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Abstract 
 
Almost a decade ago, the sequencing of ancient DNA from archaic humans - Neanderthals and 
Denisovans - revealed that modern and archaic humans interbred at least twice during the 
Pleistocene. The field of human paleogenomics has now turned its attention towards 
understanding the nature of this genetic legacy in the gene pool of present-day humans. What 
exactly did modern humans obtain from interbreeding with Neanderthals and Denisovans? Were 
introgressed genetic material beneficial, neutral or maladaptive? Can differences in phenotypes 
among present-day human populations be explained by archaic human introgression? These 
questions are of prime importance for our understanding of recent human evolution, but will 
require careful computational modeling and extensive functional assays before they can be 
answered in full. Here, we review the recent literature characterizing introgressed DNA and the 
likely biological consequences for their modern human carriers. We focus particularly on archaic 
human haplotypes that were beneficial to modern humans as they expanded across the globe, and 
on ways to understand how populations harboring these haplotypes evolved over time. 
 
Genome-wide patterns of archaic admixture 
  
In 2010, the first sequenced Neanderthal genome provided evidence for gene flow from 
Neanderthals into the ancestors of present-day non-Africans, around 50,000-60,000 years ago 
[1–3]. Since then, archaic human genomes have yielded ever more insightful discoveries. A few 
years later, a high coverage genome sequence from a Neanderthal found in the Altai mountains 
allowed researchers to pin down the proportion of Neanderthal ancestry in non-Africans to be 
~2% [4]. In 2017, a second high coverage genome sequence from a Neanderthal in Croatia 
showed that this individual was more closely related to the introgressing Neanderthal population 
than the Altai Neanderthal, allowing researchers to detect even slightly higher levels of 
Neanderthal DNA [5]. In 2018, low-coverage genomes of five additional Neanderthals living 
between 39,000 and 47,000 years ago allowed a first glimpse at population structure in 
Neanderthals and showed indications of population turnover in late Neanderthal history [6]. But 
admixture between different human groups has not been limited to modern humans and 
Neanderthals. The genome sequence of a previously unknown group, the Denisovans (a sister 
group to Neanderthals), also contributed to the genomes of present-day people in Oceania, and, 
to a lower extent, to mainland East and South Asians [7–11]. Further admixture episodes have 
also been suggested, including gene flow from an unsampled “super-archaic” human group into 
Denisovans [4], from eastern Neanderthals into Denisovans [4] and from modern humans into 
Neanderthals [12] (Figure 1). 
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While the signals of shared ancestry between modern and archaic human groups are quite 
evident, the exact processes by which introgression occurred remain unclear. For example, 
higher levels of Neanderthal ancestry have been observed in East Asians compared to Europeans 
[13]. Recent work has proposed that this difference resulted from a dilution of Neanderthal 
ancestry in Europeans after admixture with  an unsampled modern human population (“basal 
Eurasians”) that had little or no Neanderthal admixture [14] (Figure 1). Others have instead 
suggested that the higher Neanderthal ancestry observed in East Asians is a result of additional 
waves of Neanderthal admixture [15–17]. Analysis of an ancient European genome has shown 
that at least one additional pulse of Neanderthal admixture occurred in Europe, although this 
modern human population does not seem to have left present-day descendants [18]. Additionally, 
a recent study suggests that part of the Denisovan-like ancestry found in present-day East Asians 
is due to an archaic group more closely related to the sequenced Denisovan genome than the 
Denisovan-like ancestry in South Asians and Oceanians, providing support for a two-pulse 
model for Denisovan-like admixture [10] (Figure 1). In the future, more archaic human genomes 
may help to improve our understanding of the exact complex dynamics of admixture. 
 
Although most recent studies of modern and archaic human genomes have focused on 
uncovering the general history of admixture, several works have aimed to localize and 
characterize specific archaic human DNA tracts in present-day human genomes [17,19–23]. For 
example, researchers have used the genome sequence of the Altai Neanderthal to detect 
Neanderthal DNA in present-day non-Africans. They were thereby able to reconstruct up to 40% 
of the introgressing Neanderthal’s genome from the tracts remaining in present-day individuals, 
even though any one individual has no more than 4% Neanderthal ancestry [20–22]. They also 
showed that Neanderthal tracts are not uniformly distributed along the genome: large regions 
appear almost completely devoid of Neanderthal ancestry [20,21]. Recent work has also 
provided insight into the distribution of Denisovan DNA in the genomes of Oceanians [17,22], 
which has a similar non-uniform distribution. These “deserts” - containing almost no 
Neanderthal or Denisovan DNA - partially overlap, and have been interpreted as evidence for 
potential incompatibilities between archaic and modern human alleles. The field is now shifting 
its focus from finding Neanderthal and Denisovan tracts in present-day humans towards 
functionally characterizing them, and towards modeling their present-day distribution under 
different modes of natural selection in the past, with the aim of understanding the consequences 
of this introgression on our evolutionary history. 
 
Admixture and purifying selection 
 
Multiple lines of evidence suggest that negative or purifying selection against archaic human 
DNA has been the dominant selective force affecting the distribution of archaic human DNA in 
modern human genomes (Figure 2). Under a model of pure genetic drift, the average proportion 
of Neanderthal ancestry in modern humans should remain roughly the same over time. However, 
a study of late Paleolithic modern human genomes in Europe showed a progressive decrease of 
genome-wide archaic human ancestry with time, suggesting that archaic human haplotypes were 
being selectively pruned from the human gene pool over thousands of years after the 
introgression event [24]. 
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Two biological explanations have been proposed to explain the dynamics of purifying selection 
on archaic human tracts. Two studies [21,25] found enrichments for testis-expressed and meiotic 
genes in regions of low Neanderthal ancestry, as well as significantly lower Neanderthal ancestry 
in the X-chromosome than in the autosomes. Similar observations have been reported for regions 
of low Denisovan ancestry as well [22]. These studies argued that both of these patterns could 
perhaps be explained by Dobzhansky-Müller incompatibilities [26,27]: mutations that arose in 
each of the two lineages after the Neanderthal-modern human split and that were mutually 
incompatible in Neanderthal-modern human hybrids. These incompatibilities could lead to male 
hybrid sterility or reduced fertility, as genes associated with low male fertility in hybrids are 
preferentially located on the X-chromosome. Indeed, incompatibilities of this type have been 
previously observed in other species, for example, fruit flies [28,29]. Later work provided 
evidence that the abundance of archaic human ancestry deserts in the X-chromosome could be 
due to repeated selective sweeps driven by meiotic drive, thereby producing post-split 
incompatibilities [30]. 
 
However, two other studies have advanced the idea that purifying selection on Neanderthal tracts 
was instead due to a higher deleterious load in Neanderthals than in modern humans. They 
posited that, as Neanderthals had smaller effective population sizes than modern humans, 
selection was less efficient at pruning away mildly deleterious alleles in Neanderthals. These 
alleles were then negatively selected when they introgressed into modern humans, which caused 
a reduction in their frequency [31,32]. An increased deleterious load in Neanderthals does not 
provide an explanation for the previously detected enrichment of testis-expressed genes in 
regions of reduced Neanderthal ancestry. However, this enrichment has not been detected in a 
recent model-based approach by Steinrücken et al. [23]. 
 
Admixture and positive selection 
 
Despite the evidence for widespread negative selection acting against archaic human DNA in 
modern humans, some archaic human haplotypes have reached very high frequencies in modern 
human populations, indicating that they may have been targets of positive selection (Figure 2). 
Specifically, a number of studies have identified introgressed archaic human alleles at high 
frequencies near genes linked to immunity, metabolism and the response to environmental 
conditions, like temperature, sunlight and altitude [4,20,21,33–40] (reviewed in ref. [41]). Since 
Neanderthals and Denisovans inhabited Eurasia for at least 300,000 years before modern humans 
arrived, they were likely well-adapted to the local nutrients, pathogens and conditions that 
modern humans later faced as they expanded across the globe. For example, a variant in the 
EPAS1 gene that confers resistance to hypoxia at high altitude was introduced into modern 
humans via admixture with an archaic human population, before undergoing a strong selective 
sweep in modern Tibetans [37]. A recent work has stressed that introgressed variants need not 
necessarily have been adaptive right after their introduction into the modern human gene pool. 
The onset of selection in modern humans may have actually occurred several generations after 
the archaic human alleles were first introduced [42] (Figure 2). 
 
These observations invite speculation about how introgressed archaic human DNA influences 
phenotypes, many of which are known to be highly polygenic. A first attempt to investigate the 
effects of Neanderthal DNA on polygenic traits used electronic health records from ~28,000 
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individuals and found associations between Neanderthal alleles and several neurological, 
psychiatric, immunological, and dermatological diseases [43]. A more recent study correlated the 
presence of Neanderthal alleles with several non-disease phenotypes, and showed that 
Neanderthal DNA contributed to variation in skin tone and hair color, sleeping patterns, mood 
and smoking status [44]. This, however, does not imply that these trait-associated Neanderthal 
alleles were under positive selection. Indeed, for most traits, the contribution of archaic human 
alleles to present-day human phenotypic variation is not significantly larger than those of 
randomly drawn non-introgressed alleles occurring at the same frequency in modern humans. 
Interestingly, in both studies, neurological and behavioral phenotypes are an exception, with 
Neanderthal alleles contributing more to variation in these traits than frequency-matched modern 
human alleles. 
 
Prospects for the future 
  
The dynamics of admixture 
 
So far, the detection of adaptive introgression in humans has largely relied on two approaches: a) 
inferring archaic human tracts via a method that assumes a neutral model of admixture, and then 
looking for tracts with significantly higher frequencies than expected under such a model [17,20–
22]; or b) by computing summary statistics that have been found to be sensitive to adaptive 
introgression in simulations [38,40,42,45]. Neither of these approaches relies on an analytical 
model that explicitly accounts for introgression and selection jointly, and their reliance on 
simulations or neutral admixture models tailored to human demographic history makes them 
difficult to apply to the study of adaptive introgression in other species with different histories. 
 
More theoretical work is needed to further our understanding of the dynamics of selected 
variants after an introgression event, and of the signatures expected in population genomic data 
under different admixture rates and selection modes. Steps in this direction have been undertaken 
by Uecker et al. [46], who derived analytical expressions for the probability that a beneficial 
allele fixes in a population after an introgression event, and that deleterious (incompatible) 
variants hitchhike along with it. In turn, Aeschbacher et al. [47] developed a model to understand 
the relationship between the per-site selection coefficients against introgressed variants and 
various summary statistics that can be computed on genome-wide data. More recently, Sachdeva 
and Barton [48] built a model to study the evolutionary dynamics of an introgressed tract from 
one population to another, under a scenario of polygenic adaptation operating on variants inside 
the tract. As a complement to these theoretical approaches, it will also be key to study empirical 
patterns of introgression in non-human populations that admixed after being separated for some 
time. These “natural experiments”, in which certain historical or biological parameters may 
already be known a priori, can be compared and contrasted with hypothesized human 
evolutionary scenarios [49]. 
 
Additionally, the first empirical results from studies of archaic human introgression have led to 
an increasing interest in developing methods for the spatio-temporal localization of adaptive 
events. This is especially important when studying complex evolutionary histories involving 
many populations, as these often include multiple divergence and admixture processes.  For 
example, a recently developed program - Twisst [50] - can scan a genomic dataset containing 
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numerous individuals from several populations or species, and quantify how evolutionary 
relationships in a tree relating them differs across the genome. This allows for the identification 
of loci with strong evidence for adaptive introgression or barriers to introgression. Another 
recent method - PolyGraph - can take as input a previously inferred history of population splits 
and admixture events (in the form of an admixture graph [51]), and detect episodes of polygenic 
adaptation, that result in a systematic increase or decrease of the frequency of trait-associated 
alleles [52]. 
 
Understanding the phenotypic consequences of admixture 
 
There is accumulating evidence that modifications in gene regulation have been an important 
contribution of Neanderthal introgressed alleles on modern human biology. For example, the 
contribution of introgressed alleles to gene expression variation is larger than that of non-
introgressed alleles of similar frequency [38,53]. Additionally, Neanderthal alleles have been 
shown to be associated with down-regulation of gene expression in brain and testes [54]. 
Neanderthal alleles also show a significant contribution to expression changes in immune cells 
exposed to viral stimuli, highlighting the importance of archaic human variants on present-day 
immunity [55,56]. In contrast, the surviving Neanderthal-introgressed structural and amino acid-
changing variants appear to be less deleterious than their non-introgressed counterparts [53,57]. 
 
Further phenotypic characterization of introgressed variants - for instance, by using genome 
editing approaches on stem cells or model organisms - may help us to obtain a more refined 
understanding of the phenotypic legacy of archaic human introgression, and of the phenotypic 
differences and commonalities between modern and archaic human groups. Lastly, 
computational approaches could also be used to estimate how archaic DNA influences 
expression patterns and methylation [58–63]. These efforts might at some point allow us to 
predict Neanderthal phenotypes with high precision. 
 
Other admixture events in human evolution 
 
To date, most studies that investigated the phenotypic consequences of archaic human DNA in 
present-day humans were conducted in individuals with predominantly European ancestry. 
However, some Neanderthal DNA is also found in other non-African populations, and 
Denisovan DNA is largely present in Oceanians and – to a lesser extent – in South and East 
Asians. Fully determining how archaic human DNA impacted the phenotypes of modern humans 
will require genetic and phenotypic data from individuals from Asia, Oceania and other parts of 
the world, which may have undergone independent episodes of archaic human introgression. 
 
Additionally, while studies of human adaptive introgression have focused on admixture between 
modern and archaic humans, the vast numbers of ancient genomes from the Neolithic, the 
Bronze Age and the Iron Age that are now published or in production [24,64–66] might allow 
studying more recent episodes of adaptive introgression, as a consequence of admixture between 
two or more modern human populations. For example, there is some evidence to suggest that the 
lactase persistence allele  located in a regulatory region of the LCT gene - one of the best-known 
examples of positive selection in humans [67,68] - was perhaps introduced into Western Eurasia 
via eastward migrations by steppe hereder populations [64,69]. However, the evidence for this 
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hypothesis is still scant, and more ancient sequences will be needed to determine with certainty 
exactly how this occurred, if it occurred at all [67]. 
 
The increasing availability of ancient and present-day human genomes from Africa will also 
make it easier to study admixture patterns between modern African populations [70], or between 
present-day and archaic human groups in Africa [71–73] (Figure 1). As the bulk of human 
evolution happened in this continent, it will not be surprising to find cases of introgression - and 
adaptive introgression - between different African human groups, once ancient DNA from Africa 
becomes more readily available. 
 
The detection of archaic human introgression has given us unprecedented insights into human 
evolution. Researchers have found evidence for multiple admixture events between modern and 
archaic humans, and are beginning to understand the selective pressures that operated on 
introgressed material. But it is still unclear how introgression affected phenotypic differences 
among present-day populations, including differences in disease risk: a research area with 
potentially fruitful biomedical implications. New genomic and phenotypic data from both 
present-day and ancient hominins will certainly help to address some of these questions, but it 
will also be necessary to develop new theory that can properly model both selection and 
admixture in a joint framework. We still have a long way to go before we can truly say we 
understand the genetic legacy of our hominin cousins. 
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Figures 
 

 
 
Figure 1. Admixture events between populations of archaic and modern humans.  
The black tree is a highly simplified representation of the history of population splits among modern and 
archaic humans, including a Middle Pleistocene hominin from Sima de los Huesos, Spain, for which only 
limited nuclear DNA is available [74]. For the sake of simplicity, we do not include South Asians, 
Siberians, Native Americans and ancient modern humans - like Oase or ancient northern Eurasians - in 
this tree. Red arrows represent major introgression events discussed in the main text. Dashed arrows 
represent introgression events with only preliminary or suggestive evidence at the time of writing. N.I. = 
Introgressing Neanderthal population - responsible for introducing Neanderthal DNA into the ancestors of 
Eurasians. P.D.I. = Papuan-Introgressing Denisovan population - responsible for introducing Denisovan-
like DNA into the ancestors of Oceanians (and East Asians in smaller proportions). A.D.I. = Asian-
Introgressing Denisovan population - responsible for introducing Denisovan-like DNA into the ancestors 
of East Asians only. Figure inspired by Prüfer et al. 2014 [4]. 
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Figure 2. Possible fates of an introduced mutation into a modern human population after 
introgression from an archaic hominin group. The lines depict chromosomes in a population and the 
blue dot represents a mutation that first appeared and rose to high frequencies in the archaic human 
population, before being introgressed into the modern human population. 
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