute force approach of
acquiring and maintaining a rack of servers ourselves and something we are
currently investigating. The idea would be to use Amazon S3 [2] as a data
store and then run the cluster on EC2 by means of Apache Whirr [6], which
is a set of scripts which automates the running hadoop on EC2 and other
cloud providers.

As the last few programs continue to run and we begin generating graphs
and snippets from compromised websites, we regret to say that this infor-
mation will be found in the accompanying presentation slide deck and this
whitepaper will be updated within the prescribed time window after the
conference to also include that information here.

4 Future Work

In the immediate timeframe, we feel that it would be nice to leverage the
modular approach that unicornscan [18] offers to do some basic passive web
application fingerprinting. This particular function we feel could be carried
out by unicornscan natively and this eliminates the need for the initial passive
probe via the web application fingerprinting module. As part of our hybrid
approach, further active fingerprinting would then be done offline once the
crawled pages have been stored in HDF'S. We feel that there are significant
advantages to this approach. The long term solution would be to in fact
rewrite unicornscan in a fashion that would allow it to run directly on the



hadoop cluster. Thus would be an interesting project in its own right and we
would expect a performance gain as a result of this tighter integration which
would not only eliminate the sqoop [14] bridge, but also give us the ability
to run this module on a borrowed cloud infrastructure.

Another relatively minor issue which merits investigation since it affects
the speed in which we can crawl the Internet is the fact that many of the crawl
libraries use standard synchronous Java [O. The problem with this is that
for a given number of documents that we wish to crawl, we must have that
same number of threads active. This becomes costly when we begin to fetch
on a larger scale and any optimizations made to each thread are negated by
the overhead of the threading library itself. By moving to an asynchronous
approach we expect a drastic improvement in crawl throughput.

Somewhat unrelated to the problem at hand, but nevertheless a very in-
teresting problem that we would like to solve deals with the fact that many
malicious sites, specifically malware depots, are using browser detection to
not only avoid automated systems such as AED, but also deliver an appro-
priate browser-based attack to an end user, which is tailored to the specific
browser type and version that the potential victim is using. This use case
which resists the native crawler libraries present in the various frameworks
which we have investigated, in addition to our inability to monitor legitimate
websites which are leveraging Ajax-driven Web 2.0 applications which require
execution of JavaScript in order to discover obfuscated and dynamically gen-
erated links means that we need to use a more sophisticated browser head,
such as what is offered by HTMLunit [13] or even in the extreme cases, a full
featured browser such as Internet Explorer or Firefox.

Further out, we are looking for ways to investigate and crawl the “deep-
net” [10]. Despite any feedback mechanism which we have investigated so far,
the nature of the problem is that we only will naturally discover a relatively
small portion, yet still into the billions, of web pages. This in fact is an
interesting research problem in the web crawler space that we think merits
more investigation, as this is precisely the type of places we expect attackers
to be hiding. Again, this is not directly related to the functions required by
AED which target specific web applications and is not concerned with the
links on these sites to the rest of the Internet, but nonetheless something
we would like to be able to handle so that we could begin to use the same
framework to monitor known malicious websites.

10



References

wW DN

Ot

Amazon FElastic Compute Cloud. URL: http://aws.amazon.com/ec2.
Amazon Simple Storage Service. URL: http://aws.amazon.com/s3.
Apache HBase. URL: http://hbase.apache.org.

Apache Hive. URL: http://hive.apache.org.

Apache Lucene. URL: http://lucene.apache.org.

Apache Whirr. URL: http://incubator.apache.org/whirr.

Mike Cafarella and Doug Cuttin. Building Nutch: Open Source Search.
Apr. 2004. URL: http://queue.acm.com/detail.cfm?id=988408.

Carnegie Mellon University’s Computer Emergency Response Team.
URL: http://www.cert.org/cert/.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. June 2009. URL: http://labs.google.com/
papers/mapreduce.html.

Deep Web. URL: http://en.wikipedia.org/wiki/Deep_Web.
Exploit Database. URL: http://www.exploit-db.com.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
File System. Oct. 2003. URL: http://labs.google.com/papers/gfs.
html.

Marc Guillemot and Daniel Gredler. HtmlUnit: An Efficient Approach

to Testing Web Applications. Jan. 2009. URL: http://javasymposium.
techtarget.com/html/images/MGuillemot_HtmlUnit.pdf.

Hadoop Sqoop. URL: https://github.com/cloudera/sqoop/wiki.

HP TippingPoint’s Zero Day Initiative. URL: http : / / wuw .
zerodayinitiative.com.

Doug Judd. Heritrix Hadoop DFS Writer Processor. Jan. 2007. URL:
http://corporate.zvents.com/developers/thelab.html.

Doug Judd and Stefan Groschupf. Bizo - A Webcrawler Toolkit. May
2009. URL: http://bixo.101tec.com/wp-content/uploads/2009/
05/bixo-intro.pdf.

11



18]

[19]

[26]

Robert Lee and Jack Louis. Introducing Unicornscan: Riding the Uni-
corn. July 2005. URL: https://www.defcon. org/images/defcon-
13/dc13-presentations/DC_13-Lee.pdf.

Gordon “Fyodor” Lyon. Nmap: Scanning the Internet. Aug. 2008.
URL: https://www.blackhat .com/presentations/bh-usa-08/
Vaskovich/BH_US_08_Vaskovich_Nmap_Scanning_the_Internet.
pdf.

Gordon Mohr et al. An Introduction to Heritriz: An Open Source
Archival Quality Web Crawler. Sept. 2004. URL: http://iwaw .
europarchive.org/04/Mohr . pdf.

National Vulnerability Database. URL: http://nvd.nist.gov/.
Packet Storm. URL: http://packetstormsecurity.org/files.

Konstantin Shvachko et al. The Hadoop Distributed File System. May
2010. URL: http://storageconference. org/2010/Papers/MSST/
Shvachko.pdf.

Symantec SecurityFocus/Bugtraq. URL: http://www.securityfocus.
com/vulnerabilities.

Patrick Thomas. Blind Elephant: Web Application Fingerprinting and
Vuulnerability Inferencing. July 2010. URL: https://media.blackhat.
com/bh-us-10/presentations / Thomas /BlackHat - USA- 2010 -
Thomas-BlindElephant-WebApp-Fingerprinting-slides.pdf.

Tom White. Hadoop: The Definitive Guide, Second FEdition. Se-
bastopol, CA: O’Reilly Media, Inc., 2010.

12



