51-2°, b₇₆₀ 167-8°, n₂° 1.4546, d₂° 1.1497, MR 42.2 (calcd. 42.2); 100 g. VI with 8 g. FeCl₃ (B) at 40° or 10 g. BiCl₃ at 50° gives 25 or 12% of VIII. III yields 3,3-dimethyl-1-pentanol, b₂₀ 78-9°, b₇₄₅ 163-4°, n₂° 1.4275, d₂° at 100° c. f. divided by the second of o 0.8320 (3,5-dinitrobenzoate, m. 50-1°, whose 1-naphthylamine addn. compd. m. 114-15°). C. J. West Synthesis and directed chlorination of 2,2-difluorobutane. Albert L. Henne and James B. Hinkamp. J. Am. Chem. Soc. 67, 1194-7(1945).—The chlorination of CF3Et, Me2CF2 and MeCFClCH2Cl is known to be strongly directed. To det. how far and in what direction the effect of a CF₂ group would extend, MeEtCF₂ (I) was chlorinated. I, f.p. -117.53°, b₇₆₀ 30.92°, d₂²⁰ 0.9159, n₂²⁰ 1.3138, MR 20.33 (all b.p., d. and n under these condi-1.3138, MR 20.33 (all b.p., d. and n under these conditions), was obtained in 51.3% yield from 70% com. Mc-CC1: CHMe and HF (details given). I in sunlight in the presence of H₂O gives 2 parts of $MeCF_2CHCIMe$ (II), f.p. -92.1°, b. 72.32°, d. 1.1259, n 1.3631, MR 25.16, and 3 parts of $MeCF_2CH_2CH_2CI$ (III), f.p. -76.08°, b. 93.22°, d. 1.1552, n 1.3709, MR 25.21; no ClCH₂CF₂Et was formed. II on further chlorination gave 2 parts of $MeCF_2CCl_2Me$ (IV), f.p. 43.66°, b. 89.84°, d⁵⁰ 1.2393, m^{50} 1.3752. MR 30.12, and 1 part of $MeCF_2CHCICH_2CI$ nº0 1.3752, MR 30.12, and 1 part of MeCF2CHClCH2Cl (V), b. 123.1°, d. 1.328, n 1.404, MR 30.0. III yielded only MeCF₂CH₂CH_{Cl2} (VI), f.p. -66.99°, b. 119.26°, d. 1.3138, n 1.4017, MR 30.19; a continuation of the chlorination yielded 7 parts of $MeCF_2CH_2CCl_3$ (VII), f.p. -29.5° , b. 139.15°, d. 1.4366, n 1.4245, MR 35.11, to 1 part of V. These results illustrate the extent to which the α -Me group is protected against Cl and confirm the strong tendency to accumulate the Cl atoms on the same C atom 6 which has been noted in the propane series (C.A. 36, 4090^8). CH_2ClCF_2Et (VIII), f.p. -78.96° , b. 82.72° , d. 1.1553, n 1.3685, MR 25.08, was obtained in 55% yield from CH₂ClCCl₂Et; chlorination of VIII yielded 4 parts of CH₂ClCF₂CH₂CH₂Cl (IX), f.p. -28.7°, b. 142.28°, d. 1.3652, n 1.4153, MR 29.99, and 1 part of CH₂ClCF₂CH-ClMe, f.p. -60.5°, b. 115.67°, d. 1.3276, n 1.4025, MR 29.93; further chlorination (several weeks of exposure to 29.93; further choination (several weeks of exposure to brilliant sunlight at 60°) gave $CCl_3CF_2CCl_2CCl_2$, f.p. -8.42° , b₂ 98°, d. 1.8990, n 1.5198, MR 59.15. II was obtained in 35% yield from MeCCl₂CHClMe, together with 31% of MeCFClCHClMe. IX was obtained in 24% yield from CH₂ClCCl₂CHClMe, together with 53% of CH2CICFCICHCIMe; IX also results in 45% yield from the latter. V results in quant. yield by Claddn. to MeCF₂-CH: CH₂. Cl₂CHCF₂Et, f.p. -54.39°, b. 111.22°, d. CHCH₂: C₂CHCF₂Ct, 1.p. — 34.39 , b. 111.22 , d. 1.3113, n 1.3978, MR 29.99, results in 40% yield from 8 CHCl₂CCl₂Et, together with 14% of Cl₂CHCFCIEt. VII yields MeCF₂CH₂CF₅, f.p. —35.01°, b. 40.14°, d. 1.2666, n 1.2824, MR 20.67. MeCFCIEt, f.p. —110.06°, b. 67.65°, d. 0.9982, n 1.3782, MR 25.55°. Cl reactivity tests show that α -Cl atoms are immobilized, β -Cl atoms are repressed, and γ -Cl atoms seem to be unaffected. Synthesis and directed chlorination of 1,1,1-trifluorobutane. Albert L. Henne and James B. Hinkamp. J. Am. Chem. Soc. 67, 1197-9(1945).—This study was to 9det. how far a CF₃ group would extend its influence. CHCl: CHEt (I) was prepd. from PrCHO through Cl₂CHPr (39% yield) with boiling satd. KOH-BuOH in 64% yield; because the method could not be used with large quantities, tech. CICH, CHCIEt (II) was used. The reaction of II with 30% NaOH-EtOH was sufficiently exothermic to maintain itself and yielded 46% of I and 27% of CH2: CCIEt. I with Cl in the dark at 10° gives 70-5% of Cla- 58 g. V and 5 g. FeCl₃ (B) at 24° give 8% of III; 40 g. V and 10 g. BiCl₃ (B) at 100° give 6% of III. sec-BuCl (50 g.), 50 g. pentane, 26 g. C₂H₄ and 5 g. AlCl₃ (A) at -16° to -10° give 35% of 1-chloro-3-methyl-3-ethylpentane (?), b₈ 51-2°, b₇₆₀ 173-4°, n₂² 1.4370, d₄²° 0.8863, MR 43.9 (calcd. 43.9). PrCl (75 g.), 12 g. C₂H₄, and 6 g. AlCl₃ (A) at 2 to 6° give 5% of III; 50 g. iso-BuCl₃ (B) at 70° give 28% of Me₃CCH₂CH₂Br (VII); 88 g. of VI and 4 g. BiCl₃ (B) at 70° give 23% of VII. VI (102 g.), 35 g. C₂H₄, 50 g. pentane, and 3 g. AlCl₃ (B) at -23° to -17° give 40% of 1-bromo-3,3-dimethylpentane (VIII), b₁₀ 51-2°, b₇₆₀ 167-8°, n₂² 1.4546, d₄² 1.1497, MR 42.2 (calcd. 42.2); 100 g. VI with 8 g. FeCl₃ (B) at 40° and 5 g. AlCl₃ (A) at 24° (Calcd. 42.2); 100 g. VI with 8 g. FeCl₃ (B) at 40° and 40° of VIII; this is a highly exothermic reaction. IV with KOH-EtOH gives 90% of CFCl: CHEt which, with HF at 65° for 8 hrs. gives V VIII (102 g.), with HF at 65° for 8 hrs. gives V VIII (102 g.) (100 g. VI with 8 g. FeCl₃ (B) at 40° and 40° of VIII) (100 g.) (100 g. VI with 8 g. FeCl₃ (B) at 40° and 40° of VIII) (100 g.) (100 g. VI with 8 g. FeCl₃ (B) at 40° and 40° of VIII) (100 g.) g of CF₃Pr (VII); this is a highly exothermic reaction. IV with KOH-EtOH gives 90% of CFCl: CHEt which, with HF at 65° for 8 hrs., gives V. VI, chlorinated in sunlight in the presence of H₂O, gives CF₃CH₂CHCIMe (VII) and CF3(CH2)3Cl (VIII) in the ratio of 4:5. Thus, as in previous cases, the group α to the fluorinated cluster re-3 sisted chlorination; the β and γ groups were affected in a manner which deviated but slightly from random chlorination, in favor of the β group. Further chlorination of VII yielded 8 parts of CF₃CH₂CCl₂Me and 6 parts of CF₃CH₂-CHCICHCl₂ and of VIII gave 2 parts of CF₃CH₂CH₂-CHCl₂ (IX) and 1 part of CF₃CH₂CHClCH₂Cl. The pre-The predominating product on chlorinating IX was CF₃CH₂CH₂-CCl₃. CFCl₂Pr, f.p. -112.4°, b₇₆₀ 95.3°, d₄²⁰ 1.1578, n_{20}^{20} 1.4007, MR 30.41 (in the following b.p., d., and n are for these conditions). CF_2ClPr , f.p. -119.39° , b. 56.03° , d. 1.0754, n 1.3462, MR 25.47. CFCl: CHEt, f.p. -144.9° , f.p. -164.95°, b. 3.71°, d2 0.9284, n°_b 1.3253, MR 19.97. CF₃Pr, f.p. -114.79°, b. 16.74°, d2 1.0144, n°_b 1.2921, MR 20.51. CF₂CICHCLEt, f.p. below -100°, b. 96.98°, d. 1.2715, n 1.3878, MR 30.24. CF, CHClEt, f.p. below -100°, b. 58.3°, d. 1.1967. n 1.3360. MR 30.24. a. 1.2/19, n 1.38/8, MR 30.24. CF₃CH CHI, f.p. below -100°, b. 58.3°, d. 1.1967, n 1.3369, MR 25.4. CF₃CH₂-CHCIMe, f.p. -79.24°, b. 65.63°, d. 1.2133, n 1.3433, MR 25.54; CF₃CH₂CH₂CH₂CH₂CI, f.p. -67.25°, b. 86.60°, d. 1.2425, n 1.3505, MR 25.41. CF₃CH₂CCl₂Me, f.p. about -48°, b. 89.90°, d. 1.374, n 1.355, MR 30.6. CF₃CH₂CF₂Me, f.p. -35.01°, b. 40.14°, d. 1.2666, n 1.2824, MR 20.67. Reactivity tests indicated that both the graph 8-Cl atoms are improbilized by the CF. graph the α - and β -Cl atoms are immobilized by the CF₃ group and that the γ -Cl atom is only repressed. The influence of a CF₈ group, therefore, extends further than that of a CF₂ group. C. J. West Reaction of iodine and aluminum with ethers and alcohols. M. T. Dangyan. J. Gen. Chem. (U.S.S.R.) 11, 1215-17(1941); cf. C.A. 35, 58579.—Et₂O mixed with Al and iodine yields EtI; similarly PhOEt yields 62.4% EtI and PhOH, while MeOPh gives 70% MeI and PhOH and MeOH yields MeI and Al(OH)₈. BuOH yields 70.9% Bul and Al(OH)₃. The reactions are spontaneous and evolve considerable amts. of heat. G. M. Kosolapoff Isomerization of alkyl phosphites. III. Synthesis of alkylphosphonic acids. Gennady M. Kosolapoff. J. Am. Chem. Soc. 67, 1180-2(1945); cf. C.A. 38, 5794.—The following alkyl-substituted di-Et alkanephosphonates, RPO(OEt)₂, were prepd. by the procedure outlined in Part I (C.A. 38, 951⁶): hexane, b₁₇ 140-4°; nonane, b₁₇ 177-86°; decane, b₁₇ 186-93°; dodecane, b₁ 165-75°; tetradecane, b₂ about 200°. Because of the long time required (up to 48 hrs.) at 150-60° to produce yields of 50% or less and the decompn, resulting from the distn, of the esters from the reaction product, this is not considered a satisfactory general synthetic method. Na di-Bu phosphite offers a satisfactory starting material because of its soly. in inert org. solvents (e.g., the lower petr. ether fractions) and the stability of such solns. on exposure to atm. moisture; the reactions with alkyl halides proceed readily at reflux temp. of the solvent, being complete in 3 to 6 hrs. A suspension of 1.15 g. of Na in 150 ml. of dry hexane or heptane was refluxed, treated with 9.7 g. of di-Bu phosphite during 20 or 30 min. and refluxed until the Na was dissolved (3 to 5 hrs.) and then treated with 0.05 mole of alkyl bromide during 30 to 45 min. and refluxed 5-6 hrs., the mixt. cooled, washed with H2O, the org. layer sepd., and the ester distd. in vacuo. Di-Bu alkanephosphonates (d₄²⁵ and n_D²⁵ are given): ethane, b₁₇ 137-9°, d. 0.9623, n 1.4258; butane, b₂₀ 160-2°, d. 0.9462, n 1.4302; pentane,