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ABSTRACT: SARS-CoV-2 infection is associated with a surprising number of morbidities. Uncanny similarities with amyloid-
disease associated blood coagulation and fibrinolytic disturbances together with neurologic and cardiac problems led us to investigate
the amyloidogenicity of the SARS-CoV-2 spike protein (S-protein). Amyloid fibril assays of peptide library mixtures and theoretical
predictions identified seven amyloidogenic sequences within the S-protein. All seven peptides in isolation formed aggregates during
incubation at 37 °C. Three 20-amino acid long synthetic spike peptides (sequence 192−211, 601−620, 1166−1185) fulfilled three
amyloid fibril criteria: nucleation dependent polymerization kinetics by ThT, Congo red positivity, and ultrastructural fibrillar
morphology. Full-length folded S-protein did not form amyloid fibrils, but amyloid-like fibrils with evident branching were formed
during 24 h of S-protein coincubation with the protease neutrophil elastase (NE) in vitro. NE efficiently cleaved S-protein, rendering
exposure of amyloidogenic segments and accumulation of the amyloidogenic peptide 194−203, part of the most amyloidogenic
synthetic spike peptide. NE is overexpressed at inflamed sites of viral infection. Our data propose a molecular mechanism for
potential amyloidogenesis of SARS-CoV-2 S-protein in humans facilitated by endoproteolysis. The prospective of S-protein
amyloidogenesis in COVID-19 disease associated pathogenesis can be important in understanding the disease and long COVID-19.

Coronaviruses use the homotrimeric surface spike protein
(S-protein) to attach to human cells. Each SARS-CoV-2 S-

protein subunit comprises 1273 amino acids.1 Four common
coronaviruses (OC43, 229E, NL63, and HKU1) infect humans
and colonize the respiratory tract. Recently emerged SARS,
MERS, and since 2019 also SARS-CoV-2 result in severe disease.
Although coronavirus infections are common, not before
COVID-19 has such a wide distribution of complex symptoms
involving organs other than the respiratory tract been reported.
COVID-19 pathogenesis is multifactorial and complex.2 Severe
COVID-19 includes acute respiratory distress syndrome
(ARDS) from innate immune system inflammatory reactions
resulting in lung damage;3 cytokine storm;4 heart damage,
including heart muscle inflammation; kidney damage; neuro-
logical damage; damage to the circulatory system resulting in
poor blood flow. Long-COVID-19 symptoms include persistent
emotional illness and mental health conditions resembling
neurodegenerative diseases.2 What could be the basis for this
pathogenesis?
Amyloidosis from several culprit proteins manifests as

systemic and localized disorders with many phenotypes
overlapping with reported COVID-19 symptoms. It has been
proposed that severe inflammatory disease including ARDS in
combination with SARS-CoV-2 protein aggregation might
induce systemic AA amyloidosis.5 Neurotropic colonization
and cross-seeding of S-protein amyloid fibrils to induce
aggregation of endogenous proteins has been discussed in the
context of neurodegeneration.6 Notably, blood clotting
associated with extracellular amyloidotic fibrillar aggregates in
the bloodstream has been reported in COVID-19 patients.7

Hypercoagulation/impaired fibrinolysis was demonstrated in
blood plasma from healthy donors experimentally spiked with S-
protein.7

Amyloidosis is associated with cerebral amyloid angiopathy,
blood coagulation disruption, fibrinolytic disturbance,8,9 FXII
Kallikrein/Kinin activation, and thromboinflammation,10 sug-
gesting potential links between S-protein amyloidogenesis and
COVID-19 phenotypes. We therefore hypothesized a potential
molecular link between S-protein and amyloid formation.
Inspired by previous hypotheses about human and viral protein
amyloids and interactions between them,11−13 in particular
SARS-CoV spike proteins,6,14,15 we asked the question: Is SARS-
CoV-2 S-protein amyloidogenic?
We obtained a 316 peptide pool library (divided into two

subpools) from a peptide scan through the entire SARS-CoV-2
S-protein (ProteinID: P0DTC2) (Supporting Information). In
vitro amyloid fibrils were formed in both peptide subpools
(Supporting Information, Figure S1). Encouraged by the results,
we generated 20-AA peptides from the full-length SARS-CoV-2
S-protein. We aimed to address the most amyloidogenic
sequences and used the WALTZ (https://waltz.switchlab.org)
prediction algorithm16 to identify such segments (Table 1,
Supporting Information).
Seven amyloidogenic sequences distributed over the entire S-

protein were identified and named according to the starting
position in the S-protein (Figure S2, Supporting Information).
All but one (Spike365) of the predicted sequences are in β-sheet
conformation in the SARS-CoV-2 Spike cryo-EM structure in its
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closed state.1 The C-terminal part of the protein (Spike1166) is
not resolved in the structure.
Solubilized peptides (0.1 mg/mL, PBS pH 7.5, 10% HFIP)

were monitored for in vitro amyloid fibril formation kinetics
using ThT, Congo red birefringence (CR), and negative stain
transmission electron microscopy (TEM).

Fibrils from most of the synthetic peptides were detected
within a few hours by at least one assay (Table 1, Figure 1).
Spike192, Spike601, and Spike1166 fulfilled all our amyloid
criteria: sigmoidal ThT kinetics, Congophilicity, and fibrillar
ultrastructure (Figure 1, Table 1). Spike192 formed exception-
ally well-ordered fibrils comparable to a mix of all peptides
(Figures 1C and S3C).
What would be a plausible mechanism for S-protein fibril

formation during SARS-CoV-2 infection? SARS-CoV-2 S-
protein is fairly stable (Tm > 50 °C)17 and would not readily
denature spontaneously. Furthermore, such a large protein with
complex folding will not easily misfold into an amyloid state.
However, proteolysis is an obvious candidate mechanism.
Endoproteolysis of precursor proteins is a well-known

molecular initiation mechanism in several amyloidoses, notably
Alzheimer′s disease (AβPP), British and Danish dementia
(ABri/ADan), and Finnish familial amyloidosis (AGel).
Proteolysis of full-length proteins is also evident in many other
amyloid disease deposits from ATTR, ALys, AA, and
ASem1.18,19

SARS-CoV-2 S-protein is proteolyzed during infection by
host furin-like enzymes and by serine proteases such as the
transmembrane protease, serine 2 (TMPRSS2), at the cell
surface20 and is further proteolyzed during inflammation.
Neutrophils are the dominating class of leukocytes and a first

responder during acute inflammation. Neutrophils are recruited
to the bronchoalveolar space of patients infected with a range of
different respiratory viruses, including SARS-CoV-2.21 Neu-
trophils act by phagocytosis of opsonized pathogens and by
extracellular release of enzymes such as neutrophil elastase
(NE). NE is a serine protease coupled to obstructive lung
diseases such as cystic fibrosis, chronic obstructive pulmonary
disease,22 and alpha-1-antitrypsin deficiency.23

The amino acid sequence of SARS-CoV-2 S-protein was
subjected to in silico proteolytic cleavage by NE using Expasy
Peptide cutter. One of the resulting peptides, Spike194−213,
closely matched Spike192, only frame shifted by two amino
acids (Supporting Information), implying a testable hypothesis.
We subjected full-length SARS-CoV-2 S-protein to NE

cleavage in vitro. S-protein showed a complex thermal unfolding
trajectory with multiple transitions around 45−65 °C and a
major unfolding transition with a midpoint of denaturation (Tm)
of 79 °C (Figures 2A and S4A) with differential scanning
fluorimetry (DSF) (Figures 2 and S4), similar to literature values
for full-length S-proteins,24 confirming folded protein at starting
point. S-protein refolded upon cooling albeit noncooperatively
(Figure 2A). NE unfolded irreversibly (Tm 59 °C) (Figure 2B).
Co-incubated S-protein+NE only showed an obvious transition
for NE and did not refold upon cooling, suggesting that S-
protein had been cleaved by NE (Figure 2C). Mass

Table 1. Amino Acid Sequences and Properties of Synthetic SARS-CoV-2 S-Protein peptides

aResidues assigned in color indicate the amyloidogenic segments as predicted by WALTZ. Highlighted in gray are non-native amino acids
introduced for solubility. bTheoretical mass.

Figure 1. Amyloid fibril assays of SARS-CoV-2 S peptides (0.1 mg/
mL). (A) ThT fluorescence fibril formation kinetics. (B) Congo red
birefringence microscopy. (C) Negative stain TEM ultrastructure.
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spectrometry verified digestion since only the S-protein+NE
experiment revealed peptide peaks (Figure 2D−F).
Most importantly, we discovered amyloid-like fibril formation

upon proteolytic cleavage using TEM. Neither NE nor SARS-
CoV-2 S-protein incubated alone formed fibrils (Figure 2G−H).
Fibrils were found only after co-incubation of the two proteins
(Figure 2I). The fibrils showed unusual morphology with
evident branching (Figure 2I), suggesting involvement of
proteolytically nicked S-protein within the fibril, rendering
nodes for branching of different amyloidogenic sequences
(Figures 2I and S5).
We then performed LC-MS/MS analysis of peptides formed

after 1 min and 6 h of digestion at 2:1 excess of NE over S-
protein. We identified 98 NE cleavage peptides (Table S1) from
the S-protein structure and classified these into three groups: (i)
formed after 1 min (Figure 3A, B), (ii) formed after 1 min and
still present after 6 h (Figure 3A, C), and (iii) only present after 6
h (Figure 3A, D). Initial cleavage and further digestion (group i)
occurred mainly within the S2 domain with abundant cleavage
of the HR domains and in the C-terminal part of S1. NTD and
RBD were much less affected (Figure 3A). Three persistent
peptides formed after initial cleavage (group ii) originated from
NTD and RBD. Several peptides only formed after 6 h of
incubation (group iii). Strikingly, the peptide from segment
194−203 (FKNIDGYFKI, included in Spike192) was part of
this group and was highly abundant after 6 h (Table S2). Three
peptides containing segments from our seven spike peptides
(Figure 3A, E) were formed as free peptides (Spike192,
Spike258, and Spike1166) still present after 6 h of co-incubation,
two were digested early and disappeared (Spike532 and
Spike685), and two were likely still present in the parent nicked

S-protein (Spike365 and Spike601). Hence, the observed
formed branched fibrils (Figures 2I and S5) are likely composed
of a mix of fibrils initiated by an amyloidogenic peptide seed
recruiting nicked S-protein for elongation and branching.
We performed fibrillation experiments identical to that for the

other spike peptides also on the short fragment 194−203
(Figure 4A, B). The peptide was less amyloidogenic than
Spike192 (1 mg/mL was required to form fibrils compared to
0.1 mg/mL for Spike192) (Figure 4B). Formed fibrils of
Spike194−203 were however amyloidogenic by our three
criteria, ThT kinetics, Congo red birefringence, and fibrillar
ultrastructure (Figure 4A, B). It is worth noting that the
Spike194−203 peptide lacks one amino acid in the predicted
amyloidogenic sequence. To test the significance of this amino
acid deletion in the peptide, we performed a simple in silico
mutation experiment where we substituted the final tyrosine in
the amyloidogenic segment of Spike192 with a glycine to mimic
its deletion. The in silico substitution Y204G abolished the
amyloid prediction (Figure S6), demonstrating that removal of
this amino acid will alter the amyloidogenic properties of the
peptide. Fibril “shaving” is known for several amyloidogenic
proteins and peptides.25 It is possible that Y204 is cleaved after
S-protein aggregation.
It is known that S-protein affects the formation of persistent

amyloid-likemicroclots in human blood, a potential pathological
cause of long COVID-19 symptoms.26 We performed a
thrombin induced fibrinogen to fibrin conversion followed by
plasminogen tPA assay27 in the presence and absence of Spike
peptide fibrils (Supporting Information).
The addition of 10 μg/mL amyloid fibrils formed from a mix

of the seven spike peptides (Table 1, Figure S3) during fibrin

Figure 2. S-protein proteolysis by NE renders amyloid-like fibrils. Thermostability of (A) SARS-CoV-2 S-protein, (B) NE, (C) S-protein+NE,
measured by DSF. Dashed line in (C) is the mathematical sum of S-protein andNE, respectively, from (A) and (B) supporting cleavage of S-protein by
NE. MALDI-ToF spectra of C18 isolated peptides of (D) S-protein, (E) NE, and (F) S-protein+NE (6 h, 37 °C). TEMmicrographs of (G) S-protein
alone depicting the expected trimers, (H) NE alone, and (I) S-protein+NE coincubated at pH 8.4, 24 h, 37 °C.
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formation decreased the fibrinolysis (Figure 4C). Furthermore,
the addition of 2% fibrils (from 1mg/mL stock, total 20 μg/mL)
of Spike192 and 194−203 increased persistent plasmin
indigestible fibrin (Figure 4 D). As expected, the more
amyloidogenic Spike192 induced more plasmin resistant fibrin
clots than did Spike194−203. Our reductionist assay appears to
replicate results from human plasma samples.7

We tested two fluorescent analogues of positron emission
tomography (PET) amyloid tracers, CN-PiB (benzothiazole
analogue of Pittsburgh compound B) and DF-9 (stilbene
analogue of Florbetaben), known to bind to neurological Aβ
amyloid and cardiac AL, AA, and ATTR amyloid and found
strong binding with concomitant fluorescence response toward
Spike192 fibrils in vitro (Figure S7). As a translational strategy,
PET imaging may hence serve as an option for clinical studies to
complement liquid biopsies to assess amyloid microclots.26

In conclusion, we herein proposed a simple molecular
mechanism for how SARS-CoV-2 S-protein endoproteolyzed
by NE can form amyloidogenic S-peptides, such as segment
194−203, and lead to exposure of multiple amyloidogenic
segments in proteolytically nicked S-protein.
It is possible that other amyloidogenic peptides and S-protein

nicked by other proteases could be involved if this process
occurs in vivo. We found that all common coronaviruses
infecting humans contain amyloidogenic sequences (Figure
S8A). Nonetheless, the magnitude of diverse COVID-19
symptoms was not previously reported. The segment 194−
213 is unique for SARS-CoV-2 (Figure S8B) which, in
combination with acute inflammation and neutrophil recruit-
ment known to be more prevalent in COVID-19 compared to
other viral infections, could explain the putative COVID-19

associated amyloid formation. It should be mentioned that
amyloidosis is rather common in the elderly population18 and its
associations with viral infections is a matter of discussion.13

Recent studies demonstrate that COVID-19 recovered patients
have an increased risk of type II diabetes, an amyloid associated
disease.28,29 While our study is limited to in vitro findings of pure
preparations of peptides and proteins, the results propose taking
S-protein amyloidogenesis into account when studying COVID-
19 and long COVID-19 symptoms.
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