

Copyright 2008 © by Albert Sweigart
"Invent Your Own Computer Games with Python" is licensed under a Creative Commons
Attribution-Share Alike 3.0 United States License.

You are free:

� to Share - to copy, distribute, display, and perform the work
� to Remix - to make derivative works

Under the following conditions:

� Attribution - You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of the
work).
(Visibly include the title and author's name in any excerpts of this work.)

� Share Alike - If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

This summary is located here:
http://creativecommons.org/licenses/by-sa/3.0/us/

Your fair use and other rights are in no way affected by the above.

There is a human-readable summary of the Legal Code (the full license), located here:
http://creativecommons.org/licenses/by-sa/3.0/us/legalcode

IYOCGwP - Version 4

ISBN 978-0-9821060-0-6

For Caro, with more love
than I ever knew I had.

A Note to Parents and Fellow Programmers
I have more thanks for your interest and more apologies for this book's deficiencies than I can

enumerate. My motivation for writing this book comes from a gap I saw in today's literature for kids
interested in learning to program. I started programming when I was 9 years old in the BASIC language
with a book similar to this one. During the course of writing this, I've realized how a modern language
like Python has made programming far easier and more capable. Python has a gentle learning curve
while still being a serious language that is used by programmers professionally.

The current crop of programming books for kids that I've seen fell into two categories. First, books
that did not teach programming so much as "game creation software" or in dumbed down languages to
make programming "easy". Or second, they taught programming like a mathematics textbook: all
principles and concepts with application left to the reader. This book takes a different approach: show
the game source code right up front and explain programming principles from the examples.

My fellow programmers may notice that the games in this book all use console text, and also use a
single stream of text rather than a console window system such as the one the Curses library provides.
This is on purpose. Even though there are no graphics or sound, I think that the games are compelling
enough in their own right. I also think that graphics and images (and especially game construction kits)
mask the true nature of programming. I have the perhaps outdated notion that games do not require
fancy graphics to be fun.

The list of things that this book also does not cover: graphics, sound, graphical user interfaces,
debugging, file I/O, exceptions, networking, data structures such as stacks and queues, and object
oriented programming. After trudging through massively verbose programming manuals myself, I've
tried to strip down this book to its most concise form. These other concepts have been reserved for later
books.

I have also made this book available under the Creative Commons license, which allows you to make
copies and distribute this book (or excerpts) with my full permission, as long as attribution to me is left
intact and it is used for noncommercial purposes. I view the last nine months of on and off effort in this
book as my gift to world. Thank you again for reading this book.

Al Sweigart
al@coffeeghost.net

The full text of this book is available in HTML or PDF format at:
http://pythonbook.coffeeghost.net

Who is this book for?
� Anyone who wants to teach themselves computer programming, even if they have no previous

experience programming.
� Kids and teenagers who want to learn computer programming by programming games. Kids as

young as 9 or 10 years old should be able to follow along.
� Adults and teachers who wish to teach others programming.
� Programmers who want to teach others "real" programming by example.

This book is available for free under a Attribution/Share-Alike Creative Commons license. You can
make as many copies of it as you like, as long as credit to the author is left in. The Python programming
language software this book teaches is also freely available from www.python.org.

Table of Contents

Chapter 1 - "Hello World!" - Your First Program x
Hello! x
Downloading and Installing Python x
Starting the Python Interpreter x
Some Simple Math Stuff x
Evaluating Expressions x
Variables x
Strings x
Writing Programs x
Hello World! x
The Difference Between Statements and Expressions x
"My Favorite Stuff" x
Crazy Answers and Crazy Names for our Favorite Stuff x
Capitalizing our Variables x

Chapter 2 - Guess the Number x
Source Code x
Arguments x
Blocks x
Conditions and Booleans x
if Statements x

Step by Step, One More Time x
Some Changes We Could Make x
What Exactly is Programming? x
A Web Page for Program Tracing x

Chapter 3 - Jokes x
How Programs Run on Computers x
Source Code x
Some Other Escape Characters x
Quotes and Double Quotes x

Chapter 4 - Dragon Realm x
Source Code x
def Statements x

Boolean Operators x
Variable Scope x
Parameters x
Local Variables and Global Variables with the Same Name x
Where to Put Function Defintions x
The Colon : x
Step by Step, One More Time x
Designing the Program x
A Web Page for Program Tracing x

Chapter 5 - Hangman x
ASCII Art x
Source Code x
Designing the Program x
Multi-line Strings x
Constant Variables x
Lists x
Changing the Values of List Items with Index Assignment x
List Concatenation x
The in Operator x

Removing Items from Lists with del Statements x
Lists of Lists x
Methods x
The len() Function x

The range() Function x

for Loops x
Strings Act Like Lists x
List Slicing and Substrings x
elif ("Else If") Statements x

And that's it! x
Dictionaries x
Sets of Words for Hangman x

Chapter 6 - Tic Tac Toe x
Source Code x
Designing the Program x
Game AI x
List References x

Short-Circuit Evaluation x
The None Value x

A Web Page for Program Tracing x

Chapter 7 - Bagels x
Source Code x
Augmented Assignment Operators x
The sort() List Method x

The join() String Method x

String Interpolation x

Chapter 8 - Sonar x
Grids and Cartesian Coordinates x
Negative Numbers x
Changing the Signs x
Absolute Values x
Coordinate System of a Computer Monitor x
Source Code x
Designing the Program x
The remove() List Method x

Chapter 9 - Caesar Cipher x
About Cryptography x
ASCII, and Using Numbers for Letters x
The chr() and ord() Functions x

Source Code x
The isalpha() String Method x

The isupper() and islower() String Methods x

Cryptanalysis x
Brute Force x

Chapter 10 - Reversi x
How to Play Reversi x
Source Code x
The bool() Function x

The random.shuffle() Function x

Tips for Inventing Your Own Games x

Chapter 11 - AI Simulation x
"Computer vs. Computer" Games x
Percentages x
Integer Division x
The round() Function x

Learning New Things by Running Simulation Experiments x

Chapter 1 - "Hello World!", Your First
Program

Hello!

This is a book that will show you how to make computer games. All you need is a computer, some
software called the Python Interpreter, and this book. The software is free. You can download it at no
charge from the Internet. This book will show you how to set up your computer and program a few
games. Once you learn how these games work, you will be able to use that knowledge to create games
of your own.

When I was a kid, I found a book like this that taught me how to write my first programs and games.
It was fun and easy. Now as an adult, I still have fun programming computers as a job, and I get paid for
it. But even if you don't become a computer programmer when you grow up, programming is a useful
and fun skill to have. (I still sometimes invent my own computer games.)

Computers are very useful machines. In the future, knowing how to program a computer may be as
useful as knowing how to read a book. The good news is that learning to program isn't as hard as
learning to read. If you can read this book, you can program a computer.

To tell a computer what you want it to do, that is, to program a computer, you will need to learn the
computer's language. There are many different programming languages: Basic, Java, Python, Pascal,
Haskell, and C++ (pronounced, "see plus plus").

The book I read when I was a kid taught me BASIC programming. Back then, most people who
started to learn programming would learn to program in BASIC. But new programming languages have
been invented since then. This book is about Python programming. Python is even easier to learn than
Basic. Not only is it easy, but it is also a serious and useful programming language. Many adults use
Python in their own jobs and hobbies. That’s why I chose to make this book about Python programming.

Downloading and Installing Python

You might want the help of an adult or someone else to download and install the Python software.
The software that runs programs you write is called an interpreter. The interpreter is a program that
runs programs written in the Python language. This interpreter program is called the Python interpreter
(or sometimes, we just plainly call it Python). You can download the Python interpreter from this
website:

http://www.python.org

Click on the Download link on the left side of the web page. On the download page, click on the
Python 2.5.1 Windows Installer to download the Python interpreter for Windows. (If you are running an
operating system other than Windows, download the Python installer for your operating system instead.)
There may be newer versions by the time you read this book. If so, you can download the new version

and the programs in this book will still work.

Double-click on the python-2.5.1.msi file that you've just downloaded. This will start the Python
installer. All you need to do in the installer is click the Next button. The default choices in the installer
are just fine. When the install is finished, click Finish. You may have to restart your computer. You
should save any work you have in any other programs that are running, and then click "Yes". Then you
will be ready to start programming!

The games we'll create may seem simple compared to games you’ve played on the XBox, Playstation,
or Wii. These games don’t have fancy graphics or music. But games don’t have to be very complicated
to be fun. And unlike those video game consoles, you can always get more games by creating them
yourself for free. All you need is a computer and this book.

Okay, let’s get started!

Starting the Python Interpreter

After you have installed the Python interpreter, you can start it by clicking on Start, then Programs,
then Python 2.5, then IDLE (Python GUI). Look at this picture for an example:

You will see a new window with the title, "Python Shell". It will look like this:

This is the Interactive DeveLopment Environment (IDLE) program. IDLE is a program that helps us
type in our own programs and games. This window appears when you first run IDLE and is called the
interactive shell . We can type Python instructions into the shell to make the computer do what we
want. A program is a whole bunch of instructions put together, like a story is made up of a whole bunch
of sentences.

Let's learn some basic instructions first. We'll learn how to make the computer solve some math
problems in the Python shell. Don't worry if you don't know a lot of mathematics. If you know how to
add and multiply, you know enough math to do programming. Even if you aren't very good at math,
programming is more about problem solving in general than it is about solving math problems.

Some Simple Math Stuff

First, type in 2+2 into the shell and press the Enter key.

Notice that the Python shell can be used like a calculator. The + sign will do addition and the - sign
will do subtraction. The * sign (which is called an asterisk) is used for multiplication.

We'll have the computer solve some math problems for us. In programming (and in mathematics),
whole numbers are called integers . Integers are whole numbers like 4 and 99 and 0. Numbers with
fractions or decimal points are not integers. The numbers 3.5 and 42.1 and 5.0 are not integers. In
Python, the number 5 is an integer but if we wrote it as 5.0 it would not be an integer. Numbers with the
decimal point are called floating point numbers .

Try typing some of these math problems into the shell. Remember to press the Enter key after typing
each one in.

2+2+2+2+2
8*6
10-5+6
2 + 2

These math problems are called expressions in Python.

You can put any amount of spaces in between the integers and the math signs (which are called
operators), and Python can tell what you mean. There are other operators besides the mathematical
operators, but we will go into them later. These integers are also called values . There are other things
that are also values (such as strings) which we will talk about later.

Integers are a type of number. Numbers (and integers) are a type of value. Even though integers are
numbers, not all numbers are integers. (For example, fractions and numbers with decimal points like
2.5 are numbers that are not integers.) This is like how a cat is a type of pet, but not all pets are cats.
Someone could have a pet dog.

Values, operators, and expressions may seem like fancy words for numbers, math signs, and math
problems. But knowing these terms will help explain other programming instructions later on.

Actually, expressions include other things besides math problems. An expression is made up of
values (such as integers like 8 and 6) connected by an operator (such as the * multiplication sign). A
single value by itself is also considered an expression.

The Python shell is handy for solving large math problems very quickly. Try typing in 2063 *
3581 .

Notice that in Python, we don't put commas inside the numbers. We type 2063 instead of 2,063. The
computer can do what you tell it to very quickly, but it needs you to tell it in a very specific way.
Computer programming is all about writing out precise instructions to get the computer to do exactly
what you want.

In the expression 2 + 5 + 7 , the 2 + 5 part is also an expression. Expressions can contain other
expressions, like a large Lego building made up of smaller Lego blocks.

So even though computers are very fast and can store a lot of information, they aren't very smart at
all. They need human programmers to tell them exactly what to do.

Evaluating Expressions

When the computer solves the expression 10 + 5 and gets the value 15 , we say the computer has
evaluated the expression. Evaluating an expression reduces the expression to a single value, just like
solving a math problem reduces the problem to a single number: the answer. The expressions 10 + 5
and 10 + 3 + 2 have the same value, because they both evaluate to 15 . Remember that single values
by themselves are also considered expressions. The expression 15 evaluates to the value 15 (that was
pretty easy to evaluate, wasn't it?)

However, if you just type 5 + into the interactive shell, you will get an error message.

This error happened because 5 + is not an expression. Expressions have values connected by
operators, but 5 + has an operator that is not connecting two values. This is why the error message
appeared. The error message means that the computer does not understand the instruction you gave it.

This may not seem important, but a lot computer programming is about knowing how the computer
will evaluate expressions. And remember, expressions are just values connected by operators, or one
value by itself.

Variables

When we start programming, we will often want to save the values that our expressions evaluate to so
we can use them later. We can store values in things called variables . Think of variables like a mailbox
that you can put values inside of. You can store values inside variables with the = sign (which is called
the assignment operator). Try typing spam = 15 into the shell:

This instruction (called an assignment statement) stores the value 15 in a variable named spam.
Unlike expressions, statements are instructions that do not evaluate to any value, which is why there
is no value that is displayed on the next line in the shell. However, this statement does contain an
expression. The value 15 by itself is an expression, which evaluates to the value 15.

Variables store values, not expressions. If we had the statement, spam = 10 + 5 , then the
expression 10 + 5 would first be evaluated down to 15 . Then this 15 value would be the value stored
in the variable, spam.

You can think of the variable like a mailbox with the value 15 inside of it. The variable name "spam"
is the label on the mailbox (so we can tell one mailbox from another) and the value stored in it is like a
postcard inside the mailbox.

If we type spam into the shell by itself, it will show us what value is stored inside the variable.

If we type spam + 5 into the shell, this is the same as 15 + 5 because the value inside spam is
15 .

spam + 5 is also an expression, just like 15 + 5 would be an expression. When you see a variable

inside an expression, the value that is stored inside the variable is used when the computer evaluate
the expression. But we can change which value is stored in the variable by typing in another assignment
statement:

Notice that the first time we typed in spam + 5 , the expression evaluated to 20 . This is because we
had stored the value 15 inside the variable spam. But then we stored the value 3 inside of spam. The
old value of 15 was erased to let the new value of 3 be stored inside the variable. In programming, we
say that the value of 15 was overwritten . Then, when we typed in spam + 5 , then that expression
evaluates to 8. If the variable is like a mailbox and the value is like a postcard inside the mailbox, then
the mailbox can only hold one postcard at a time.

We can also have expressions on the right side of the = sign. Python will evaluate this expression to
get the final value, and then store this value inside of the variable. If you ever want to know what the
current value is inside of a variable is, just type the variable name into the shell.

Remember, in expressions, the variable acts as a name for a value. We can use the variable as many
times as we want. Look at this example:

When the variable spam has the integer value 15 stored in it, then spam + spam is the same as 15
+ 15 . This is why spam + spam evaluates to 30 . And spam - spam is the same as 15 - 15 ,
which evaluates to 0.

We can even use the value in the spam variable to assign spam with a new value:

The assignment statement spam = spam + 5 is sort of like saying "the new value of the spam
variable will be the current value of spam plus five." Remember that the variable on the left side of the =
sign will be assigned the value that the expression on the right side evaluates to. We can also keep
increasing the value in spam by 5 several times:

Let's assign a couple of values to another two variables named eggs and fizz . We can do this by
typing in fizz = 10 , then press Enter, then type eggs = 15 , then press Enter.

These two variables are like two mailboxes, one named fizz and the other named eggs . The fizz
variable has 10 inside it, and the eggs variable has 15 inside it.

Now let's try assigning a new value to the spam variable. Type spam = fizz + eggs into the
shell, then press Enter. Then type spam into the shell to see what the new value of spam is. Can you
guess what it will be?

The value in spam becomes 25 . This is because when we add fizz and eggs , we are adding the
values stored inside fizz and eggs .

Strings

That's enough of integers and math for now. Now let's see what Python can do with text. In the
Python programming language, we work with little chunks of text called strings . We can store string
values inside variables just like we can store number values inside variables. When we type strings, we
put them in between two single quotes. Try typing spam = 'hello' into the shell:

The single quotes are not part of the string, they just tell the computer where the string begins and
ends. If you type spam into the shell to display the contents of spam, it will display the 'hello'
string.

Strings can have any sort of character or sign in them. Strings can have spaces and numbers as well.
These are all strings:

'hello'
'Hi there!'
'Albert'
'KITTENS'
'7 apples, 14 oranges, 3 lemons' 'A long time ago i n a
galaxy far, far away...'

'O*&#wY%*&OCfsdYO*&gfC%YO*&%3yc8r2'

We can also put string values inside expressions, just like we can put number values inside
expressions. The + operator can add one string to the end of another. In programming, we call this
string concatenation . Try typing 'Hello' + 'World!' into the shell:

The string it produces is 'HelloWorld!' . We should put a space at the end of the 'Hello' string
if we don't want the words bunched together. Try typing 'Hello ' + 'World!' into the shell:

You can't add a string to an integer, or an integer number to a string. This is because a string and an
integer are different data types . The data type of the value 'Hello' is a string. The data type of the
value 5 is an integer.

Adding 5 and the string 'Hello' doesn't really make any sense anyway. If we tried to do it, Python
would think we were trying to concatenate a string and an integer, or maybe trying to add an integer and
a string, and give us an error:

These error messages may look strange and confusing, but later we'll learn what they mean and how
they can help us figure out what went wrong.

However, there is a difference between using the integer 5 and the string '5' . You can tell that '5'

is a string because it has quotes around it.

You may have noticed that the IDLE program makes strings appear in green text to help make them
stand out while you type them. The value that the expression evaluates to, however, will show up in blue
in the shell no matter what the data type.

Writing Programs

Let's write our first program! Until now we have been typing instructions one at a time into the
interactive shell. When we write programs though, we type in several instructions and have them run all
at once. Click on the File menu at the top of the Python Shell window, and select New Window. A new
blank window will appear. We will type our programs into this window, which is called the file editor .

Hello World!

A tradition for programmers learning a new language is to make their first program display the text
"Hello world!" on the screen. We'll create our own Hello World program now.

You don't have to type in the numbers or period on the left side of the source code. That's just there so
we can refer to each line by number in our explanation. If you look at the bottom-right corner of the

source code window, it will tell you which line the cursor is currently on.

In the picture, the cursor is currently on line 12.

Type the following text into this new window. We call this text the source code of the program.
These are the instructions to the Python interpreter that explain exactly how the program should behave.
(Do not type the numbers at the beginning of each line. Those numbers are for making this book more
readable, and they are not part of the source code.)

hello.py

1. # This program says hello and asks for my name.
2. print 'Hello world!'
3. print 'What is your name?'
4. myName = raw_input()
5. print 'It is good to meet you, ' + myName

The IDLE program will give different types of instructions different colors. After you are done typing
this code in, the window should look like this:

We will want to save this source code so we don't have to retype it each time we start IDLE. Click on

the File menu at the top, and then click on Save As. A new window will open that asks us what name
we want to give this file. Type in hello.py , so it looks like this:

Then click on the Save button.

You should save your program every once in a while as you type them. If the computer crashes or you
accidentally exit from IDLE, any typing you have done since you last saved will be lost.

To load this saved program later, click on the File menu at the top, and then click on Open. A new
window will appear that asks you to choose which file to open. Click on hello.py and then click on the
Open button.

Now we want to run the program we have just typed in. Click on the Run menu at the top, and then
click on Run Module. Or, instead of clicking on the menu, you can just push the F5 key on your
keyboard. The program will run in the Python Shell window that appeared when we first ran the IDLE
program. Our program asks us for our name. Go ahead and type it in, and then press the Enter key.

When we push Enter, the program will greet the user by name. We call the person who will run and
use the program the user . We call the person who wrote the program the programmer .
Congratulations! You've written your first program. You are now a computer programmer. You can run
this program again if you like. Just click on the window with our source code again, and click on the
Run menu, then Run Module. (Or press F5. This is what I like to do since it is quicker.)

How does this program work? Well, each line that we typed in is performed one after the other. The
program starts at the very top and then executes each line. After the program executes the first line, it
moves on and executes the second line, and then it executes the third line, and so on.

Think of the program like a cake recipe. The recipe tells you the exact steps you need to take to bake a
cake. Do the first step first, then the second, and keep going until you reach the end. The instructions in
your program are executed one by one starting from the top and then going down. We call this the flow
of execution , or just the execution for short.

Code Explanation

So what does all of that code we typed in mean? Let's look at each line we typed in, one line at a time.

1. # This program says hello and asks for my name.

This line is called a comment . Comments are ignored in the program. Comments are not for the
computer, but for the programmer. They are there to remind the programmer of what the program does.
Any text after the # sign (called the pound sign) is a comment. Programmers usually put comments at
the top of their code to give their program a title. The IDLE program (the program that we are typing our
code into) makes comments appear in red text to help make them stand out.

2. print 'Hello world!'

This line is a print statement . A print statement is the print keyword followed by an
expression. The statement will display the evaluated expression on the screen. Unlike typing strings into
the shell, when we write a program, the value that an expression evaluates to is not displayed on the
screen. To display the expression's value on the screen, we use a print statement. We want to display
Hello world! on the screen, so we type the print keyword followed by the 'Hello world!' string.

The Difference Between Statements and Expressions

What is the difference between a statement and an expression? All expressions evaluate to a single
value, and statements do not evaluate to anything. An expression is made up of values connected by
operators, which evaluate to a single value (for example, 2 + 3 evaluates to 5. But the print
statement does not evaluate to a value.

You could not assign the value that a print statement evaluates because statements do not evaluate
to values. If you tried, you would get a syntax error. (Just for fun, try typing it into the interactive shell.)
A syntax error happens when Python cannot understand what you're program is trying to do.

In fact, you can type a print statement into the shell:

When the print statement runs, it shows the string itself without the quotes. But remember that in
programs, nothing will appear on the screen unless you use a print statement.

Code Explanation continued...

3. print 'What is your name?'

This line is also a print statement. This time, the program will display What is your name? .

4. myName = raw_input()

This line has a variable and a function call . The variable is named myName and the function is
named raw_input() . A function is a bit of code that does a particular action. When we call a
function, the program does whatever the function is programmed to do. When raw_input() is called,
the program waits for the user to type in text and press Enter. This text string is what the function call to
the raw_input() evaluates to. The value that a function call will evaluate to is called the return
value . The raw_input() function returns the string that the user typed in. Because function calls can
be evaluated, they can also be part of an expression. Then this looks like a regular assignment where
myName stores a string inside it.

Notice that when I talk about the raw_input() function, I add parentheses to the end of it. This is
how we type out function names, because if I just wrote raw_input you would not know if I meant a
variable named raw_input or a function named raw_input . The parentheses at the end let us know
we are talking about a function, much like the quotes in '42' let us know we are talking about the
string '42' and not the integer 42 .

5. print 'It is good to meet you, ' + myName

On the last line we have a print statement again. This time, we use the plus operator (+) to
concatenate the string 'It is good to meet you, ' and the string stored in the myName
variable. This is how we get the program to greet us by name.

After the program executes the last line, it stops. Programmers say the program has terminated or
exited . All of the variables are forgotten by the computer, including the string we stored in myName.
Try running the program again and enter a different name.

Remember, the computer only does exactly what you program it to. In this program, it is programmed
to ask you for your name, let you type in a string, and then it will say hello and display the string you
typed. But you don't have to type in your name. You can type in anything you want and the computer
will treat it the same:

"My Favorite Stuff"

Let's make another program. Open a new window by clicking on the File menu at the top and then
clicking on New Window. (And remember to not type the numbers at the beginning of each line. Those
are only to make the source code more readable here.)

favorites.py

1. # Favorite stuff
2. print 'Tell me what your favorite color is.'
3. favoriteColor = raw_input()
4.
5. print 'Tell me what your favorite animal is.'

6. favoriteAnimal = raw_input()
7.
8. print 'Tell me what your favorite food is.'
9. favoriteFood = raw_input()

10.
11. # display our favorite stuff
12. print 'You entered: ' + favoriteFood + ' ' +

favoriteAnimal + ' ' + favoriteColor
13. # print 'Here is a list of your favorite things. '
14. print 'Color: ' + favoriteColor
15. print 'Animal: ' + favoriteAnimal
16. print 'Food: ' + favoriteFood

Save this program as favorites.py and then press F5 to run it.

Code Explanation

This program looks similar to our Hello World program. Let's look at each line carefully.

1. # Favorite stuff

This is another comment. The program will ignore it. It's just there to remind us what this program
does if we look at the source code later.

2. print 'Tell me what your favorite color is.'

Here we display a bit of text asking the user to type in their favorite color by using the print
keyword.

3. favoriteColor = raw_input()

Now we are going to call the raw_input() function to let the user type in their favorite color. When
they press enter, the string the user entered is stored in the favoriteColor variable.

5. print 'Tell me what your favorite animal is.'
6. favoriteAnimal = raw_input()

These two lines are similar to the ones before. Notice that there is a blank line in between them. In the

Python language, blank lines are just ignored. This is helpful because then we don't have to have all
the lines bunched together.

This time, the user will type what their favorite animal is, and the string will be stored in a variable
named favoriteAnimal .

8. print 'Tell me what your favorite food is.'
9. favoriteFood = raw_input()

Finally, we will let the user type in their favorite food. This string is stored in yet another variable
called favoriteFood .

11. # display our favorite stuff

Here's another comment. Comments don't always have to go at the top of the program. They can show
up anywhere. All the text after the pound sign (#) will be ignored by the program and won't be shown to
the user. It just reminds the programmer what the program does.

12. print 'You entered: ' + favoriteFood + ' ' +
favoriteAnimal + ' ' + favoriteColor

This print statement will show us the favorite food, animal, and color we entered. The plus sign is
used to combine the string 'You entered: ' with the strings we stored in our variables earlier. We
don't want the strings in the variable to be bunched together, so we add a string with one space in
between them. This will make the entire string look something like this:

'You entered: pasta cats blue'

Instead of this:

'You entered: pastacatsblue'

13. # print 'Here is a list of your favorite things. '

This line looks like another print statement. But do you see the pound sign at the start of it? That
means this line is really a comment and the program ignores this code. Sometimes the programmer may
want to remove code from the source code with the intent to add it back in later. Instead of deleting the
code, you can just put a pound sign to have it ignored for now. If you delete the pound sign, then this
code will no longer be a comment and would be executed with the rest of the program. In IDLE, you can
easily see that this is a comment and not code because it is in red text.

14. print 'Color: ' + favoriteColor
15. print 'Animal: ' + favoriteAnimal
16. print 'Food: ' + favoriteFood

These three lines will display our favorite things once again. When the last line of the program
executes, the program terminates.

Crazy Answers and Crazy Names for our Favorite Stuf f

The computer doesn't really care what you type in. It doesn't understand what food or animals or
colors are. All it knows is that the user will type in some string. We don't have to type in our favorite
things at all. Look at this run of the program where I type in some crazy answers:

All the program understands is that it should store the string the user enters into the variables and
display the string in those variables later on.

The program also does not care what name we give to our variables. Our program would work just the
same if it looked like this:

favorites2.py

1. # Favorite stuff 2
2. print 'Tell me what your favorite color is.'
3. q = raw_input()
4.
5. print 'Tell me what your favorite animal is.'
6. fizzy = raw_input()
7.
8. print 'Tell me what your favorite food is.'
9. AbrahamLincoln = raw_input()

10.
11. # display our favorite stuff
12. print 'You entered: ' + q + ' ' + fizzy + ' ' +

AbrahamLincoln
13. #print 'Here is a list of your favorite things.'
14. print 'Color: ' + q
15. print 'Animal: ' + fizzy
16. print 'Food: ' + AbrahamLincoln

The names we give the variables are more for our benefit than the computer's benefit. One name looks
the same as any other to the computer. The name q doesn't help us remember that this variable is
supposed to store the string of the user's favorite color. And the name fizzy isn't any type of animal.
And using the name AbrahamLincoln for the variable to store our favorite color is just silly. But since
we use the variables in the same way as before, the program works the exact same.

Capitalizing our Variables

Have you noticed that variable names that are made up of more than one word have the other words
capitalized? This is to make the variable names easier to read because variable names can't have spaces in
them.

thisnameiskindofhardtoread
thisNameIsEasierToRead

Leave the first word in lowercase, but start the other words in uppercase. We call something in a
certain way like this a convention : we don't have to do it this way, but doing it this way makes it a little
easier. The convention for capitalizing variable names is to leave the first word in lowercase but start the
other words in uppercase.

Remember, the computer doesn't care how we name our variables. It only cares how we use them in
the program. Look at this program:

favorites3.py

1. # Favorite stuff 3
2. print 'Tell me what your favorite color is.'
3. q = raw_input()
4.
5. print 'Tell me what your favorite animal is.'
6. AbrahamLincoln = raw_input()
7.
8. print 'Tell me what your favorite food is.'
9. AbrahamLincoln = raw_input()

10.
11. # display our favorite stuff
12. print 'You entered: ' + q + ' ' + AbrahamLincoln + ' '

+ AbrahamLincoln
13. #print 'Here is a list of your favorite things.'
14. print 'Color: ' + q
15. print 'Animal: ' + AbrahamLincoln
16. print 'Food: ' + AbrahamLincoln

When we run this program, it looks like this:

What happened here? The favorite animal and favorite food are the same thing. If you notice, we use
the same variable named AbrahamLincoln to store a string of our favorite animal and our favorite
food. When the user typed in their favorite animal, this string was stored in the AbrahamLincoln
variable. But when the user typed in their favorite food, this string was also stored in the
AbrahamLincoln variable and the favorite food string was forgotten. The favorite food value was
overwritten. The computer can't tell the difference between them because they use the same name. So the

computer thinks we mean to use the same variable.

A variable can only store one value at a time.

The computer will do exactly what we tell it to do, even if we tell it to do the wrong thing. The
computer can't read our minds and figure out what we want it to do. It is up to the programmer to make
sure the program works just right.

As a final note about variable and function names, I should tell you that the computer does pay
attention to the capitalization of the name. The computer considers these names to be four separate
variables:

fizzy
Fizzy
FIZZY
fIzZy

Four differently-cased names means four different variables.

We call this case-sensitivity . In the Python language, variable and function names are case-
sensitive. If you try to call the RAW_INPUT() function instead of the raw_input() function, you
will get an error because the computer doesn't know of a function named RAW_INPUT(). It only knows
a function named raw_input() .

So remember that even though the computer doesn't care what you name your variables or how you
capitalize them, be sure to always use the same capitalization. It is also a convention to never use two
different variables with the same name but different capitalization. If you use the variable
favoriteFOOD to store the string of your favorite breakfast food and the variable FAVORITEfood
to store your favorite dinner food, it is easy to forget which is which.

You don't always have to finish typing in a program before you run it. You can just have some of the
code complete, and then run it just to see how the program behaves. Programmers will often type some
code, run the program, type some more code, run the program again, and so on in order to make sure the
code is coming along the way they like. You can also always use the interactive shell to type single lines
of code in to see what it does.

Now that we have some of the basics down, in the next chapter we will create our first game!

Things Covered In This Chapter:

� Downloading and installing the Python interpreter.
� Using IDLE's interactive shell to run instructions.
� Flow of execution
� Expressions, and evaluating expressions

� Integers
� Operators (such as + - *)
� Variables
� Assignment statements
� Overwriting values in variables.
� Strings
� String concatenation
� Data types (such as strings or integers)
� Using IDLE to write source code.
� Saving and running programs in IDLE.
� The print statement.
� The raw_input() function.
� Comments
� Case-sensitivity
� Conventions

Chapter 2 - Guess the Number
We are going to make a "Guess the Number" game. In this game, the computer will think of a random

number from 1 to 20, and ask you to guess the number. You only get six guesses, but the computer will
tell you if your guess is too high or too low. If you guess the number within six tries, you win.

Because this program is a game, we'll call the user the player .

First, type this code in exactly as it appears here, and then save it by clicking on the File menu and
then Save As. Give it a file name like, guess.py . Then run it by pressing the F5 key. Don't worry if
you don't understand the code now, I'll explain it step by step.

Be sure to type it exactly as it appears. Some of the lines don't begin at the leftmost edge of the line,
but are indented by four or eight spaces. Be sure to put in the correct amount of spaces for the start of
each line.

Some of these lines are too long to fit on one line in the page, and it wraps around to the next line.
When you type them into the file editor, type these lines of code all on the same line. You can tell if a
new line starts or not in this book by the line numbers on the left side. For example, this has only two
lines of code, even though the first line wraps around:

Sample Run

Here is the text from a sample run of this game. The text that the program prints out is in blue, and the
text that the player types in is in black and in bold.

Hello! What is your name?
Albert
Well, Albert, I am thinking of a number between 1 a nd 20.
Take a guess.
10
Your guess is too high.
Take a guess.
2
Your guess is too low.
Take a guess.
4
Good job, Albert! You guessed my number in 3 guesse s!

Source Code

1. print 'This is the first line! xxxxxxxxxx
xxxxxxx'

2. print 'This is the second line!'

guess.py

1. # This is a guess the number game.
2. import random
3.
4. guessesTaken = 0
5.
6. print 'Hello! What is your name?'
7. myName = raw_input()
8.
9. number = random.randint(1, 20)

10. print 'Well, ' + myName + ', I am thinking of a number
between 1 and 20.'

11.
12. while guessesTaken < 6:
13. print 'Take a guess.' # There are four space s in

front of print.
14. guess = raw_input()
15. guess = int(guess)
16.
17. guessesTaken = guessesTaken + 1
18.
19. if guess < number:
20. print 'Your guess is too low.' # There a re

eight spaces in front of print.
21.
22. if guess > number:
23. print 'Your guess is too high.'
24.
25. if guess == number:
26. break
27.
28. if guess == number:
29. guessesTaken = str(guessesTaken)
30. print 'Good job, ' + myName + '! You guessed my

number in ' + guessesTaken + ' guesses!'
31.
32. if guess != number:
33. number = str(number)
34. print 'Nope. The number I was thinking of wa s ' +

number

Even though we are typing in our source code into this file editor new window, we can still go back to
the shell to type in individual instructions to see what they do. The interactive shell is very good for

experimenting with different instructions when we are not running a program.

Code Explanation

Let's look at each line of code.

1. # This is a guess the number game.

This is a comment. Remember that Python will ignore everything after the # sign. This just reminds
us what this program does.

2. import random

This is an import statement . The import statement is not a function (it does not have parentheses
after its name). The statement has a special Python keyword, like the print statement has, called the
import keyword. Many functions like raw_input() are included with every Python program. But
some functions exist in separate programs called modules. Modules are other Python programs that
contain other functions that we can use. The import statement will add these modules and their
functions to our program.

The import statement is made up of the import keyword followed by the module name.

This line imports a module named random . The random module has several functions related to
random numbers. We'll use one of these functions later to have the computer come up with a random
number for us to guess.

4. guessesTaken = 0

This creates a new variable named guessesTaken . We will store the number of guesses we've
made in this variable. Since the player hasn't made any guesses so far, we will store the integer 0 here.

6. print 'Hello! What is your name?'
7. myName = raw_input()

These two lines are identical to our Hello World program. Programmers will often reuse code from
their other programs when they need the program to do something similar. When these two lines are done
executing, the string of the player's name will be stored in the myName variable. (Remember, the string
might not really be the player's name. It's just whatever string the player typed in.)

9. number = random.randint(1, 20)

Here we are calling a new function named randint() , and then storing the return value in a variable
named number . Because randint() is one of the functions that the random module provides, we put
random. (that is, the word "random" followed by a period) in front of it to tell our program the function
is in the random module. The randint() function will return a random integer between (and
including) the two integers we give it. Here, we give it the integers 1 and 20 between the parentheses that
follow the function name (separated by a comma). Whatever the random integer that randint has
returned is, it is stored in a variable named number .

Just for a moment, go back to the interactive shell and type import random to import the random
module. Then type random.randint(1, 20) to see what the function call evaluates to. It will return
an integer that between 1 and 20. Type it again, and the function call will probably evaluate to a different
integer. This is because each time the randint() function is called, it will evaluate to some random
number. This is like when you roll some dice, you will come up with a random number each time.

Whenever we want to add randomness to our games, we can use the randint() function. And we
use randomness in most games. (Think of how many board games use dice.)

You can also try out different ranges of numbers by changing the arguments. Type

random.randint(1, 4) to only get integers between 1 and 4 (including both 1 and 4). Or try
random.randint(1000, 2000) to get integers between 1000 and 2000.

Be sure to type random.randint(1, 20) and not randint(1, 20) , otherwise the computer
will not know to look inside the random module for the randint() function. Then it will show you
an error like below:

Remember, your program needs to run import random before it can call the random.randint
() function. This is why import statements usually go at the beginning of the program.

Arguments

The integers between the parentheses in the random.randint(1, 20) function call are called
arguments . Some functions require that you pass them values when you call them. Look at these
function calls:

raw_input()
random.randint(1, 20)

The raw_input() function has no arguments. The randint() function has two arguments.
When we have more than one argument, we separate them by putting commas in between the

arguments. Programmers say that the arguments are delimited (that is, separated) by commas. This
is how the computer knows when one value ends and another begins.

If you pass too many or too few arguments in a function call, Python will display an error message. In
the picture below, we first called randint() with only one argument (too few), and then we called
randint() with three arguments (too many).

Code Explanation continued...

10. print 'Well, ' + myName + ', I am thinking of a number
between 1 and 20.'

This print statement welcomes the player by name, and tells them that the computer is thinking of a
random number. Remember how I said the print statement only takes one string? It does. Look at the
line carefully. The plus signs concatenate the three strings to evaluate down to one string, and that is the
one string for the print statement. It might look like the commas are separating the strings, but if you
look closely you see that the commas are inside of the quotes and part of the strings themselves.

12. while guessesTaken < 6:

This is a while statement . Like import , it has a special keyword to Python. The while statement
is made up of the while keyword, followed by an expression, followed by a colon (the : sign). The
next line after the while statement is the beginning of a while-block. The while-block is made up of
the lines of code that have at least 4 or more spaces in front of it (which are lines 13 through 26). The

expression next to the while keyword is also called a condition . Before we understand what is going
on with this code, let's learn about blocks and conditions.

Blocks

A block is made up of several lines of code grouped together. You can tell when the block begins
and ends by looking at the line's indentation (that is, the number of spaces in front of the line). The
block starts when the indentation of a line of code is more than the previous line. The block ends when
the indentation returns to what it was before the block started. It is easier to see with a picture. This
picture has each block highlighted with a different color:

The lines of code inside the yellow box are all in the same block. Because this block follows the
while statement, we call it a while-block. Blocks can contain other blocks. Notice that the yellow
block contains the blue and green blocks. The blue and green blocks are still blocks, even though they
only have one line of code and are inside another block. The Python interpreter knows when a block is
finished because a line of code will have the same indentation before the block started.

It is important to get the indentation correct. Usually the indentation of a block is four spaces. The
indentation of a block inside another block is eight spaces. And the indentation of a block inside a block
inside a block is twelve spaces. Notice that when we type code into IDLE, each letter is the same width.
You can look at how many letters are on the line above or below to see how many spaces you have put
in.

The indentation doesn't have to be four spaces more than the last indentation, but that is the
convention (that is, the usual way of doing things) in the Python language.

Here is a picture of that same code, except now we have red boxes for each space to make it easier to
count the spaces. The yellow block includes all the lines with at least four spaces in front. The blue
block is the first line with eight spaces of indentation. The green block is the second line with eight

spaces of indentation. Because there is a line with smaller indentation after the blue block, we know
that the blue block has ended. This is why the blue and green blocks are separate blocks.

We call the block after the while keyword a loop block because when the program reaches the
bottom of the block, it will loop back to the top. Then it rechecks if the condition is still true. If it is, our
program enters the loop block again. If the condition is false, then our program jumps down to the line
after the loop block. The loop block is also called a while-block, because it starts with the while
keyword. You can learn what it means for a condition to be true or false in the next section.

Conditions (a special kind of expression) and
Booleans (a new data type)

Remember we were talking about the line of code with the while statement:

12. while guessesTaken < 6:

I called the expression that came after the while keyword the condition. How do we know it is an
expression? Because it contains two values (the value in the variable guessesTaken , and the integer
value 6) connected by an operator (the < sign, which is called the "less than" sign). This is a new type of
operator called a comparison operator . Expressions with comparison operators won't evaluate to an
integer or a string, but a new data type called a boolean .

What's a boolean? Well, for the integer data type, there are many different integer values we can have:

4
99
0
1236892892

And for the string data type, there are also many different string values we can have:

'Hello world!'
'My name is Albert.'
'fhsu$$iwehiu^4tihggs@is34
'42'

But for the boolean data type, there are two and only two values:

True
False

When you type one of these values into your program, remember that they are case-sensitive. You
must type True or False , not true or TRUE or fAlSe . Boolean values are not string values, so you
do not put a ' quote character around them.

A condition is an expression that uses comparison operators (such as the < "less than" sign).
Conditions will always evaluate to a boolean value. This is like how expressions with math operators
(like + or - or *) will evaluate to integers.

Let's look at the condition in our code: guessesTaken < 6

What this translates to is "is the value stored in guessesTaken less than the value 6?" If it is, then
the condition evaluates to True . If it does not, then the condition evaluates to False . Remember in
line 4, we stored the value 0 in guessesTaken . So this condition is asking, "is the value 0 less than
the value 6". We know that this is true, so the condition evaluates to the boolean value of True .

Let's go back to the interactive shell for a bit. Type in the following conditions (which are also
expressions):

0 < 6
6 < 0
50<10
10 < 11
10 < 10

The condition 0 < 6 returns the boolean value True because the number 0 is less than the number
6. But because 6 is not less than 0, the condition 6 < 0 evaluates to False . 50 is not less than 10, so
50<10 is False . 10 is less than 11, so 10 < 11 is True .

But what about 10 < 10 ? Why does it evaluate to False ? Because the number 10 is not smaller
than the number 10. They are exactly the same size. If Alice was the same height as Bob, if would be
false to say that Alice was shorter than Bob. Likewise, 10 < 10 evaluates to False .

There are some other comparison operators besides <. Here they are:

Let's try typing some conditions into the shell to see how these operators work:

0 > 6
6 > 0
10 > 10
10 == 10
10 == 11
11 == 10
10 != 10
10 != 11
'Hello' == 'Hello'
'Hello' == 'Good bye'
'Hello' == 'HELLO'
'Good bye' != 'Hello'

Operator Sign Operator Name
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Notice that there is a difference between the assignment operator (the = sign) and the "equal to"
comparison operator (the == sign). The = sign is used to assign a value to a variable, and the == sign is
used in expressions to see if two values are the same or not. It's easy to accidentally use one when you
meant to use the other, so be careful of what you type in.

Now that we have covered what conditions, comparison operators, and booleans are, let's talk about
what while statements do.

12. while guessesTaken < 6:

The while statement marks the beginning of a loop . Sometimes in our programs, we want the
program to do something over and over again. When the execution reaches a while statement, it
evaluates the condition next to the while keyword. If the condition evaluates to True , the execution
moves inside the while-block. (In our program, the while-block begins on line 13.) If the condition
evaluates to False , the execution moves past the while-block. (In our program, the first line after the
while-block is line 28.)

Let's say the condition evaluates to True (which it does the first time, because the value of
guessesTaken is 0.) Execution will enter the while-block at line 13 and keep going down. After the
reaches the end of the while-block, instead of going down to the next line, it jumps back up to the
while statement's line (line 12). It then re-evaluates the condition, and if it is True then we enter the
while-block again.

This is how the loop works. As long as the condition is True , we will keep executing the code inside
the while-block over and over again until we reach the end of the while-block and the condition is
False . So until guessesTaken is equal to or greater than 6, we will keep looping. Think of the
while statement as saying, "while this condition is true, keep looping through the code in this block".

Code Explanation continued...

13. print 'Take a guess.' # There are four space s in
front of print.

14. guess = raw_input()

The program will now ask us for a guess. We type in what we guess the number is, and then this is
stored in a variable named guess .

15. guess = int(guess)

Here we call a new function called int() . The int() function takes one argument. The
raw_input() function returned a string of text that player typed. But in our program, we will want an
integer, not a string. Remember that Python considers the string '5' and the integer 5 to be different
values. So the int() function will take the value we give it and return the integer form of it.

Let's play around with the int() function in the interactive shell. Try typing the following:

int('42')
int(42)
int('hello')
int('forty-two')
int(' 42 ')
2 + int('2')

We can see that the int('42') call will return the integer value 42. The int(42) will also do this

(though it is kind of pointless to convert an integer to an integer). However, even though you can pass
a string to the int() function, you cannot just pass any string. Passing 'hello' to int() (like we
do in the int('hello') call) will result in an error. The string we pass to int() must be made up
of numbers.

And the integer we pass to int() must be in numbers, it cannot be written out. This is why int
('forty-two') also fails and produces an error. The int() function is slightly forgiving, because
if our string has spaces on either side, it will still run without error. (This is why the int
(' 42 ') call works.)

The 2 + int('2') line shows an expression that adds an integer 2 to the return value of int
('2') (which evaluates to 2 as well). The expression evaluates to 2 + 2, which then evaluates to 4. So
even though we cannot add an integer and a string (2 + '2' would show us an error), we can add an
integer to a string that has been converted to an integer.

The guess variable originally held the string of what the player typed. We will overwrite the string
value stored in guess with the integer value returned by the int function.

In our Guess the Number game, if the player typed in something that was not a number, then the
function call int would result in an error and the program would crash. In the other games in this book,
we will add some more code to check for error conditions like this and give the player another chance to
enter a correct response.

17. guessesTaken = guessesTaken + 1

Now that the player has taken a guess, we want to increase the number of guesses that we remember
the player taking. The first time we enter the loop block, guessesTaken has the value of 0. Python
will take this value and add 1 to it. 0 + 1 is 1. Then Python will store the new value of 1 to
guessesTaken . After this line, the value of guessesTaken will be 1 more than it was previously.

It is easy to think of this line as meaning, "the guessesTaken variable should be one more than
what it already is". When we add one to a value, programmers say they are incrementing the value
(because it is increasing by one). When we subtract one from a value, programmers say they are
decrementing the value (because it is decreasing by one).

if Statements

19. if guess < number:
20. print 'Your guess is too low.' # There a re

eight spaces in front of print.

This is called an if statement. It has a new keyword, if . Next to the if keyword is the condition. The
block that follows the if keyword is called an if-block. The if statement is very similar to the while
statement. They both have a keyword, followed by a condition, and then a block of code.

The if statement works almost the same way as a while statement, too. If the condition is True ,
then execution enters the if-block. If the condition is False , then the execution skips past the if-block.
Unlike the while-block, execution does not jump back to the if statement at the end of the if-block. It
just continues on down to the next line.

This print statement is the only line inside the if-block. If the integer the player typed is less than the
random integer the computer thought up, then we will display to the player "Your guess is too
low." If the integer the player entered is equal to or larger than the random integer (in which case, the
condition next to the if keyword would have been False), then this block would have been skipped
over.

Code Explanation continued...

22. if guess > number:
23. print 'Your guess is too high.'

Here is another if statement. This time, we check if the player's guess is larger than the random
integer. If so, we will enter the if-block that follows it. The print line tells the player that their guess is

too big.

In case you haven't thought of it, these two conditions cannot both be True . The player's guess
(which is stored in the guess variable) can either be higher OR lower than the computer's guess, but it
can not be higher AND lower. This means we will never see both messages at the same time. There is
one more case to consider, and that is if the guess is equal to the random integer. We will cover this in
the next line.

25. if guess == number:
26. break

This if statement's condition checks to see if the guess is equal to the random integer. If it is, we will
enter the if-block that follows it.

The line inside the if-block is just a break statement. The break statement tells the program to
immediately jump to the out of the while-block that it is inside of, and to the first line after the end of the
while-block. The while statement's condition is not rechecked.

The break statement is just the break keyword by itself, with no condition or colon (the : sign).

If the player's guess is not equal to the random integer, we do not break out of the while-block, we
will reach the bottom of the while-block anyway. Once we reach the bottom of the while-block, the
program will loop back to the top and recheck the condition (guessesTaken < 6). Remember after
the guessesTaken = guessesTaken + 1 line of code executed, the new value of
guessesTaken is 1. Because 1 is less than 6, we enter the loop again.

If the player keeps guessing too low or too high, the value of guessesTaken will change to 2, then
3, then 4, then 5, then 6. If the player guessed the number correctly, the condition in the if guess
== number statement would be True , and we would have executed the break statement. Otherwise,
we keep looping. But when guessesTaken has the number 6 stored, the while statement's condition is
False . (6 is not less than 6, rather 6 is equal to 6) Because the while statement's condition is
False , we will not enter the loop and instead jump to the end of the while-block.

28. if guess == number:

This line of code isn't the same line in line 25. This line has no indentation, and is outside the while-
block. When we got out of the while block, it was either because the while statement's condition was

False (which happens if the player ran out of guesses) or if we executed the break statement
(which happens if the player guessed the number right). On this line we recheck if the player guessed
correctly, and if so, we enter the if-block that follows.

29. guessesTaken = str(guessesTaken)

This line is inside the if-block, and only executes if the condition was True .

This line is like the guess = int(guess) line of code. Here we call the new function str() ,
which returns the string form of the argument we give it. We want to change the value in
guessesTaken (which is an integer) into the string version of itself.

The str() and int() functions are very important, because it is important to know that integers
and strings are different data types with different values. The integer 42 and the string '42' are entirely
different. But if we ever need to get the value of one data type as a value of another data type, str()
and int() can be very handy.

30. print 'Good job, ' + name + '! You guessed m y
number in ' + guessesTaken + ' guesses!'

This line is also inside the if-block, and only executes if the condition was True .

This line will tell the player that they have won, and how many guesses it took them. The reason why
we had to change the guessesTaken value into a string is because we can only add strings to other
strings. If we tried to add a string to an integer, the Python interpreter would get confused and display an
error.

32. if guess != number:

This if statement's condition has a new sign. Just like the == sign means "is equal to", the != sign
means "is not equal to". If the value of guess is lower than or higher than (and therefore, not equal to)
the random number, then this condition evaluates to True , and we would then enter the block that

follows this if statement.

33. number = str(number)

This line is inside the if-block, and only executes if the condition was True .

In this block, because the player did not guess the random number we will tell them what it is. But
first we will have to store the string version of number as the new value of number .

34. print 'Nope. The number I was thinking of wa s ' +
number

This line is also inside the if-block, and only executes if the condition was True . This line tells the
player what the random number was. At this point, we have reached the end of the source code, so the
program terminates.

We've just programmed our first real game! In the last chapter we learned about values and
expressions and variables. In this chapter we learned how we can use those along with if , while , and
break statements to make the program do different things based on the value of variables or
expressions.

Step by Step, One More Time

Let's go over the code one more time. To help you understand everything, I will briefly go through the
program just like the computer would, starting from the top. We will remember what the values of
variables are ourselves (you can write them down on a piece of paper as we go). This is called tracing
through the program. It's what programmers do to figure out exactly how the program will behave.
Some lines of code are executed more than once (because they are inside loops), so we will go over
those lines of code more than once.

1. # This is a guess the number game.

This line is a comment. The computer will ignore this line, and move down to line 2.

2. import random

This line will import the random module so that we can use the randint() function in our
program. Line 3 is blank, so the computer will skip ahead to line 4.

4. guessesTaken = 0

The computer will create a new variable called guessesTaken , and the integer 0 will be stored
inside this variable.

6. print 'Hello! What is your name?'

A greeting is displayed to the player.

7. myName = raw_input()

The raw_input() function is called, and will let the user type in a string. This string is then stored
in a variable called myName. Let's pretend that when the program runs, the player types in Bob. The
value of the myName variable is the string, 'Bob' .

9. number = random.randint(1, 20)

On line 9 we call the randint() function, which is inside the random module. Because this
function is inside a module we imported, we have to put the module name and a period in front of the
function name. The two arguments we pass are the integers 1 and 20 . This tells the randint()
function to return a random integer between 1 and 20 (including 1 and 20). Let's pretend that it returns
the integer 8. The value of number will be 8.

10. print 'Well, ' + myName + ', I am thinking of a number
between 1 and 20.'

Because the value inside myName is the string 'Bob' , this will print out Well, Bob, I am
thinking of a number between 1 and 20.

12. while guessesTaken < 6:

This is the start of a while-block. If the condition is True , then the program execution will enter the
while-block. If the condition is False , we will skip past the while-block to line 28. The variable
guessesTaken has 0 stored inside of it, and 0 is less than 6, which makes the condition True . So
the next line to run is line 13.

13. print 'Take a guess.' # There are four space s in
front of print.

We print a message that asks the player to type in a value. There is a comment on this line that the
computer ignores. The comment reminds the programmer that we should put four spaces at the
beginning of the line because we are now inside a block.

14. guess = raw_input()

The player now types in a string, and this string will be stored in the guess variable. Let's pretend
that the player typed in the string '12' .

15. guess = int(guess)

We want to store the integer value of what the player typed in, not the string value. int() function
will return the integer value of the argument we give it. (The argument is the value in between the
parentheses next to the function name "int".) The guess variable holds the string '12' , so '12' is the
argument we pass to the int() function, and the integer value 12 is what the int() function returns.
This value is then stored as the new value in the guess variable. After this line runs, guess stores the
integer 12 instead of the string '12' .

17. guessesTaken = guessesTaken + 1

The value stored in guessesTaken is 0 (this was set on line 4). We want to keep track of how
many guesses the player has taken, so we make the new value of guessesTaken to be the current
value of guessesTaken plus one. After this line executes, guessesTaken will now hold the
integer 1.

19. if guess < number:

Now we check if the if-statement's condition is True . The value of guess is the integer 12 (set on
line 15), and the value of number is 8 (set on line 9). 12 is not less than 8, so this condition is False .
That means we will skip the if-block that follows and go directly to line 22.

22. if guess > number:

This if-statement's condition is True , because 12 is larger than 8, so the program execution enters

the if-block at line 23.

23. print 'Your guess is too high.'

We display a message that tells the player their guess was too high.

25. if guess == number:

The condition in this if-statement is False , because 12 is not equal to 8. We skip the if-block that
follows. But line 28 has fewer spaces than the four spaces we have been indenting our code inside the
while-block. That means we have reached the end of the while-block too, and execution will loop back
to the while-statement on line 12.

12. while guessesTaken < 6:

The condition for the while-statement is True , because guessesTaken is 1, but 1 is still less than
6. So the program execution enters the while-block at line 13.

13. print 'Take a guess.' # There are four space s in
front of print.

We display this message to the player again.

14. guess = raw_input()

We get a string typed by the player, and store it in the variable guess . Let's pretend that the user
typed in the string '6' . The string '6' is stored in the variable guess, and the old value of 12 is
forgotten.

15. guess = int(guess)

We want to get the integer value of the string inside guess . We pass the int() function an
argument of '6' , and it will return 6. The new value of guess is the integer 6.

17. guessesTaken = guessesTaken + 1

We want to increase the number of guesses taken by one, so the new value of guessesTaken is the
current value (the integer 1) plus one. The new value of guessesTaken is 2.

19. if guess < number:

We check to see if this if-statement's condition is True . It is, because 6 is less than 8. That means
our program's execution will enter the if-block at line 20.

20. print 'Your guess is too low.' # There a re
eight spaces in front of print.

We display a message to the player tell them that their guess was too low. The text after the # pound
sign is a comment and is ignored.

22. if guess > number:

We check if guess (the integer 6) is greater than number (the integer 8). It is not, so this condition is
False and we skip the if-block.

25. if guess == number:

We check if guess (the integer 6) is equal to number (the integer 8). It is not, so this condition is
False and we skip the if-block. We have reached the end of the while-block, so we jump back to line
12.

12. while guessesTaken < 6:

This time when we check the condition, guessesTaken has the value 3. But 3 is still less than 6, so
the condition is True and we enter the while-block again.

13. print 'Take a guess.' # There are four space s in
front of print.

We ask the player to type in a number again.

14. guess = raw_input()

The function call to the raw_input() function lets the player type in a string. Let's pretend that the
player types in the string '8' . Then the new value of guess is '8' .

15. guess = int(guess)

We want to get the integer value of the string inside guess . We pass the int() function an
argument of '8' , and it will return 8. The new value of guess is the integer 8.

17. guessesTaken = guessesTaken + 1

We want to increase the number of guesses taken by one, so the new value of guessesTaken is the
current value (the integer 2) plus one. The new value of guessesTaken is 3.

19. if guess < number:

We check if guess (the integer 8) is less than number (the integer 8). It is not. (If I had 8 apples
and you had 8 apples, you would not say I had less apples than you because we have an equal number of
apples.) This condition is False and we skip the if-block. Next we execute line 22.

22. if guess > number:

We check if guess (the integer 8) is greater than number (the integer 8). It is not, so this condition
is False and we skip the if-block. Next we execute line 25.

25. if guess == number:

We check if guess (the integer 8) is equal than number (the integer 8). It is, so we enter the if-
block at line 26.

26. break

The break statement tells us to break out of the while-block that we are inside, and go to the first
line after the while-block. This will be line 28.

28. if guess == number:

We check if guess (the integer 8) is equal than number (the integer 8). It is, so we enter the if-
block at line 29.

29. guessesTaken = str(guessesTaken)

On this line we convert guessesTaken to the string '3' .

30. print 'Good job, ' + myName + '! You guessed my
number in ' + guessesTaken + ' guesses!'

Now we display the winning message to the player. The variable myName holds the string value
'Bob' and guesses holds the string value '3' , so the final string printed is 'Good job, Bob!
You guessed my number in 3 guesses!'

32. if guess != number:

This condition will evaluate to False , so we skip past the if-block that follows it. But there is no more
code after it, so the program terminates.

Some Changes We Could Make

This has been our first game! It was kind of long to go through everything and a lot to learn, but now
you are a real game programmer. Just for fun, try changing this program to change the way the game
behaves.

For example, you can change these lines:

9. number = random.randint(1, 20)
10. print 'Well, ' + name + ', I am thinking of a nu mber

between 1 and 20.'

into these lines:

9. number = random.randint(1, 100)
10. print 'Well, ' + name + ', I am thinking of a nu mber

between 1 and 100 .'

and now the computer will think of an integer between 1 and 100 .

Or you can change this line:

12. while guessesTaken < 6:

into this line:

12. while guessesTaken < 4:

and now the player only gets four guesses instead of six guesses.

What Exactly is Programming?

If someone asked you, "What exactly is programming anyway?" what could you say back to them?
Programming is just the action of writing the code for programs, that is, creating programs that can be
executed by a computer.

"But what exactly is a program?" When you see someone using a computer program (for example,
playing our Guess The Number game), all you see is some text appearing on the screen. The program
decides what exact text to show on the screen (which is called the output), based on its instructions and
on the text that the player typed on the keyboard (which is called the input). The program has very
specific instructions on what text to show the user. A program is a collection of instructions.

"What kind of instructions?" There are only a few different kinds of instructions, really.

� Expressions, which are made up of values connected by operators. Expressions are all evaluated
down to a single value, like 2 + 2 evaluates to 4 or 'Hello' + ' ' + 'World' evaluates
to 'Hello World' . Function calls are also part of expressions because they evaluate to a single
value themselves, and this value can be connected by operators to other values. When expressions
are next to the if and while keywords, we also call them conditions.

� Assignment statements, which simply store values in variables so we can remember the values
later in our program.

� if , while and break are flow control statements because they decide which instructions
are executed. The normal flow of execution for a program is to start at the top and execute each
instruction going down one by one. But these flow control statements can cause the flow to skip
instructions, loop over instructions, or break out of loops. Function calls also change the flow of
execution by jumping to the start of a function.

� The print statement, which displays text on the screen. Also, the raw_input() function can
get text from the user through the keyboard. This is called I/O (pronounced like the letters, "eye-
oh"), because it deals with the input and output of the program.

And that's it, just those four things. Of course, there are many details about those four types of
instructions. In this book you will learn about new data types and operators, new flow control statements
besides if , while and break , and several new functions. There are also different types of I/O (input
from the mouse or files on the hard drive, and outputting sound and graphics and pictures instead of just
text.)

For the person using your programs, they really only care about that last type, I/O. The user types on
the keyboard and then sees things on the screen or hears things from the speakers. But for the computer
to figure out what sights to show and what sounds to play, it needs a program, and programs are just a
bunch of instructions that you, the programmer, have written.

A Web Page for Program Tracing

If you have access to the Internet and a web browser, you can go to these web sites and see a "visual

tracing" web page that will show each step of the program. This might make it more clear what the
Guess the Number program does.

The left side of the web page shows the source code, and the highlighted line is the line of code that is
about to be executed. You execute this line and move to the next line by clicking the "Next" button. You
can also go back a step by clicking the "Previous" button, or jump directly to a step by typing it in the
white box and clicking the "Jump" button.

On the right side of the web page, there are three sections. The "Current variable values" section show
you each variable that has been assigned a value, along with the value itself. The "Notes" section will
give you a hint about what is happening on the highlighted line. The "Program output" section shows the
output from the program, and the input that is sent to the program. (This web page automatically enters
text to the program when the program asks.)

So go to each of these web pages and click the "Next" and "Previous" buttons to trace through the
program like we did above.

� Guess the Number, trace 1 -
http://pythonbook.coffeeghost.net/book1/traces/trace1GuessTheNumber.html

� Guess the Number, trace 2 -
http://pythonbook.coffeeghost.net/book1/traces/trace2GuessTheNumber.html

Things Covered In This Chapter:

� import statements
� Modules
� Arguments
� while statements
� Conditions
� Blocks
� Comparison operators
� The difference between = and ==.
� if statements
� The break keyword.
� The str() function.
� The random.randint() function.

Chapter 3 - Jokes

How Programs Run on Computers

Now we will write a program to tell jokes to the user. Before we go into the code, you should know
how your programs run on the computer.

The computer you use runs a very large program, called an operating system . Your operating
system (called an OS (pronounced like the letters, "oh-ess") for short) may be Windows, MacOS, Linux
or another one. The OS is a program that runs other programs called applications like a web browser,
word processor, email client, or computer games. The OS makes it easy for programmers to write
applications and games that can run on computers made up of different hardware.

Hardware includes the parts of the computer that you can touch (the monitor, or the keyboard and
mouse, or a printer). Software is another name for programs like the OS or applications or games that
run on the computer. Think of the computer as if it were a book. The book's hardware would be the
cover and paper pages and even the ink on the page (the things you can touch.) The book's software
would be the story and characters that the book describes. Using software or playing games that were
made by someone else is like reading a book of stories that was written by another person. But writing
software (such as your own games) is like writing your own stories.

It would be very difficult for programmers to make their programs run on several different pieces of
hardware. For example, when you write your games, you don't need to know how to make text appear
on all the different monitors made by all the different companies in the world. Your program just has a
print statement, which tells the OS to figure out how to make it appear on the monitor no matter what
brand or type of monitor the user has.

The OS makes running programs easy on us, but it still only knows a language called machine
code . Machine code has some very, very, very basic instructions that are simple enough for computer's
main microchip (called the CPU ("see-pee-you"), or Central Processing Unit) to understand.
Writing programs in the machine code language is very long and boring.

Machine code is written in ones and zeros and look like pages and pages of this: 10101101 00110000
11000000. These instructions aren't very easy for humans to work with. Assembly language gives
instructions names like MOV, JMP, PUSH, or XOR. This makes reading and writing the instructions
easier but putting them together in a program is still long and complicated.

This is where higher-level programming languages come in. High-level languages include
Python, Java, C++, Pascal, Perl, Basic, and many others. These languages take care of many of the
details of machine code. A programmer writes her program in a higher-level language like Python, and
then a program called the interpreter translates this language into machine code that the computer
executes. Even though our "Hello world!" program was just one line long when written in Python, in
machine code it would be several hundred or a few thousand lines.

The interpreter is the program you downloaded from http://www.python.org and installed in chapter
one. That download also included a program called IDLE, which is the program we type our code into.

When we run a program in the file editor, or type an instruction into the interactive shell, the IDLE
program sends that source code to the Python interpreter for translation. The interpreter translates it into
machine code, and then the CPU understands how to run the program.

Whew! That was a lot of information. As computers get faster and faster, they also become more and
more complicated. To manage all of this complexity, programmers started to write programs that would
help them write new programs! One of these programs is the Python interpreter that you are using. This
is kind of like using a stone axe to help build a hammer, and then a hammer to help build a electric drill
and other power tools, and then using those power tools to build a large bulldozer.

The reason I am explaining all of this is so that you understand that when you write code in Python, it
is being passed to another program called the Python interpreter, which then translates it so that the
operating system and computer can run your code.

This next program is simpler compared to the "Guess the Number" game in chapter two. Open a new
file editor window by clicking on File, then clicking on New Window and enter this source code:

Sample Run

What do you get when you cross a snowman with a vam pire?

Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

Who's there?

Interrupting cow.

Interrupting cow wh MOO!

Source Code

jokes.py

1. print 'What do you get when you cross a snowman w ith a
vampire?'

2. raw_input()
3. print 'Frostbite!'
4. print
5. print 'What do dentists call a astronaut\'s cavit y?'

6. raw_input()
7. print 'A black hole!'
8. print
9. print 'Knock knock.'

10. raw_input()
11. print "Who's there?"
12. raw_input()
13. print 'Interrupting cow.'
14. raw_input()
15. print 'Interrupting cow wh',
16. print 'MOO!'

Don't worry if you don't understand everything in the program. Just save and run the program.

Code Explanation

Let's look at the code more carefully.

1. print 'What do you get when you cross a snowman w ith a
vampire?'

2. raw_input()
3. print 'Frostbite!'
4. print

Here we have three print statements. Because we don't want to tell the player what the joke's punch
line is, we have a call to the raw_input() function after the first print statement. The player can
read the first line, press Enter, and then read the punch line.

The user can still type in a string and hit Enter, but because we aren't storing this string in any variable,
the program will just forget about it and move to the next line of code.

The last call to the print statement has no string. This tells the program to just print a blank line.
Blank lines can be useful to keep our text from being bunched up together.

5. print 'What do dentists call a astronaut\'s cavit y?'
6. raw_input()
7. print 'A black hole!'
8. print

In the first print statement above, you'll notice that we have a slash right before the single quote (that
is, the apostrophe). This backslash (\ is a backslash, / is a forward slash) tells us that the letter right after
it is an escape character . An escape character helps us print out letters that are hard to enter into the
source code. There are several different escape characters, but in our print statement the escape
character is the single quote.

We have to have the single quote escape character because otherwise the Python interpreter would
think that this quote meant the end of the string. But we want this quote to be a part of the string. When
we print this string, the backslash will not show up.

Some Other Escape Characters

What if you really want to display a backslash? This line of code would not work:

print 'He flew away in a green\teal helicopter.'

That print statement would show up as:

He flew away in a green eal helicopter.

This is because the "t" in "teal" was seen as an escape character since it came after a backslash. The
escape character t simulates pushing the Tab key on your keyboard. Escape characters are there so that
strings can have characters that cannot be typed in.

Instead, try this line:

print 'He flew away in a green\\teal helicopter.'

Here is a list of escape characters in Python:

Quotes and Double Quotes

Strings don't always have to be in between single quotes in Python. You can also put them in between
double quotes. These two lines print the same thing:

Escape Characters
\\ Backslash (\)
\' Single quote (')
\" Double quote (")
\n Newline
\t Tab

print 'Hello world'
print "Hello world"

But you cannot mix quotes. This line will give you an error if you try to use them:

print 'Hello world"

I like to use single quotes because I don't have to hold down the shift key on the keyboard to type
them. It's easier to type, and the computer doesn't care either way.

But remember, just like you have to use the escape character \' to have a single quote in a string
surrounded by single quotes, you need the escape character \" to have a double quote in a string
surrounded by double quotes. For example, look at these two lines:

print 'I asked to borrow Abe\'s car for a week. He said,
"Sure."'
print "He said, \"I can't believe you let him borro w your
car.\""

Did you notice that in the single quote strings you do not need to escape double quotes, and in the
double quote strings you do not need to escape single quotes? The Python interpreter is smart enough to
know that if a string starts with one type of quote, the other type of quote doesn't mean the string is
ending.

Code Explanation continued...

9. print 'Knock knock.'
10. raw_input()
11. print "Who's there?"
12. raw_input()
13. print 'Interrupting cow.'
14. raw_input()
15. print 'Interrupting cow wh',

16. print 'MOO!'

Did you notice the comma at the end of the second to last string? Normally, print adds a newline
character to the end of the string it prints. (This is why a blank print statement will just print a
newline.) This comma means we do not want to print a newline at the end. This is why 'MOO!'
appears next to the previous line, instead of on its own line.

Things Covered In This Chapter

� Using print with no parameters to display blank lines.
� Escape characters.
� Using single quotes and double quotes for strings.
� Using commas at the end of print statements.

Chapter 4 - Dragon Realm
In this game, the player is in a land full of dragons. The dragons all live in caves with their large piles

of collected treasure. Some dragons are friendly, and will share their treasure with you. Other dragons
are greedy and hungry, and will eat anyone who enters their cave. The player is in front of two caves,
one with a friendly dragon and the other with a hungry dragon. The player is given a choice between the
two.

Open a new file editor window by clicking on the File menu, then click on New Window. In the blank
window that appears type in the source code and save the source code as dragon.py. Then run the
program by pressing F5.

Sample Run

You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is frien dly
and will share his treasure with you. The other dra gon
is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)
1
You approach the cave...
It is dark and spooky...
A large dragon jumps out in front of you! He opens his jaws
and...

Gobbles you down in one bite!
Do you want to play again? (yes or no)
no

Source Code

dragon.py

1. import random
2. import time
3.
4. def displayIntro():
5. print 'You are on a planet full of dragons. I n

front of you,'
6. print 'you see two caves. In one cave, the dr agon

is friendly'
7. print 'and will share his treasure with you. The

other dragon'

8. print 'is greedy and hungry, and will eat you on
sight.'

9. print
10.
11. def chooseCave():
12. cave = ''
13. while cave != '1' and cave != '2':
14. print 'Which cave will you go into? (1 o r 2)'
15. cave = raw_input()
16.
17. return cave
18.
19. def checkCave(chosenCave):
20. print 'You approach the cave...'
21. time.sleep(2)
22. print 'It is dark and spooky...'
23. time.sleep(2)
24. print 'A large dragon jumps out in front of you! He

opens his jaws and...'
25. print
26. time.sleep(2)
27.
28. friendlyCave = random.randint(1, 2)
29.
30. if chosenCave == str(friendlyCave):
31. print 'Gives you his treasure!'
32. else:
33. print 'Gobbles you down in one bite!'
34.
35. playAgain = 'yes'
36. while playAgain == 'yes' or playAgain == 'y':
37.
38. displayIntro()
39.
40. caveNumber = chooseCave()
41.
42. checkCave(caveNumber)
43.
44. print 'Do you want to play again? (yes or no)'
45. playAgain = raw_input()

Code Explanation

Let's look at the source code in more detail.

1. import random
2. import time

Here we have two import statements. We import the random module like we did in the Guess the
Number game. In Dragon Realm, we will also want some time-related functions that the time module
includes, so we will import that as well.

4. def displayIntro():
5. print 'You are on a planet full of dragons. I n

front of you,'
6. print 'you see two caves. In one cave, the dr agon

is friendly'
7. print 'and will share his treasure with you. The

other dragon'
8. print 'is greedy and hungry, and will eat you on

sight.'
9. print

Here is a new type of statement, the def statement. The def statement is made up of the def
keyword, followed by a function name with parentheses, and then a colon (the : sign). There is a block
after the statement called the def-block.

def Statements

The def statement isn't a call to a function named displayIntro() . Instead, the def statement

means we are creating, or defining , a new function that we can call later in our program. After we
define this function, we can call it the same way we call other functions. When we call this function, the
code inside the def-block will be executed.

We also say we define variables when we create them with an assignment statement. The code spam
= 42 defines the variable spam.

Remember, the def statement doesn't execute the code right now, it only defines what code is
executed when we call the displayIntro() function later in the program. When the program's
execution reaches a def statement, it skips down to the end of the def-block. We will jump back to the
top of the def-block when the displayIntro() function is called. It will then execute all the print
statements inside the def-block. So we call this function when we want to display the "You are on a
planet full of dragons..." introduction to the user.

When we call the displayIntro() function, the program's execution jumps to the start of the
function on line 5. When the function's block ends, the program's execution returns to the line that called
the function.

11. def chooseCave():

Here we are defining another function called chooseCave . The code in this function will prompt
the user to select which cave they should go into.

12. cave = ''
13. while cave != '1' and cave != '2':

Inside the chooseCave() function, we create a new variable called cave and store a blank string
in it. Then we will start a while loop. This while statement's condition contains a new operator we
haven't seen before called and . Just like the - or * are mathematical operators, and == or != are
comparison operators, the and operator is a boolean operator .

Boolean Operators

Boolean logic deals with things that are either true or false. This is why the boolean data type only has
two values, True and False . Boolean statements are always either true or false. If the statement is not
true, then it is false. And if the statement is not false, then it is true.

Do you remember how the * operator will combine two integer values and produce a new integer
value (the product of the two original integers)? And do you also remember how the + operator can
combine two strings and produce a new string value (the concatenation of the two original strings)? The
and operator combines two boolean values to produce a new boolean value. Here's how the and
operator works.

Think of the sentence, "Cats have whiskers and dogs have tails." This sentence is true, because "cats
have whiskers" is true and "dogs have tails" is also true.

But the sentence, "Cats have whiskers and dogs have wings." would be false. Even though "cats have
whiskers" is true, dogs do not have wings, so "dogs have wings" is false. The entire sentence is only true
if both parts are true because the two parts are connected by the word "and." If one or both parts are
false, then the entire sentence is false.

The and operator in Python works this way too. If the boolean values on both sides of the and
keyword are True , then the expression with the and operator evaluates to True . If either of the
boolean values are False , or both of the boolean values are False , then the expression evaluates to
False .

So let's look at line 13 again:

13. while cave != '1' and cave != '2':

This condition is made up of two expressions connected by the and operator. We first evaluate these
expressions to get their boolean values. Then we evaluate the boolean values with the and operator.

The string value stored in cave when we first execute this while statement is the blank string, '' .
The blank string does not equal the string '1' , so the left side evaluates to True . The blank string also
does not equal the string '2' , so the right side evaluates to True . So the condition then turns into
True and True . Because both boolean values are True , the condition finally evaluates to True .
And because the while statement's condition is True , the program execution enters the while-block.

This is all done by the Python interpreter, but it is important to understand how the interpreter does
this. This picture shows the steps of how the interpreter evaluates the condition (if the value of cave is
the blank string):

while cave != '1' and cave != '2':

while '' != '1' and cave != '2':

while True and cave != '2':

while True and '' != '2':

while True and True:

while True:

Try typing the following into the interactive shell:

True and True
True and False
False and True
False and False

There are two other boolean operators. The next one is the or operator. The or operator works
similar to the and , except it will evaluate to True if EITHER of the two boolean values are True . The
only time the or operator evaluates to False is if both of the boolean values are False .

The sentence "Cats have whiskers or dogs have wings." is true. Even though dogs don't have wings,
when we say "or" we mean that one of the two parts is true. The sentence "Cats have whiskers or dogs
have tails." is also true. (Most of the time when we say this OR that, we mean one thing is true but the
other thing is false. In programming, "or" means that either of the things are true, or maybe both of the
things are true.)

Try typing the following into the interactive shell:

True or True
True or False
False or True
False or False

The third boolean operator is not . The not operator is different from every other operator we've
seen before, because it only works on one value, not two. There is only value on the right side of the
not keyword, and none on the left. The not operator will evaluate to True as False and will
evaluate False as True .

Try typing the following into the interactive shell:

not True
not False
True not

Notice that if we put the boolean value on the left side of the not operator results in a syntax error.

We can use both the and and not operators in a single expression. Try typing True and not
False into the shell:

Normally the expression True and False would evaluate to False . But the True and not
False expression evaluates to True . This is because not False evaluates to True , which turns the
expression into True and True , which evaluates to True .

If you ever forget how the boolean operators work, you can look at these charts, which are called
truth tables :

A and B is Entire

Code Explanation continued...

14. print 'Which cave will you go into? (1 o r 2)'
15. cave = raw_input()

Here, the player is asked to enter which cave they chose to enter by typing in 1 or 2 and hitting enter.
Whatever string the player typed will be stored in cave . After this code is executed, we jump back to
the top of the while statement and recheck the condition. Remember that the line was:

13. while cave != '1' and cave != '2':

If this condition evaluates to True , we will enter the while-block again and ask the player for a cave
number to enter. But if the player typed in 1 or 2, then the cave value will either be '1' or '2' . This
causes the condition to evaluate to False , and the program execution will continue on past the while
loop.

The reason we have a loop here is because the player may have typed in 3 or 4 or HELLO. Our

statement
True and True is True
True and False is False
False and True is False
False and False is False

A or B is Entire
statement

True or True is True
True or False is True
False or True is True
False or False is False

not A is Entire
statement

not True is False
not False is True

program doesn't make sense of this, so if the player did not enter 1 or 2, then the program loops back
and asks the player again. In fact, the computer will patiently ask the player for the cave number over
and over again until the player types in 1 or 2. When the player does that, the while-block's condition
will be False , and we will jump down past the while-block and continue with the program.

17. return cave

This is the return keyword, which only appears inside def-blocks. Remember how the raw_input
() function returns the string value that the player typed in? Or how the randint() function will
return a random integer value? Our function will also return a value. It returns the string that is stored in
cave .

This means that if we had a line of code like spam = chooseCave() , the code inside
chooseCave() would be executed and the function call will evaluate to chooseCave() 's return
value. The return value will either be the string '1' or the string '2' . (Our while loop guarantees that
chooseCave() will ONLY return either '1' or '2' .)

The return keyword is only found inside def-blocks. Once the return statement is executed, we
immediately jump out of the def-block. (This is like how the break statement will make us jump out of
a while-block.) The program execution moves back to the line that had called the function.

You can also use the return keyword by itself just to break out of the function, just like the break
keyword will break out of a while loop.

Variable Scope

You should note that the value stored in the cave variable in the chooseCave() function is
forgotten after the execution leaves the function. Just like the values in our program's variables are
forgotten after the program ends, variables inside the function are forgotten after the execution leaves
the function. Note only that, but when execution is inside the function, we cannot see the variables
outside of the function, or variables inside other functions. We call this the variable's scope . The only
variables that we can use inside a function are the ones we create inside of the function. That is, the
scope of the variable is inside in the function's block. The scope of variables created outside of functions
is everywhere in the program outside of def-blocks.

Not only that, but if we have a variable named spam created outside of a function, if we create a
variable named spam inside of the function, the Python interpreter will consider them to be two separate
variables. That means we can change the value of spam inside the function, and this will not change the
spam variable that is outside of the function. This is because these variables have different scopes.

We have names for these scopes. The scope outside of all functions is called the global scope . The

scope inside of a function is called the local scope . The entire program has only one global scope,
but each function has a local scope of its own.

Variables defined in the global scope can be used outside and inside functions. Variables defined in a
function's local scope can only be used inside that function.

When exactly is a variable defined? A variable is defined the first time we use it in an assignment
statement. When the program first executes the line:

12. cave = ''

...the variable cave is defined.

If we call the chooseCave() function twice, the value stored in the variable the first time won't be
remember the second time around. This is because when the execution left the chooseCave()
function (that is, left chooseCave() 's scope), the cave variable was forgotten and destroyed. But it
will be defined again when we call the function a second time.

The important thing to remember is that the value of a variable in the local scope is not remembered
in between function calls.

Code Explanation continued...

19. def checkCave(chosenCave):

Now we are defining yet another function named checkCave() . Notice that we put the text
chosenCave in between the parentheses. This is a type of variable called a parameter . For some
functions, we would pass an argument, like for the str() or randint() functions:

str(guessesTaken)
random.randint(1, 20)

When we call checkCave() , we will also pass one value to it as an argument. When execution
moves inside the checkCave() function, a new variable named chosenCave will be assigned this
value. This is how we pass variable values to functions since functions cannot read variables outside of
the function (that is, outside of the function's scope).

Parameters

For example, here is a short program that demonstrates parameters. Imagine we had a short program
that looked like this:

def sayHello(name):
 print 'Hello, ' + name

print 'Say hello to Alice.'
fizzy = 'Alice'
sayHello(fizzy)
print 'Do not forget to say hello to Bob.'
sayHello('Bob')

If we run this program, it would look like this:

This program calls a function we have created, sayHello() and first passes the value in the fizzy
variable as an argument to it. (We stored the string 'Alice' in fizzy .) Later, the program calls the
sayHello() function again, passing the string 'Bob' as an argument.

The value in the fizzy variable and the string 'Bob' are arguments. We send values as arguments
to a function. The variable name is a parameter. Parameters are always local variables and only exist
inside the function. That is the difference between arguments and parameters. It might be easier to just
remember that the thing in between the parentheses in the def statement is an argument, and the thing
in between the parentheses in the function call is a parameter.

We could have just used the fizzy variable inside the sayHello() function instead of using a
parameter. (This is because the local scope can still see variables in the global scope.) But then we
would have to remember to assign the fizzy variable a string each time before we call the sayHello
() function. Parameters make our programs simpler. Look at this code:

def sayHello():
 print 'Hello, ' + fizzy

print 'Say hello to Alice.'
fizzy = 'Alice'
sayHello()
print 'Do not forget to say hello to Bob.'
sayHello()

When we run this code, it looks like this:

This program's sayHello() function does not have a parameter, but uses the global variable
fizzy directly. Remember that you can read global variables inside of functions, you just can't read
local variables outside of the function. But now we have to remember to set the fizzy variable before
calling sayHello() . In this program, we forgot to do so, so the second time we called sayHello()
the value of fizzy was still 'Alice' . Using parameters makes function calling simpler to do,
especially when our programs are very big and have many functions.

Local Variables and Global Variables with the Same Name

Now look at this program, which is a bit different:

def spam(myName):
 print 'Hello, ' + myName
 myName = 'Waffles'
 print 'Your new name is ' + myName

myName = 'Albert'
spam(myName)
print 'Howdy, ' + myName

If we run this program, it would look like this:

This program defines a new variable called myName and stores the string 'Albert' in it. Then the
program calls the spam() function, passing the value in myName as an argument. The execution
moves to the spam() function. The parameter in spam() is also named myName, and has the
argument assigned to it. Remember, the myName inside the spam() function (the local scope) is
considered a different variable than the myName variable outside the function (the global scope).

The function then prints 'Hello, Albert' , and then on the next line changes the value in
myName to 'Waffles' . Remember, this only changes the myName variable that is inside the
function. The myName variable that is outside the function still has the value 'Albert' stored in it.

The function now prints out 'Your new name is Waffles' , because the myName variable in
the local scope has changed to 'Waffles' . The execution has reached the end of the function, so it
jumps back down to where the function call was. The local myName is destroyed and forgotten. The
next line after that is print 'Howdy, ' + myName , which will display Howdy, Albert .

Remember, the myName outside of functions (that is, in the global scope) still has the value
'Albert' , not 'Waffles' . This is because the myName in the global scope and the myName in
spam() 's local scope are different variables, even though they have the same name.

Where to Put Function Definitions

A function's definition (where we put the def statement and the def-block) has to come before you
call the function. This is like how you must assign a value to a variable before you can use the variable.
If you put the function call before the function definition, you will get an error. Look at this code:

sayGoodBye()

def sayGoodBye():
 print 'Good bye!'

If you try to run it, Python will give you an error message that looks like this:

To fix this, put the function definition before the function call:

def sayGoodBye():
 print 'Good bye!'

sayGoodBye()

Code Explanation continued...

20. print 'You approach the cave...'
21. time.sleep(2)

We display some text to the player, and then call the time.sleep() function. Remember how in
our call to randint() , the function randint() is inside the random module? In the Dragon Realm
game, we also imported the time module. The time module has a function called sleep() that will
pause the program for a few seconds. We pass the integer value 2 as an argument to the time.sleep
() function to tell it to pause for exactly 2 seconds.

22. print 'It is dark and spooky...'
23. time.sleep(2)

Here we print some more text and wait again for another 2 seconds. These short pauses add suspense
to the game, instead of displaying all the text all at once. In our jokes program, we called the
raw_input() function to wait until the player pressed the enter key. Here, the player doesn't have to
do anything at all except wait.

24. print 'A large dragon jumps out in front of you! He
opens his jaws and...'

25. print
26. time.sleep(2)

We have new action happening in our program. What does the dragon do?

28. friendlyCave = random.randint(1, 2)

Now we are going to have the program randomly chose which cave had the friendly dragon in it. Our
call to the random.randint() function will return either the integer 1 or the integer 2, and store this
value in a variable called friendlyCave .

30. if chosenCave == str(friendlyCave):
31. print 'Gives you his treasure!'

Here we check if the integer of the cave we chose ('1' or '2') is equal to the cave randomly selected
to have the friendly dragon. But wait, the value in chosenCave was a string (because raw_input()
returns strings) and the value in friendlyCave is an integer (because random.randint() returns
integers). We can't compare strings and integers with the == sign, because they will always be different
('1' does not equal 1).

So we are passing friendlyCave to the str() function, which returns the string value of
friendlyCave .

What the condition in this if statement is really comparing is the string in chosenCave and the
string returned by the str() function. We could have also had this line instead:

 if int(chosenCave) == friendlyCave:

Then the if statement's condition would compare the integer value returned by the int() function to
the integer value in friendlyCave . The return value of the int() function is the integer form of the
string stored in chosenCave .

If the if statement's condition evaluates to True , we tell the player they have won the treasure.

32. else:
33. print 'Gobbles you down in one bite!'

Line 32 has a is a new keyword. The else keyword always comes after the if-block. The else-block
that follows the else keyword executes if the condition in the if statement was False . Think of it as
the program's way of saying, "If this condition is true then execute the if-block or else execute the else-
block."

Remember to put the colon (the : sign) after the else keyword.

The Colon :

You may have noticed that we always place a colon at the end of if , else , while , and def
statements. The colon marks the end of the statement, and tells us that the next line should be the
beginning of a new block.

Code Explanation continued...

35. playAgain = 'yes'

This is the first line that is not a def statement or inside a def-block. This line is where our program
really begins.

36. while playAgain == 'yes' or playAgain == 'y':

Here is the beginning of a while loop. We enter the loop if playAgain is equal to either 'yes'
or 'y' . The first time we come to this while statement, we have just assigned the string value 'yes' to
the playAgain variable. That means this condition will be True.

38. displayIntro()

Here we call the displayIntro() function. This isn't a Python function, it is our function that we
defined earlier in our program. When this function is called, the program execution jumps to the first line
in the displayIntro() function on line 5. When all the lines in the function are done, the execution
jumps back down to the line after this one.

40. caveNumber = chooseCave()

This line also calls a function that we created. Remember that the chooseCave() function lets the
player type in the cave they choose to go into. When the return cave line in this function executes, the
program execution jumps back down here, and the local variable cave 's value is the return value of this
function. The return value is stored in a new variable named caveNumber . Then the execution moves to
the next line.

42. checkCave(caveNumber)

This line calls our checkCave() function with the argument of caveNumber 's value. Not only
does execution jump to line 20, but the value stored in caveNumber is copied to the parameter
chosenCave inside the checkCave() function. This is the function that will display either 'Gives
you his treasure!' or 'Gobbles you down in one bite!' , depending on the cave the
player chose to go in.

44. print 'Do you want to play again? (yes or no)'
45. playAgain = raw_input()

After the game has been played, the player is asked if they would like to play again. The variable
playAgain stores the string that the user typed in. Then we reach the end of the while-block, so the
program rechecks the while statement's condition: while playAgain == 'yes' or
playAgain == 'y'

The difference is, now the value of playAgain is equal to whatever string the player typed in. If the
player typed in the string 'yes' or 'y' , then we would enter the loop again at line 38.

If the player typed in 'no' or 'n' or something silly like 'Abraham Lincoln' , then the while
statement's condition would be False , and we would go to the next line after the while-block. But
since there are no more lines after the while-block, the program terminates.

But remember, the string 'YES' is different from the string 'yes' . If the player typed in the string
'YES' , then the while statement's condition would evaluate to False and the program would still
terminate.

We've just completed our second game! In our Dragon Realm game, we used a lot of what we learned
in the "Guess the Number" game and picked up a few new tricks as well. If you didn't understand some
of the concepts in this program, then read the summary at the end of this chapter, or go over each line of
the source code again, or try changing the source code and see how the program changes. In the next
chapter we won't create a game, but a computer program that will create secret codes out of ordinary
messages and also decode the secret code back to the original message.

Step by Step, One More Time

But first, let's trace the code one more time. A lot of new programming ideas were taught in this
chapter. To help you understand everything, I will briefly go through the program just like the computer
would, starting from the top.

1. import random
2. import time

We import the random and time modules, so that we can use the random.randint() and
time.sleep() functions in our program.

4. def displayIntro():

This defines a new function. We do not execute the code inside this function block (because this
function is being defined, not called). We just define it so that we can call this function later.

11. def chooseCave():

We define another function. Again, we skip past it for now.

19. def checkCave(chosenCave):

We define a third function. Again, we skip it for now because we are only defining the function, not
calling it.

35. playAgain = 'yes'

The variable playAgain now has the string value of 'yes' .

36. while playAgain == 'yes' or playAgain == 'y':

This is the start of a while-block. The value of playAgain is 'yes' (we set it in the last line), so the
condition evaluates to True and False , evaluates to False . But remember that True or False
will evalute to True . So since the condition is True , we enter the while loop.

38. displayIntro()

Now we are calling the displayIntro() function. You can tell this is a function call, and not
defining a function because there is no def keyword in front of the function name. Now we jump back to
the beginning of the displayIntro() function on line 4.

4. def displayIntro():

The program execution has jumped to line 4. We move down to the next line, which is line 5.

5. print 'You are on a planet full of dragons. I n
front of you,'

6. print 'you see two caves. In one cave, the dr agon
is friendly'

7. print 'and will share his treasure with you. The
other dragon'

8. print 'is greedy and hungry, and will eat you on
sight.'

9. print

We print out the game introduction. This is the first text that the player sees, because this is the first
time we have executed a print statement. The print statement without a string will just print a blank
line. We know we have reached the end of this def-block, because line 11 does begin with less than four
spaces. This means the execution jumps back down to line 38 (the line that sent us here).

38. displayIntro()

We just made this call, so we move down to the next line.

40. caveNumber = chooseCave()

We are going to assign the return value of the chooseCave() function to the variable
caveNumber . In order to figure out what the return value is, we have to call the function. This moves
the execution to line 11.

11. def chooseCave():

Here we are at line 11. This line doesn't do anything, it just marks the beginning of the chooseCave
function. We move down to line 12.

12. cave = ''

The value of the cave variable is now the blank string.

13. while cave != '1' and cave != '2':

Here is the start of a while-block. To see if we enter the block or not, we check if the condition is true.
cave != '1' evaluates to True , because the blank string is not equal to the string '1' . And
cave != '2' also evaluates to True . So the condition evaluates to True and True . Both sides
of the and operator must be True for the expression to evaluate to True , otherwise it will be False .
True and True evaluates to True , so we do enter the while loop at line 14.

14. print 'Which cave will you go into? (1 o r 2)'

This line prints a question to the player. Move down to the next line.

15. cave = raw_input()

The return value of the raw_input() function will be stored in the cave variable. The
raw_input() question will let the player type in a string, and this string will be the return value. Let's
say the player accidentally types in 3. The string value '3' will be the new value of the cave .

We have reached the end of the while-block (we know this because the next line (line 17) does not
begin with 8 spaces). So execution jumps back to the top of the while-block at line 13.

13. while cave != '1' and cave != '2':

Now we re-evaluate the while statement's condition. The value of cave this time is '3' . The '3' !=
'1' expression is True , and the '3' != '2' expression is True . And because True and True
evaluates to True , we have to re-enter the while-block again.

Until the player types in the string '1' or '2' , this while statement's condition will be True and
the program will keep asking the user for which cave they want to enter.

14. print 'Which cave will you go into? (1 o r 2)'

Again, we display a message that asks the player which cave they want to enter. Move down to the
next line.

15. cave = raw_input()

Let's say the player this time enters the string '2' . This string is stored in cave . We've reached the
end of the while-block, so we jump back up to the start of the while-block to line 13 one more time.

13. while cave != '1' and cave != '2':

Now we re-evaluate the while statement's condition. cave now equals '2' . The expression
cave != '1' is True . The expression cave != '2' is False , because cave really does equal
'2' . The expression evaluates to True and False . This expression evaluates to False . Because
the while statement's condition is now False , we skip past the while-block to the next line after it,
which is line 17.

17. return cave

The return statement will return the value inside the cave variable, which is the string '2' .
Execution goes back to where this function was called from, which was line 40.

40. caveNumber = chooseCave()

Here we are back at line 40. But this time we know that the return value of this call to chooseCave
() is the string '2' , so we store this string in the caveNumber variable. Move to the next line.

42. checkCave(caveNumber)

Now we call the checkCave() function. This function has one parameter. We will pass the value
inside caveNumber (the string '2') as an argument for this parameter. Execution jumps up to line 19.

19. def checkCave(chosenCave):

Now we are at the top of the checkCave() function. Since the string '2' was passed as the
argument for the first parameter, the variable chosenCave will be assigned the string '2' . When we
jump back out of this function (and leave the function's scope), the value inside chosenCave() will
be erased. Move down to the next line.

20. print 'You approach the cave...'

We print a message to the player in this line.

21. time.sleep(2)

We call the sleep() function (which is inside the time module). The sleep() function has one
parameter, so we pass 2 as the argument for this parameter. The sleep() function pauses for however
many seconds is given for the parameter. We make the program pause for two seconds, to add suspense
for the player.

22. print 'It is dark and spooky...'
23. time.sleep(2)

We display another message to the player, and wait two seconds again.

24. print 'A large dragon jumps out in front of you!
He opens his jaws and...'

25. print
26. time.sleep(2)

We display another message telling the player the dragon has jumped out, followed by a blank line.
We then pause again for two seconds, to let the player wonder what the dragon is going to do.

28. friendlyCave = random.randint(1, 2)

The friendlyCave variable will be assigned the return value of the random.randint()
function. The randint() function returns a random integer between the two numbers we pass to the
two parameters. We want a random number between 1 and 2 (including 1 and 2). Pretend that the integer
1 was returned by the function call. So 1 is stored in friendlyCave . Remember, this function call
could have returned either a 1 or a 2. We don't know which until we actually run the program, and it
won't always return the same number each time we call the function. But we will just pretend that this
time it returned a 1.

30. if chosenCave == str(friendlyCave):

This is an if statement. We must check if '2' (the string stored inside chosenCave) is equal to
what str(friendlyCave) evaluates to. str() is a function that returns the string form of any integers
passed to it. (Remember, the string value '7' is not equal to the integer value 7.)

friendlyCave evaluates to the integer 1 that is stored inside of it. So the function call looks like
str(1) and returns a value of '1' .

So now, to finish evaluating the if statement's condition, we see if '2' == '1' . This evaluates to
False , because they are not the same. So execution skips past the if-block.

32. else:

This is the first line after the if-block. It is the else keyword, which means that if the previous if
statement's condition was False , we should execute the code inside the else-block. This means we move
down one line to line 33, which is inside the else-block.

33. print 'Gobbles you down in one bite!'

The player has been eaten. There are no more lines in the function, so execution goes back to line 42.

42. checkCave(caveNumber)

We have just come back from the function call. Now we go to the next line down.

44. print 'Do you want to play again? (yes or no)'
45. playAgain = raw_input()

The player is asked if they want to play again. Let's pretend the player typed in the string 'no' . This
is the end of the while-block, so execution jumps back up to line 36.

36. while playAgain == 'yes' or playAgain == 'y':

The playAgain variable contains the string 'no' . That makes the condition evaluate to False
or False , which evaluates to False . Since the condition is False , we skip past the while-block.
But there are no more lines of code after the while-block, so the program terminates.

Designing the Program

Dragon Realm was a pretty simple game. The other games in this book will be a bit more
complicated. It sometimes helps to write down everything you want your game or program to do before
you start writing code. This is called "designing the program."

For example, it may help to draw a flow chart. A flow chart is a picture that shows every possible
action that can happen in our game, and in what order. Normally we would create a flow chart before
writing our program, so that we remember to write code for each thing that happens in the game. Here's
a flow chart for Dragon Realm:

To see what happens in the game, put your finger on the "Start" box and follow one arrow from the
box to another box. Your finger is kind of like the program execution. Your finger will trace out a path
from box to box, until finally your finger lands on the "End" box. As you can see, when you get to the
"Check for friendly or hungry dragon" box, the program could either go to the "Player wins" box or the
"Player loses" box. Either way, both paths will end up at the "Ask to play again" box, and from there the
program will either end or show the introduction to the player again.

A Web Page for Program Tracing

There is also a web page that lets you trace line by line through the Dragon Realm game. Go to the
following web page to use it.

� Dragon Realm, trace 1 - http://pythonbook.coffeeghost.net/book1/traces/trace1DragonRealm.html

Things Covered In This Chapter:

� The time module.
� The time.sleep() function.
� The return keyword.
� Creating our own functions with the def keyword.
� The and and or and not boolean operators.
� Truth tables
� Variable scope (Global and Local)
� Parameters and Arguments

� Flow charts

Chapter 5 - Hangman
This game introduces many new concepts. But don't worry; we'll experiment with these programming

concepts in the interactive shell first. Once you understand these concepts, it will be much easier to
understand the game in this chapter: Hangman.

In case you don't know, Hangman is a game two people play with paper and pencil. One person thinks
of a word, and then draws blanks for each letter in the secret word. The other person guesses letters that
might be in the word. If they guess correctly, the first person writes the letter into the blank. If they
guess wrong, the first person draws another body part of the hangman. If the second person can guess all
the letters in the word before the hangman has completely been drawn, they win.

ASCII Art

The code for Hangman is about four times larger than our Dragon World game! But don't worry. Half
of the lines of code aren't really code at all, but are strings that use keyboard characters to draw pictures.
This type of graphics is called ASCII art (pronounced "ask-ee"), because keyboard characters (such as
letters, numbers, and also all the other signs on the keyboard) are called ASCII characters. ASCII stands
for American Standard Code for Information Interchange. Here are a couple cats done in ASCII art:

 ^___^
 |)
 |. .)
 (v)
 ____ |
 | \
 | |
 | \
 | | |
 | | | \
 | | | |--.
 | | | _____/ |
 ((((()(_______/

 _____/ xx xxx ____ _
 _/xxx xx xxx xxx ____
 __/ xxx xxx xx xxx \
 /xxxxx xx xx xx xxx x_
 /xxxxxxxxx xx xx xx xx xxx_
 / xxxxx x x x x x xxx \
 / xx /\ x x xx \
 / / \ x xx \
 | .=\ | \ xx x\
 | | \ | \ xx xxx|
 | | \ | ____ xx \

So this program's code is only about twice the size of Dragon World (if you don't count the pictures).
Go ahead and type in this code into the file editor, and save the file as hangman.py. Then run the
program by pressing F5. It might be a good idea to save the file every once in a while as you type it, so
that if something happens to your computer or IDLE crashes, you won't lose everything you have typed.

Sample Run

H A N G M A N

 +------+
 | |
 | |
 |
 |
 |
 |
 |
 |
 |
 |
==============

Missed letters:
_ _ _ _ _
Guess a letter.
e

 | | ____/ \ xxx |
 | | \ |
 | / \ \
 \/ \ | \
 / ____/ | / |
 _______| ____ | __/ xxx|
 / | ___ ___-------- __/ x|
/ | | | ________ _ _/ |
| oooo\ -------- _/ __/ ___/ xxx /
|oooo \ _____/ __/_________/ xx_/
\ __ __/ xx /
 \ ______________/ x__/
 _ x /
 _ xx __/
 _ xx x_/
 ____ x __ ___/
 __________________________________/

 +------+
 | |
 | |
 |
 |
 |
 |
 |
 |
 |
 |
==============

Missed letters:
_ _ _ e _
Guess a letter.
a

 +------+
 | |
 | |
 O |
 |
 |
 |
 |
 |
 |
 |
==============

Missed letters: a
_ _ _ e _
Guess a letter.
u

 +------+
 | |
 | |
 O |
 | |
 | |
 | |
 |

 |
==============

Missed letters: a u
_ _ _ e _
Guess a letter.
r

 +------+
 | |
 | |
 O |
 | |
 | |
 | |
 |
 |
==============

Missed letters: a u
_ _ _ e r
Guess a letter.
i

 +------+
 | |
 | |
 O |
 /| |
 / | |
 | |
 |
 |
 |
 |
==============

Missed letters: a u i
_ _ _ e r
Guess a letter.
o

 +------+
 | |
 | |
 O |
 /| |
 / | |
 | |
 |
 |
 |
 |
==============

Missed letters: a u i
o _ _ e r
Guess a letter.
t
Yes! The secret word is "otter"! You have won!
Do you want to play again? (yes or no)
no

Source Code

hangman.py

1. import random
2.
3. HANGMANPICS = ['''
4.
5. +------+
6. | |
7. | |
8. |
9. |

10. |
11. |
12. |
13. |
14. |
15. |
16. ==============''', '''
17.
18. +------+
19. | |
20. | |

21. O |
22. |
23. |
24. |
25. |
26. |
27. |
28. |
29. ==============''', '''
30.
31. +------+
32. | |
33. | |
34. O |
35. | |
36. | |
37. | |
38. |
39. |
40. ==============''', '''
41.
42.
43. +------+
44. | |
45. | |
46. O |
47. /| |
48. / | |
49. | |
50. |
51. |
52. |
53. |
54. ==============''', '''
55.
56.
57. +------+
58. | |
59. | |
60. O |
61. /|\ |
62. / | \ |
63. | |
64. |
65. |
66. |
67. |

68. ==============''', '''
69.
70.
71. +------+
72. | |
73. | |
74. O |
75. /|\ |
76. / | \ |
77. | |
78. / |
79. / |
80. |
81. |
82. ==============''', '''
83.
84.
85. +------+
86. | |
87. | |
88. O |
89. /|\ |
90. / | \ |
91. | |
92. / \ |
93. / \ |
94. |
95. |
96. ==============''']
97.
98. words = 'ant baboon badger bat bear beaver beetl e bird

camel cat clam cobra cougar coyote crab crane crow deer
dog donkey duck eagle ferret fish fox frog goat goo se
hawk iguana jackal koala leech lemur lion lizard ll ama
mite mole monkey moose moth mouse mule newt otter o wl
oyster panda parrot pigeon python quail rabbit ram rat
raven rhino salmon seal shark sheep skunk sloth slu g
snail snake spider squid stork swan tick tiger toad
trout turkey turtle wasp weasel whale wolf wombat w orm
zebra'.split()

99.
100. def getRandomWord(wordList):
101. # This function returns a random string fro m the

passed list of strings.
102. wordIndex = random.randint(0, len(wordList) - 1)
103. return wordList[wordIndex]
104.

105. def displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord):

106. print HANGMANPICS[len(missedLetters)]
107. print
108.
109. print 'Missed letters:',
110. for letter in missedLetters:
111. print letter,
112. print
113.
114. blanks = '_' * len(secretWord)
115.
116. for i in range(len(secretWord)): # replace blanks

with correctly guessed letters
117. if secretWord[i] in correctLetters:
118. blanks = blanks[:i] + secretWord[i] +

blanks[i+1:]
119.
120. for letter in blanks: # show the secret wor d with

spaces in between each letter
121. print letter,
122. print
123.
124. def getGuess(alreadyGuessed):
125. # Returns the letter the player entered. Th is

function makes sure the player entered a single let ter,
and not something else.

126. while True:
127. print 'Guess a letter.'
128. guess = raw_input()
129. guess = guess.lower()
130. if len(guess) != 1:
131. print 'Please enter a single letter .'
132. elif guess in alreadyGuessed:
133. print 'You have already guessed tha t

letter. Choose again.'
134. elif guess not in 'abcdefghijklmnopqrst uvwxyz':
135. print 'Please enter a LETTER.'
136. else:
137. return guess
138.
139. def playAgain():
140. # This function returns True if the player wants to

play again, otherwise it returns False.
141. print 'Do you want to play again? (yes or n o)'
142. return raw_input().lower().startswith('y')
143.

144.
145. print 'H A N G M A N'
146. missedLetters = ''
147. correctLetters = ''
148. secretWord = getRandomWord(words)
149. gameIsDone = False
150.
151. while True:
152. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)
153.
154. # Let the player type in a letter.
155. guess = getGuess(missedLetters + correctLet ters)
156.
157. if guess in secretWord:
158. correctLetters = correctLetters + guess
159.
160. # Check if the player has won
161. foundAllLetters = True
162. for i in range(len(secretWord)):
163. if secretWord[i] not in correctLett ers:
164. foundAllLetters = False
165. break
166. if foundAllLetters:
167. print 'Yes! The secret word is "' +

secretWord + '"! You have won!'
168. gameIsDone = True
169. else:
170. missedLetters = missedLetters + guess
171.
172. # Check if player has guessed too many times

and lost
173. if len(missedLetters) == len(HANGMANPIC S) - 1:
174. displayBoard(HANGMANPICS, missedLet ters,

correctLetters, secretWord)
175. print 'You have run out of guesses! \nAfter

' + str(len(missedLetters)) + ' missed guesses and ' +
str(len(correctLetters)) + ' correct guesses, the w ord
was "' + secretWord + '"'

176. gameIsDone = True
177.
178. # Ask the player if they want to play again (but

only if the game is done).
179. if gameIsDone:
180. if playAgain():
181. missedLetters = ''
182. correctLetters = ''

183. gameIsDone = False
184. secretWord = getRandomWord(words)
185. else:
186. break
187.

After typing in the source code (don't forget to save!) you can run this game by pressing F5. If any
errors come up, be sure you typed the source code in exactly as it appears here. Remember that the
indentation is important, and that lines will have zero, four, eight, or even twelve spaces in front of them.

Designing the Program

This game is a bit more complicated, so it will help if we take a moment to think about how we will put
the program together. We will create a flow chart (like the flow chart at the end of the Dragon Realm
chapter) to think about what this program will do. Of course, we don't have to write out a flow chart. We
could just start writing code. But many times when we are writing code, we will think of new things to
add or other events in the program that we didn't think of. We may have to end up changing the code we
have already written, or deleting a lot of the code. That would be a waste of effort. We can save a lot of
time if we think about the program before writing it.

This flow chart is provided as an example for what flow charts look like and how to make them.
Because you only have to copy the source code from this book, you don't need to draw a flow chart
before writing code. But when you make your own games, a flow chart can be very handy.

This flow chart will also help you learn how to design games yourself, instead of just copying the
source code from this book. Your flow chart doesn't have to look exactly like this one. You may have
extra boxes or fewer boxes. But as long as you understand the flow chart you made, it will be helpful
when you start coding.

First we'll start with a flow chart that only has a "Start" and an "End" box:

Now let's think about what happens when the play Hangman. Well, there is a secret word (the
computer will think of this) and then the other person guesses letters (the player will do this) so let's add
boxes for those:

The game doesn't end after the player guesses a letter. The game should check if the letter is in the
secret word or not. The letter either will be there or it won't be, so we should put two new boxes in:

If the letter was in the secret word, we should also check if the player has won. And if the letter was
not in the secret word, another body part gets added and the player might have lost. We can add boxes
for those cases too. We don't need an arrow from the "Letter is in secret word." box to the "Player has
run out of body parts and loses." box because if you think about it, you cannot possibly lose as long as
you are guessing correct letters. Also, you cannot possibly win if you are guessing wrong letters. That is
why we don't have those arrows. The flow chart now looks like:

After the player has won or lost, we will ask the player if they want to play again with a new secret
word. If the player doesn't want to play again, the program will terminate. Otherwise, we will think of a
new secret word.

This flow chart looks like it is finished, but is there something we are forgetting? Oh yes! The player
doesn't guess a letter just once. The player will have to keep guessing letters over and over until they
win or lose. We should draw two new arrows so the flow chart shows this.

What else are we forgetting? What if when the player guesses a letter, they guess a letter they have
guessed before. The player should not win or lose in this case, but should be allowed to guess a different
letter instead:

Wait a second. How can the player figure out how well or how bad they're doing in this game? We
need to remember to show them the hangman board and also the secret word (with the unguessed letters
blanked out). Then the player will be able to see how many body parts of the hangman there are, or how
much of the secret word they have guessed so far. This should happen each time the player guesses. We
can add this box in between the "Come up with a secret word." box and the "Ask player to guess a
letter." box:

That looks good! We can always look at this flow chart while we are coding to remind ourselves of
everything we want this program to do. The flow chart is kind of like a cake recipe or blueprints for a
house. We could just start baking a cake or building a house, but without the plans we may forget to do a
step. You won't really need this flow chart because you will just copy the source code given here. But
when you design your own games, a flow chart can help you remember everything you need to code.

Code Explanation

1. import random

The Hangman program is going to randomly select a secret word from a list of secret words. This
means we will need the random module imported.

3. HANGMANPICS = ['''
4.
5. +------+
6. | |
7. | |
8. |
9. |

10. |
11. |
12. |
13. |
14. |
15. |
16. ==============''', '''

...the rest of the code is too big to show here...

This "line" of code a simple variable assignment, but it actually stretches over several real lines in the
source code. The actual "line" doesn't end until line 96. To help you understand what this code means,
you should learn about multi-line strings and lists:

Multi-line Strings

Ordinarily when you write strings in your source code, the string has to be on one line. However, if
you use three single-quotes instead of one single-quote to begin and end the string, the string can be on
several lines:

If we didn't have multi-line strings, we would have to use the \n escape character to represent the
new lines. But that can make the string hard to read in the source code:

Multi-line strings do not have to keep the same indentation to remain in the same block. Within the
multi-line string, Python ignores the indentation rules it normally has for where blocks end.

def writeLetter():
 # inside the def-block
 print '''Dear Alice,
How are you? Write back to me soon.

Sincerely,
 Bob''' # end of the multi-line string and print s tatement
 print 'P.S. I miss you.' # still inside the def -block

writeLetter() # This is the first line outside the def-
block.

Constant Variables

You may have noticed that HANGMANPICS's name is in all capitals. This is the programming
convention for constant variables. Constants are variables whose values do not change throughout the
program. Although we can change HANGMANPICS just like any other variable, the all-caps reminds the
programmer to not write code that does so.

Constant variables are helpful for providing descriptions for values that have a special meaning. Since
the multi-string value never changes, there is no reason we couldn't copy this multi-line string each time
we needed that value. The HANGMANPICS variable never varies. But it is much shorter to type
HANGMANPICS than it is to type that large multi-line string.

Also, there are cases where typing the value by itself may not be obvious. If we set a variable eggs
= 72 , we may forget why we were setting that variable to the integer 72 . But if we define a constant
variable DOZEN = 12 , then we could set eggs = DOZEN * 6 and by just looking at the code know
that the eggs variable was set to six dozen.

Like all conventions, we don't have to use constant variables, or even put the names of constant
variables in all capitals. But doing it this way makes it easier for other programmers to understand how
these variables are used. (It even can help you if you are looking at code you wrote a long time ago.)

Lists

I will now tell you about a new data type called a list . A list value can contain several other values in
it. Try typing this into the shell: ['apples', 'oranges', 'HELLO WORLD'] . This is a list
value that contains three string values. Just like any other value, you can store this list in a variable. Try
typing spam = ['apples', 'oranges', 'HELLO WORLD'] , and then type spam to view the
contents of spam.

Lists are a good way to store several different values into one variable. The individual values inside of
a list are also called items . Try typing: animals = ['aardvark', 'anteater',
'antelope', 'albert'] to store various strings into the variable animals . The square brackets
can also be used to get an item from a list. Try typing animals[0] , or animals[1] , or animals
[2] , or animals[3] into the shell to see what they evaluate to.

The number between the square brackets is the index . In Python, the first index is the number 0
instead of the number 1. So the first item in the list is at index 0, the second item is at index 1, the third
item is at index 2, and so on. Lists are very good when we have to store lots and lots of values, but we
don't want variables for each one. Otherwise we would have something like this:

This makes working with all the strings as a group very hard, especially if you have hundreds or
thousands (or even millions) of different strings that you want stored in a list. Using the square brackets,
you can treat items in the list just like any other value. Try typing animals[0] + animals[2]
into the shell:

Because animals[0] evaluates to the string 'aardvark' and animals[2] evaluates to the
string 'antelope' , then the expression animals[0] + animals[2] is the same as
'aardvark' + 'antelope' . This string concatenation evaluates to 'aardvarkantelope' .

What happens if we enter an index that is larger than the list's largest index? Try typing animals
[4] or animals[99] into the shell:

If you try accessing an index that is too large, you will get an index error .

Changing the Values of List Items with Index Assign ment

You can also use the square brackets to change the value of an item in a list. Try typing animals
[1] = 'ANTEATER' , then type animals to view the list.

The second item in the animals list has been overwritten with a new string.

List Concatenation

You can join lists together into one list with the + operator, just like you can join strings. When
joining lists, this is known as list concatenation . Try typing [1, 2, 3, 4] + ['apples',
'oranges'] + ['Alice', 'Bob'] into the shell:

Notice that lists do not have to store values of the same data types. The example above has a list with
both integers and strings in it.

The in Operator

The in operator makes it easy to see if a value is inside a list or not. Expressions that use the in
operator return a boolean value: True if the value is in the list and False if the value is not in the list.
Try typing 'antelope' in animals into the shell:

The expression 'antelope' in animals returns True because the string 'antelope' can
be found in the list, animals . (It is located at index 2.)

But if we type the expression 'ant' in animals , this will return False because the string
'ant' does not exist in the list. We can try the expression 'ant' in ['beetle', 'wasp',
'ant'] , and see that it will return True .

The in operator also works for strings as well as lists. You can check if one string exists in another
the same way you can check if a value exists in a list. Try typing 'hello' in 'Alice said
hello to Bob.' into the shell. This expression will evaluate to True .

Removing Items from Lists with del Statements

You can remove items from a list with a del statement. ("del" is short for "delete.") Try creating a
list of numbers by typing: spam = [2, 4, 6, 8, 10] and then del spam[1] . Type spam to
view the list's contents:

Notice that when you deleted the item at index 1, the item that used to be at index 2 became the new
index 1. The item that used to be at index 3 moved to be the new index 2. Everything above the item that
we deleted moved down one index. We can type del spam[1] again and again to keep deleting items
from the list:

Lists of Lists

Lists are a data type that can contain other values as items in the list. But these items can also be other
lists. Let's say you have a list of groceries, a list of chores, and a list of your favorite pies. You can put
all three of these lists into another list. Try typing this into the shell:

groceries = ['eggs', 'milk', 'soup', 'apples', 'bre ad']
chores = ['clean', 'mow the lawn', 'go grocery shop ping']
favoritePies = ['apple', 'frumbleberry']
listOfLists = [groceries, chores, favoritePies]
listOfLists

You could also type the following and get the same values for all four variables:

listOfLists = [['eggs', 'milk', 'soup', 'apples', ' bread'], ['clean',

'mow the lawn', 'go grocery shopping'], ['apple', ' frumbleberry']]
groceries = listOfLists[0]
chores = listOfLists[1]
favoritePies = listOfLists[2]
listOfLists

To get an item inside the list of lists, you would use two sets of square brackets like this:
listOfLists[1][2] which would evaluate to the string 'go grocery shopping' . This is
because listOfLists[1] evaluates to the list ['clean', 'mow the lawn', 'go
grocery shopping'][2] . That finally evaluates to 'go grocery shopping' .

Here is another example of a list of lists, along with some of the indexes that point to the items in the
list of lists named x . The red arrows point to indexes of the inner lists themselves. The image is also
flipped on its side to make it easier to read:

Code Explanation continued...

3. HANGMANPICS = ['''
4.
5. +------+
6. | |
7. | |
8. |
9. |

10. |
11. |
12. |
13. |
14. |
15. |
16. ==============''', '''

...the rest of the code is too big to show here...

If you look from line 3 to line 96 in the code, you will see that the value we are assigning to the

variable HANGMANPICS is a list of multi-line strings. Each multi-line string in this list will be the
picture (in ASCII art) of the hangman board. The string at HANGMANPICS[0] is the hangman's noose
with no body parts. The string at HANGMANPICS[1] has just the head, HANGMANPICS[2] has the
head and body, and so on.

98. words = 'ant baboon badger bat bear beaver beetl e bird
camel cat clam cobra cougar coyote crab crane crow
deer dog donkey duck eagle ferret fish fox frog goa t
goose hawk iguana jackal koala leech lemur lion liz ard
llama mite mole monkey moose moth mouse mule newt
otter owl oyster panda parrot pigeon python quail
rabbit ram rat raven rhino salmon seal shark sheep
skunk sloth slug snail snake spider squid stork swa n
tick tiger toad trout turkey turtle wasp weasel wha le
wolf wombat worm zebra'.split()

Line 98 assigns a list to the variable words . This will be the list of all possible secret words in this
game. The secret word will be selected from this list. All of the possible secret words are some kind of
animal (so the player has some idea what the word is).

But the value being assigned to words doesn't look like a list. It does not have the [and] square
brackets. But there is a special kind of function call at the end of the long string, .split() . This is a
method on the string, and it will evaluate to a list which is then stored in words . Read on to find out
what methods are.

Methods

Methods are functions that are attached with a certain value. For example, the strings have a lower
() method. You cannot just call the lower() by itself. You must attach the method call to a specific
string. Try typing 'Hello world!'.lower() into the interactive shell:

The lower() method returns the lowercase version of the string it is attached to. There is also an
upper() method for strings. Try tying 'Hello world'.upper() into the shell:

Because the upper() method returns a string, you can call a method on that string as well. Try
typing 'Hello world!'.upper().lower() into the shell:

'Hello world!'.upper() evaluates to the string 'HELLO WORLD!' , and then we call that
string's lower() method. This returns the string 'hello world!' , which is the final value in the
evaluation. The order is important. 'Hello world!'.lower().upper() is not the same as
'Hello world!'.upper().lower() :

Remember, if a string is stored in a variable, you can call a string method on that variable. Look at
this example:

The list data type also has methods. The reverse() method will reverse the order of the items in
the list. Try typing spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof'] and then
spam.reverse() (to reverse the list). Then type spam to view the contents of the spam variable.

The most common list method you will use is append() . This method will add the value you pass
as an argument to the end of the list. Try typing the following into the shell:

eggs = []
eggs.append('hovercraft')
eggs
eggs.append('eels')
eggs
eggs.append(42)
eggs

While strings and lists have methods, integers do not happen to have any methods.

You may be wondering why Python has methods anyway, since they do the same thing as functions.
Attaching functions to values (which is what methods are) becomes a lot more useful in object-oriented
programming (OOP). Strings and lists are also known as a special type of data type called objects. But
object-oriented programming is a bit advanced for this book, and you don't need to know OOP to make
these games. You only need to know about string methods and the append() list method.

Code Explanation continued...

98. words = 'ant baboon badger bat bear beaver beetl e bird
camel cat clam cobra cougar coyote crab crane crow
deer dog donkey duck eagle ferret fish fox frog goa t
goose hawk iguana jackal koala leech lemur lion liz ard
llama mite mole monkey moose moth mouse mule newt
otter owl oyster panda parrot pigeon python quail
rabbit ram rat raven rhino salmon seal shark sheep
skunk sloth slug snail snake spider squid stork swa n
tick tiger toad trout turkey turtle wasp weasel wha le
wolf wombat worm zebra'.split()

As you can see, this line is just one very, very long string that has the split() method called on it.
The split() method will return a list made up of the words in the string that are separated by a space.

(The string is split up into a list of items.) The reason we do it this way instead of just writing out the
list is that it is easier to type as one long string. Otherwise you would have to type: ['ant',
'baboon', 'badger', ... with all the quotes and commas. The words list will contain the possible
secret words that can show up in the game. You can add or remove your own words to this string later if
you want to change the words used in the Hangman game.

For an example of how the split() string method works, try typing 'My very energetic
mother just served us nine pies'.split() into the shell:

The result is a list of nine strings, one string for each of the words in the original string. The spaces
are dropped from the items in the list.

100. def getRandomWord(wordList):
101. # This function returns a random string fro m the

passed list of strings.
102. wordIndex = random.randint(0, len(wordList) - 1)
103. return wordList[wordIndex]

Starting on line 100, we define a new function called getRandomWord() which has a single
parameter named wordList . We will call this function when we want to pick a secret word from a list
of secret words. This function makes use of a new Python function named len() , which I will explain
first.

The len() Function

The len() function ("len" is short for "length") takes a list as a parameter and returns the integer of
how many items are in a list. Try typing len(animals) into the shell:

The integer value returned by len() is like any other integer value:

The square brackets by themselves are also a list value known as the empty list . If you pass the
empty list to the len() function, it returns the integer 0, because there are zero items in that list:

Code Explanation continued...

100. def getRandomWord(wordList):
101. # This function returns a random string fro m the

passed list of strings.
102. wordIndex = random.randint(0, len(wordList) - 1)
103. return wordList[wordIndex]

The function getRandomWord() is passed a list of strings as the argument for the wordList
parameter. On line 102, we will store a random index in this list in the wordIndex variable. We do
this by calling randint() with two arguments. Remember that arguments in a function call are
separated by commas, so the first argument is 0 and the second argument is len(wordList) - 1 .
The second argument is an expression that is first evaluated. len(wordList) will return the integer
size of the list passed to getRandomWord() , minus one.

For example, if we passed ['apple', 'orange', grape'] as an argument to
getRandomWord() , then len(wordList) would return the integer 3 and the expression 3 - 1
would evaluate to the integer 2.

That means that wordIndex would contain the return value of randint(0, 2) , which means
wordIndex would equal 0, 1, or 2. On line 103, we would return the element in wordList at the
integer index stored in wordIndex .

Let's pretend we did send ['apple', 'orange', grape'] as the argument to
getRandomWord() and that randint(0, 2) returned the integer 2. That would mean that line
103 would become return wordList[2] , which would evaluate to return 'grape' . This is
how the getRandomWord() returns a random string in the wordList list.

But remember, we can pass any list of strings to getRandomWord() . This function will be very
useful to our Hangman game when we call it.

105. def displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord):

106. print HANGMANPICS[len(missedLetters)]
107. print

This code defines a new function named displayBoard() . This function has four parameters.
This function will implement the code for the "Show the board and blanks to the player" box in our flow
chart. Here is what each parameter means:

� HANGMANPICS - This is a list of multi-line strings that will display the board as ASCII art. We
will always pass the global HANGMANPICS variable as the argument for this parameter.

� missedLetters - This is a string made up of the letters the player has guessed that are not in
the secret word.

� correctLetters - This is a string made up of the letters the player has guessed that are in the
secret word.

� secretWord - This string is the secret word.

The first print statement will display the board. HANGMANPICS will be a list of strings for each
possible board. HANGMANPICS[0] shows an empty gallows, HANGMANPICS[1] shows the head
(this happens when the player misses one letter), HANGMANPICS[2] shows a head and body (this
happens when the player misses two letters), and so on until HANGMANPICS[6] when the full
hangman is shown and the player loses.

The number of letters in missedLetters will tell us how many missed guesses the player has
made. We can call len(missedLetters) to find out this number. This number can also be used as
the index to the HANGMANPICS list for the specific string we want to print. So, if missedLetters is
'aetr' then len('aetr') will return 4 and we will display the string HANGMANPICS[4]. This is
what HANGMANPICS[len(missedLetters)] evaluates to. This line shows the correct hangman
board to the player.

109. print 'Missed letters:',

110. for letter in missedLetters:
111. print letter,
112. print

Line 110 is a new type of loop, called a for loop. They are kind of like while loops. Line 111 is the
entire body of the for loop. The range() function is often used with for loops. I will explain both in
the next two sections.

The range() Function

The range() function is easy. You can call it with either one or two integer arguments. When called
with one argument, range() will return a list of integers from 0 up to (but not including) the argument.
Try typing range(10) into the shell:

It's very easy to generate huge lists with the range() function. Try typing in range(10000) into
the shell:

The list is so huge, that it won't even all fit onto the screen. But we can save the list into the variable
just like any other list by typing spam = range(10000)

If you pass two arguments to range() , the list of integers it returns is from the first argument up to
(but not including) the second argument. Try typing range(10, 20) into the shell:

The range() is a very useful function, because we often use it in for loops (which are much like
the while loops we have already seen).

for Loops

The for loop is very good at looping over a list of values. This is different from the while loop,
which loops as long as a certain condition is true. A for statement begins with the for keyword,
followed by a variable, followed by the in keyword, followed by a sequence (such as a list or string)
and then a colon. Each time the program execution goes through the loop (that is, on each iteration
through the loop) the variable in the for statement takes on the value of the next item in the list.

For example, you just learned that the range() function will return a list of integers. We will use
this list as the for statement's list. In the shell, type for i in range(10): and press Enter.
Nothing will happen, but the shell will indent the cursor, because it is waiting for you to type in the for-
block. Type print i and press Enter. Then, to tell the interactive shell you are done typing in the for-
block, press Enter again to enter a blank line. The shell will then execute your for statement and block:

The for loop executes the code inside the for-block once for each item in the list. Each time it
executes the code in the for-block, the variable i is assigned the next value of the next item in the list. If
we used the for statement with the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] instead of range
(10) , it would have been the same since the range() function's return value is the same as that list:

Try typing this into the shell: for thing in ['cats', 'pasta', 'programming',
'spam']: and press Enter, then type print 'I really like ' + thing and press Enter,
and then press Enter again to tell the shell to end the for-block. The output should look like this:

And remember, because strings are also a sequence data type just like lists, you can use them in for
statements as well. This example uses a single character from the string on each iteration:

The for loop is very similar to the while loop, but when you only need to iterate over items in a
list, using a for loop is much less code to type. You can make a while loop that acts the same way as
a for loop by adding extra code:

But using the for statement automatically does all this extra code for us and makes programming
easier since we have less to type. Our Hangman game will use for loops so you can see how useful
they are in real games.

One more thing about for loops, is that the for statement has the in keyword in it. But when you
use the in keyword in a for statement, Python does not treat it like the in operator you would use in
something like 42 in [0, 42, 67] . The in keyword in for statements is just used to separate the
variable and the list it gets its values from.

Code Explanation continued...

109. print 'Missed letters:',
110. for letter in missedLetters:
111. print letter,
112. print

This for loop will display all the missed guesses that the player has made. When you play Hangman
on paper, you usually write down these letters off to the side so you know not to guess them again. On
each iteration of the loop the value of letter will be each letter in missedLetters in turn.
Remember that a comma at the end of the print statement will make it print a space instead of a
"newline" character, so all the missed letters will be on the same line.

If missedLetters was 'ajtw' then this for loop would display a j t w .

So by this point we have shown the player the hangman board and the missed letters. Now we want to

print the secret word, except we want blank lines for the letters. We can use the _ character (called the
underscore character) for this. But we should print the letters in the secret word that the player has
guessed, and use _ characters for the letters the player has not guessed yet. We can first create a string
with nothing but one underscore for each letter in the secret word. Then we can replace the blanks for
each letter in correctLetters . So if the secret word was 'otter' then the blanked out string
would be '_____' (five _ characters). If correctLetters was the string 'rt' then we would
want to change the blanked string to '_tt_r' . Here is the code that does that:

114. blanks = '_' * len(word)
115.
116. for i in range(len(secretWord)): # replace blanks

with correctly guessed letters
117. if word[i] in correctLetters:
118. blanks = blanks[:i] + word[i] + bla nks

[i+1:]

Line 114 creates the blanks variable full of _ underscores using string replication. Remember that
the * operator can also be used on a string and an integer, so the expression 'hello' * 3 evaluates
to 'hellohellohello' . This will make sure that blanks has the same number of underscores as
secretWord has letters.

Then we use a for loop to go through each letter in secretWord and replace the underscore with
the actual letter if it exists in correctLetters . Line 118 may look confusing. It seems that we are
using the square brackets with the blanks and secretWord variables. But wait a second, blanks
and secretWord are strings, not lists. And the len() function also only takes lists as parameters, not
strings. But in Python, many of the things you can do to lists you can also do to strings:

Strings Act Like Lists

Surprise! Strings act a lot like lists. In fact, almost all of the things you can do on lists you can also do
on strings. Just think of strings as "lists" of one-letter strings. So 'Hello' acts similar to ['H',
'e', 'l', 'l', 'o'] . (They are still different values and have different data types though.
'Hello' == ['H', 'e', 'l', 'l', 'o'] would be False .)) The square brackets can also
pick out individual characters from a string just like it can pick out individual items from a list. In the
interactive shell, type fizz = 'Hello world!' and then fizz[0] :

You can also find out how many characters are in a string with the len() function. Type in len

(fizz) into the shell:

However, you cannot change a character in a string or remove a character with del statement. This is
because a list is a mutable sequence and a string is an immutable sequence . "Mutable" is another
word for "changeable." The word "immutable" means "cannot be changed." A sequence is a series of
things (like in real life, a dance sequence is a series of different dance steps done one after another). The
reason strings are immutable and lists are mutable has to do with how the Python interpreter is
programmed, but it isn't important for us to know in order to make games. If we want to change a string,
we can create a copy of the string with slices (explained next) the same way we do on line 118.

So remember, you can use index assignment or del with lists but not with strings.

List Slicing and Substrings

Slicing is like indexing with multiple indexes instead of just one. Instead of putting one index in
between the square brackets, we put two indexes separated by a colon. To grab the first three items from
our animals list with animals[0:3] , which means "all items in animals from item 0 up to (but not
including) item 3."

To grab items 2 and 3 from animals , use the slice animals[2:4] . Try typing it into the shell:

You can use slicing to get a part of a string (called a substring from a string. Try typing 'Hello
world!'[3:8] into the shell:

So remember that on the right side of any list or string value (or a variable that contains a list or string
value), you can put square brackets to extract a single or several items from the sequence .
("Sequence" refers to a group of data types that include strings and lists.)

Code Explanation continued...

116. for i in range(len(secretWord)): # replace blanks
with correctly guessed letters

117. if secretWord[i] in correctLetters:
118. blanks = blanks[:i] + secretWord[i] +

blanks[i+1:]

Let's pretend the value of secretWord is 'otter' and the value in correctLetters is 'tr' .
Then len(secretWord) will return 5. Then range(len(secretWord)) becomes range(5) ,
which in turn returns the list [0, 1, 2, 3, 4] .

Because the value of i will take on each value in [0, 1, 2, 3, 4] , then the for loop code is
equivalent to this:

 if secretWord[0] in correctLetters:
 blanks = blanks[:0] + secretWord[0] + blank s[1:]
 if secretWord[1] in correctLetters:
 blanks = blanks[:1] + secretWord[1] + blank s[2:]
 if secretWord[2] in correctLetters:
 blanks = blanks[:2] + secretWord[2] + blank s[3:]
 if secretWord[3] in correctLetters:
 blanks = blanks[:3] + secretWord[3] + blank s[4:]
 if secretWord[4] in correctLetters:

 blanks = blanks[:4] + secretWord[4] + blank s[5:]

(By the way, writing out the code like this instead of using a loop is called loop unrolling .)

If you are confused as to what the value of something like secretWord[0] or blanks[3:] is,
then look at this picture. It shows the value of the secretWord and blanks variables, and the index
for each letter in the string.

If we replace the list slices and the list indexes with the values that they represent, the unrolled loop
code would be the same as this:

 if 'o' in 'tr': # Condition is F alse,
blanks == '_____'
 blanks = '' + 'o' + '____' # This line is s kipped.
 if 't' in 'tr': # Condition is T rue,
blanks == '_____'
 blanks = '_' + 't' + '___' # This line is e xecuted.
 if 't' in 'tr': # Condition is T rue,
blanks == '_t___'
 blanks = '_t' + 't' + '__' # This line is e xecuted.
 if 'e' in 'tr': # Condition is F alse,
blanks == '_tt__'
 blanks = '_tt' + 'e' + '_' # This line is s kipped.
 if 'r' in 'tr': # Condition is T rue,
blanks == '_tt__'
 blanks = '_tt_' + 'r' + '' # This line is e xecuted.

 # blanks now has the value '_tt_r'

The above three boxes of code all do the same thing (at least, they do when secretWord is
'otter' and correctLetters is 'tr' . The first box is the actual code we have in our game. The
second box shows code that does the same thing except without a for loop. The third box is the same as
the second box, except we have evaluated many of the expressions in the second box.

The next few lines of code display the new value of blanks with spaces in between each letter.

120. for letter in blanks: # show the secret wor d with
spaces in between each letter

121. print letter,
122. print

This for loop will print out each character in the string blanks . Remember that by now, blanks
may have some of its underscores replaced with the letters in secretWord . The comma at the end of
the print statement causes it to display a space instead of a newline character.

This is the end of the displayBoard() function.

124. def getGuess(alreadyGuessed):
125. # Returns the letter the player entered. Th is

function makes sure the player entered a single
letter, and not something else.

The getGuess() function has a string parameter called alreadyGuessed which contains the
letters the player has already guessed, and will ask the player to guess a single letter. This single letter
will be the return value for this function.

126. while True:
127. print 'Guess a letter.'
128. guess = raw_input()
129. guess = guess.lower()

We will use a while loop because we want to keep asking the player for a letter until they enter text
that is a single letter they have not guessed previously. Notice that the condition for the while loop is
simply the boolean value True . That means the only way execution will ever leave this loop is by
executing a break statement (which leaves the loop) or a return statement (which leaves the entire
function).

The code inside the loop asks the player to enter a letter, which is stored in the variable guess . If the
player entered a capitalized letter, it will be converted to lowercase on line 129.

elif ("Else If") Statements

Take a look at the following code:

if catName == 'Fuzzball':
 print 'Your cat is fuzzy.'
else:
 print 'Your cat is not very fuzzy at all.'

We've seen code like this before and it's rather simple. If the catName variable is equal to the string
'Fuzzball' , then the if statement's condition is True and we tell the user that her cat is fuzzy. If
catName is anything else, then we tell the user her cat is not fuzzy.

But what if we wanted something else besides "fuzzy" and "not fuzzy"? We could put another if and
else statement inside the first else block like this:

if catName == 'Fuzzball':
 print 'Your cat is fuzzy.'
else:
 if catName == 'Spots':
 print 'Your cat is spotted.'
 else:
 print 'Your cat is neither fuzzy nor spotte d.'

But if we wanted more things, then the code starts to have a lot of indentation:

if catName == 'Fuzzball':
 print 'Your cat is fuzzy.'
else:
 if catName == 'Spots'
 print 'Your cat is spotted.'
 else:
 if catName == 'FattyKitty'
 print 'Your cat is fat.'
 else:
 if catName == 'Puff'
 print 'Your cat is puffy.'
 else:
 print 'Your cat is neither fuzzy no r spotted
nor fat nor puffy.'

Typing all those spaces means you have more chances of making a mistake with the indentation. So
Python has the elif keyword. Using elif , the above code looks like this:

if catName == 'Fuzzball':
 print 'Your cat is fuzzy.'
elif catName == 'Spots'
 print 'Your cat is spotted.'
elif catName == 'FattyKitty'
 print 'Your cat is fat.'
elif catName == 'Puff'
 print 'Your cat is puffy.'
else:
 print 'Your cat is neither fuzzy nor spotted no r fat nor
puffy.'

If the condition for the if statement is False , then the program will check the condition for the first
elif statement (which is catName == 'Spots' . If that condition is False , then the program will
check the condition of the next elif statement. If ALL of the conditions for the if and elif
statements are False , then the code in the else block executes.

But if one of the elif conditions are True , the elif-block code is executed and then execution jumps
down to the first line past the else-block. So only one of the blocks in this if-elif-else statement will be
executed. You can also leave off the else-block if you don't need one, and just have an if-elif statement.

Code Explanation continued...

130. if len(guess) != 1:
131. print 'Please enter a single letter .'
132. elif guess in alreadyGuessed:
133. print 'You have already guessed tha t

letter. Choose again.'
134. elif guess not in

'abcdefghijklmnopqrstuvwxyz':
135. print 'Please enter a LETTER.'
136. else:
137. return guess

The guess variable contains the text the player typed in for their guess. We need to make sure they
typed in a single lowercase letter. If they didn't, we should loop back and ask them again. The if
statement's condition checks that the text is one and only letter. If it is not, then we execute the if-block
code, and then execution jumps down past the else-block. But since there is no more code after this if-
elif-else statement, execution loops back to line 126.

If the condition for the if statement is False , we check the elif statement's condition on line 132.
This condition is True if the letter exists inside the alreadyGuessed variable (remember, this is a
string that has every letter the player has already guessed). If this condition is True , then we display the
error message to the player, and jump down past the else-block. But then we would be at the end of the
while-block, so execution jumps back up to line 126.

If the condition for the if statement and the elif statement are both False , then we check the
second elif statement's condition on line 134. If the player typed in a number or a funny character
(making guess have a value like '5' or '!'), then guess would not exist in the string
'abcdefghijklmnopqrstuvwxyz' . If this is the case, the elif statement's condition is True

Unless these three conditions are all False , the player will keep looping and keep being asked for a
letter. But when all three of the conditions are False , then the else-block's return statement will run
and we will exit this loop and function.

139. def playAgain():
140. # This function returns True if the player wants

to play again, otherwise it returns False.
141. print 'Do you want to play again? (yes or n o)'
142. return raw_input().lower().startswith('y')

The playAgain() function has just a print statement and a return statement. The return
statement has an expression that looks complicated, but we can break it down. Once we evaluate this
expression to a value, that value will be returned from this function.

The expression on line 142 doesn't have any operators, but it does have a function call and two
method calls. The function call is raw_input() and the method calls are lower() and
startswith('y') . Remember that method calls are function calls that are attached by a period to
the value on their left. lower() is attached to the return value of raw_input() .

raw_input() returns a string of the text that the user typed in. Here's a step by step look at how
Python evaluates this expression if the user types in YES.

return raw_input().lower().startswith('y')

return 'YES'.lower().startswith('y')

return 'yes'.startswith('y')

return True

The point of the playAgain() function is to let the player type in yes or no to tell our program if
they want to play another round of Hangman. If the player types in YES, then the return value of
raw_input() is the string 'YES' . 'YES'.lower() returns the lowercase version of the attached
string. So the return value of 'YES'.lower() is 'yes' .

But there's the second method call, startswith('y') . This function returns True if the
associated string begins with the string parameter between the parentheses, and False if it doesn't. The
return value of 'yes'.startswith('y') is True .

Now we have evaluated this expression! We can see that what this does is let the player type in a
response, we lowercase the response, check if it begins with the letter 'y' or 'Y' , and then return
True if it does and False if it doesn't. Whew!

On a side note, there is also a endswith(someString) string method that will return True if the
string ends with the string in someString and False if it doesn't.

Code Explanation continued...

That's all the functions we are creating for this game! getRandomWord(wordList) will take a
list of strings passed to it as a parameter, and return one string from it. That is how we will choose a
word for the player to guess.

displayBoard(HANGMANPICS, missedLetters, correctLet ters, secretWord)
will show the current state of the board, including how much of the secret word the player has guessed
so far and the wrong letters the player has guessed. This function needs four parameters passed to work
correctly. HANGMANPICS is a list of strings that hold the ASCII art for each possible hangman board.
correctLetters and missedLetters are strings made up of the letters that the player has
guessed that are in and not in the secret word. And secretWord is the secret word the player is trying
to guess. This function has no return value.

getGuess(alreadyGuessed) takes a string of letters the player has already guessed and will

keep asking the player for a letter that is a letter that he hasn't already guessed. (That is, a letter that is
not in alreadyGuessed . This function returns the string of the acceptable letter the player guessed.

playAgain() is a function that asks if the player wants to play another round of Hangman. This
function returns True if the player does and False if the player doesn't.

We'll now start the code for the main part of the game, which will call the above functions as needed.
Look back at our flow chart.

We need to write code that does everything in this flow chart, and does it in order. The main part of
the code starts at line 145:

145. print 'H A N G M A N'
146. missedLetters = ''
147. correctLetters = ''

148. secretWord = getRandomWord(words)
149. gameIsDone = False

Line 145 is the first actual line that executes in our game. Everything previous was just function
definitions and a very large variable assignment for HANGMANPICS. We start by assigning a blank string
for missedLetters and correctLetters , because the player has not guessed any missed or
correct letters yet. Then we call getRandomWord(words) , where words is a variable with the huge
list of possible secret words we assigned on line 98. The return value of getRandomWord(words) is
one of these words, and we save it to the secretWord variable. Then we also set a variable named
gameIsDone to False . We will set gameIsDone to True when we want to signal that the game is
over and the program should ask the player if they want to play again.

Setting the values of these variables is what we do before the player starts guessing letters.

151. while True:
152. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

The while loop's condition is always True , which means we will always loop forever until a break
statement is encountered. We will execute a break statement when the game is over (either because the
player won or the player lost).

Line 152 calls our displayBoard() function, passing it the list of hangman ASCII art pictures and
the three variables we set on lines 146, 147, and 148. Program execution moves to the start of
displayBoard() at line 105. Based on how many letters the player has correctly guessed and missed,
this function displays the appropriate hangman board to the player.

154. # Let the player type in a letter.
155. guess = getGuess(missedLetters + correctLet ters)

If you look at our flow chart, you see only one arrow going from the "Show the board and the blanks to
the player." box to the "Ask a player to guess a letter." box. Since we have already written a function to
get the guess from the player, let's call that function. Remember that the function needs all the letters in
missedLetters and correctLetters combined, so we will pass as an argument a string that is a
concatenation of both of those strings. This argument is needed by getGuess() because the function

has code to check if the player types in a letter that they have already guessed.

157. if guess in secretWord:
158. correctLetters = correctLetters + guess

Now let's see if the single letter in the guess string exists in secretWord . If it does exist, then we
should concatenate the letter in guess to the correctLetters string. Next we can check if we have
guessed all of the letters and won.

160. # Check if the player has won
161. foundAllLetters = True
162. for i in range(len(secretWord)):
163. if secretWord[i] not in correctLett ers:
164. foundAllLetters = False
165. break

How do we know if the player has guessed every single letter in the secret word? Well,
correctLetters has each letter that the player correctly guessed and secretWord is the secret
word itself. We can't just check if correctLetters == secretWord because consider this
situation: if secretWord was the string 'otter' and correctLetters was the string 'orte' ,
then correctLetters == secretWord would be False even though the player has guessed
each letter in the secret word.

The player simply guessed the letters out of order and they still win, but our program would
incorrectly think the player hasn't won yet. Even if they did guess the letters in order,
correctLetters would be the string 'oter' because the player can't guess the letter t more than
once. The expression 'otter' == 'oter' would evaluate to False even though the player won.

The only way we can be sure the player won is to go through each letter in secretWord and see if it
exists in correctLetters . If, and only if, every single letter in secretWord exists in
correctLetters will the player have won.

Note that this is different than checking if every letter in correctLetters is in secretWord . If
correctLetters was the string 'ot' and secretWord was 'otter' , it would be true that
every letter in 'ot' is in 'otter' , but that doesn't mean the player has guessed the secret word and
won.

So how can we do this? We can loop through each letter in secretWord and if we find a letter that
does not exist in correctLetters , we know that the player has not guessed all the letters. This is
why we create a new variable named foundAllLetters and set it to the boolean value True . We
start out assuming that we have found all the letters, but will change foundAllLetters to False
when we find a letter in secretWord that is not in correctLetters .

The for loop will go through the numbers 0 up to (but not including) the length of the word.
Remember that range(5) will evaluate to the list [0, 1, 2, 3, 4, 5] . So on line 162, the
program executes all the code inside the for-block with the variable i will be set to 0, then 1, then 2,
then 3, then 4, then 5.

We use range(len(secretWord)) so that i can be used to access each letter in the secret word.
So if the first letter in secretWord (which is located at secretWord[0]) is not in
correctLetters , we know we can set foundAllLetters to False . Also, because we don't
have to check the rest of the letters in secretWord , we can just break out of this loop. Otherwise, we
loop back to line 163 and check the next letter.

If foundAllLetters manages to survive every single letter without being turned to False , then
it will keep the original True value we gave it. Either way, the value in foundAllLetters is
accurate by the time we get past this for loop and run line 166.

166. if foundAllLetters:
167. print 'Yes! The secret word is "' +

secretWord + '"! You have won!'
168. gameIsDone = True

This is a simple check to see if we found all the letters. If we have found every letter in the secret
word, we should tell the player that they have won. We will also set the gameIsDone variable to
True . We will check this variable to see if we should let the player guess again or if the player is done
guessing.

169. else:

This is the start of the else-block. Remember, the code in this block will execute if the condition was
False . But which condition? To find out, point your finger at the start of the else keyword and move
it straight up. You will see that the else keyword's indentation is the same as the if keyword's
indentation on line 157. So if the condition on line 157 was False , then we will run the code in this

else-block. Otherwise, we skip down past the else-block to line 177.

170. missedLetters = missedLetters + guess

Because the player's guessed letter was wrong, we will add it to the missedLetters string. This is
like what we did on line 158 when the player guessed correctly.

172. # Check if player has guessed too many times
and lost

173. if len(missedLetters) == len(HANGMANPIC S) - 1:
174. displayBoard(HANGMANPICS, missedLet ters,

correctLetters, secretWord)
175. print 'You have run out of guesses! \nAfter

' + str(len(missedLetters)) + ' missed guesses and ' +
str(len(correctLetters)) + ' correct guesses, the w ord
was "' + secretWord + '"'

176. gameIsDone = True

Think about how we know when the player has guessed too many times. When you play Hangman on
paper, this is when the drawing of the hangman is finished. We draw the hangman on the screen with
print statements, based on how many letters are in missedLetters . Remember that each time the
player guesses wrong, we add (or as a programmer would say, concatenate) the wrong letter to the string
in missedLetters . So the length of missedLetters (or, in code, len(missedLetters)) can
tell us the number of wrong guesses.

At what point does the player run out of guesses and lose? Well, the HANGMANPICS list has 7
pictures (really, they are ASCII art strings). So when len(missedLetters) equals 6, we know the
player has lost because the hangman picture will be finished. (Remember that HANGMANPICS[0] is
the first item in the list, and HANGMANPICS[6] is the last one. This is because the index of a list with 7
items goes from 0 to 6, not 1 to 7.)

So why do we have len(missedLetters) == len(HANGMANPICS) - 1 as the condition
on line 173, instead of len(missedLetters) == 6 ? Pretend that we add another string to the
HANGMANPICS list (maybe a picture of the full hangman with a tail, or a third mutant arm). Then the
last picture in the list would be at HANGMANPICS[7]. So not only would we have to change the
HANGMANPICS list with a new string, but we would also have to remember to change line 173 to len
(missedLetters) == 7 . This might not be a big deal for a

program like Hangman, but when you start writing larger programs you may have to change several
different lines of code all over your program just to make a
change in the program's behavior. This way, if we want to make the game harder or easier, we just have
to add or remove ASCII art strings to HANGMANPICS and change nothing else.

A second reason we user len(HANGMANPICS) - 1 is so that when we read the code in this
program later, we know why this program behaves the way it does. If you wrote len
(missedLetters) == 6 and then looked at the code two weeks later, you may wonder what is so
special about the number 6. You may have forgotten that 6 is the last index in the HANGMANPICS list.
Of course, you could write a comment to remind yourself, like:

173. if len(missedLetters) == 6: # 6 is the last
index in the HANGMANPICS list

But it is easier to just use len(HANGMANPICS) - 1 instead.

So, when the length of the missedLetters string is equal to len(HANGMANPICS) - 1 , we
know the player has run out of guesses and has lost the game. We print a long string telling the user
what the secret word was, and then set the gameIsDone value to the boolean value True . This is how
we will tell ourselves that the game is done and we should start over.

Remember that when we have \n in a string, that represents the newline character.

177. # Ask the player if they want to play again (but
only if the game is done).

178. if gameIsDone:
179. if playAgain():
180. missedLetters = ''
181. correctLetters = ''
182. gameIsDone = False
183. secretWord = getRandomWord(words)

If the player won or lost after guessing their letter, then our code would have set the gameIsDone
variable to True . If this is the case, we should ask the player if they want to play again. We already
wrote the playAgain() function to handle getting a yes or no from the player. This function returns a
boolean value of True if the player wants to play another game of Hangman, and False if they've had
enough.

If the player does want to play again, we will reset the values in missedLetters and
correctLetters to blank strings, set gameIsDone to False , and then choose a new secret word
by calling getRandomWord() again, passing it the list of possible secret words.

This way, when we loop back to the beginning of the loop (on line 151) the board will be back to the
start (remember we decide which hangman picture to show based on the length of missedLetters ,
which we just set as the blank string) and the game will be just as the first time we entered the loop. The
only difference is we will have a new secret word, because we programmed getRandomWord() to
return a randomly chosen word each time we call it.

There is a small chance that the new secret word will be the same as the old secret word, but this is
just a coincidence. Let's say you flipped a coin and it came up heads, and then you flipped the coin again
and it also came up heads. Both coin flips were random, it was just a coincidence that they came up the
same both times. Accordingly, you may get the same word return from getRandomWord() twice in a
row, but this is just a coincidence.

184. else:
185. break

If the player typed in 'no' when asked if they wanted to play again, then they return value of the call
to the playAgain() function would be False and the else-block would have executed. This else-
block only has one line, a break statement. This causes the execution to jump to the end of the loop
that was started on line 151. But because there is no more code after the loop, the program terminates.

And that's it!

This program was much bigger than the Dragon World program, but this program is also more
sophisticated. It really helps to make a flow chart or small sketch to remember how you want everything
to work. Take a look at the flow chart and try to find the lines of code that represent each block.

At this point, you can move on to the next chapter. But I suggest you keep reading on to find out
about some ways we can improve our Hangman game.

After you have played Hangman a few times, you might think that six guesses aren't enough to get
many of the words. We can easily give the player more guesses by adding more multi-line strings to the
HANGMANPICS list. It's easy, just change the] square bracket on line 96 to a ,''' comma and three quotes
(see line 96 below). Then add the following:

96. ==============''', '''
97.

98.
99. +------+

100. | |
101. | |
102. [O |
103. /|\ |
104. / | \ |
105. | |
106. / \ |
107. / \ |
108. |
109. |
110. ==============''', '''
111.
112.
113. +------+
114. | |
115. | |
116. [O] |
117. /|\ |
118. / | \ |
119. | |
120. / \ |
121. / \ |
122. |
123. |
124. ==============''']

We have added two new multi-line strings to the HANGMANPICS list, one with the hangman's left ear
drawn, and the other with both ears drawn. Because our program will tell the player they have lost when
the number of guesses is the same as the number of strings in HANGMANPICS (minus one), this is the
only change we need to make.

We can also change the list of words by changing the words on line 98. Instead of animals, we could
have colors, shapes, or fruits:

98. words = 'red orange yellow green blue indigo vio let
white black brown'.split()

98. words = 'square triangle rectangle circle ellips e

rhombus trapazoid chevron pentagon hexagon septagon
octogon'.split()

98. words = 'apple orange lemon lime pear watermelon grape
grapefruit cherry banana cantalope mango strawberry
tomato'.split()

Dictionaries

With some modification, we can change our code so that our Hangman game can use all of these words
as separate sets. We can tell the player which set the secret word is from (like "animal", "color", "shape",
or "fruit"). This way, the player isn't guessing animals all the time.

To make this change, we will introduce a new data type called a dictionary. A dictionary is a
collection of other values much like a list, but instead of accessing the items in the dictionary with an
integer index, you access them with an index of any data type (but most often strings).

Try typing the following into the shell:

stuff = {'hello':'Hello there, how are you?', 'chat ':'How is
the weather?', 'goodbye':'It was nice talking to yo u!'}

Those are curly braces { and }. On the keyboard they are on the same key as the square braces [and].
We use curly braces to type out a dictionary value in Python. The values in between them are key-value
pairs . The keys are the things on the left of the colon and the values are on the right of the colon. You
can access the values (which are like items in lists) in the dictionary by using the key (which are like
indexes in lists). Try typing into the shell stuff['hello'] and stuff['chat'] and stuff
['goodbye'] :

You see, instead of putting an integer index in between the square brackets, you put a key string index.
This will evaluate to the value for that key. You can get the size (that is, how many key-value pairs in the

dictionary) with the len() function. Try typing len(stuff) into the shell:

The list version of this dictionary would have only the values, and look something like this:

listStuff = ['Hello there, how are you?', 'How is t he
weather?', 'It was nice talking to you!']

The list doesn't have any keys, like 'hello' and 'chat' and 'goodbye' in the dictionary. We
have to use integer indexes 0, 1, and 2.

Dictionaries are different from lists because they are unordered . The first item in a list named
listStuff would be listStuff[0] . But there is no "first" item in a dictionary, because
dictionaries do not have any sort of order. Try typing this into the shell:

favorites1 = {'fruit':'apples', 'animal':'cats',
'number':42}
favorites2 = {'animal':'cats', 'number':42,
'fruit':'apples'}
favorites1 == favorites2

As you can see, the expression favorites1 == favorites2 evaluates to True because
dictionaries are unordered, and they are considered to be the same if they have the same key-value pairs
in them. Lists are ordered, so a list with the same values in them but in a different order are not the
same. Try typing this into the shell:

listFavs1 = ['apples', 'cats', 42]
listFavs2 = ['cats', 42, 'apples']
listFavs1 == listFavs2

As you can see, the two lists listFavs1 and listFavs2 are not considered to be the same
because order matters in lists.

You can also use integers as the keys for dictionaries. Dictionaries can have keys of any data type, not
just strings. But remember, because 0 and '0' are different values, they will be different keys. Try
typing this into the shell:

myDict = {'0':'a string', 0:'an integer'}
myDict[0]
myDict['0']

You might think that using a for loop is hard with dictionaries because they do not have integer
indexes. But actually, it's easy. Try typing the following into the shell. (Here's a hint, in IDLE, you do
not have to type spaces to start a new block. IDLE does it for you. To end the block, just insert a blank
line by just hitting the Enter key. Or you could start a new file, type in this code, and then press F5 to
run the program.)

favorites = {'fruit':'apples', 'animal':'cats', 'nu mber':42}
for i in favorites:
 print i
for i in favorites:
 print favorites[i]

As you can see, if you just use a dictionary in a for loop, the variable i will take on the values of the
dictionary's keys, not its values. But if you have the dictionary and the key, you can get the value as we
do above with favorites[i] . But remember that because dictionaries are unordered, you cannot
predict which order the for loop will execute in. Above, we typed the 'animal' key as coming
before the 'number' key, but the for loop printed out 'number' before 'animal' .

Dictionaries also have two useful methods, keys() and values() . These will return (ordered) lists
of the key values and the value values, respectively. Try typing the following into the shell:

favorites = {'fruit':'apples', 'animal':'cats', 'nu mber':42}
favorites.keys() favorites.values()

Using these methods to get a list of the keys and values that are in a dictionary can be very helpful.

Sets of Words for Hangman

So how can we use dictionaries in our game? First, let's change the list words into a dictionary
whose keys are strings and values are lists of strings. (Remember that the string method split()
evaluates to a list.

98. words = {'Colors':'red orange yellow green blue indigo
violet white black brown'.split(),

99. 'Shapes':'square triangle rectangle circle ellip se
rhombus trapazoid chevron pentagon hexagon septagon
octogon'.split(),

100. 'Fruits':'apple orange lemon lime pear watermel on
grape grapefruit cherry banana cantalope mango
strawberry tomato'.split(),

101. 'Animals':'bat bear beaver cat cougar crab deer dog
donkey duck eagle fish frog goat leech lion lizard
monkey moose mouse otter owl panda python rabbit ra t
shark sheep skunk squid tiger turkey turtle weasel
whale wolf wombat zebra'.split()}

This code is put across multiple lines in the file, even though the Python interpreter thinks of it as just
one "line of code." (The line of code doesn't end until the final } curly brace.)

Now we will have to change our getRandomWord() function so that it chooses a random word
from a dictionary of lists of strings, instead of from a list of strings. Here is what the function originally
looked like:

100. def getRandomWord(wordList):
101. # This function returns a random string fro m the

passed list of strings.
102. wordIndex = random.randint(0, len(wordList) - 1)
103. return wordList[wordIndex]

Change the code in this function so that it looks like this:

100. def getRandomWord(wordDict):
101. # This function returns a random string fro m the

passed dictionary of lists of strings, and the key
also.

102.
103. # First, randomly select a key from the

dictionary:
104. wordKey = random.choice(wordDict.keys())
105.
106. # Second, randomly select a word from the k ey's

list in the dictionary:
107. wordIndex = random.randint(0, len(wordDict

[wordKey]) - 1)
108.
109. return [wordDict[wordKey][wordIndex], wordK ey]

Line 100 just changes the name of the parameter to something a little more descriptive. Now instead
of choosing a random word from a list of strings, first we choose a random key from the dictionary and
then we choose a random word from the key's list of strings. Line 104 calls a new function in the
random module named choice() . The choice() function has one parameter, a list. The return
value of choice() is an item randomly selected from this list each time it is called.

Remember that randint(a, b) will return a random integer between (and including) the two

integers a and b and choice(a) returns a random item from the list a. Look at these two lines of
code, and figure out why they do the exact same thing:

random.randint(0, 9)
random.choice(range(0, 10))

Line 103 (line 109 in the new code) has also been changed. Now instead of returning the string
wordList[wordIndex] , we are returning a list with two items. The first item is wordDict
[wordKey][wordIndex] . The second item is wordKey . We return a list because we actually want
the getRandomWord() to return two values, so putting those two values in a list and returning the list
is the easiest way to do this.

wordDict[wordKey][wordIndex] may look kind of complicated, but it is just an expression
you can evaluate one step at a time like anything else. First, imagine that wordKey had the value
'Fruits' (which was chosen on line 104) and wordIndex has the value 5 (chosen on line 107).
Here is how wordDict[wordKey][wordIndex] would evaluate:

wordDict[wordKey][wordIndex]

wordDict['Fruits'][5]

['apple', 'orange', 'lemon', 'lime', 'pear', 'water melon',
'grape', 'grapefruit', 'cherry', 'banana', 'cantalo pe',
'mango', 'strawberry', 'tomato'][5]

'watermelon'

In the above case, the first item in the list this function returns would be the string 'watermelon' .

There are just three more changes to make to our program. The first two are on the lines that we call
the getRandomWord() function. The function is called on lines 148 and 184 in the original program:

147. correctLetters = ''
148. secretWord = getRandomWord(words)
149. gameIsDone = False

...

182. gameIsDone = False
183. secretWord = getRandomWord(words)
184. else:

Because the getRandomWord() function now returns a list of two items instead of a string,
secretWord will be assigned a list, not a string. We would then have to change the code as follows:

147. correctLetters = ''
148. secretWord = getRandomWord(words)
149. secretKey = secretWord[1]
150. secretWord = secretWord[0]
151. gameIsDone = False

...

182. gameIsDone = False
183. secretWord = getRandomWord(words)
184. secretKey = secretWord[1]
185. secretWord = secretWord[0]
186. else:

With the above changes, secretWord is first a list of two items. Then we add a new variable named
secretKey and set it to the second item in secretWord . Then we set secretWord itself to the first
item in the secretWord list. That means that secretWord will then be a string.

But there is an easier way by doing a little trick with assignment statements. Try typing the following
into the shell:

a, b, c = ['apples', 'cats', 42]
a
b
c

The trick is to put the same number of variables (delimited by commas) on the left side of the = sign as
are in the list on the right side of the = sign. Python will automatically assign the first item's value in the
list to the first variable, the second item's value to the second variable, and so on. But if you do not have

the same number of variables on the left side as there are items in the list on the right side, the Python
interpreter will give you an error.

So we should change our code in Hangman to use this trick, which will mean our program uses fewer
lines of code.

147. correctLetters = ''
148. secretWord, secretKey = getRandomWord(words)
149. gameIsDone = False

...

182. gameIsDone = False
183. secretWord, secretKey = getRandomWo rd

(words)
184. else:

The last change we will make is to add a simple print statement to tell the player which set of words
they are trying to guess. This way, when the player plays the game they will know if the secret word is
an animal, color, shape, or fruit. Add this line of code after line 151. Here is the original code:

151. while True:
152. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

Add the line so your program looks like this:

151. while True:
152. print 'The secret word is in the set: ' +

secretKey
153. displayBoard(HANGMANPICS, missedLetters,

correctLetters, secretWord)

Now we are done with our changes. Instead of just a single list of words, the secret word will be
chosen from many different lists of words. We will also tell the player which set of words the secret
word is from. Try playing this new version. You can easily change the words dictionary on line 98 to
include more sets of words.

We're done with Hangman. Let's move on to our next game, Tic Tac Toe!

Things Covered In This Chapter:

� Designing our game by drawing a flow chart before programming.
� ASCII Art
� Multi-line Strings
� Lists
� List indexes
� Index assignment
� List concatenation
� The in operator
� The del operator
� Methods
� The append() list method
� The lower() and upper() string methods
� The reverse() list method
� The split() list method
� The len() function
� Empty lists
� The range() function
� for loops
� Strings act like lists
� Mutable sequences (lists) and immutable sequences (strings)
� List slicing and substrings
� elif statements
� The startswith(someString) and endswith(someString) string

methods
� The dictionary data type (which is unordered, unlike list data type which is

ordered)
� key-value pairs
� The keys() and values() dictionary methods
� Multiple variable assignment, such as a, b, c = [1, 2, 3]

Chapter 6 - Tic Tac Toe
We will now create a Tic Tac Toe game where the player plays against a simple artificial intelligence.

An artificial intelligence (or AI) is a computer program that can intelligently respond to the player's
moves. This game doesn't introduce any complicated new concepts. We will see that the artificial
intelligence that plays Tic Tac Toe is really just several lines of code. So in a new file editor window,
type in this source code and save it as tictactoe.py. Then run the game by pressing F5.

Sample Run

Welcome to Tic Tac Toe!
Do you want to be X or O?
X
The computer will go first.
 | |
 O | |

 | |
 | |
 | |
What is your next move? (1-9)
3
 | |
 O | |

 | |
 O | | X
 | |
What is your next move? (1-9)
4
 | |
 O | | O

 X | |
O
What is your next move? (1-9)
5
O

 | |
 X | X |
O
The computer has beaten you! You lose.
Do you want to play again? (yes or no)
no

Source Code

tictactoe.py

1. # Tic Tac Toe
2.
3. import random
4.
5. def drawBoard(board):
6. # This function prints out the board that it was

passed.
7.
8. # "board" is a list of 10 strings representin g the

board (ignore index 0)
9. print ' | |'

10. print ' ' + board[7] + ' | ' + board[8] + ' | ' +
board[9]

11. print ' | |'
12. print '-----------'
13. print ' | |'
14. print ' ' + board[4] + ' | ' + board[5] + ' | ' +

board[6]

15. print ' | |'
16. print '-----------'
17. print ' | |'
18. print ' ' + board[1] + ' | ' + board[2] + ' | ' +

board[3]
19. print ' | |'
20.
21. def inputPlayerLetter():
22. # Let's the player type which letter they wa nt to

be.
23. # Returns a list with the player's letter as the

first item, and the computer's letter as the second .
24. letter = ''
25. while not (letter == 'X' or letter == 'O'):
26. print 'Do you want to be X or O?'
27. letter = raw_input().upper()
28.
29. # the first element in the tuple is the play er's

letter, the second is the computer's letter.
30. if letter == 'X':
31. return ['X', 'O']
32. else:
33. return ['O', 'X']
34.
35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:
38. return 'computer'
39. else:
40. return 'player'
41.
42. def playAgain():
43. # This function returns True if the player w ants to

play again, otherwise it returns False.
44. print 'Do you want to play again? (yes or no)'
45. return raw_input().lower().startswith('y')
46.
47. def makeMove(board, letter, move):
48. board[move] = letter
49.
50. def isWinner(bo, le):
51. # Given a board and a player's letter, this

function returns True if that player has won.
52. # We use bo instead of board and le instead of

letter so we don't have to type as much.
53. return ((bo[7] == le and bo[8] == le and bo[9] ==

le) or # across the top

54. (bo[4] == le and bo[5] == le and bo[6] == le) or #
across the middle

55. (bo[1] == le and bo[2] == le and bo[3] == le) or #
across the bottom

56. (bo[7] == le and bo[4] == le and bo[1] == le) or #
down the left side

57. (bo[8] == le and bo[5] == le and bo[2] == le) or #
down the middle

58. (bo[9] == le and bo[6] == le and bo[3] == le) or #
down the right side

59. (bo[7] == le and bo[5] == le and bo[3] == le) or #
diagonal

60. (bo[9] == le and bo[5] == le and bo[1] == le)) #
diagonal

61.
62. def getBoardCopy(board):
63. # Make a duplicate of the board list and ret urn it

the duplicate.
64. dupeBoard = []
65.
66. for i in board:
67. dupeBoard.append(i)
68.
69. return dupeBoard
70.
71. def isSpaceFree(board, move):
72. # Return true if the passed move is free on the

passed board.
73. return board[move] == ' '
74.
75. def getPlayerMove(board):
76. # Let the player type in their move.
77. move = ' '
78. while move not in '1 2 3 4 5 6 7 8 9'.split() or

not isSpaceFree(board, int(move)):
79. print 'What is your next move? (1-9)'
80. move = raw_input()
81. return int(move)
82.
83. def chooseRandomMoveFromList(board, movesList):
84. # Returns a valid move from the passed list on the

passed board.
85. # Returns None if there is no valid move.
86. possibleMoves = []
87. for i in movesList:
88. if isSpaceFree(board, i):
89. possibleMoves.append(i)

90.
91. if len(possibleMoves) != 0:
92. return random.choice(possibleMoves)
93. else:
94. return None
95.
96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter,

determine where to move and return that move.
98. if computerLetter == 'X':
99. playerLetter = 'O'

100. else:
101. playerLetter = 'X'
102.
103. # Here is our algorithm for our Tic Tac Toe AI:
104. # First, check if we can win in the next mo ve
105. for i in range(1, 9):
106. copy = getBoardCopy(board)
107. if isSpaceFree(copy, i):
108. makeMove(copy, computerLetter, i)
109. if isWinner(copy, computerLetter):
110. return i
111.
112. # Check if the player could win on their ne xt move,

and block them.
113. for i in range(1, 9):
114. copy = getBoardCopy(board)
115. if isSpaceFree(copy, i):
116. makeMove(copy, playerLetter, i)
117. if isWinner(copy, playerLetter):
118. return i
119.
120. # Try to take one of the corners, if they a re free.
121. move = chooseRandomMoveFromList(board, [1, 3, 7,

9])
122. if move != None:
123. return move
124.
125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5
128.
129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4, 6,

8])
131.
132. def isBoardFull(board):

133. # Return True if every space on the board h as been
taken. Otherwise return False.

134. for i in range(1, 10):
135. if isSpaceFree(board, i):
136. return False
137. return True
138.
139.
140. print 'Welcome to Tic Tac Toe!'
141.
142. while True:
143. # Reset the board
144. theBoard = [' '] * 10
145. playerLetter, computerLetter = inputPlayerL etter()
146. turn = whoGoesFirst()
147. print 'The ' + turn + ' will go first.'
148. gameIsPlaying = True
149.
150. while gameIsPlaying:
151. if turn == 'player':
152. # Player's turn.
153. drawBoard(theBoard)
154. move = getPlayerMove(theBoard)
155. makeMove(theBoard, playerLetter, mo ve)
156.
157. if isWinner(theBoard, playerLetter) :
158. drawBoard(theBoard)
159. print 'Hooray! You have won the game!'
160. gameIsPlaying = False
161. else:
162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print 'The game is a tie!'
165. break
166. else:
167. turn = 'computer'
168.
169. else:
170. # Computer's turn.
171. move = getComputerMove(theBoard,

computerLetter)
172. makeMove(theBoard, computerLetter, move)
173.
174. if isWinner(theBoard, computerLette r):
175. drawBoard(theBoard)
176. print 'The computer has beaten you! You

lose.'

177. gameIsPlaying = False
178. else:
179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print 'The game is a tie!'
182. break
183. else:
184. turn = 'player'
185.
186. if not playAgain():
187. break

Designing the Program

Tic Tac Toe is a very easy and short game to play on paper. In our Tic Tac Toe computer game, we'll
let the player choose if they want to be X or O, randomly choose who goes first, and then let the player
and computer take turns making moves on the board. Here is what a flow chart of this game could look
like:

You can see a lot of the boxes on the left side of the chart are what happens during the player's turn.
The right side of the chart shows what happens on the computer's turn. The player has an extra box for
drawing the board because the computer doesn't need the board printed on the screen. After the player or
computer makes a move, we check if they won or caused a tie, and then the game switches turns. If
either the computer or player ties or wins the game, we ask the player if they want to play again.

First, we need to figure out how we are going to represent the board as a variable. We are going to
represent the Tic Tac Toe board as a list of ten strings. The ten strings will represent each of the nine
positions on the board (and we will ignore one of our strings). The strings will either be 'X' for the X
player, 'O' for the O player, or a space string ' ' to mark a spot on the board where no one has
marked yet. To make it easier to remember which index in the list is for which piece, we will mirror the
numbers on the keypad of our keyboard. (Because there is no 0 on the keypad, we will just ignore the
string at index 0 in our list.)

So if we had a list with ten strings named board , then board[7] would be the top-left square on
the board (either an X, O, or blank space). board[5] would be the very center. When the player types
in which place they want to move, they will type a number from 1 to 9.

Game AI

Just to be clear, we will label three types of spaces on the Tic Tac Toe board: corners, sides, and the
center. Here is a chart of what each space is:

The AI for this game will follow a simple algorithm. An algorithm is a series of instructions to
compute something. Our Tic Tac Toe AI's algorithm will determine which is the best place to move. Our
algorithm will have the following steps:

1. First, see if there is a move the computer can make that will win the game. If there is, take that
move. Otherwise, go to step 2.

2. See if there is a move the player can make that will cause the computer to lose the game. If there

is, we should move there to block the player. Otherwise, go to step 3.
3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to take a corner

piece instead of the center or a side piece.) If no corner piece is free, then go to step 4.
4. Check if the center is free. If so, move there. If it isn't, then go to step 5.
5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps, because if we have

reached step 5 the side spaces are the only spaces left.

This all takes place in the "Get computer's move." box on our flow chart. We could add this
information to our flow chart like this:

We will implement this algorithm as code in our getComputerMove() function.

Code Explanation

1. # Tic Tac Toe
2.
3. import random

A comment and importing the random module so we can use the randint() function in our game.

5. def drawBoard(board):

6. # This function prints out the board that it was
passed.

7.
8. # "board" is a list of 10 strings representin g the

board (ignore index 0)
9. print ' | |'

10. print ' ' + board[7] + ' | ' + board[8] + ' | ' +
board[9]

11. print ' | |'
12. print '-----------'
13. print ' | |'
14. print ' ' + board[4] + ' | ' + board[5] + ' | ' +

board[6]
15. print ' | |'
16. print '-----------'
17. print ' | |'
18. print ' ' + board[1] + ' | ' + board[2] + ' | ' +

board[3]
19. print ' | |'

This function will print out the game board, marked as directed by the board parameter. Many of our
functions will work by passing the board as a list of ten strings to our functions. Be sure to get the spacing
right in the strings that are printed, otherwise the board will look funny when it is printed on the screen.

Just as an example, here are some values that the board parameter could have (on the left) and what
the drawBoard() function would print out:

board data structure
drawBoard(board)

output

[' ', ' ', ' ', ' ', 'X', 'O', ' ', 'X', ' ',
'O']

 | |
 X | | O
X

 | |
 | |
 | |

 | |
 | |
 | |

The last board filled with X's could not possibly have happened (unless the X player skipped all of the
O player's turns!) But the drawBoard() function doesn't care. It just prints the board parameter that
it was passed.

21. def inputPlayerLetter():
22. # Let's the player type which letter they wa nt to

be.
23. # Returns a list with the player's letter as the

first item, and the computer's letter as the second .
24. letter = ''
25. while not (letter == 'X' or letter == 'O'):
26. print 'Do you want to be X or O?'

[' ', 'O', 'O', ' ', ' ', 'X', ' ', ' ', ' ',
' ']

 | |
 | X |
O

[' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ',
' ']

 | |
 | |

 | |
 | |
 | |

[' ', 'X', 'X', 'X', 'X', 'X', 'X', 'X', 'X',
'X']

 | |
 X | X | X
X

 | |
 X | X | X
 | |

27. letter = raw_input().upper()

The inputPlayerLetter() is a simple function. It asks if the player wants to be X or O, and will
keep asking the player (with the while loop) until the player types in an X or O. Notice on line 26 that
we automatically change the string returned by the call to raw_input() to uppercase letters with the
upper() string method.

The while loop's condition contains parentheses, which means the expression inside the parentheses
is evaluated first. If the letter variable was set to 'X' , the expression would evaluate like this:

while not (letter == 'X' or letter == 'O'):

while not ('X' == 'X' or 'X' == 'O'):

while not (True or False):

while not (True):

while not True:

while False:

As you can see, if letter has the value 'X' or 'O' , then the loop's condition will be False and
lets the program execution continue.

29. # the first element in the tuple is the play er's
letter, the second is the computer's letter.

30. if letter == 'X':
31. return ['X', 'O']
32. else:
33. return ['O', 'X']

This function returns a list with two items. The first item will be the player's letter, and the second will
be the computer's letter. This if-else statement chooses the appropriate list to return. This is much like the
getRandomWord() function in the extended version of our Hangman game in the last chapter.

35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:
38. return 'computer'
39. else:
40. return 'player'

The whoGoesFirst() function does a coin flip to determine who goes first, the computer or the
player. Instead of flipping an actual coin, this code gets a random number of either 0 or 1 by calling the
random.randint() function. If this function call returns a 0, the whoGoesFirst() function
returns the string 'computer' . Otherwise, the function returns the string 'player' . The code that
calls this function will use the return value to know who will make the first move of the game.

42. def playAgain():
43. # This function returns True if the player w ants

to play again, otherwise it returns False.
44. print 'Do you want to play again? (yes or no)'
45. return raw_input().lower().startswith('y')

The playAgain() function asks the player if they want to play another game. The function returns
True if the player types in 'yes' or 'YES' or 'y' or anything that begins with the letter Y. For any
other response, the function returns False . The order of the method calls on line 151 is important. The
return value from the call to the raw_input() function is a string that has its lower() method
called on it. The lower() method returns another string (the lowercase string) and that string has its
startswith() method called on it, passing the argument 'y' .

There is no loop, because we assume that if the user entered anything besides a string that begins with
'y' , they want to stop playing. So, we only ask the player once.

47. def makeMove(board, letter, move):
48. board[move] = letter

The makeMove() function is very simple and only one line. The parameters are a list with ten
strings named board , one of the player's letters (either 'X' or 'O') named letter , and a place on
the board where that player wants to go (which is an integer from 1 to 9) named move.

But wait a second. You might think that this function doesn't do much. It seems to change one of the
items in the board list to the value in letter . But because this code is in a function, the board
variable will be forgotten when we exit this function and leave the function's scope.

Actually, this is not the case. This is because lists are special when you pass them as arguments to
functions. This is because you pass a reference to the list.

List References

Try typing the following into the shell:

spam = 42
cheese = spam
spam = 100
spam
cheese

When you type this into the shell, it should look like this:

This makes sense from what we know so far. We assign 42 to the spam variable, then we copy the
value in spam and assign it to the variable cheese . When we later change the value in spam to 100 ,
this doesn't affect the value in cheese .

But lists don't work this way. When you assign a list to a variable with the = sign, you are actually
assigning a reference to the list. A reference is a pointer to some bit of data. When you assign a list
variable to a second variable, you are actually copying the reference and no the list itself. This is because
the first variable doesn't contain a list; it contains a reference to a list.

Here is some code that will make this easier to understand. Type this into the shell:

spam = [0, 1, 2, 3, 4, 5]
cheese = spam
cheese[1] = 'Hello!'
spam
cheese

This code will look like this:

Notice that the line cheese = spam copies the reference in spam to cheese . This means that
both spam and cheese refer to the same list. So when you modify cheese on the cheese[1] =
'Hello!' line, you are modifying the same list that spam refers to. This is why spam seems to have
the same list value that cheese does.

Remember when you first learned about variables, I said that variables were like mailboxes that
contain values. List variables don't actually contain lists at all, they contain references to lists. Here are
some pictures that explain what happens in the code you just typed in:

On the first line, the actual list is not contained in the spam variable but a reference to the list.

When you assign the reference in spam to cheese , the cheese variable contains a copy of the
reference in spam. Now both cheese and spam refer to the same list.

When you alter the list that cheese refers to, the list that spam refers to is also changed because
they are the same list.

Let's go back to the makeMove() function:

47. def makeMove(board, letter, move):
48. board[move] = letter

When we pass a list value as the argument for the board parameter, we are actually passing a copy
of the reference, not the list itself. The letter and move parameters are copies of the string and

integer values that we pass. Since they are copies, if we modify letter or move in this function, the
original variables we used when we called makeMove() would not be modified. Only the copies
would be modified.

But a copy of the reference still refers to the same list that the original reference refers to. So if we
make changes to board in this function, the original list is modified. When we exit the makeMove()
function, the copy of the reference is forgotten along with the other parameters. But since we were
actually changing the original list, those changes remain after we exit the function. This is how the
makeMove() function modifies the argument that it is passed.

50. def isWinner(bo, le):
51. # Given a board and a player's letter, this

function returns True if that player has won.
52. # We use bo instead of board and le instead of

letter so we don't have to type as much.
53. return ((bo[7] == le and bo[8] == le and bo[9] ==

le) or # across the top
54. (bo[4] == le and bo[5] == le and bo[6] == le) or #

across the middle
55. (bo[1] == le and bo[2] == le and bo[3] == le) or #

across the bottom
56. (bo[7] == le and bo[4] == le and bo[1] == le) or #

down the left side
57. (bo[8] == le and bo[5] == le and bo[2] == le) or #

down the middle
58. (bo[9] == le and bo[6] == le and bo[3] == le) or #

down the right side
59. (bo[7] == le and bo[5] == le and bo[3] == le) or #

diagonal
60. (bo[9] == le and bo[5] == le and bo[1] == le)) #

diagonal

Lines 53 to 60 in the isWinner() function are actually one very long if statement. We use bo and
le for the board and letter parameters so that we have less to type in this function. (This is a trick
programmers sometimes use to reduce the amount they need to type. Be sure to add a comment though,
otherwise you may forget what bo and le are supposed to mean.)

There are eight possible ways to win at Tic Tac Toe. First, have a line across the top, middle, and
bottom. Second, have a line down the left, middle, or right. And finally, have either of the two
diagonals. Note that each line of the condition checks if the three spaces are equal to the letter provided
(combined with the and operator) and we use the or operator to combine the eight different ways to
win. This means only one of the eight ways must be true in order for us to say that the player who owns
letter in le is the winner.

Let's pretend that le is 'O' , and the board looks like this:

If the board looks like that, then bo must be equal to [' ', 'O', 'O', 'O', ' ', 'X', '
', 'X', ' ', ' '] . Here is how the expression after the return keyword on line 53 would
evaluate:

53. return ((bo[7] == le and bo[8] == le and bo[9] ==
le) or # across the top

54. (bo[4] == le and bo[5] == le and bo[6] == le) or #
across the middle

55. (bo[1] == le and bo[2] == le and bo[3] == le) or #
across the bottom

56. (bo[7] == le and bo[4] == le and bo[1] == le) or #
down the left side

57. (bo[8] == le and bo[5] == le and bo[2] == le) or #
down the middle

58. (bo[9] == le and bo[6] == le and bo[3] == le) or #
down the right side

59. (bo[7] == le and bo[5] == le and bo[3] == le) or #
diagonal

60. (bo[9] == le and bo[5] == le and bo[1] == le)) #
diagonal

53. return (('X' == 'O' and ' ' == 'O' and ' ' = = 'O')
or # across the top

54. (' ' == 'O' and 'X' == 'O' and ' ' == 'O') o r #
across the middle

55. ('O' == 'O' and 'O' == 'O' and 'O' == 'O') o r #
across the bottom

56. ('X' == 'O' and ' ' == 'O' and 'O' == 'O') o r # down

 | |
 X | |
X

 | |
 O | O | O
 | |

the left side
57. (' ' == 'O' and 'X' == 'O' and 'O' == 'O') o r # down

the middle
58. (' ' == 'O' and ' ' == 'O' and 'O' == 'O') o r # down

the right side
59. ('X' == 'O' and 'X' == 'O' and 'O' == 'O') o r #

diagonal
60. (' ' == 'O' and 'X' == 'O' and 'O' == 'O')) #

diagonal

53. return ((False and False and False) or # acr oss the
top

54. (False and False and False) or # across the middle
55. (True and True and True) or # across the bot tom
56. (False and False and True) or # down the lef t side
57. (False and False and True) or # down the mid dle
58. (False and False and True) or # down the rig ht side
59. (False and False and True) or # diagonal
60. (False and False and True)) # diagonal

53. return ((False) or # across the top
54. (False) or # across the middle
55. (True) or # across the bottom
56. (False) or # down the left side
57. (False) or # down the middle
58. (False) or # down the right side
59. (False) or # diagonal
60. (False)) # diagonal

53. return (False or # across the top
54. False or # across the middle
55. True or # across the bottom
56. False or # down the left side
57. False or # down the middle
58. False or # down the right side
59. False or # diagonal
60. False) # diagonal

53. return (True)

53. return True

So given those values for bo and le , the expression would evaluate to True . Remember that the
value of le matters. If le is 'O' and X has won the game, the isWinner() would return False .

62. def getBoardCopy(board):
63. # Make a duplicate of the board list and ret urn it

the duplicate.
64. dupeBoard = []
65.
66. for i in board:
67. dupeBoard.append(i)
68.
69. return dupeBoard

The getBoardCopy() function is here so that we can easily make a copy of a given 10-string list
that represents a Tic Tac Toe board in our game. There are times that we will want our AI algorithm to
make temporary modifications to the board without changing the original board. In that case, we call this
function.

Line 64 actually creates a brand new board, because it is not copying another variable's reference to an
existing board. The for loop will go through the board argument that is passed to this function,
appending the values in the original board to our duplicate board. Finally, after the loop, we will return
the dupeBoard variable's reference to the duplicate board.

71. def isSpaceFree(board, move):
72. # Return true if the passed move is free on the

passed board.
73. return board[move] == ' '

This is a simple function that, given a Tic Tac Toe board and a possible move, will return if that move
is available or not. Remember that free spaces on our board lists are marked as a single space string.

75. def getPlayerMove(board):
76. # Let the player type in their move.
77. move = ' '
78. while move not in '1 2 3 4 5 6 7 8 9'.split() or

not isSpaceFree(board, int(move)):
79. print 'What is your next move? (1-9)'
80. move = raw_input()
81. return int(move)

The getPlayerMove() function asks the player to enter the number for the space they wish to
move. The function makes sure that they enter a space that is 1) a valid space (an integer 1 through 9),
and 2) a space that is not already taken, given the Tic Tac Toe board passed to the function in the
board parameter.

The two lines of code inside the while loop simply ask the player to enter a number from 1 to 9. The
loop's condition will keep looping, that is, it will keep asking the player for a space, as long as the
condition is True . The condition is True if either of the expressions on the left or right side of the or
keyword is True .

The expression on the left side checks if the move that the player entered is equal to '1' , '2' , '3' ,
and so on up to '9' by creating a list with these strings (with the split() method) and checking if
move is in this list. '1 2 3 4 5 6 7 8 9'.split() evaluates to be the same as ['1', '2',
'3', '4', '5', '6', '7', '8', '9'] , but it easier to type.

The expression on the right side checks if the move that the player entered is a free space on the
board. It checks this by calling the isSpaceFree() function we just wrote. Remember that
isSpaceFree() will return True if the move we pass is available on the board. Note that
isSpaceFree() expects an integer for move, so we use the int() function to evaluate an integer
form of move.

We add the not operators to both sides so that the condition will be True when both of these
requirements are unfulfilled. This will cause the loop to ask the player again and again until they enter a
proper move.

Finally, on line 81, we will return the integer form of whatever move the player entered. Remember
that raw_input() returns a string, so we will want to use the int() function to evaluate the string
as an integer.

Short -Circuit Evaluation

You may have noticed there is a possible problem in our getPlayerMove() function. What if the
player typed in 'X' or some other non-integer string? The move not in '1 2 3 4 5 6 7 8
9'.split() would return False as expected, and then we would evaluate the expression on the
right side. But when we pass 'X' (the value in move to the int() function, the call to int() would
give us an error. It gives us this error because the int() function can only take strings of number
characters, like '9' or '42' , not strings like 'X'

As an example of this kind of error, try typing this into the shell:

int('42')
int('X')

But when you play our Tic Tac Toe game and try typing 'X' in for your move, this error doesn't
happen. The reason is because the while loop's condition is being short-circuited.

What short-circuiting means is that because the expression on the left side of the or keyword (move
not in '1 2 3 4 5 6 7 8 9'.split()) evaluates to True , the Python interpreter knows
that the entire expression will evaluate to True no matter if the expression on the right side of the or
keyword evaluates to True or False . Python doesn't even bother calling the function. This works out
well for us, because if the expression on the right side is True then move is not a string in number
form. That would cause int() to give us an error. The only times move not in '1 2 3 4 5 6
7 8 9'.split() evaluates to False are when move is not a single-digit string. In that case, the
call to int() would not give us an error.

Here's a short program that gives a good example of short-circuiting. Open a new file in the IDLE
editor and type in this program, then press F5 to run it:

1. def TrueFizz(message):
2. print message
3. return True
4.
5. def FalseFizz(message):
6. print message
7. return False

8.
9. if FalseFizz('Cats') or TrueFizz('Dogs'):

10. print 'Step 1'
11.
12. if TrueFizz('Hello') or TrueFizz('Goodbye'):
13. print 'Step 2'
14.
15. if TrueFizz('Spam') and TrueFizz('Cheese'):
16. print 'Step 3'
17.
18. if FalseFizz('Red') and TrueFizz('Blue'):
19. print 'Step 4'

When you run this program, you can see the output:

This small program has two functions: TrueFizz() and FalseFizz() . TrueFizz() will
display a message and return the value True , while FalseFizz() will display a message and return
the value False . This will help us determine when these functions are being called, or when these
functions are being skipped due to short-circuiting.

The first if statement on line 9 in our small program will first evaluate TrueFizz() . We know this
happens because Cats is printed to the screen. The entire expression could still be True if the
expression to the right of the or keyword is True . So the call TrueFizz('Dogs') is evaluated,
Dogs is printed to the screen and True is returned. The if statement's condition evaluates to False
or True , which in turn evaluates to True . Step 1 is then printed to the screen. No short-circuiting
took place for this expression's evaluation.

The second if statement on line 12 does have short-circuiting. This is because when we call
TrueFizz('Hello') , it prints Hello and returns True . Because it doesn't matter what is on the
right side of the or keyword, the Python interpreter doesn't call TrueFizz('Goodbye') . You can
tell it is not called because Goodbye is not printed to the screen. The if statement's condition is True ,
so Step 2 is printed to the screen.

The third if statement on line 15 does not have short-circuiting. The call to TrueFizz('Spam')
returns True , but we do not know if the entire condition is True or False because of the and

Cats
Dogs
Step 1
Hello
Step 2
Spam
Cheese
Step 3
Red

operator. So Python will call TrueFizz('Cheese') , which prints Cheese and returns True .
The if statement's condition is evaluated to True and True , which in turn evaluates to True .
Because the condition is True , Step 3 is printed to the screen.

The fourth if statement on line 18 does have short-circuiting. The FalseFizz('Red') call prints
Red and returns False . Because the left side of the and keyword is False , it does not matter if the
right side is True or False , the condition will evaluate to False anyway. So TrueFizz('Blue')
is not called and Blue does not appear on the screen. Because the if statement's condition evaluated to
False , Step 4 is not printed to the screen.

Short-circuiting can happen for any expression that includes the boolean operators, and or or . It is
important to remember that this can happen; otherwise you may find that some function calls in the
expression are never called and you will not know why.

Code Explanation continued...

83. def chooseRandomMoveFromList(board, movesList):
84. # Returns a valid move from the passed list on the

passed board.
85. # Returns None if there is no valid move.
86. possibleMoves = []
87. for i in movesList:
88. if isSpaceFree(board, i):
89. possibleMoves.append(i)

The chooseRandomMoveFromList function will be of use to us when we are implementing the
code for our AI. The first parameter board is the 10-string list that represents a Tic Tac Toe board. The
second parameter movesList is a list of integers that represent possible moves. For example, if
movesList is [1, 3, 7, 9] , then that means we should return the number for one of the corner
spaces on the board. This function will choose one of those moves from the list. It also makes sure that
the move that it chooses is not already taken. To do this, we create a blank list and assign it to
possibleMoves . The for loop will go through the list of moves passed to this function in
movesList . If that move is available (which we figure out with a call to isSpaceFree()), then we
add it to possibleMoves with the append() method.

91. if len(possibleMoves) != 0:
92. return random.choice(possibleMoves)
93. else:
94. return None

At this point, the possibleMoves list has all of the moves that were in movesList that are also
free spaces on the board represented by board . If the list is not empty, then there is at least one possible
move that can be made on the board.

This list might be empty. For example, if movesList was [1, 3, 7, 9] but the board
represented by the board parameter had all the corner spaces already taken, the possibleMoves list
would have been empty.

If possibleMoves is empty, then len(possibleMoves) will evaluate to 0 and the code in the
else-block will execute. Notice that it returns something called None.

The None Value

None is a special value that you can assign to a variable. None is the only value of the data type
NoneType . The None value represents the lack of a value. It can be very useful to use the None value
when you have not set a variables value yet. For example, say you had a variable named quizAnswer
which holds the user's answer to some True-False pop quiz question. You could set quizAnswer to
None if the user skipped the question or did not answer it. Using None would be better because if you
set it to True or False before assigning the value of the user's answer, it may look like the user gave an
answer the question even though they didn't.

Calls to functions that do not return anything (that is, they exit by reaching the end of the function and
not from a return statement) will evaluate to None. The None value is written without quotes and
with a capital "N" and lowercase "one".

Code Explanation continued...

96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter,

determine where to move and return that move.
98. if computerLetter == 'X':
99. playerLetter = 'O'

100. else:
101. playerLetter = 'X'

The None function is where our AI will be coded. The parameters are a Tic Tac Toe board (in the
board parameter) and which letter the computer is (either 'X' or 'O'). The first few lines simply
assign the other letter to a variable named None. This lets us use the same code, no matter who is X and
who is O. This function will return the integer that represents which space the computer will move.

Remember how our algorithm works:

1. First, see if there is a move the computer can make that will win the game. If there is, take that
move. Otherwise, go to step 2.

2. See if there is a move the player can make that will cause the computer to lose the game. If there
is, we should move there to block the player. Otherwise, go to step 3.

3. Check if any of the corner spaces (spaces 1, 3, 7, or 9) are free. (We always want to take a corner
piece instead of the center or a side piece.) If no corner piece is free, then go to step 5.

4. Check if the center is free. If so, move there. If it isn't, then go to step 6.
5. Move on any of the side pieces (spaces 2, 4, 6, or 8). There are no more steps, because if we have

reached step 6 the side spaces are the only spaces left.

103. # Here is our algorithm for our Tic Tac Toe AI:
104. # First, check if we can win in the next mo ve
105. for i in range(1, 9):
106. copy = getBoardCopy(board)
107. if isSpaceFree(copy, i):
108. makeMove(copy, computerLetter, i)
109. if isWinner(copy, computerLetter):
110. return i

More than anything, if the computer can win in one more move, the computer should make that move.
We will do this by trying each of the nine spaces on the board with a for loop. The first line in the loop
makes a copy of the board list. This is because we want to make a move on the copy of the board, and
then see if that move results in the computer winning. We don't want to modify the original Tic Tac Toe
board, which is why we make a call to getBoardCopy() . We check if the space we will move is free,
and if so, we move on that space and see if this results in winning. If it does, we return that space's
integer.

If moving on none of the spaces results in winning, then the loop will finally end and we move on to
line 112.

112. # Check if the player could win on their ne xt
move, and block them.

113. for i in range(1, 9):
114. copy = getBoardCopy(board)
115. if isSpaceFree(copy, i):
116. makeMove(copy, playerLetter, i)
117. if isWinner(copy, playerLetter):
118. return i

At this point, we know we cannot win in one move. So we want to make sure the human player
cannot win in one more move. The code is very similar, except on the copy of the board, we place the
player's letter before calling the isWinner() function. If there is a position the player can move that
will let them win, the computer should move there.

If the human player cannot win in one more move, the for loop will eventually stop and execution
continues on to line 120.

120. # Try to take one of the corners, if they a re
free.

121. move = chooseRandomMoveFromList(board, [1, 3, 7,
9])

122. if move != None:
123. return move

Our call to chooseRandomMoveFromList() with the list of [1, 3, 7, 9] will ensure that it
returns the integer for one of the corner spaces. (Remember, the corner spaces are represented by the
integers 1, 3, 7, and 9.) If all the corner spaces are taken, our chooseRandomMoveFromList()
function will return the None value. In that case, we will move on to line 125.

125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5

If none of the corners are available, we will try to move on the center space if it is free. If the center
space is not free, the execution moves on to line 129.

129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4, 6,

8])

This code also makes a call to chooseRandomMoveFromList() , except we pass it a list of the
side spaces ([2, 4, 6, 8]). We know that this function will not return None, because the side
spaces are the only spaces we have not yet checked. This is the end of the getComputerMove()
function and our AI algorithm.

132. def isBoardFull(board):
133. # Return True if every space on the board h as been

taken. Otherwise return False.
134. for i in range(1, 10):
135. if isSpaceFree(board, i):
136. return False
137. return True

The last function we will write is isBoardFull() , which returns True if the 10-string list board
argument it was passed has an 'X' or 'O' on every single space. If there is at least one space in board
that is set to a single space ' ' then it will return False .

The for loop will let us check spaces 1 through 9 on the Tic Tac Toe board. (Remember that range
(1, 10) call returns the list [1, 2, 3, 4, 5, 6, 7, 8, 9] .) As soon as it finds a free space
in the board (that is, when isSpaceFree(board, i) returns True), the isBoardFull()
function will return False .

If execution manages to go through every iteration of the loop, we will know that none of the spaces
are free. So at that point, we will execute return True .

140. print 'Welcome to Tic Tac Toe!'

Line 140 is the first line that isn't inside of a function, so it is the first line of code that is executed
when we run this program.

142. while True:
143. # Reset the board
144. theBoard = [' '] * 10

This while loop has True for the condition, so that means we will keep looping in this loop until
we encounter a break statement. Line 144 sets up the main Tic Tac Toe board that we will use, named
theBoard . It is a 10-string list, where each string is a single space ' ' . Remember the little trick
using the multiplication operator with a list to reproduce it. [' '] * 10 . It evaluates to [' ', '
', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '] , but is shorter for us to type.

145. playerLetter, computerLetter = inputPlayerL etter()

The inputPlayerLetter() function lets the player type in whether they want to be X or O. The
function returns a 2-string list, either ['X', 'O'] or ['O', 'X'] . We use the multiple assignment
trick here that we learned in the Hangman chapter. If inputPlayerLetter() returns ['X',
'O'] , then playerLetter is 'X' and computerLetter is 'O' . If inputPlayerLetter()
returns ['O', 'X'] , then playerLetter is 'O' and computerLetter is 'X' .

146. turn = whoGoesFirst()
147. print 'The ' + turn + ' will go first.'
148. gameIsPlaying = True

The whoGoesFirst() function randomly decides who goes first, and returns either the string
'player' or the string 'computer' . On line 147, we tell the player who will go first. The
gameIsPlayer variable is what we will use to keep track of whether the game has been won, lost,
tied, or if is the other player's turn.

150. while gameIsPlaying:

This is a loop that will keep going back and forth between the player's turn and the computer's turn, as
long as gameIsPlaying is set to True .

151. if turn == 'player':
152. # Player's turn.
153. drawBoard(theBoard)
154. move = getPlayerMove(theBoard)
155. makeMove(theBoard, playerLetter, mo ve)

The turn variable was originally set by whoGoesFirst() . It is either set to 'player' or
'computer' . If turn contains the string 'computer' , then the condition is False and execution
will jump down to line 169.

The first thing we do when it is the player's turn (according to the flow chart we drew at the beginning
of this chapter) is show the board to the player. The drawBoard() function, called with the
theBoard variable, will print the board on the screen. We then let the player type in their move by
calling our getPlayerMove() function, and set the move on the board by calling our makeMove()
function.

157. if isWinner(theBoard, playerLetter) :
158. drawBoard(theBoard)
159. print 'Hooray! You have won the game!'
160. gameIsPlaying = False

Now that the player has made his move, our program should check if they have won the game with
this move. If the isWinner() function returns True , we should show them the winning board (the
previous call to drawBoard() shows the board BEFORE they made the winning move) and print a
message telling them they have won.

Then we set gameIsPlaying to False so that execution does not continue on to the computer's
turn.

161. else:
162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print 'The game is a tie!'
165. break

If the player did not win with his last move, then maybe his last move filled up the entire board and
we now have a tie. In this else-block, we check if the board is full with a call to the isBoardFull()
function. If it returns True , then we should draw the board by calling drawBoard() and tell the
player a tie has occurred. The break statement will break us out of the while loop we are in and jump
down to line 186.

167. else:
168. turn = 'computer'

If the player has not won or tied the game, then we should just set the turn variable to

'computer' so that when this while loop loops back to the start it will execute the code for the
computer's turn.

169. else:

If the turn variable was not set to 'player' , then we know it is the computer's turn and the code
in this else-block will execute. This code is very similar to the code for the player's turn, except the
computer does not need the board printed on the screen so we skip the call to the drawBoard()
function.

170. # Computer's turn.
171. move = getComputerMove(theBoard,

computerLetter)
172. makeMove(theBoard, computerLetter, move)

This code is almost identical to the code for the player's turn.

174. if isWinner(theBoard, computerLette r):
175. drawBoard(theBoard)
176. print 'The computer has beaten you!

You lose.'
177. gameIsPlaying = False

We want to check if the computer won with its last move. The reason we call drawBoard() here is
because the player will want to see what move the computer made to win the game. We then set
gameIsPlaying to False so that the game does not continue.

178. else:
179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print 'The game is a tie!'
182. break

These lines of code are identical to the code on lines 162 to 165. The only difference is this is a check
for a tied game after the computer has moved.

183. else:
184. turn = 'player'

If the game is neither won nor tied, it then becomes the player's turn. There are no more lines of code
inside the while loop, so execution would jump back to the while statement on line 150.

186. if not playAgain():
187. break

These lines of code are located immediately after the while-block started by the while statement on
line 150. Remember, we would only exit out of that while loop if it's condition (the
gameIsPlaying variable) was False . gameIsPlaying is set to False when the game has
ended, so at this point we are going to ask the player if they want to play again.

Remember, when we evaluate the condition in this False statement, we call the False function
which will let the user type in if they want to play or not. playAgain() will return True if the player
typed something that began with a 'y' like 'yes' or 'y' . Otherwise playAgain() will return
False .

If playAgain() returns False , then the if statement's condition is True (because of the not
operator that reverses the boolean value) and we execute the break statement. That breaks us out of the
while loop that was started on line 142. But there are no more lines of code after that while-block, so
the program terminates.

A Web Page for Program Tracing

And that's the entire Tic Tac Toe game. If you want to see the code in action, go to the following web
page to see the how the program executes line by line:

� Tic Tac Toe, trace 1 - http://pythonbook.coffeeghost.net/trace1TicTacToe.html

Things Covered In This Chapter:

� Artificial Intelligence

� List References
� Short-Circuit Evaluation
� The None Value

Chapter 7 - Bagels
Bagels is a simple game you can play with a friend. Your friend thinks up a random 3-digit number,

and you try to guess what the number is. After each guess, your friend gives you clues. If the friend tells
you "bagels", that means that none of the three digits is in the secret number. If your friend tells you
"pico", then one of the digits is in the secret number, but your guess has the digit in the wrong place. If
your friend tells you "fermi", then your guess has a correct digit in the correct place. Of course, even if
you get a pico or fermi clue, you still don't know which digit in your guess is the correct one.

You can also get multiple clues after each guess. Say the secret number is 456, and your guess is 546.
The clue you get would be "fermi pico pico" because one digit is correct and in the correct place (the
digit 6), and two digits are in the secret number but in the wrong place (the digits 4 and 5).

Sample Run

I am thinking of a 3-digit number. Try to guess wha t it is.
Here are some clues:
When I say: That means:
 Pico One digit is correct but in the wron g
position.
 Fermi One digit is correct and in the righ t
position.
 Bagels No digit is correct.
I have thought up a number. You have 10 guesses to get it.
Guess #1:
123
Fermi
Guess #2:
453
Pico
Guess #3:
425
Fermi
Guess #4:
326
Bagels
Guess #5:
489
Bagels
Guess #6:
075
Fermi Fermi
Guess #7:
015
Fermi Pico

Guess #8:
175
You got it!
Do you want to play again? (yes or no)
no

Source Code

bagels.py

1. import random
2.
3. def getSecretNum(numDigits):
4. # Returns a string that is numDigits long, ma de up

of random digits.
5. secretNum = ''
6. for i in range(numDigits):
7. secretNum += random.choice('0 1 2 3 4 5 6 7 8

9'.split())
8.
9. return secretNum

10.
11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bag els

clues to the user.
13. if guess == secretNum:
14. return 'You got it!'
15.
16. clue = []
17.
18. for i in range(len(guess)):
19. if guess[i] == secretNum[i]:
20. clue.append('Fermi')
21. elif guess[i] in secretNum:
22. clue.append('Pico')
23. if len(clue) == 0:
24. return 'Bagels'
25.
26. clue.sort()
27. return ' '.join(clue)
28.
29. def isOnlyDigits(num):
30. # Returns True if num is a string made up on ly of

digits. Otherwise returns False.
31. if num == '':

32. return False
33.
34. for i in num:
35. if i not in '0 1 2 3 4 5 6 7 8 9'.split():
36. return False
37.
38. return True
39.
40. def playAgain():
41. # This function returns True if the player w ants to

play again, otherwise it returns False.
42. print 'Do you want to play again? (yes or no)'
43. return raw_input().lower().startswith('y')
44.
45. NUMDIGITS = 3
46. MAXGUESS = 10
47.
48. print 'I am thinking of a %s-digit number. Try t o guess

what it is.' % (NUMDIGITS)
49. print 'Here are some clues:'
50. print 'When I say: That means:'
51. print ' Pico One digit is correct but i n the

wrong position.'
52. print ' Fermi One digit is correct and i n the

right position.'
53. print ' Bagels No digit is correct.'
54.
55. while True:
56. secretNum = getSecretNum(NUMDIGITS)
57. print 'I have thought up a number. You have %s

guesses to get it.' % (MAXGUESS)
58.
59. numGuesses = 1
60. while numGuesses <= MAXGUESS:
61. guess = ''
62. while len(guess) != NUMDIGITS or not

isOnlyDigits(guess):
63. print 'Guess #%s: ' % (numGuesses)
64. guess = raw_input()
65.
66. clue = getClues(guess, secretNum)
67. print clue
68. numGuesses += 1
69.
70. if guess == secretNum:
71. break
72. if numGuesses > MAXGUESS:

73. print 'You ran out of guesses. The a nswer
was %s.' % (secretNum)

74.
75. if not playAgain():
76. break
77.

Designing the Program

Here is a flow chart for this program. The flow chart describes the basic events of what happens in this
game, and in what order they can happen:

And here is the source code for our game. Start a new file and type the code in, and then save the file as
bagels.py. We will design our game so that it is very easy to change the size of the secret number. It can
be 3 digits or 5 digits or 30 digits. We will do this by using a constant variable named NUMDIGITS
instead of hard-coding the integer 3 into our source code.

Hard-coding means writing a program in a way that it changing the behavior of the program requires

changing a lot of the source code. For example, we could hard-code a name into a print statement
like: print 'Hello, Albert' . Or we could use this line: print 'Hello, ' + name which
would let us change the name that is printed by changing the name variable while the program is
running.

Code Explanation

1. import random

This game imports the random module so we can use the module's random numbers function.

3. def getSecretNum(numDigits):
4. # Returns a string that is numDigits long, ma de up

of random digits.
5. secretNum = ''
6. for i in range(numDigits):
7. secretNum += random.choice('0 1 2 3 4 5 6 7 8

9'.split())
8.
9. return secretNum

Our first function is named getSecretNum() , which will generate the random secret number.
Instead of having the code only produce 3-digit numbers, we use a parameter named numDigits to tell
us how many digits the secret number should have.

You may notice that secretNum in this function is a string, not an integer. This may seem odd, but
remember that our secret number could be something like '007' . If we stored this as an integer, it
would look like 7 which would make it harder to work with in our program.

This function is simple. The secretNum variable starts out as a blank string. We then loop a number
of times equal to the integer value in numDigits . On each iteration through the loop, a new random
digit is concatenated to the end of secretNum . So if numDigits is 3, the loop will iterate three times
and three random digits will be concatenated. (Remember, the random.choice() function returns a
randomly chosen item from the list it is passed as an argument. '0 1 2 3 4 5 6 7 8 9' is a
string, but the split() method called on it converts it into a list.)

Augmented Assignment Operators

The += operator is new. This is called an augmented assignment operator . Normally, if you
wanted to add or concatenate a value to a variable, you would use code that looked like this:

spam = 42
spam = spam + 10

cheese = 'Hello '
cheese = cheese + 'world!'

After running the above code, spam would have the value 52 and cheese would have the value
'Hello world!' . The augmented assignment operators are a shortcut that frees you from retyping
the variable name. The following code does the exact same thing as the above code:

spam = 42
spam += 10 # Same as spam = spam + 10

cheese = 'Hello '
cheese += 'world!' # Same as cheese = cheese + 'world!'

There are other augmented assignment operators. -= will subtract a value from an integer. *= will
multiply the variable by a value. /= will divide a variable by a value. Notice that these augmented
assignment operators do the same math operations as the - , * , and / operators. Augmented assignment
operators are a neat shortcut.

Code Explanation Continued...

11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bag els

clues to the user.
13. if guess == secretNum:
14. return 'You got it!'

The getClues() function will return a string with the fermi, pico, and bagels clue, depending on
what it is passed for the guess and secretNum parameters. The most obvious and easiest step is to
check if the guess is the exact same as the secret number. In that case, we can just return 'You got
it!' .

16. clue = []
17.

18. for i in range(len(guess)):
19. if guess[i] == secretNum[i]:
20. clue.append('Fermi')
21. elif guess[i] in secretNum:
22. clue.append('Pico')

If the guess is not the exact same as the secret number, we need to figure out what clues to give the
player. First we'll set up a list named clue , which we will add the strings 'Fermi' and 'Pico' as
needed. We will combine the strings in this list into a single string to return.

We do this by looping through each possible index in guess and secretNum . We will assume that
guess and secretNum are the same size (we can guarantee this in the code that calls getClues() .)
The if statement checks if the first, second, third, etc. (depending on the value of i being 0, 1, 2, etc.)
letter of guess is the same as the number in the same position in secretNum . If so, we will add a
string 'Fermi' to clue .

If that condition is False we will check if the number at that position in guess exists in
secretNum . If this condition is True we know that the number is somewhere in the secret number but
not in the same position. This is why we add the 'Pico' to clue .

23. if len(clue) == 0:
24. return 'Bagels'

If we go through the entire for loop above and never add anything to the clue list, then we know
that there are no correct digits at all in guess . In this case, we should just return the string 'Bagels'
as our only clue.

The sort() List Method

26. clue.sort()

Lists have a method named sort() that rearranges the items in the list to be in alphabetical order. Try
typing the following into the interactive shell:

spam = [5, 3, 4, 1, 2]
spam.sort()

spam

Notice that the sort() method does not return a sorted list, but rather just sorts the list it is called
on. You would never want to use this line of code: return spam.sort() because that would return
the value None (which is what sort() returns). Instead you would want a separate line spam.sort
() and then the line return spam .

The reason we want to sort the clue list is because we might return extra clues that we did not intend
based on the order of the clues. If clue had the value ['Pico', 'Fermi', 'Pico'] , that would
tell us that the center digit of our guess is in the correct position. Since the other two clues are both Pico,
then we know that all we have to do is swap the first and third digit and we have the secret number. But
if the clues are always sorted in alphabetical order, the player would not know which number the Fermi
clue refers to.

The join() String Method

27. return ' '.join(clue)

The join() string method returns a string of each item in the list argument joined together. The
string that the method is called on (on line 27, this is a single space, ' ') appears in between each item
in the list. So the string that is returned on line 27 is each string in clue combined together with a single
space in between each string.

For an example, type the following into the interactive shell:

'x'.join(['hello', 'world'])

'ABCDEF'.join(['x', 'y', 'z'])

''.join(['My', 'name', 'is', 'Sam'])

Code Explanation Continued...

29. def isOnlyDigits(num):
30. # Returns True if num is a string made up on ly of

digits. Otherwise returns False.
31. if num == '':
32. return False

The isOnlyDigits() is a small function that will help us determine if the player entered a guess
that was only made up of numbers. To do this, we will check each individual letter in the string named
num and make sure it is a number.

Line 31 does a quick check to see if we were sent the blank string, and if so, we return False .

34. for i in num:
35. if i not in '0 1 2 3 4 5 6 7 8 9'.split():
36. return False
37.
38. return True

We use a for loop on the string num. The value of i will have a single character from the num string
on each iteration. Inside the for-block, we check if i does not exist in the list returned by '0 1 2 3 4
5 6 7 8 9'.split() . If it doesn't, we know that there is a character in num that is something
besides a number. In that case, we should return the value False .

If execution continues past the for loop, then we know that every character in num is a number. So
we return the value True .

40. def playAgain():

41. # This function returns True if the player w ants to
play again, otherwise it returns False.

42. print 'Do you want to play again? (yes or no)'
43. return raw_input().lower().startswith('y')

The playAgain() function is the same one we used in Hangman and Tic Tac Toe. The long
expression on line 43 will evaluate to either True or False . The return value from the call to the
raw_input() function is a string that has its lower() method called on it. The lower() method
returns another string (the lowercase string) and that string has its startswith() method called on it,
passing the argument 'y' .

45. NUMDIGITS = 3
46. MAXGUESS = 10
47.
48. print 'I am thinking of a %s-digit number. Try t o guess

what it is.' % (NUMDIGITS)
49. print 'Here are some clues:'
50. print 'When I say: That means:'
51. print ' Pico One digit is correct but i n the

wrong position.'
52. print ' Fermi One digit is correct and i n the

right position.'
53. print ' Bagels No digit is correct.'

This is the actual start of the program. Instead of hard-coding three digits as the size of the secret
number, we will use the constant variable NUMDIGITS. And instead of hard-coding a maximum of ten
guesses that the player can make, we will use the constant variable MAXGUESS. (This is because if we
increase the number of digits the secret number has, we also might want to give the player more guesses.
We put the variable names in all capitals to show they are constant by convention.)

The print statements will tell the player the rules of the game and what the Pico, Fermi, and Bagels
clues mean. Line 48's print statement has the code % (NUMDIGITS) added to the end and %s inside
the string. This is a technique know as string interpolation.

String Interpolation

String interpolation is another shortcut, like augmented assignment operators. Normally, if you want to
use the string values inside variables in another string, you have to use the + concatenation operator:

name = 'Alice'

event = 'party'
where = 'the pool'
when = 'Saturday'
time = '6:00pm'
print 'Hello, ' + name + '. Will you go to the ' + event + '
at ' + where + ' this ' + when + ' at ' + time + '? '

As you can see, it can be very hard to type a line that concatenates several strings together. Instead,
you can use string interpolation , which lets you put placeholders like %s (these placeholders are
called conversion specifiers), and then put all the variable names at the end. Each %s is replaced
with the value in the variable at the end of the line. For example, the following code does the same thing
as the above code:

name = 'Alice'
event = 'party'
where = 'the pool'
when = 'Saturday'
time = '6:00pm'
print 'Hello, %s. Will you go to the %s at %s this %s at %
s?' % (name, event, where, when, time)

String interpolation can make your code much easier to type and read, rather than using several +
concatenation operators.

The final line has the print keyword, followed by the string with conversion specifiers, followed by
the % sign, followed by a set of parentheses with the variables in them. The first variable name will be
used for the first %s, the second variable with the second %s and so on. The Python interpreter will give
you an error if you do not have the same number of %s conversion specifiers as you have variables.

Another benefit of using string interpolation instead of string concatenation is that interpolation works
with any data type, not just strings. All values are automatically converted to the string data type. (This
is what the s in %s stands for.) If you typed this code into the shell, you'd get an error:

spam = 42
print 'Spam == ' + spam

You get this error because string concatenation can only combine two strings, and spam is an integer.
You would have to remember to put str(spam) in there instead. But with string interpolation, you
can have any data type. Try typing this into the shell:

spam = 42
print 'Spam == %s' % (spam)

As you can see, using string interpolation instead of string concatenation is much easier because you
don't have to worry about the data type of the variable. Also, string interpolation can be done on any
strings, not just strings used in print statements.

String interpolation is also known as string formatting .

Code Explanation Continued...

55. while True:
56. secretNum = getSecretNum(NUMDIGITS)
57. print 'I have thought up a number. You have %s

guesses to get it.' % (MAXGUESS)
58.
59. numGuesses = 1
60. while numGuesses <= MAXGUESS:

We start with a while loop that has a condition of True , meaning it will loop forever until we
execute a break statement. Inside the loop, we get a secret number from our getSecretNum()
function (passing it NUMDIGITS to tell how many digits we want the secret number to have) and assign
it to secretNum . Remember that secretNum is a string, not an integer.

We tell the player how many digits is in our secret number by using string interpolation instead of
string concatenation. We set a variable numGuesses to 1, to denote that this is the first guess. Then we
enter a new while loop which will keep looping as long as numGuesses is less than or equal to
MAXGUESS.

Notice that this second while loop on line 60 is inside another while loop that started on line 55.
Whenever we have these loops-inside-loops, we call them nested loops . You should know that any
break or continue statements will only break or continue out of the innermost loop, and not any of
the outer loops.

61. guess = ''
62. while len(guess) != NUMDIGITS or not

isOnlyDigits(guess):
63. print 'Guess #%s: ' % (numGuesses)
64. guess = raw_input()

The guess variable will hold the player's guess. We will keep looping and asking the player for a
guess until the player enters a guess that 1) has the same number of digits as the secret number and 2) is
made up only of digits. This is what the while loop on line 62 is for. We set guess as the blank string
on line 61 so that the while loop's condition is False the first time, ensuring that we enter the loop at
least once.

66. clue = getClues(guess, secretNum)
67. print clue
68. numGuesses += 1

After execution gets past the while loop on line 62, we know that guess contains a valid guess.
We pass this and the secret number in secretNum to our getClues() function. It returns a string
that contains our clues, which we will display to the player. We then increment numGuesses by 1
using the augmented assignment operator for addition.

70. if guess == secretNum:
71. break
72. if numGuesses > MAXGUESS:
73. print 'You ran out of guesses. The a nswer

was %s.' % (secretNum)

If guess is the same value as secretNum , then we know the player has correctly guessed the secret
number and we can break out of this loop (the while loop that was started on line 60). If not, then
execution continues to line 72, where we check to see if the player ran out of guesses. If so, then we tell
the player that they have lost and what the secret number was. We know that the condition for the while
loop on line 55 will be False , so there is no need for a break statement.

At this point, execution jumps back to the while loop on line 60 where we let the player have another
guess. If the player ran out of guesses (or we broke out of the loop with the break statement on line 71),
then execution would proceed to line 75.

75. if not playAgain():
76. break
77.

After leaving the while loop on line 60, we ask the player if want to play again by calling our
playAgain() function. If playAgain() returns False , then we should break out of the while
loop that was started on line 55. Since there is no more code after this loop, the program terminates.

If playAgain() returned True , then we would not execute the break statement and execution
would jump back to line 55. A new secret number would be generated so that the player can play a new
game.

Things Covered In This Chapter:

� Hard-coding
� Augmented Assignment Operators, +=, -=, *=, /=
� The sort() List Method
� The join() List Method
� String Interpolation (also called String Formatting)
� Conversion Specifier %s
� Nested Loops

Chapter 8 - Sonar
Sonar is a technology that ships use to locate objects under the sea. In this chapter's game, the player

places sonar devices at various places in the ocean to locate sunken treasure chests. The sonar devices in
our game can tell the player how far away a treasure chest is from the sonar device, but not in what
direction. But by placing multiple sonar devices down, the player can figure out where exactly the
treasure chest is. There are three chests to collect, but the player has only sixteen sonar devices to use to
find them.

Imagine that we could not see the treasure chest (the red dot) in the following picture. Because each
sonar device can only find the distance but not direction, the possible places the treasure could be is
anywhere in a ring around the sonar device:

But if we have multiple sonar devices working together, we can narrow it down to an exact place
where all the rings intersect each other:

Grids and Cartesian Coordinates

A problem in many games is how to talk about exact points on the board. A common way of solving
this is by marking each individual row and column on a board with a letter and a number. Here is a chess
board that has each row and each column marked.

In chess, the knight piece looks like a horse. The white knight is located at the point e, 6 and the black
knight is located at point a, 4. We can also say that every space on row 7 or every space in column c is
empty.

A grid with labeled rows and columns like the chess board is called a Cartesian coordinate
system . By using a row label and column label, we can give a coordinate that is to exactly one and
only one space. This can really help us describe to a computer the exact location we want. If you have
learned about Cartesian coordinate systems in math class, you may know that usually we have numbers
for both the rows and columns. This is handy, because otherwise after the 26th column we would run
out of letters. That board would look like this:

The numbers going left and right that describe the columns are part of the X-axis . The numbers going
up and down that describe the rows are part of the Y-axis . When we describe coordinates, we always
say the X coordinate first, followed by the Y coordinate. That means the white knight in the above
picture is located at the coordinate 5, 6. The black knight is located at the coordinate 1, 4.

Notice that for the black knight to move to the white knight's position, the black knight must move up
two spaces, and then to the right by four spaces. (Or move right four spaces and then move up two
spaces.) But we don't need to look at the board to figure this out. If we know the white knight is located
at 5, 6 and the black knight is located at 1, 4, then we can just use subtraction to figure out this
information.

Subtract the black knight's X coordinate and white knight's X coordinate: 5 - 1 = 4. That means the
black knight has to move along the X-axis by four spaces.

Subtract the black knight's Y coordinate and white knight's Y coordinate: 6 - 4 = 2. That means the
black knight has to move along the Y-axis by two spaces.

Negative Numbers

Another concept that Cartesian coordinates use is negative numbers. Negative numbers are
numbers that are smaller than zero. We put a minus sign in front of a number to show that it is a
negative number. -1 is smaller than 0. -2 is smaller than -1. -3 is smaller than -2. If you think of regular
numbers (called positive numbers) as starting from 1 and increasing, you can think of negative
numbers as starting from -1 and decreasing. 0 itself is not positive or negative. In this picture, you can
see the positive numbers increasing to the right and the negative numbers decreasing to the left:

The number line is really useful for doing subtraction and addition with negative numbers. The
expression 4 + 3 can be thought of as the white knight starting at position 4 and moving 3 spaces over to
the right (addition means increasing, which is in the right direction).

As you can see, the white knight ends up at position 7. This makes sense, because 4 + 3 is 7.

Subtraction can be done by moving the white knight to the left. Subtraction means decreasing, which
is in the left direction. 4 - 6 would be the white knight starting at position 4 and moving 6 spaces to the
left:

The white knight ends up at position -2. That means 4 - 6 equals -2.

If we add or subtract a negative number, the white knight would move in the opposite direction. If
you add a negative number, the knight moves to the left. If you subtract a negative number, the knight
moves to the right. The expression -6 - -4 would be equal to -2. The knight starts at -6 and moves to the
right by 4 spaces. Notice that -6 - -4 has the same answer as -6 + 4.

The number line is the same as the X-axis. If we made the number line go up and down instead of left
and right, it would model the Y-axis. Adding a positive number (or subtracting a negative number)
would move the knight up the number line, and subtracting a positive number (or adding a negative
number) would move the knight down. When we put these two number lines together, we have a
Cartesian coordinate system.

The 0, 0 coordinate has a special name, the origin .

Changing the Signs

Subtracting negative numbers or adding negative numbers seems easy when you have a number line
in front of you, but it can be easy when you only have the numbers too. Here are three tricks you can do
to make evaluating these expressions easier to do.

The first is if you are adding a negative number, for example; 4 + -2. The first trick is "a minus eats
the plus sign on its left". When you see a minus sign with a plus sign on the left, you can replace the plus
sign with a minus sign. The answer is still the same, because adding a negative value is the same as
subtracting a positive value. 4 + -2 and 4 - 2 both evaluate to 2.

The second trick is if you are subtracting a negative number, for example, 4 - -2. The second trick is
"two minuses combine into a plus". When you see the two minus signs next to each other without a
number in between them, they can combine into a plus sign. The answer is still the same, because
subtracting a negative value is the same as adding a positive value.

A third trick is to remember that when you add two numbers like 6 and 4, it doesn't matter what order
they are in. (This is called the commutative property of addition.) That means that 6 + 4 and 4 + 6
both equal the same value, 10.

Say you are adding a negative number and a positive number, like -6 + 8. Because you are adding
numbers, you can swap the order of the numbers without changing the answer. -6 + 8 is the same as 8 +

-6. But when you look at 8 + -6, you see that the minus sign can eat the plus sign to its left, and the
problem becomes 8 - 6 = 2. But this means that -6 + 8 is also 2! We've rearranged the problem to have
the same answer, but made it easier to solve.

Of course, you can always use the interactive shell as a calculator to evaluate these expressions. It is
still very useful to know the above three tricks when adding or subtracting negative numbers. After all,
you won't always be in front of a computer with Python all the time!

Absolute Values

The absolute value of a number is the number without the negative sign in front of it. This means
that positive numbers do not change, but negative numbers become positive. For example, the absolute
value of -4 is 4. The absolute value of -7 is 7. The absolute value of 5 (which is positive) is 5.

We can find how far away two things on a number line are from each other by taking the absolute
value of their difference. Imagine that the white knight is at position 4 and the black knight is at position
-2. To find out the distance between them, you would find the difference by subtracting their positions

and taking the absolute value of that number.

It works no matter what the order of the numbers is. -2 - 4 (that is, negative two minus four) is -6, and
the absolute value of -6 is 6. However, 4 - -2 (that is, four minus negative two) is 6, and the absolute
value of 6 is 6. Using the absolute value of the difference is a good way of finding the distance between
two points on a number line (or axis).

Coordinate System of a Computer Monitor

It is common that computer monitors use a coordinate system that has the origin (0, 0) at the top left
corner of the screen, which increases going down and to the right. There are no negative coordinates.
This is because text is printed starting at the top left, and is printed going to the right and downwards.
Most computer graphics use this coordinate system, and we will use it in our games. Also it is common
to assume that monitors can display 80 text characters per row and 25 text characters per column. This
used to be the maximum screen size that monitors could support. While today's monitors can usually
display much more text, we will not assume that the user's screen is bigger than 80 by 25.

Sample Run
S O N A R !

Would you like to view the instructions? (yes/no)
no
 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~` ~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~``` ``~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~ ~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``` ```~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~` ~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~ ~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~`~~~```~~~~`~~`~~`~~```~~`~~~`~~~ ``~`~~~``~~~ 6

 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~ ``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~` ~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~` ~`~~~``~~``` 9
10 ```~`~```~``~``~`~~`~``~````~``~~~`~~`~~``~~~~`~ ~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~ ~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~` ~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~```` `~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~` ```~~``````~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5
You have 16 sonar devices left. 3 treasure chests r emaining.
Where do you want to drop the next sonar device? (0 -59 0-14) (or type quit)
10 10
 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~` ~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~``` ``~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~ ~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``` ```~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~` ~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~ ~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~`~~~```~~~~`~~`~~`~~```~~`~~~`~~~ ``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~ ``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~` ~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~` ~`~~~``~~``` 9
10 ```~`~```~5`~``~`~~`~``~````~``~~~`~~`~~``~~~~`~ ~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~ ~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~` ~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~```` `~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~` ```~~``````~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5
Treasure detected at a distance of 5 from the sonar device.
You have 15 sonar devices left. 3 treasure chests r emaining.
Where do you want to drop the next sonar device? (0 -59 0-14) (or type quit)
15 6
 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~` ~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~``` ``~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~ ~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``` ```~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~` ~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~ ~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~4~~~```~~~~`~~`~~`~~```~~`~~~`~~~ ``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~ ``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~` ~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~` ~`~~~``~~``` 9
10 ```~`~```~5`~``~`~~`~``~````~``~~~`~~`~~``~~~~`~ ~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~ ~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~` ~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~```` `~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~` ```~~``````~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
You have 14 sonar devices left. 3 treasure chests r emaining.
Where do you want to drop the next sonar device? (0 -59 0-14) (or type quit)
15 10
 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~` ~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~`~`~~`~`~~~~~~`~``` ``~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~~~~~~~~`~`~~`~``~~~ ~~```~~`~``` 2
 3 ``~`~~``~`~``~`~`~`~~`~`~~`~`~``~~~`~``~````~``` ```~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~``~~~``~~```~`~~`~~`~` ~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~ ~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~O~~~```~~~~`~~`~~`~~```~~`~~~`~~~ ``~`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~ ``~``~~```~~ 7

 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`~`````~` ~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~`~``~~~~`~`~`~~~`~`~` ~`~~~``~~``` 9
10 ```~`~```~O`~``O`~~`~``~````~``~~~`~~`~~``~~~~`~ ~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~ ~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~` ~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~```` `~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~` ```~~``````~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5
You have found a sunken treasure chest!
You have 13 sonar devices left. 2 treasure chests r emaining.
Where do you want to drop the next sonar device? (0 -59 0-14) (or type quit)

...skipped over for brevity....

 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 `~~~`~~~`~`~~`~~~~~`~``~~~~`~`~~~`~``~``~~````~` ~```~`~~~~`` 0
 1 ~`~~~```~~~~`~`~~`~``~`~~```~O~`~~`~`~~~~~~`~``` ``~`~~`~~~~` 1
 2 `~``~``~~~`~``~`~`~``~`````~~O~~~O~~`~`~~`~``~~~ ~~```~~`~``` 2
 3 ``~3~~``8`~``~`~`~`~~`~`~~`~`~``~~~`~`O~````~``` ```~~~~``~`` 3
 4 ``~~`~~~``~``~~````~`~`~`~O`~~O``~~```~`~~`~~`~` ~`~~`~~~~``` 4
 5 ~~```~~~`~`~~``~`~``~```~`~~`~~~~~`~~``~`~`~~~`~ ~`~`~`~`~~~` 5
 6 ``~~`````~~~~`~O~~~```~~~~`~~`~~`~~```~~`~~~`~~~ ``O`~~~``~~~ 6
 7 `~`````````~```~``~``~~`~~~~`~~``~``~~~```~`~~`~ ``~``~~```~~ 7
 8 `~````~```~`~~`~~~`~~``~~~``~`~``~~~``~`O```0`~` ~~```~`~~~~` 8
 9 ~```~~`~`~``~``~~``~``~```~O~``~~~~`~`~`~~~`~`~` ~`~~~``~~``` 9
10 ```~`~```~O`~``O`~~`~``~````~``~~~`~~`~~``~~~~`~ ~~`~`~~````~ 10
11 ```~```~~~`~```~~`~~~`~`````~`~~`~`~~`~~`~`~~`~~ ~````~````~` 11
12 ~~~`~`~~~``~~~~~~`~~~``~`~`~~`~`~~`~```~~~```~~` ~~`~``~``~`~ 12
13 `~~````~~``~```~~~`~```~`~~~~~~~~~`~~``~~~~~```` `~`~`~``~~~~ 13
14 `~~`~`~````~```~`~`~```~~`~~~~`~```~``~``~``~~~` ```~~``````~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
We've run out of sonar devices! Now we have to turn the ship around and head
for home with treasure chests still out there! Game over.
 The remaining chests were here:
 0, 4
Do you want to play again? (yes or no)
no

Source Code

Knowing about Cartesian coordinates, number lines, negative numbers, and absolute values will help
us out with our Sonar game. Here is the source code for the game. Type it into a new file, then save the
file as sonar.py and run it by pressing the F5 key. You do not need to understand the code to type it in or
play the game, the source code will be explained later.

sonar.py

1. # Sonar
2.
3. import random
4. import sys
5.
6. def drawBoard(board):

7. # Draw the board data structure.
8.
9. hline = ' ' # initial space for the number s down

the left side of the board
10. for i in range(1, 6):
11. hline += (' ' * 9) + str(i)
12.
13. # print the numbers across the top
14. print hline
15. print ' ' + ('0123456789' * 6)
16. print
17.
18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit numbers need to be padded with

an extra space
21. if i < 10:
22. extraSpace = ' '
23. else:
24. extraSpace = ''
25. print '%s%s %s %s' % (extraSpace, i, get Row

(board, i), i)
26.
27. # print the numbers across the bottom
28. print
29. print ' ' + ('0123456789' * 6)
30. print hline
31.
32.
33. def getRow(board, row):
34. # Return a string from the board data struct ure at

a certain row.
35. boardRow = ''
36. for i in range(60):
37. boardRow += board[i][row]
38. return boardRow
39.
40. def getNewBoard():
41. # Create a new 60x15 board data structure.
42. board = []
43. for x in range(60): # the main list is a lis t of 60

lists
44. board.append([])
45. for y in range(15): # each list in the m ain

list has 15 single-character strings
46. # use different characters for the o cean to

make it more readable.

47. if random.randint(0, 1) == 0:
48. board[x].append('~')
49. else:
50. board[x].append('`')
51. return board
52.
53. def getRandomChests(numChests):
54. # Create a list of chest data structures (tw o-item

lists of x, y int coordinates)
55. chests = []
56. for i in range(numChests):
57. chests.append([random.randint(0, 59),

random.randint(0, 14)])
58. return chests
59.
60. def isValidMove(x, y):
61. # Return True if the coordinates are on the board,

otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y < = 14
63.
64. def makeMove(board, chests, x, y):
65. # Change the board data structure with a son ar

device character. Remove treasure chests
66. # from the chests list as they are found. Re turn

False if this is an invalid move.
67. # Otherwise, return the string of the result of

this move.
68. if not isValidMove(x, y):
69. return False
70.
71. smallestDistance = 100 # any chest will be c loser

than 100.
72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we wan t the

closest treasure chest.
79. smallestDistance = distance
80.
81. if smallestDistance == 0:
82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure

chest!'

85. else:
86. if smallestDistance < 10:
87. board[x][y] = str(smallestDistance)
88. return 'Treasure detected at a dista nce of

%s from the sonar device.' % (smallestDistance)
89. else:
90. board[x][y] = 'O'
91. return 'Sonar did not detect anythin g. All

treasure chests out of range.'
92.
93.
94. def enterPlayerMove():
95. # Let the player type in her move. Return a two-

item list of int xy coordinates.
96. print 'Where do you want to drop the next so nar

device? (0-59 0-14) (or type quit)'
97. while True:
98. move = raw_input()
99. if move.lower() == 'quit':

100. print 'Thanks for playing!'
101. sys.exit()
102.
103. move = move.split()
104. if len(move) == 2 and move[0].isdigit() and

move[1].isdigit() and isValidMove(int(move[0]), int
(move[1])):

105. return [int(move[0]), int(move[1])]
106. print 'Enter a number from 0 to 59, a s pace,

then a number from 0 to 14.'
107.
108.
109. def playAgain():
110. # This function returns True if the player wants to

play again, otherwise it returns False.
111. print 'Do you want to play again? (yes or n o)'
112. return raw_input().lower().startswith('y')
113.
114.
115. def showInstructions():
116. print '''Instructions:
117. You are the captain of the Simon, a treasure-hu nting

ship. Your current mission
118. is to find the three sunken treasure chests tha t are

lurking in the part of the
119. ocean you are in and collect them.
120.
121. To play, enter the coordinates of the point in the

ocean you wish to drop a
122. sonar device. The sonar can find out how far aw ay the

closest chest is to it.
123. For example, the d below marks where the device was

dropped, and the 2's
124. represent distances of 2 away from the device. The 4's

represent
125. distances of 4 away from the device.
126.
127. 444444444
128. 4 4
129. 4 22222 4
130. 4 2 2 4
131. 4 2 d 2 4
132. 4 2 2 4
133. 4 22222 4
134. 4 4
135. 444444444
136. Press enter to continue...'''
137. raw_input()
138.
139. print '''For example, here is a treasure ch est (the

c) located a distance of 2 away
140. from the sonar device (the d):
141.
142. 22222
143. c 2
144. 2 d 2
145. 2 2
146. 22222
147.
148. The point where the device was dropped will be marked

with a 2.
149.
150. The treasure chests don't move around. Sonar de vices

can detect treasure
151. chests up to a distance of 9. If all chests are out of

range, the point
152. will be marked with O
153.
154. If a device is directly dropped on a treasure c hest,

you have discovered
155. the location of the chest, and it will be colle cted.

The sonar device will
156. remain there.
157.
158. When you collect a chest, all sonar devices wil l update

to locate the next
159. closest sunken treasure chest.
160. Press enter to continue...'''
161. raw_input()
162. print
163.
164.
165. print 'S O N A R !'
166. print
167. print 'Would you like to view the instructions?

(yes/no)'
168. if raw_input().lower().startswith('y'):
169. showInstructions()
170.
171. while True:
172. # game setup
173. sonarDevices = 16
174. theBoard = getNewBoard()
175. theChests = getRandomChests(3)
176. drawBoard(theBoard)
177. previousMoves = []
178.
179. while sonarDevices > 0:
180. # Start of a turn:
181.
182. # sonar device/chest status
183. if sonarDevices > 1: extraSsonar = 's'
184. else: extraSsonar = ''
185. if len(theChests) > 1: extraSchest = 's '
186. else: extraSchest = ''
187. print 'You have %s sonar device%s left. %s

treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest)

188.
189. x, y = enterPlayerMove()
190. previousMoves.append([x, y]) # we must track

all moves so that sonar devices can be updated.
191.
192. moveResult = makeMove(theBoard, theChes ts, x,

y)
193. if moveResult == False:
194. continue
195. else:
196. if moveResult == 'You have found a sunken

treasure chest!':
197. # update all the sonar devices

currently on the map.

198. for x, y in previousMoves:
199. makeMove(theBoard, theChest s, x, y)
200. drawBoard(theBoard)
201. print moveResult
202.
203. if len(theChests) == 0:
204. print 'You have found all the sunke n

treasure chests! Congratulations and good game!'
205. break
206.
207. sonarDevices -= 1
208.
209. if sonarDevices == 0:
210. print 'We\'ve run out of sonar devices! Now we

have to turn the ship around and head'
211. print 'for home with treasure chests st ill out

there! Game over.'
212. print ' The remaining chests were he re:'
213. for x, y in theChests:
214. print ' %s, %s' % (x, y)
215.
216. if not playAgain():
217. sys.exit()
218.

Designing the Program

Sonar is kind of complicated, so type in the game's code and play it a few times first. After you've
played the game a few times, you can kind of get an idea of the sequence of events in this game.

The Sonar game uses lists of lists and other complicated variables. These complicated variables are
known as data structures . Data structures will let us store complicated arrangements of values in a
single variable. We will use data structures for the Sonar board and the locations of the treasure chests.

It is also helpful to write out the things we need our program to do, and come up with some function
names that will handle these actions. Remember to name functions after what they spcifically do.
Otherwise we might end up forgetting a function, or typing in two different functions that do the same
thing.

What the code should do. The function that will
do it.

Prints the game board on the screen based on the board data structure
it is passed, including the coordinates along the top, bottom, and left and
right sides.

 drawBoard()

These might not be all of the functions we need, but a list like this is a good idea to help you get
started with programming your own games. For example, when we are writing the drawBoard()
function in the Sonar game, we figure out that we also need a getRow() function. Writing out a
function once and then calling it twice is preferable to writing out the code twice. The whole point of
functions is to reduce duplicate code down to one place, so if we ever need to make changes to that code
we only need to change one place in our program.

Code Explanation

1. # Sonar
2.
3. import random
4. import sys

Here we import two modules, random and sys . The sys module contains the exit() function,
which causes the program to immediately terminate. We will call this function on line 101.

6. def drawBoard(board):

The backtick (`) and tilde (~) characters are located next to the 1 key on your keyboard. They
resemble the waves of the ocean. Somewhere in this ocean are three treasure chests, but you don't know
where. Figure it out by planting sonar devices, and tell the game program where by typing in the X and
Y coordinates (which are printed on the four sides of the screen.)

Create a fresh board data structure. getNewBoard()

Create a fresh chests data structure that has a number of chests
randomly scattered across the game board.

 getRandomChests()

Check that the XY coordinates that are passed to this function are
located on the game board or not. isValidMove()

Let the player type in the XY coordinates of his next move, and keep
asking until they type in the coordinates correctly. enterPlayerMove()

Place a sonar device on the game board, and update the board data
structure then return a string that describes what happened.

 makeMove()

Ask the player if they want to play another game of Sonar. playAgain()

Print out instructions for the game.
showInstructions
()

The drawBoard() function is the first function we will define for our program. The sonar game's
board is an ASCII-art ocean with coordinates going along the X- and Y-axis, and looks like this:

 1 2 3 4 5
 012345678901234567890123456789012345678901234567 890123456789

 0 ~~~`~``~~~``~~~~``~`~`~`~`~~`~~~`~~`~``````~~`~` `~`~~```~`~` 0
 1 `~`~````~~``~`~```~```~```~`~~~``~~`~~~``````~`~ ``~~``~~`~~` 1
 2 ```~~~~`~`~~```~~~``~````~~`~`~~`~`~`~```~~`~``~ ~`~`~~~~~~`~ 2
 3 ~~~~`~~~``~```~``~~`~`~~`~`~~``~````~`~````~```~ `~`~`~`````~ 3
 4 ~```~~~~~`~~````~~~~```~~~`~`~`~````~`~~`~`~~``~ ~`~``~`~``~~ 4
 5 `~```~`~`~~`~~~```~~``~``````~~``~`~`~~~~`~~``~~ ~~~~`~```~~` 5
 6 ``~~`~~`~``~`````~````~~``~`~~~~`~~```~~~``~`~`~ ~``~~~```~~~ 6
 7 ``~``~~~~~~```~`~```~~~``~`~``~`~~~~~~```````~~~ `~~`~~`~~`~~ 7
 8 ~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~ ~~~~`~`~~~~` 8
 9 ```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~ `~``~~~~~``` 9
10 `~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~`````` `~`~``~````` 10
11 ~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~ ~~~`~~~`~~`~ 11
12 ~~`~~~~```~~~`````~~``~`~`~~``````~`~~``~``````` ~~``~~~`~~`~ 12
13 `~``````~~``~`~~~```~~~~```~~`~`~~~`~```````~~`~ ```~``~`~~~~ 13
14 ~~~``~```~`````~~`~`~``~~`~``~`~~`~`~``~`~``~~`` ~`~``~```~~~ 14

 012345678901234567890123456789012345678901234567 890123456789
 1 2 3 4 5

We will split up the drawing in the drawBoard() function into four steps. First, we create a string
variable of the line with 1, 2, 3, 4, and 5 spaced out with wide gaps. Second, we use that string to display
the X-axis coordinates along the top of the screen. Third, we print each row of the ocean along with the
Y-axis coordinates on both sides of the screen. And fourth, we print out the X-axis again at the bottom.
Having the coordinates on all sides makes it easier for the player to move their finger along the spaces to
see where exactly they want to plan a sonar device.

7. # Draw the board data structure.
8.
9. hline = ' ' # initial space for the number s

down the left side of the board
10. for i in range(1, 6):
11. hline += (' ' * 9) + str(i)

Let's look again at the top part of the board, this time with red plus signs instead of blank spaces so
we can count the spaces easier:

The numbers on the first line which mark the tens position all have nine spaces in between them, and
there are thirteen spaces in front of the 1. We are going to create a string with this line and store it in a

variable named hline .

13. # print the numbers across the top
14. print hline
15. print ' ' + ('0123456789' * 6)
16. print
17.

To print the numbers across the top of the sonar board, we first print the contents of the hline
variable. Then on the next line, we print three spaces (so that this row lines up correctly), and then print
the string '01234567890123456789012345678901234567890123456789 0123456789' .
But this is tedious to type into the source, so instead we type ('0123456789' * 6) which evaluates
to the same string.

18. # print each of the 15 rows
19. for i in range(15):
20. # single-digit numbers need to be padded with

an extra space
21. if i < 10:
22. extraSpace = ' '
23. else:
24. extraSpace = ''
25. print '%s%s %s %s' % (extraSpace, i, get Row

(board, i), i)

Now we print the each row of the board, including the numbers down the side to label the Y-axis. We
use the for loop to print rows 0 through 14 on the board, along with the row numbers on either side of
the board.

We have a small problem. Numbers with only one digit (like 0, 1, 2, and so on) only take up one
space when we print them out, but numbers with two digits (like 10, 11, and 12) take up two spaces.
This means the rows might not line up and would look like this:

8 ~~`~`~~```~``~~``~~~``~~`~`~~`~`~```~```~~~```~~~ ~~~`~`~~~~` 8
9 ```~``~`~~~`~~```~``~``~~~```~````~```~`~~`~~~~~` ~``~~~~~``` 9
10 `~~~~```~`~````~`~`~~``~`~~~~`~``~``~```~~`````` `~`~``~````` 10
11 ~~`~`~~`~``~`~~~````````````````~~`````~`~~``~`~ ~~~`~~~`~~`~ 11

The solution is easy. We just add a space in front of all the single-digit numbers. The if-else
statement that starts on line 21 does this. We will print the variable extraSpace when we print the

row, and if i is less than 10 (which means it will have only one digit), we assign a single space string
to extraSpace . Otherwise, we set extraSpace to be a blank string. This way, all of our rows will
line up when we print them.

The getRow() function will return a string representing the row number we pass it. Its two
parameters are the board data structure stored in the board variable and a row number. We will look at
this function next.

27. # print the numbers across the bottom
28. print
29. print ' ' + ('0123456789' * 6)
30. print hline

This code is similar to lines 14 to 17. This will print the X-axis coordinates along the bottom of the
screen.

33. def getRow(board, row):
34. # Return a string from the board data struct ure at

a certain row.
35. boardRow = ''
36. for i in range(60):
37. boardRow += board[i][row]
38. return boardRow

This function constructs a string called boardRow from the characters stored in board . First we set
boardRow to the blank string. The row number (which is the Y coordinate) is passed as a parameter.
The string we want is made by concatenating board[0][row] , board[1][row] , board[2]
[row] , and so on up to board[59][row] . (This is because the row is made up of 60 characters,
from index 0 to index 59.)

The for loop iterates from integers 0 to 59 . On each iteration the next character in the board data
structure is copied on to the end of boardRow . By the time the loop is done, extraSpace is fully
formed, so we return it.

40. def getNewBoard():
41. # Create a new 60x15 board data structure.
42. board = []

43. for x in range(60): # the main list is a lis t of 60
lists

44. board.append([])

At the start of each new game, we will need a fresh board data structure. The board data structure is
a list of lists of strings. The first list represents the X coordinate. Since our game's board is 60 characters
across, this first list needs to contain 60 lists. So we create a for loop that will append 60 blank lists to it.

45. for y in range(15): # each list in the m ain
list has 15 single-character strings

46. # use different characters for the o cean to
make it more readable.

47. if random.randint(0, 1) == 0:
48. board[x].append('~')
49. else:
50. board[x].append('`')

But board is more than just a list of 60 blank lists. Each of the 60 lists represents the Y coordinate of
our game board. There are 15 rows in the board, so each of these 60 lists must have 15 characters in them.
We have another for loop to add 15 single-character strings that represent the ocean. The "ocean" will
just be a bunch of '~' and '`' strings, so we will randomly choose between those two. We can do this
by generating a random number between 0 and 1 with a call to random.randint() . If the return
value of random.randint() is 0, we add the '~' string. Otherwise we will add the '`' string.

This is like deciding which character to use by tossing a coin. And since the return value from
random.randint() will be 0 about half the time, half of the ocean characters will be '~' and the
other half will be '`' . This will give our ocean a nice random, choppy look to it.

Remember that the board variable is a list of 60 lists that have 15 strings. That means to get the string
at coordinate 26, 12, we would access board[26][12] , and not board[12][26] . The X coordinate
is first, then the Y coordinate.

Here is the picture from the Hangman chapter that demonstrates the indexes of a list of lists named x .
The red arrows point to indexes of the inner lists themselves. The image is also flipped on its side to make
it easier to read:

51. return board

Finally, we return the board variable. Remember that in this case, we are returning a reference to the
list that we made. Any changes we made to the list (or the lists inside the list) in our function will still be
there outside of the function.

53. def getRandomChests(numChests):
54. # Create a list of chest data structures (tw o-item

lists of x, y int coordinates)
55. chests = []
56. for i in range(numChests):
57. chests.append([random.randint(0, 59),

random.randint(0, 14)])
58. return chests

Another task we need to do at the start of the game is decide where the hidden treasure chests are. We
will represent the treasure chests in our game as a list of lists of two integers. These two integers will be

the X and Y coordinates. For example, if the chest data structure was [[2, 2], [2, 4], [10,
0]] , then this would mean there are three treasure chests, one at 2, 2, another at 2, 4, and a third one at
10, 0.

We will pass the numChests parameter to tell the function how many treasure chests we want it to
generate. We set up a for loop to iterate this number of times, and on each iteration we append a list of
two random integers. The X coordinate can be anywhere from 0 to 59, and the Y coordinate can be from
anywhere between 0 and 14. The expression [random.randint(0, 59), random.randint
(0, 14)] that is passed to the append method will evaluate to something like [2, 2] or [2, 4]
or [10, 0] . This data structure is then returned.

60. def isValidMove(x, y):
61. # Return True if the coordinates are on the board,

otherwise False.
62. return x >= 0 and x <= 59 and y >= 0 and y < = 14

The player will type in X and Y coordinates of where they want to drop a sonar device. But they may
not type in coordinates that do not exist on the game board. The X coordinates must be between 0 and
59, and the Y coordinate must be between 0 and 14. This function uses a simple expression that uses
and operators to ensure that each condition is True . If just one is False , then the entire expression
evaluates to False . This Boolean value is returned by the function.

64. def makeMove(board, chests, x, y):
65. # Change the board data structure with a son ar

device character. Remove treasure chests
66. # from the chests list as they are found. Re turn

False if this is an invalid move.
67. # Otherwise, return the string of the result of

this move.
68. if not isValidMove(x, y):
69. return False

In our Sonar game, the game board is updated to display a number for each sonar device dropped. The
number shows how far away the closest treasure chest is. So when the player makes a move by giving
the program an X and Y coordinate, we will change the board based on the positions of the treasure
chests. This is why our makeMove() function takes four parameters: the game board data structure, the
treasure chests data structures, and the X and Y coordinates.

This function will return the False Boolean value if the X and Y coordinates if was passed do not

exist on the game board. If isValidMove() returns False , then makeMove() will return
False .

If the coordinates land directly on the treasure, makeMove() will return the string 'You have
found a sunken treasure chest!' . If the XY coordinates are within a distance of 9 or less
of a treasure chest, we return the string 'Treasure detected at a distance of %s from
the sonar device.' (where %s is the distance). Otherwise, makeMove() will return the string
'Sonar did not detect anything. All treasure chests out of range.' .

71. smallestDistance = 100 # any chest will be c loser
than 100.

72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we wan t the

closest treasure chest.
79. smallestDistance = distance

Given the XY coordinates of where the player wants to drop the sonar device, and a list of XY
coordinates for the treasure chests (in the chests list of lists), how do we find out which treasure chest
is closest?

While the x and y variables are just integers (say, 5 and 0), together they represent the location on the
game board (which is a Cartesian coordinate system) where the player guessed. The chests variable
may have a value like [[5, 0], [0, 2], [4, 2]] , that value represents the locations of three
treasure chests. Even though these variables are a bunch of numbers, we can visualize it like this:

We figure out the distance from the sonar device located at 0, 2 with "rings" and the distances around
it (in blue text):

But how do we translate this into code for our game? We need a way to represent distance as an
expression. Notice that the distance from an XY coordinate is always the larger of two values: the
absolute value of the difference of the two X coordinates and the absolute value of the difference of the
two Y coordinates.

That means we should subtract the sonar device's X coordinate and a treasure chest's X coordinate,
and then take the absolute value of this number. We do the same for the sonar device's Y coordinate and
a treasure chest's Y coordinate. The larger of these two values is the distance. Let's look at our example
board with rings above to see if this algorithm is correct.

The sonar's X and Y coordinates are 3 and 2. The first treasure chest's X and Y coordinates (first in
the list [[5, 0], [0, 2], [4, 2]] that is) are 5 and 0.

For the X coordinates, 3 - 5 evaluates to -2 , and the absolute value of -2 is 2.

For the Y coordinates, 2 - 1 evaluates to 1, and the absolute value of 1 is 1.

Comparing the two absolute values 2 and 1, 2 is the larger value and should be the distance from the
sonar device and the treasure chest at coordinates 5, 1. We can look at the board and see that this
algorithm works, because the treasure chest at 5,1 is in the sonar device's 2nd ring. Let's quickly
compare the other two chests to see if his distances work out correctly also.

Let's find the distance from the sonar device at 3,2 and the treasure chest at 0,2. abs(3 - 0)
evaluates to 3. The abs() function returns the absolute value of the number we pass to it. abs(2 -
2) evaluates to 0. 3 is larger than 0, so the distance from the sonar device at 3,2 and the treasure chest
at 0,2 is 3. We look at the board and see this is true.

Let's find the distance from the sonar device at 3,2 and the last treasure chest at 4,2. abs(3 - 4)
evaluates to 1. abs(2 - 2) evaluates to 0. 1 is larger than 0, so the distance from the sonar device at
3,2 and the treasure chest at 4,2 is 1. We look at the board and see this is true also.

Because all three distances worked out correctly, our algorithm works. The distances from the sonar
device to the three sunken treasure chests are 2, 3, and 1. On each guess, we want to know the distance
from the sonar device to the closest of the three treasure chest distances. To do this we use a variable
called smallestDistance . Let's look at the code again:

71. smallestDistance = 100 # any chest will be c loser
than 100.

72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we wan t the

closest treasure chest.
79. smallestDistance = distance

You can also use multiple assignment in for loops. For example, the assignment statement a, b =
[5, 10] will assign 5 to a and 10 to b. Also, the for loop for i in [0, 1, 2, 3, 4] will
assign the i variable the values 0 and 1 and so on for each iteration.

The for loop for cx, cy in chests: combines both of these principles. Because chests is a
list where each item in the list is itself a list of two integers, the first of these integers is assigned to cx
and the second integer is assigned to cy . So if chests has the value [[5, 0], [0, 2], [4,
2]] , on the first iteration through the loop, cx will have the value 5 and cy will have the value 0.

Line 73 determines which is larger: the absolute value of the difference of the X coordinates, or the
absolute value of the difference of the Y coordinates. (abs(cx - x) < abs(cy - y) seems like
much easier way to say that, doesn't it?). The if-else statement assigns the larger of the values to the
distance variable.

So on each iteration of the for loop, the distance variable holds the distance of a treasure chest's
distance from the sonar device. But we want the shortest (that is, smallest) distance of all the treasure
chests. This is where the smallestDistance variable comes in. Whenever the distance variable
is smaller than smallestDistance , then the value in distance becomes the new value of
smallestDistance .

We give smallestDistance the impossibly high value of chests at the beginning of the loop
so that at least one of the treasure chests we find will be put into smallestDistance . By the time
the chests loop has finished, we know that smallestDistance holds the shortest distance
between the sonar device and all of the treasure chests in the game.

81. if smallestDistance == 0:
82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure

chest!'

The only time that smallestDistance is equal to 0 is when the sonar device's XY coordinates
are the same as a treasure chest's XY coordinates. This means the player has correctly guessed the
location of a treasure chest. We should remove this chest's two-integer list from the chests data
structure with the remove list method.

The remove() List Method

The remove list method will remove the first occurence of the value passed as a parameter from the
list. For example, try typing the following into the interactive shell:

x = [42, 5, 10, 42]
x.remove(10)
x

You can see that the 10 value has been removed from the x list.

The remove() method removes the first occurrence of the value you pass it, and only the first. For
example, type the following into the shell:

x = [42, 5, 42]
x.remove(42)
x

Notice that only the first 42 value was removed, but the second one is still there.

The remove() method will cause an error if you try to remove a value that is not in the list:

After removing the found treasure chest from the chests list, we return the string 'You have
found a sunken treasure chest!' to tell the caller that the guess was correct. Remember
that any changes made to the list in a function will exist outside the function as well.

85. else:
86. if smallestDistance < 10:

87. board[x][y] = str(smallestDistance)
88. return 'Treasure detected at a dista nce of

%s from the sonar device.' % (smallestDistance)
89. else:
90. board[x][y] = 'O'
91. return 'Sonar did not detect anythin g. All

treasure chests out of range.'
92.

The else block executes if smallestDistance was not 0, which means the player did not guess
an exact location of a treasure chest. We return two different strings, depending on if the sonar device was
placed within range of any of the treasure chests. If it was, we mark the board with the string version of
smallestDistance . If not, we mark the board with a '0' .

94. def enterPlayerMove():
95. # Let the player type in her move. Return a two-

item list of int xy coordinates.
96. print 'Where do you want to drop the next so nar

device? (0-59 0-14) (or type quit)'
97. while True:
98. move = raw_input()
99. if move.lower() == 'quit':

100. print 'Thanks for playing!'
101. sys.exit()

This function collects the XY coordinates of the player's next move. It has a while loop so that it will
keep asking the player for her next move. The player can also type in chests in order to quit the game.
In that case, we call the sys.exit() function which immediately terminates the program.

103. move = move.split()
104. if len(move) == 2 and move[0].isdigit() and

move[1].isdigit() and isValidMove(int(move[0]), int
(move[1])):

105. return [int(move[0]), int(move[1])]
106. print 'Enter a number from 0 to 59, a s pace,

then a number from 0 to 14.'

Assuming the player has not typed in 'quit' , we call the split() method on move and set the list

it returns as the new value of move. What we expect move to be is a list of two numbers. These
numbers will be strings, because the chests method returns a list of strings. But we can convert these
to integers with the int() function.

If the player typed in something like '1 2 3' , then the list returned by split() would be ['1',
'2', '3'] . In that case, the expression len(move) == 2 would be False and the entire
expression immediately evaluates to False (because of expression short-circuiting.)

If the list returned by split() does have a length of 2, then it will have a move[0] and move
[1] . We call the string method isdigit() on those strings. isdigit() will return True if the
string consists solely of numbers. Otherwise it returns False . Try typing the following into the
interactive shell:

'42'.isdigit()
'forty'.isdigit()
''.isdigit()
'hello'.isdigit()
x = '10'
x.isdigit()

As you can see, both move[0].isdigit() and move[1].isdigit() must be True . The
final part of this expression calls our move[1] function to check if the XY coordinates exist on the
board. If all these expressions are True , then this function returns a two-integer list of the XY
coordinates. Otherwise, the player will be asked to enter coordinates again.

109. def playAgain():
110. # This function returns True if the player wants

to play again, otherwise it returns False.
111. print 'Do you want to play again? (yes or n o)'
112. return raw_input().lower().startswith('y')

The playAgain() function will ask the player if they want to play again, and will keep asking until
the player types in a string that begins with 'y' . This function returns a boolean value.

115. def showInstructions():
116. print '''Instructions:
117. You are the captain of the Simon, a treasure-hu nting

ship. Your current mission
118. is to find the three sunken treasure chests tha t are

lurking in the part of the
119. ocean you are in and collect them.
120.
121. To play, enter the coordinates of the point in the

ocean you wish to drop a
122. sonar device. The sonar can find out how far aw ay the

closest chest is to it.
123. For example, the d below marks where the device was

dropped, and the 2's
124. represent distances of 2 away from the device. The 4's

represent
125. distances of 4 away from the device.
126.
127. 444444444
128. 4 4
129. 4 22222 4
130. 4 2 2 4
131. 4 2 d 2 4
132. 4 2 2 4
133. 4 22222 4
134. 4 4
135. 444444444
136. Press enter to continue...'''
137. raw_input()

The showInstructions() is just a couple of print statements that print multi-line strings. The
raw_input() function just gives the player a chance to press Enter before printing the next string.
This is because the screen can only show 25 lines of text at a time.

139. print '''For example, here is a treasure ch est
(the c) located a distance of 2 away

140. from the sonar device (the d):
141.

142. 22222
143. c 2
144. 2 d 2
145. 2 2
146. 22222
147.
148. The point where the device was dropped will be marked

with a 2.
149.
150. The treasure chests don't move around. Sonar de vices

can detect treasure
151. chests up to a distance of 9. If all chests are out of

range, the point
152. will be marked with O
153.
154. If a device is directly dropped on a treasure c hest,

you have discovered
155. the location of the chest, and it will be colle cted.

The sonar device will
156. remain there.
157.
158. When you collect a chest, all sonar devices wil l update

to locate the next
159. closest sunken treasure chest.
160. Press enter to continue...'''
161. raw_input()
162. print
163.

This is the rest of the instructions in one multi-line string. After the player presses Enter, the function
returns.

These are all of the functions we will define for our game. The rest of the program is the main part of
our game.

165. print 'S O N A R !'
166. print
167. print 'Would you like to view the instructions?

(yes/no)'
168. if raw_input().lower().startswith('y'):
169. showInstructions()

The expression raw_input().lower().startswith('y') asks the player if they want to
see the instructions, and evaluates to True if the player typed in a string that began with 'y' or 'Y' . If
so, showInstructions() is called.

171. while True:
172. # game setup
173. sonarDevices = 16
174. theBoard = getNewBoard()
175. theChests = getRandomChests(3)
176. drawBoard(theBoard)
177. previousMoves = []

This while loop is the main game loop. Here are what the variables are for:

179. while sonarDevices > 0:
180. # Start of a turn:
181.
182. # sonar device/chest status
183. if sonarDevices > 1: extraSsonar = 's'
184. else: extraSsonar = ''
185. if len(theChests) > 1: extraSchest = 's '
186. else: extraSchest = ''
187. print 'You have %s sonar device%s left. %s

treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest)

This while loop executes as long as the player has sonar devices remaining. We want to print a
message telling the user how many sonar devices and treasure chests are left. But there is a problem. If
there are two or more sonar devices left, we want to print '2 sonar devices' . But if there is only
one sonar device left, we want to print '1 sonar device' left. We only want the plural form of
devices if there are multiple sonar devices. The same goes for '2 treasure chests' and '1

sonarDevices The number of sonar devices (and turns) the player has left.

theBoard The board data structure we will use for this game. getNewBoard
() will set us up with a fresh board.

theChests The list of chest data structures. getRandomChests() will return
a list of three treasure chests at random places on the board.

previousMoves A list of all the XY moves that the player has made in the game.

treasure chest' .

So we have two string variables named x and y , which contain a while if there are multiple sonar
devices or treasures chests. Otherwise, they are blank. We use them in the while statement on line 187.

189. x, y = enterPlayerMove()
190. previousMoves.append([x, y]) # we must track

all moves so that sonar devices can be updated.
191.
192. moveResult = makeMove(theBoard, theChes ts, x,

y)
193. if moveResult == False:
194. continue

Line 189 uses the multiple assignment trick. enterPlayerMove() returns a two-item list. The
first item will be stored in the x variable and the second will be stored in the y variable. We then put
these two variables into another two-item list, which we store in the previousMoves list with the
append() method. This means previousMoves is a list of XY coordinates of each move the player
makes in this game.

The x and y variables, along with theBoard and theChests (which represent the current state of
the game board) are all sent to the makeMove() function. As we have already seen, this function will
make the necessary modifications to the game board. If makeMove() returns the value False , then
there was a problem with the x and y values we passed it. The while statement will go back to the start
of the while loop that began on line 179 to ask the player for XY coordinates again.

195. else:
196. if moveResult == 'You have found a sunken

treasure chest!':
197. # update all the sonar devices

currently on the map.
198. for x, y in previousMoves:
199. makeMove(theBoard, theChest s, x,

y)
200. drawBoard(theBoard)
201. print moveResult

If makeMove() did not return the value False , it would have returned a string that tells us what
were the results of that move. If this string was while , then that means we should update all the sonar

devices on the board so they detect the second closest treasure chest on the board. We have the XY
coordinates of all the sonar devices currently on the board stored in previousMoves . So we can just
pass all of these XY coordinates to the makeMove() function again to have it redraw the values on the
board.

We don't have to worry about this call to makeMove() having errors, because we already know all
the XY coordinates in previousMoves are valid. We also know that this call to makeMove() won't
find any new treasure chests, because they would have already been removed from the board when that
move was first made.

The for loop on line 198 also uses the same multiple assignment trick for x and y because the items
in previousMoves list are themselves two-item lists. Because we don't print anything here, the player
doesn't realize we are redoing all of the previous moves. It just appears that the board has been entirely
updated.

203. if len(theChests) == 0:
204. print 'You have found all the sunke n

treasure chests! Congratulations and good game!'
205. break

Remember that the makeMove() function modifies the theChests list we send it. Because
theChests is a list, any changes made to it inside the function will persist after execution returns from
the function. makeMove(0 removes items from theChests when treasure chests are found, so
eventually (if the player guesses correctly) all of the treasure chests will have been removed.
(Remember, by "treasure chest" we mean the two-item lists of the XY coordinates inside the
theChests list.)

When all the treasure chests have been found on the board and removed from theChests , the
theChests list will have a length of 0. When that happens, we display a congratulations to the player,
and then execute a break statement to break out of this while loop. Execution will then move down
to line 209 (the first line after the while block.)

207. sonarDevices -= 1

This is the last line of the while loop that started on line 179. We decrement the sonarDevices
variable because the player has used one. If the player keeps missing the treasure chests, eventually
sonarDevices will be reduced to 0. After this line, execution jumps back up to line 179 so we can
re-evaluate the while statement's condition (which is sonarDevices > 0). If sonarDevices is
0, then the condition will be False and execution will continue outside the while block on line 209.

But until then, the condition will remain while and the player can keep making guesses.

209. if sonarDevices == 0:
210. print 'We\'ve run out of sonar devices! Now we

have to turn the ship around and head'
211. print 'for home with treasure chests st ill out

there! Game over.'
212. print ' The remaining chests were he re:'
213. for x, y in theChests:
214. print ' %s, %s' % (x, y)

Line 209 is the first line outside the while loop. By this point the game is over. But how do we tell if
the player won or not? The only two places where the program execution would have left the while
loop is on line 179 if the condition failed. In that case, while would be while and the player would
have lost.

The second place is the break statement on line 205. That statement is executed if the player has
found all the treasure chests before running out of sonar devices. In that case, sonarDevices would
be some value greater than 0.

We've already printed a congratulations if the player won, so let's just check if the player lost and
display a message telling them so. We will also set up a for loop that will go through the treasure
chests remaining in theChests and show them to the player.

216. if not playAgain():
217. sys.exit()

Win or lose, we call the playAgain() function to let the player type in whether they want to keep
playing or not. If not, then playAgain() returns False . The not operator changes this to True ,
making the if statement's condition True and the sys.exit() function is executed. This will cause
the program to terminate.

Otherwise, execution jumps back to the beginning of the not loop on line 171.

Things Covered In This Chapter:

� Cartesian coordinate systems.

� The X-axis and Y-axis.
� Absolute values and the abs() function.
� The remove() list method.
� The isdigit() string method.

Chapter 9 - Caesar Cipher

About Cryptography

The science of writing secret codes is called cryptography . Cryptography has been used for
thousands of years to send secret messages that only the recipient could understand, even if someone
captured the messenger and read the coded message. A secret code system is called a cipher . There are
thousands of different ciphers that have been used, each using different techniques to keep the messages
a secret.

In cryptography, we call the message that we want to be secret the plaintext . The plaintext could
look something like this:

Hello there! The keys to the house are hidden under the
reddish flower pot.

When we convert the plaintext into the encoded message, we call this encrypting the plaintext. The
plaintext is encrypted into the ciphertext . The ciphertext looks like random letters (also called
garbage data), and we cannot understand what the original plaintext was by just looking at the
ciphertext. Here is an example of some ciphertext:

Ckkz fkx kj becqnejc kqp pdeo oaynap iaoowca!

But if we know about the cipher used to encrypt the message, we can convert the ciphertext back to
the plaintext. This is called decrypting . (Decryption is the opposite of encryption.)

Many ciphers also use keys. Keys are secret values that let you decrypt ciphertext that was encrypted
using a specific cipher. Think of the cipher as being like a door lock. Although all the door locks of the
same type are built the same, a particular lock will only unlock if you have the key made for that lock.
You cannot use another key on that door lock, and you cannot use a different key to decrypt ciphertext
that was encrypted with a different key.

When we encrypt a message using a cipher, we will choose the key that is used to encrypt and decrypt
this message. The key for our Caesar Cipher will be a number from 1 to 26. Unless you know the key
(that is, know the number), you will not be able to decrypt the encrypted message.

The Caesar Cipher was one of the earliest ciphers ever invented. In this cipher, you encrypt a
message by taking each letter in the message (in cryptography, these letters are called symbols because
they can be letters, numbers, or any other sign) and replacing it with a "shifted" letter. If you shift the
letter A by one space, you get the letter B. If you shift the letter A by two spaces, you get the letter C.
Here is a picture of some letters shifted over by 3 spaces:

To get each shifted letter, draw out a row of boxes with each letter of the alphabet. Then draw a
second row of boxes under it, but start a certain number of spaces over. When you get to the leftover
letters at the end, wrap around back to the start of the boxes. Here is an example with the letters shifted
by three spaces:

The number of spaces we shift is the key in the Caesar Cipher. The example above shows the key 3.

Using a key of 3, if we encrypt the plaintext "Howdy", then the "H" becomes "E". "o" becomes "l".
"w" becomes "t". "d" becomes "a". "y" becomes "v". The ciphertext of "Hello" with key 3 becomes
"Eltav".

We will keep any non-letter characters the same. In order to decrypt "Eltav" with the key 3, we just go
from the bottom boxes back to the top. "E" becomes "H", "l" becomes "o", "t" becomes "w", "a"
becomes "d", and "v" becomes "y" to form "Howdy".

ASCII, and Using Numbers for Letters

How do we implement this shifting of the letters in our program? We can do this by representing each
letter as a number (called an ordinal), and then adding or subtracting from this number to form a new
number (and a new letter). ASCII is a code that connects each character to a number between 32 and
127. The numbers less than 32 refer to "unprintable" characters, so we will not be using them.

For example, the letter "A" is represented by the number 65. The letter "m" is represented by the
number 109. Here is a table of all the ASCII characters from 32 to 127:

The capital letters "A" through "Z" have the numbers 65 through 90. The lowercase letters "a"
through "z" have the numbers 97 through 122. The numeric digits "0" through "9" have the numbers 48
through 57.

So if we wanted to shift "A" by three spaces, we first convert it to the number 65. Then we add 3 to
65, to get 68. The number 68 is connected to the letter "D".

The chr() and ord() Functions

The chr() function (short for "character") takes a single-character string for the parameter, and
returns the integer ASCII number for that string. The ord() function (short for "ordinal") takes an
integer for the parameter, and returns the ASCII letter for that number. Try typing the following into the
interactive shell:

chr(65)
ord('A')
chr(65+8)

32 (space)

33 !

34 "

35 #

36 $

37 %

38 &

39 '

40 (

41)

42 *

43 +

44 ,

45 -

46 .

47 /

48 0

49 1

50 2

51 3

52 4

53 5

54 6

55 7

56 8

57 9

58 :

59 ;

60 <

61 =

62 >

63 ?

64 @

65 A

66 B

67 C

68 D

69 E

70 F

71 G

72 H

73 I

74 J

75 K

76 L

77 M

78 N

79 O

80 P

81 Q

82 R

83 S

84 T

85 U

86 V

87 W

88 X

89 Y

90 Z

91 [

92 \

93]

94 ^

95 _

96 `

97 a

98 b

99 c

100 d

101 e

102 f

103 g

104 h

105 i

106 j

107 k

108 l

109 m

110 n

111 o

112 p

113 q

114 r

115 s

116 t

117 u

118 v

119 w

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

chr(52)
chr(ord('F'))
ord(chr(68))

On the third line, chr(65+8) evaluates to chr(73) . If you look at the ASCII table, you can see
that 73 is the ordinal for the capital letter "I". On the fifth line, chr(ord('F')) evaluates to chr
(70) which evaluates to 'F' . Feeding the result of ord() to chr() will give you back the original
argument. The same goes for feeding the result of chr() to ord() , as shown by the sixth line.

Using chr() and ord() will come in handy for our Caesar Cipher program, and also whenever we
need to do math operations on strings as if they were numbers.

Sample Run

Here is a sample run of the Caesar Cipher program, encrypting a message:

Do you wish to encrypt or decrypt a message?
encrypt
Enter your message:
The sky above the port was the color of television, tuned to
a dead channel.
Enter the key number (1-26)
13
Your translated text is:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharq gb
n qrnq punaary.

Now we will run the program and decrypt the text that we just encrypted.

Do you wish to encrypt or decrypt a message?
decrypt
Enter your message:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharq gb

n qrnq punaary.
Enter the key number (1-26)
13
Your translated text is:
The sky above the port was the color of television, tuned to
a dead channel.

On this run we will try to decrypt the text that was encrypted, but we will use the wrong key.
Remember that if you do not know the correct key, the decrypted text will just be garbage data.

Do you wish to encrypt or decrypt a message?
decrypt
Enter your message:
Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivfvba, gharq gb
n qrnq punaary.
Enter the key number (1-26)
15
Your translated text is:
Rfc qiw yzmtc rfc nmpr uyq rfc amjmp md rcjctgqgml, rslcb rm
y bcyb afyllcj.

Source Code

caesar.py

1. # Caesar Cipher - Simple Substitution Cipher
2.
3. MAX_KEY_SIZE = 26
4.
5. def getMode():
6. while True:
7. print 'Do you wish to encrypt or decrypt a

message?'
8. mode = raw_input().lower()
9. if mode in 'encrypt e decrypt d'.split():

10. return mode
11. else:
12. print 'Enter either "encrypt" or "e" or

"decrypt" or "d".'
13.
14. def getMessage():
15. print 'Enter your message:'
16. return raw_input()
17.
18. def getKey():

19. key = 0
20. while True:
21. print 'Enter the key number (1-%s)' %

(MAX_KEY_SIZE)
22. key = int(raw_input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24. return key
25.
26. def getTranslatedMessage(mode, message, key):
27. if mode[0] == 'd':
28. key = -key
29. translated = ''
30.
31. for symbol in message:
32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key
35.
36. if symbol.isupper():
37. if num > ord('Z'):
38. num -= 26
39. elif num < ord('A'):
40. num += 26
41. elif symbol.islower():
42. if num > ord('z'):
43. num -= 26
44. elif num < ord('a'):
45. num += 26
46.
47. translated += chr(num)
48. else:
49. translated += symbol
50. return translated
51.
52. mode = getMode()
53. message = getMessage()
54. key = getKey()
55.
56. print 'Your translated text is:'
57. print getTranslatedMessage(mode, message, key)
58.

Code Explanation

1. # Caesar Cipher - Simple Substitution Cipher
2.
3. MAX_KEY_SIZE = 26

The first line is a comment. The Caesar Cipher is one cipher of a type of ciphers called simple
substitution ciphers. Simple substitution ciphers are ciphers that replace one symbol in the plaintext
with one (and only one) symbol in the ciphertext. So if a "G" was substituted with "Z" in the cipher, every
single "G" in the plaintext would be replaced with (and only with) a "Z".

MAX_KEY_SIZE is a variable that stores the integer 26 in it. MAX_KEY_SIZE reminds us that in this
program, the key used in our cipher should be between 1 and 26.

5. def getMode():
6. while True:
7. print 'Do you wish to encrypt or decrypt a

message?'
8. mode = raw_input().lower()
9. if mode in 'encrypt e decrypt d'.split():

10. return mode[0]
11. else:
12. print 'Enter either "encrypt" or "e" or

"decrypt" or "d".'

The getMode() function will let the user type in if they want to encrypt or decrypt the message. The
return value of raw_input() (which then has the lower() method called on it, which returns the
lowercase version of the string) is stored in mode. The if statement's condition checks if the string
stored in mode exists in the list returned by 'encrypt e decrypt d'.split() . This list is
['encrypt', 'e', 'decrypt', 'd'] , but it is easier for the programmer to just type in
'encrypt e decrypt d'.split() and not type in all those quotes and commas. But you can use
whatever is easiest for you; they both evaluate to the same list value.

This function will return the first character in mode as long as mode is equal to 'encrypt' , 'e' ,
'decrypt' , or 'd' . This means that getMode() will return the string 'e' or the string 'd' .

14. def getMessage():
15. print 'Enter your message:'
16. return raw_input()

The getMessage() function simply gets the message to encrypt or decrypt from the user and uses
this string as its return value.

18. def getKey():
19. key = 0
20. while True:
21. print 'Enter the key number (1-%s)' %

(MAX_KEY_SIZE)
22. key = int(raw_input())
23. if (key >= 1 and key <= MAX_KEY_SIZE):
24. return key

The getKey() function lets the player type in key they will use to encrypt or decrypt the message.
The while loop ensures that the function only returns a valid key. A valid key here is one that is
between the integer values 1 and 26 (remember that MAX_KEY_SIZE will only have the value 26
because it is constant). It then returns this key. Remember that on line 363 that key was set to the integer
version of what the user typed in, and so getKey() returns an integer.

26. def getTranslatedMessage(mode, message, key):
27. if mode[0] == 'd':
28. key = -key
29. translated = ''
30.

getTranslatedMessage() is the function that does the encrypting and decrypting in our
program. It has three parameters. mode sets the function to encryption mode or decryption mode.
message is the plaintext/ciphertext to be encrypted/decrypted. key is the key that is used in this cipher.

The first line in the getTranslatedMessage() function determines if we are in encryption mode
or decryption mode. If the first letter in the MAX_KEY_SIZE variable is the string MAX_KEY_SIZE,
then we are in decryption mode. The only difference between the two modes is that in decryption mode,
the key is set to the negative version of itself. If key was the integer 22 , then in decryption mode we set
it to -22 . The reason for this will be explained later.

translated is the string that will hold the ciphertext (if we are encrypting) or the plaintext (if we

are decrypting). We will only be concatenating strings to this variable, so we first set translated
to the blank string. (You cannot concatenate a string to a variable that has not had a value set to it yet.
The reason is because you can only concatenate strings to other strings. If the variable has no value, it is
not of the string data type.)

31. for symbol in message:
32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key

We will run a for loop over each letter (remember that in cryptography, they are called symbols) in
the message string. Strings are treated just like lists of single-character strings. If message had the
string 'Hello' , then for symbol in 'Hello' would be the same as for symbol in
['H', 'e', 'l', 'l', 'o'] . On each iteration through this loop, symbol will have the value
of a letter in message .

The isalpha() String Method

The isalpha() string method will return True if the string is an uppercase or lowercase letter
from A to Z. If the string contains any non-letter characters, then MAX_KEY_SIZE will return
MAX_KEY_SIZE. Try typing the following into the interactive shell:

'Hello'.isalpha()
'Forty two'.isalpha()
'Fortytwo'.isalpha()
'42'.isalpha()
''.isalpha()

As you can see, 'Forty two'.isalpha() will return False because 'Forty two' has a

space in it, which is a non-letter character. 'Fortytwo'.isalpha() returns True because it
does not have this space.

'42'.isalpha() returns False because both '4' and '2' are non-letter characters. And
''.isalpha() is False because isalpha() only returns True if the string has only letter
characters and is not blank.

The reason we have the if statement on line 32 is because we will only encrypt/decrypt letters in the
message. Numbers, signs, punctuation marks, and everything else will stay in their untranslated form.

The num variable will hold the integer ordinal value of the letter stored in symbol . Line 34 then
"shifts" the value in num by the value in key .

The isupper() and islower() String Methods

The isupper() and islower() string methods (which are on line 36 and 41) work in a way that
is very similar to the isdigit() and isalpha() methods. isupper() will return True if the
string it is called on contains at least one uppercase letter and no lowercase letters. islower() returns
True if the string it is called on contains at least one lowercase letter and no uppercase letters.
Otherwise these methods return False . The existence of non-letter characters like numbers and spaces
does not affect the outcome. Although strings that do not have any letters, including blank strings, will
also return False . Try typing the following into the interactive shell:

'HELLO'.isupper()
'hello'.isupper()
'hello'.islower()
'Hello'.islower()
'LOOK OUT BEHIND YOU!'.isupper()
'42'.isupper()
'42'.islower()
''.isupper()
''.islower()

Code Explanation continued...

36. if symbol.isupper():
37. if num > ord('Z'):
38. num -= 26
39. elif num < ord('A'):
40. num += 26

This code checks if the symbol is an uppercase letter. If so, there are two special cases we need to
worry about. What if symbol was 'Z' and key was 4? If that were the case, the value of num here
would be the character '^' . But this isn't a letter at all. We wanted the ciphertext to "wrap around" to
the beginning of the alphabet. The way we can do this is to check if key has a value larger than the
largest possible letter's ASCII value (which is a capital "Z"). If so, then we want to subtract 26 (because
there are 26 letters in total) from num. After doing this, the value of num is 68 , which is the ASCII
value for 'D' .

36. if symbol.isupper():
37. if num > ord('z'):
38. num -= 26
39. elif num < ord('a'):
40. num += 26

If the symbol is a lowercase letter, the program runs code that is very similar to lines 36 through 40.
The only difference is that we use ord('z') and ord('a') instead of ord('Z') and ord('A') .

If we were decrypting, then key would be negative. Then we would have the special case where the
new value of num might be less than the smallest possible value (which is ord('A') , that is, 65). If
this is the case, we want to add 26 to 26 to have it "wrap around".

47. translated += chr(num)
48. else:
49. translated += symbol

The translated string will be appended with the encrypted/decrypted character. If the symbol was
not an uppercase or lowercase letter, then the else-block on line 48 would have executed instead. All the
code in the else-block does is append the original symbol to the translated string. This means that
spaces, numbers, punctuation marks, and other characters will not be encrypted (or decrypted).

50. return translated

The last line in the getTranslatedMessage() function returns the translated string.

52. mode = getMode()
53. message = getMessage()
54. key = getKey()
55.
56. print 'Your translated text is:'
57. print getTranslatedMessage(mode, message, key)

This is the main part of our program. We call each of the three functions we have defined above in
turn to get the mode, message, and key that the user wants to use. We then pass these three values as
arguments to getTranslatedMessage() , whose return value (the translated string) is printed to
the user.

Brute Force

That's the entire Caesar Cipher. However, while this cipher may fool some people who don't
understand cryptography, it won't keep a message secret from someone who knows cryptanalysis. While
cryptography is the science of making codes, cryptanalysis is the study of breaking codes.

Do you wish to encrypt or decrypt a message?
encrypt
Enter your message:
The door key will be hidden under the mat until the fourth
of July.
Enter the key number (1-26)
8
Your translated text is:
Bpm lwwz smg eqtt jm pqllmv cvlmz bpm uib cvbqt bpm nwczbp
wn Rctg.

The whole point of cryptography is that so if someone else gets their hands on the encrypted message,
they cannot figure out the original unencrypted message from it. So we pretend we are the attacker and
all we have is the encrypted text:

Bpm lwwz smg eqtt jm pqllmv cvlmz bpm uib cvbqt bpm nwczbp
wn Rctg.

One method of cryptanalysis is called brute force. Brute force is the technique of trying every single
possible key. If the cryptanalyst knows the cipher that the message uses (or at least guesses it), they can
just go through every possible key. Because there are only 26 possible keys, it would be easy for a
cryptanalyst to write a program than prints the decrypted ciphertext of every possible key and see if any
of the outputs make sense. Let's add a brute force feature to our program.

First, change lines 7, 9, and 12 (which are in the cryptanalysis to look like the following (the
changes are in bold):

5. def getMode():
6. while True:
7. print 'Do you wish to encrypt or decrypt or

brute force a message?'
8. mode = raw_input().lower()
9. if mode in 'encrypt e decrypt d brute b '.split

():
10. return mode[0]
11. else:
12. print 'Enter either "encrypt" or "e" or

"decrypt" or "d" or "brute" or "b" .'

This will let us select "brute force" as a mode for our program. Then modify and add the following
changes to the main part of the program:

52. mode = getMode()
53. message = getMessage()
54. if mode[0] != 'b':
55. key = getKey()
56.
57. print 'Your translated text is:'
58. if mode[0] != 'b':
59. print getTranslatedMessage(mode, message, ke y)
60. else:
61. for key in range(1, MAX_KEY_SIZE + 1):
62. print key, getTranslatedMessage('decrypt',

message, key)

These changes make our program ask the user for a key if they are not in "brute force" mode. If they
are not in "brute force" mode, then the original getTranslatedMessage() call is made and the
translated string is printed.

However, otherwise we are in "brute force" mode, and we run a getTranslatedMessage() loop
that iterates from 1 all the way up to MAX_KEY_SIZE (which is 26). Remember that when the range
() function returns a list of integers up to but not including the second parameter, which is why we have
+ 1 . This program will print out every possible translation of the message (including the key number
used in the translation). Here is a sample run of this modified program:

Do you wish to encrypt or decrypt or brute force a message?
brute
Enter your message:
Bpm lwwz smg eqtt jm pqllmv cvlmz bpm uib cvbqt bpm nwczbp wn Rctg.
Your translated text is:
1 Aol kvvy rlf dpss il opkklu bukly aol tha buaps a ol mvbyao vm Qbsf.
2 Znk juux qke corr hk nojjkt atjkx znk sgz atzor z nk luaxzn ul Pare.
3 Ymj ittw pjd bnqq gj mniijs zsijw ymj rfy zsynq y mj ktzwym tk Ozqd.
4 Xli hssv oic ampp fi lmhhir yrhiv xli qex yrxmp x li jsyvxl sj Nypc.
5 Wkh grru nhb zloo eh klgghq xqghu wkh pdw xqwlo w kh irxuwk ri Mxob.
6 Vjg fqqt mga yknn dg jkffgp wpfgt vjg ocv wpvkn v jg hqwtvj qh Lwna.
7 Uif epps lfz xjmm cf ijeefo voefs uif nbu voujm u if gpvsui pg Kvmz.
8 The door key will be hidden under the mat until t he fourth of July.
9 Sgd cnnq jdx vhkk ad ghccdm tmcdq sgd lzs tmshk s gd entqsg ne Itkx.
10 Rfc bmmp icw ugjj zc fgbbcl slbcp rfc kyr slrgj rfc dmsprf md Hsjw.
11 Qeb allo hbv tfii yb efaabk rkabo qeb jxq rkqfi qeb clroqe lc Griv.
12 Pda zkkn gau sehh xa dezzaj qjzan pda iwp qjpeh pda bkqnpd kb Fqhu.
13 Ocz yjjm fzt rdgg wz cdyyzi piyzm ocz hvo piodg ocz ajpmoc ja Epgt.

14 Nby xiil eys qcff vy bcxxyh ohxyl nby gun ohncf nby ziolnb iz Dofs.
15 Max whhk dxr pbee ux abwwxg ngwxk max ftm ngmbe max yhnkma hy Cner.
16 Lzw vggj cwq oadd tw zavvwf mfvwj lzw esl mflad lzw xgmjlz gx Bmdq.
17 Kyv uffi bvp nzcc sv yzuuve leuvi kyv drk lekzc kyv wfliky fw Alcp.
18 Jxu teeh auo mybb ru xyttud kdtuh jxu cqj kdjyb jxu vekhjx ev Zkbo.
19 Iwt sddg ztn lxaa qt wxsstc jcstg iwt bpi jcixa iwt udjgiw du Yjan.
20 Hvs rccf ysm kwzz ps vwrrsb ibrsf hvs aoh ibhwz hvs tcifhv ct Xizm.
21 Gur qbbe xrl jvyy or uvqqra haqre gur zng hagvy gur sbhegu bs Whyl.
22 Ftq paad wqk iuxx nq tuppqz gzpqd ftq ymf gzfux ftq ragdft ar Vgxk.
23 Esp ozzc vpj htww mp stoopy fyopc esp xle fyetw esp qzfces zq Ufwj.
24 Dro nyyb uoi gsvv lo rsnnox exnob dro wkd exdsv dro pyebdr yp Tevi.
25 Cqn mxxa tnh fruu kn qrmmnw dwmna cqn vjc dwcru cqn oxdacq xo Sduh.
26 Bpm lwwz smg eqtt jm pqllmv cvlmz bpm uib cvbqt bpm nwczbp wn Rctg.

After looking over each row, you can see that the 8th message is not garbage, but plain English! The
cryptanalyst can deduce that the original key for this encrypted text must have been 8. This brute force
would have been difficult to do back in the days of Caesars and the Roman Empire, but today we have
computers that can quickly go through millions or even billions or keys. You can even write a program
that can recognize when it has found a message in English, so you don't have read through all the
garbage text. (In fact, we will do this in the next Invent Your Own Computer Games with Python book!)

Things Covered In This Chapter:

� Cryptography and ciphers
� Encrypting and decrypting
� Ciphertext, plaintext, keys, and symbols
� The Caesar Cipher
� ASCII ordinal values
� The chr() and ord() functions
� The isalpha() string method
� The isupper() and islower() string methods
� Cryptanalysis
� The brute force technique

Chapter 10 - Reversi

How to Play Reversi

Reversi (also called Othello) is a board game that is played on a grid (so we will use a Cartesian
coordinate system with XY coordinates, like we did with Sonar.) It is a game played with two players.
Our version of the game will have a computer AI that is more complicated than the AI we made for Tic
Tac Toe. In fact, this AI is so good that it will probably beat you almost every time you play. (I know I
lose whenever I play against it!)

Reversi has an 8 x 8 board with tiles that are black on one side and white on the other (our game will
use O's and X's though). The starting board looks like this:

Each player takes turn placing down a new tile of their color. Any of the opponent's tiles that are
between the new tile and the other tiles of that color is flipped. For example, say the white player places
a new white tile on space 5, 6:

The black tile at 5, 5 is in between the new white tile and the existing white tile at 5, 4. That black tile
is flipped over and becomes a new white tile:

Tiles in all directions are flipped as long as they are in between the player's new tile and existing tile.
Below, the white player places a tile at 3, 6 and flips black tiles in both directions (marked by the red
lines.)

As you can see, each player can quickly grab a majority of the tiles on the board. But the more tiles of
one color there are, the more that can be taken by the opponent:

Players must always make a move that captures at least one tile. The game ends when a player either
cannot make a move, or the board is completely full. In most games, the board fills up to end the game.
The player with the most tiles of their color wins.

The basic strategy of Reversi is to look at which move would turn over the most tiles. But you should
also consider taking a move that will not let your opponent recapture many tiles after your move.
Placing a tile on the sides or, even better, the corners is good because there is less chance that those tiles
will end up between your opponent's tiles.

The AI we make for this game will simply look for any corner moves they can take. If there are no
corner moves available, then the computer will select the move that claims the most tiles.

Sample Run
Welcome to Reversi!
Do you want to be X or O?
x
The player will go first.
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | X | O | | | |
 | | | | | | | | |

 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 2 points. The computer has 2 points.
Enter your move, or type quit to end the game, or h ints to turn off/on hints.
53
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | X | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 4 points. The computer has 1 points.
Press Enter to see the computer's move.
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |

5 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 3 points. The computer has 3 points.
Enter your move, or type quit to end the game, or h ints to turn off/on hints.
35
 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | | | O | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | | | | X | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | X | X | X | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 6 points. The computer has 1 points.
Press Enter to see the computer's move.

...skipped for brevity...

 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | O | O | O | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | O | O | X | O | O | O | O | O |

 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | O | O | O | X | O | X | O | X |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | O | X | O | X | X | O | O | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | O | X | X | O | O | O | O | O |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | O | X | X | O | | | X | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 12 points. The computer has 48 points.
Enter your move, or type quit to end the game, or h ints to turn off/on hints.
86
X scored 15 points. O scored 46 points.
You lost. The computer beat you by 31 points.
Do you want to play again? (yes or no)
no

As you can see, the AI was pretty good at beating me. To help the player out, we'll program our game
to provide hints. If the player types 'hints' as their move, they can toggle the hints mode on and off.
When hints mode is on, all the possible moves the player can make will show up on the board as '.'
characters, like this:

 1 2 3 4 5 6 7 8
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
1 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
2 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
3 | | . | . | . | | X | O | . |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
4 | O | O | O | O | O | O | O | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
5 | | | | X | O | X | | . |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
6 | | | X | . | O | X | | |
 | | | | | | | | |

 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
7 | | | | . | | . | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
 | | | | | | | | |
8 | | | | | | | | |
 | | | | | | | | |
 +---+---+---+---+---+---+---+---+
You have 5 points. The computer has 10 points.
Enter your move, or type quit to end the game, or h ints to
turn off/on hints.

Source Code

reversi.py

1. # Reversi
2.
3. import random
4. import sys
5.
6. def drawBoard(board):
7. # This function prints out the board that it was

passed. Returns None.
8. HLINE = ' +---+---+---+---+---+---+---+---+'
9. VLINE = ' | | | | | | | | |'

10.
11. print ' 1 2 3 4 5 6 7 8'
12. print HLINE
13. for y in range(8):
14. print VLINE
15. print y+1,
16. for x in range(8):
17. print '| %s' % (board[x][y]),
18. print '|'
19. print VLINE
20. print HLINE
21.
22.
23. def resetBoard(board):
24. # Blanks out the board it is passed, except for

the original starting position.
25. for x in range(8):
26. for y in range(8):

27. board[x][y] = ' '
28.
29. # Starting pieces:
30. board[3][3] = 'X'
31. board[3][4] = 'O'
32. board[4][3] = 'O'
33. board[4][4] = 'X'
34.
35.
36. def getNewBoard():
37. # Creates a brand new, blank board data stru cture.
38. board = []
39. for i in range(8):
40. board.append([' '] * 8)
41.
42. return board
43.
44.
45. def isValidMove(board, tile, xstart, ystart):
46. # Returns False if the player's move on spac e

xstart, ystart is invalid.
47. # If it is a valid move, returns a list of s paces

that would become the player's if they made a move
here.

48. if board[xstart][ystart] != ' ' or not isOnB oard
(xstart, ystart):

49. return False
50.
51. board[xstart][ystart] = tile # temporarily s et the

tile on the board.
52.
53. if tile == 'X':
54. otherTile = 'O'
55. else:
56. otherTile = 'X'
57.
58. tilesToFlip = []
59. for xdirection, ydirection in [[0, 1], [1, 1], [1,

0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:
60. x, y = xstart, ystart
61. x += xdirection # first step in the dire ction
62. y += ydirection # first step in the dire ction
63. if isOnBoard(x, y) and board[x][y] ==

otherTile:
64. # There is a piece belonging to the other

player next to our piece.
65. x += xdirection

66. y += ydirection
67. if not isOnBoard(x, y):
68. continue
69. while board[x][y] == otherTile:
70. x += xdirection
71. y += ydirection
72. if not isOnBoard(x, y): # break out of

while loop, then continue in for loop
73. break
74. if not isOnBoard(x, y):
75. continue
76. if board[x][y] == tile:
77. # There are pieces to flip over. Go in

the reverse direction until we reach the original
space, noting all the tiles along the way.

78. while True:
79. x -= xdirection
80. y -= ydirection
81. if x == xstart and y == ysta rt:
82. break
83. tilesToFlip.append([x, y])
84.
85. board[xstart][ystart] = ' ' # restore the em pty

space
86. if len(tilesToFlip) == 0: # If no tiles were

flipped, this is not a valid move.
87. return False
88. return tilesToFlip
89.
90.
91. def isOnBoard(x, y):
92. # Returns True if the coordinates are locate d on

the board.
93. return x >= 0 and x <= 7 and y >= 0 and y <= 7
94.
95.
96. def getBoardWithValidMoves(board, tile):
97. # Returns a new board with . marking the val id

moves the given player can make.
98. dupeBoard = getBoardCopy(board)
99.

100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] = '.'
102. return dupeBoard
103.
104.
105. def getValidMoves(board, tile):

106. # Returns a list of [x,y] lists of valid mo ves for
the given player on the given board.

107. validMoves = []
108.
109. for x in range(8):
110. for y in range(8):
111. if isValidMove(board, tile, x, y) ! = False:
112. validMoves.append([x, y])
113. return validMoves
114.
115.
116. def getScoreOfBoard(board):
117. # Determine the score. Returns a dictionary with

keys 'X' and 'O'.
118. xscore = 0
119. oscore = 0
120. for x in range(8):
121. for y in range(8):
122. if board[x][y] == 'X':
123. xscore += 1
124. if board[x][y] == 'O':
125. oscore += 1
126. return {'X':xscore, 'O':oscore}
127.
128.
129. def enterPlayerTile():
130. # Let's the player type which tile they wan t to be.
131. # Returns a list with the player's tile as the

first item, and the computer's tile as the second.
132. tile = ''
133. while not (tile == 'X' or tile == 'O'):
134. print 'Do you want to be X or O?'
135. tile = raw_input().upper()
136.
137. # the first element in the tuple is the pla yer's

tile, the second is the computer's tile.
138. if tile == 'X':
139. return ['X', 'O']
140. else:
141. return ['O', 'X']
142.
143.
144. def whoGoesFirst():
145. # Randomly choose the player who goes first .
146. if random.randint(0, 1) == 0:
147. return 'computer'
148. else:

149. return 'player'
150.
151.
152. def playAgain():
153. # This function returns True if the player wants to

play again, otherwise it returns False.
154. print 'Do you want to play again? (yes or n o)'
155. return raw_input().lower().startswith('y')
156.
157.
158. def makeMove(board, tile, xstart, ystart):
159. # Place the tile on the board at xstart, ys tart,

and flip any of the opponent's pieces.
160. # Returns False if this is an invalid move, True if

it is valid.
161. tilesToFlip = isValidMove(board, tile, xsta rt,

ystart)
162.
163. if tilesToFlip == False:
164. return False
165.
166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:
168. board[x][y] = tile
169. return True
170.
171.
172. def getBoardCopy(board):
173. # Make a duplicate of the board list and re turn the

duplicate.
174. dupeBoard = getNewBoard()
175.
176. for x in range(8):
177. for y in range(8):
178. dupeBoard[x][y] = board[x][y]
179.
180. return dupeBoard
181.
182.
183. def isOnCorner(x, y):
184. # Returns True if the position is in one of the

four corners.
185. return (x == 0 and y == 0) or (x == 7 and y == 0)

or (x == 0 and y == 7) or (x == 7 and y == 7)
186.
187.
188. def getPlayerMove(board, playerTile):

189. # Let the player type in their move.
190. # Returns the move as [x, y] (or returns th e

strings 'hints' or 'quit')
191. DIGITS1TO8 = '1 2 3 4 5 6 7 8'.split()
192. while True:
193. print 'Enter your move, or type quit to end the

game, or hints to turn off/on hints.'
194. move = raw_input().lower()
195. if move == 'quit':
196. return 'quit'
197. if move == 'hints':
198. return 'hints'
199.
200. if len(move) == 2 and move[0] in DIGITS 1TO8 and

move[1] in DIGITS1TO8:
201. x = int(move[0]) - 1
202. y = int(move[1]) - 1
203. if isValidMove(board, playerTile, x , y) ==

False:
204. continue
205. else:
206. break
207. else:
208. print 'That is not a valid move. Ty pe the x

digit (1-8), then the y digit (1-8).'
209. print 'For example, 81 will be the top-

right corner.'
210.
211. return [x, y]
212.
213.
214. def getComputerMove(board, computerTile):
215. # Given a board and the computer's tile, de termine

where to
216. # move and return that move as a [x, y] lis t.
217. possibleMoves = getValidMoves(board, comput erTile)
218.
219. # randomize the order of the possible moves
220. random.shuffle(possibleMoves)
221.
222. # always go for a corner if available.
223. for x, y in possibleMoves:
224. if isOnCorner(x, y):
225. return [x, y]
226.
227. # Go through all the possible moves and rem ember

the best scoring move

228. bestScore = -1
229. for x, y in possibleMoves:
230. dupeBoard = getBoardCopy(board)
231. makeMove(dupeBoard, computerTile, x, y)
232. score = getScoreOfBoard(dupeBoard)

[computerTile]
233. if score > bestScore:
234. bestMove = [x, y]
235. bestScore = score
236. return bestMove
237.
238.
239. def showPoints(playerTile, computerTile):
240. # Prints out the current score.
241. scores = getScoreOfBoard(mainBoard)
242. print 'You have %s points. The computer has %s

points.' % (scores[playerTile], scores[computerTile])
243.
244.
245.
246. print 'Welcome to Reversi!'
247.
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. playerTile, computerTile = enterPlayerTile()
253. showHints = False
254. turn = whoGoesFirst()
255. print 'The ' + turn + ' will go first.'
256.
257. while True:
258. if turn == 'player':
259. # Player's turn.
260. if showHints:
261. validMovesBoard =

getBoardWithValidMoves(mainBoard, playerTile)
262. drawBoard(validMovesBoard)
263. else:
264. drawBoard(mainBoard)
265. showPoints(playerTile, computerTile)
266. move = getPlayerMove(mainBoard, pla yerTile)
267. if move == 'quit':
268. print 'Thanks for playing!'
269. sys.exit() # terminate the prog ram
270. elif move == 'hints':
271. showHints = not showHints

272. continue
273. else:
274. makeMove(mainBoard, playerTile, move

[0], move[1])
275.
276. if getValidMoves(mainBoard, compute rTile)

== []:
277. break
278. else:
279. turn = 'computer'
280.
281. else:
282. # Computer's turn.
283. drawBoard(mainBoard)
284. showPoints(playerTile, computerTile)
285. raw_input('Press Enter to see the

computer\'s move.')
286. x, y = getComputerMove(mainBoard,

computerTile)
287. makeMove(mainBoard, computerTile, x , y)
288.
289. if getValidMoves(mainBoard, playerT ile) ==

[]:
290. break
291. else:
292. turn = 'player'
293.
294. # Display the final score.
295. drawBoard(mainBoard)
296. scores = getScoreOfBoard(mainBoard)
297. print 'X scored %s points. O scored %s poin ts.' %

(scores['X'], scores['O'])
298. if scores[playerTile] > scores[computerTile]:
299. print 'You beat the computer by %s poin ts!

Congratulations!' % (scores[playerTile] - scores
[computerTile])

300. elif scores[playerTile] < scores[computerTi le]:
301. print 'You lost. The computer beat you by %s

points.' % (scores[computerTile] - scores[playerTil e])
302. else:
303. print 'The game was a tie!'
304.
305. if not playAgain():
306. break
307.

Code Explanation

Before we get into the code, we should talk about the board data structure. This data structure is a list
of lists, just like the one in our previous Sonar game. The list is created so that board[x][y] will
represent the character on space located at XY. This character can either be a ' ' space character (to
represent a blank space), a '.' period character (to represent a possible move in hint mode), or an 'X'
or 'O' (to represent a player's tile). Whenever you see a parameter named board , that parameter
variable is meant to be this list of lists board data structure.

1. # Reversi
2.
3. import random
4. import sys

We import the random module for its randint() and choice() functions and the sys module
for its exit() function.

6. def drawBoard(board):
7. # This function prints out the board that it was

passed. Returns None.
8. HLINE = ' +---+---+---+---+---+---+---+---+'
9. VLINE = ' | | | | | | | | |'

10.
11. print ' 1 2 3 4 5 6 7 8'
12. print HLINE

The drawBoard() function will print out the current game board based on the data structure in
board . Notice that each square of the board looks like this:

+---+
| |
| X | (or maybe an O or . or space instead of X)
| |
+---+

Since we are going to print the string with the horizontal line (and plus signs at the intersections) over
and over again, we will store that in a constant variable named HLINE. There are also lines above and

below the very center of X or O tile that are nothing but '|' characters (called "pipes") with three
spaces in between. We will store this string in a constant named VLINE .

Line 11 is the first print statement executed, and it prints out the labels for the X-axis along the top
of the board. Line 12 prints the top horizontal line of the board.

13. for y in range(8):
14. print VLINE
15. print y+1,
16. for x in range(8):
17. print '| %s' % (board[x][y]),
18. print '|'
19. print VLINE
20. print HLINE

Printing each row of spaces on the board is fairly repetitive, so we can use a loop here. We will loop
eight times, once for each row. Line 15 prints the label for the Y-axis on the left side of the board, and
has a comma at the end of it to prevent a new line. This is so we can have another loop (which again
loops eight times, once for each space) print out each space (along with the 'X' , 'O' , or ' ' character
for that space depending on what is stored in board .

The print statement inside the inner loop also has a comma at the end of it, meaning a space
character is printed instead of a newline character. This produces the second space in the pipe-space-tile-
space string that we print out, over and over for eight times. That will produce a single line on the screen
that looks like '| X | X | X | X | X | X | X | X ' . After the inner loop is done, the
print statement on line 18 prints out the final '|' character along with a newline (since it does not
end with a comma).

(The print statement forces us to always print a newline character or a space at the end of
everything we print. If we do not want this last character, then we can always use the
sys.stdout.write() function, which has a single string parameter that it prints out. Be sure to
import sys first before calling this function.)

The code inside the outer print loop that begins on line 13 prints out an entire row of the board like
this:

X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+

When printed out eight times, it forms the entire board (of course, some of the spaces on the board

will have 'O' or ' ' instead of 'X' .:

X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+							
X	X	X	X	X	X	X	X
+---+---+---+---+---+---+---+---+

An important thing to remember is that the coordinates that we print out to the player are from 1 to 8,
but the indexes in the board data structure are from 0 to 7.

23. def resetBoard(board):
24. # Blanks out the board it is passed, except for

the original starting position.
25. for x in range(8):
26. for y in range(8):
27. board[x][y] = ' '

Here we use a loop inside a loop to set the board data structure to be all blanks. We will call the
resetBoard() function whenever we start a new game and want to remove the tiles from a previous
game.

29. # Starting pieces:
30. board[3][3] = 'X'
31. board[3][4] = 'O'

32. board[4][3] = 'O'
33. board[4][4] = 'X'

When we start a new game of Reversi, it isn't enough to have a completely blank board. At the very
beginning, each player has two tiles already laid down in the very center, so we will also have to set
those.

We do not have to return the board variable, because board is a reference to a list. Even when we
make changes inside the local function's scope, these changes happen in the global scope to the list that
was passed as an argument. (Remember, this is one way list variables are different from non-list
variables.)

36. def getNewBoard():
37. # Creates a brand new, blank board data stru cture.
38. board = []
39. for i in range(8):
40. board.append([' '] * 8)
41.
42. return board

The board function creates a new board data structure and returns it. Line 38 creates the outer list and
assigns a reference to this list to board . Line 40 create the inner lists using list replication. ([' '] *
8 is the same as [' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '] but with less typing.) The
for loop here runs line 40 eight times to create the eight inner lists. The spaces represent a completely
empty game board.

45. def isValidMove(board, tile, xstart, ystart):
46. # Returns False if the player's move on spac e

xstart, ystart is invalid.
47. # If it is a valid move, returns a list of s paces

that would become the player's if they made a move
here.

48. if not isOnBoard(xstart, ystart) or board[xs tart]
[ystart] != ' ':

49. return False
50.
51. board[xstart][ystart] = tile # temporarily s et the

tile on the board.

52.
53. if tile == 'X':
54. otherTile = 'O'
55. else:
56. otherTile = 'X'
57.
58. tilesToFlip = []

isValidmove() is one of the more complicated functions. Given a board data structure, the player's
tile, and the XY coordinates for player's move, this function should return True if the Reversi game rules
allow that move and False if they don't.

The easiest check we can do to disqualify a move is to see if the XY coordinates are on the game board
and if the space at XY is empty. This is what the if statement on line 48 checks for. isOnBoard is a
function we will write that makes sure both the X and Y coordinates are between 0 and 7.

For the purposes of this function, we will go ahead and mark the XY coordinate pointed to by xstart
and ystart with the player's tile. We set this place on the board back to a space before we leave this
function.

The player's tile has been passed to us, but we will need to be able to identify the other player's tile. If
the player's tile is 'X' then obviously the other player's tile is 'O' . And it is the same the other way.

Finally, if the given XY coordinate ends up as a valid position, we will return a list of all the
opponent's tiles that would be flipped by this move.

59. for xdirection, ydirection in [[0, 1], [1, 1], [1,
0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:

The for loop iterates through a list of lists which represent directions you can move on the game
board. The game board is a Cartesian coordinate system with an X and Y direction. There are eight
directions you can move: up, down, left, right, and the four diagonal directions. We will move around the
board in a direction by adding the first value in the two-item list to our X coordinate, and the second
value to our Y coordinate.

Because the X coordinates increase as you go to the right, you can "move" to the right by adding 1 to
the X coordinate. Moving to the left is the opposite, you would subtract 1 (or add -1) from the X
coordinate.

We can move up, down, left, and right by adding or subtracting to only one coordinate at a time. But to

move diagonally, we need to add to both coordinates. For example, adding 1 to the X coordinate to
move right and adding -1 to the Y coordinate to move up would result in moving to the up-right
diagonal direction.

Here is a diagram to make it easier to remember which two-item list represents which direction:

59. for xdirection, ydirection in [[0, 1], [1, 1], [1,
0], [1, -1], [0, -1], [-1, -1], [-1, 0], [-1, 1]]:

60. x, y = xstart, ystart
61. x += xdirection # first step in the dire ction
62. y += ydirection # first step in the dire ction

Line 60 sets an x and y variable to be the same value as xstart and ystart , respectively. We will
change x and y to "move" in the direction that xdirection and ydirection dictate. xstart and
ystart will stay the same so we can remember which space we originally intended to check.
(Remember, we need to set this place back to a space character, so we shouldn't overwrite the values in
them.)

We make the first step in the direction as the first part of our algorithm.

63. if isOnBoard(x, y) and board[x][y] ==
otherTile:

64. # There is a piece belonging to the other
player next to our piece.

65. x += xdirection
66. y += ydirection
67. if not isOnBoard(x, y):
68. continue # skip to next directio n

Remember, in order for this to be a valid move, the first step in this direction must be 1) on the board
and 2) must be occupied by the other player's tile. Otherwise there is no chance to flip over any of the
opponent's tiles. In that case, the if statement on line 63 is not True and execution goes back to the for
statement for the next direction.

But if the first space does have the other player's tile, then we should keep proceeding in that direction
until we reach on of our own tiles. If we move off of the board, then we should continue back to the for
statement to try the next direction.

69. while board[x][y] == otherTile:
70. x += xdirection
71. y += ydirection
72. if not isOnBoard(x, y): # break out of

while loop, then continue in for loop
73. break
74. if not isOnBoard(x, y):
75. continue

The while loop on line 69 ensures that x and y keep going in the current direction as long as we keep
seeing a trail of the other player's tiles. If x and y move off of the board, we break out of the for loop
and the flow of execution moves to line 74. What we really want to do is not break out of the for loop
but continue in the for loop. But if we put a continue statement on line 73, that would only continue
to the while loop on line 69.

Instead, we recheck not isOnBoard(x, y) on line 74 and then continue from there, which goes
to the next direction in the for statement. It is important to know that break and continue will only
break or continue in the loop they are called from, and not an outer loops that contain the loop they are
called from.

76. if board[x][y] == tile:

77. # There are pieces to flip over. Go in
the reverse direction until we reach the original
space, noting all the tiles along the way.

78. while True:
79. x -= xdirection
80. y -= ydirection
81. if x == xstart and y == ysta rt:
82. break
83. tilesToFlip.append([x, y])

If the while loop on line 69 stopped looping because the condition was False , then we have found a
space on the board that holds our own tile or a blank space. Line 76 checks if this space on the board
holds one of our tiles. If it does, then we have found a valid move. We start a new while loop, this time
subtracting x and y to move them in the opposite direction they were originally going. We note each
space between our tiles on the board by appending the space to the tilesToFlip list.

We break out of the while loop once x and y have returned to the original position (which is still
stored in xstart and ystart).

85. board[xstart][ystart] = ' ' # restore the em pty
space

86. if len(tilesToFlip) == 0: # If no tiles were
flipped, this is not a valid move.

87. return False
88. return tilesToFlip

After moving in all eight directions, the tilesToFlip list will contain the XY coordiantes all of our
opponent's tiles that would be flipped if the player moved on xstart , ystart . Remember, the
isValidMove() function is only checking to see if the original move was valid, it does not actually
change the data structure of the game board.

If none of the eight directions ended up flipping at least one of the opponent's tiles, then
tilesToFlip would be an empty list and this move would not be valid. In that case, isValidMove
() should return False . Otherwise, we should return tilesToFlip .

91. def isOnBoard(x, y):
92. # Returns True if the coordinates are locate d on

the board.
93. return x >= 0 and x <= 7 and y >= 0 and y <= 7

isOnBoard() is called from isValidMove() , and is just shorthand for the rather complicated
boolean expression that returns True if both x and y are in between 0 and 7.

96. def getBoardWithValidMoves(board, tile):
97. # Returns a new board with . marking the val id

moves the given player can make.
98. dupeBoard = getBoardCopy(board)
99.

100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] = '.'
102. return dupeBoard

getBoardWithValidMoves() is used to return a game board data structure that has '.'
characters for all valid moves on the board. This is used by the hints mode to display to the player a board
with all possible moves marked on it.

Notice that this function creates a duplicate game board data structure instead of modifying the one
passed to it by the board parameter.

105. def getValidMoves(board, tile):
106. # Returns a list of [x,y] lists of valid mo ves for

the given player on the given board.
107. validMoves = []
108.
109. for x in range(8):
110. for y in range(8):
111. if isValidMove(board, tile, x, y):
112. validMoves.append([x, y])
113. return validMoves

The for function returns a list of two-item lists that hold the XY coordinates for all valid moves for
tile 's player, given a particular game board board .

This function uses two loops to check every single XY coordinate (all sixty four of them) by calling
tile on that space and checking if it returns False or a list of possible moves (in which case it is a
valid move). Each valid XY coordinate is appended to the list, validMoves .

The bool() Function

Remember how you could use the int() and str() functions to get the integer and string value of
other data types? For example, str(42) would return the string '42' , and int('100') would
return the integer 100 .

There is a similar function for the boolean data type, bool() . Most other data types have one value
that is considered the False value for that data type, and every other value is consider True . The
integer 0, the floating point number 0.0 , the empty string, the empty list, and the empty dictionary are
all considered to be False when used as the condition for an if or loop statement. All other values are
True . Try typing the following into the interactive shell:

bool(0)
bool(0.0)
bool('')
bool([])
bool({})

bool(1)
bool('Hello')
bool([1, 2, 3, 4, 5])
bool({'spam':'cheese', 'fizz':'buzz'})

Whenever you have a condition, imagine that the entire condition is placed inside a call to bool() as
the parameter. Conditions are automatically interpreted as boolean values. This is similar to how print
statements can be passed non-string values and will automatically interpret them as strings when they
print.

This is why the condition on line 111 works correctly. The call to the isValidMove() function
either returns the boolean value False or a non-empty list. If you imagine that the entire condition is
placed inside a call to bool() , then False becomes bool(False) (which, of course, evalutes to
False). And a non-empty list placed as the parameter to bool() will return True . This is why the
return value of isValidMove() can be used as a condition.

116. def getScoreOfBoard(board):
117. # Determine the score. Returns a dictionary with

keys 'X' and 'O'.
118. xscore = 0
119. oscore = 0
120. for x in range(8):
121. for y in range(8):
122. if board[x][y] == 'X':
123. xscore += 1
124. if board[x][y] == 'O':
125. oscore += 1
126. return {'X':xscore, 'O':oscore}

The getScoreOfBoard() function uses nested for loops to check all 64 spaces on the board (8
rows times 8 columns per row is 64 spaces) and see which tile (if any) is on them. For each 'X' tile, the
code increments xscore . For each 'O' tile, the code increments oscore .

Notice that this function does not return a two-item list of the scores. A two-item list might be a bit
confusing, because you may forget which item is for X and which item is for O. Instead the function
returns a dictionary with keys 'X' and 'O' whose values are the scores.

129. def enterPlayerTile():
130. # Let's the player type which tile they wan t to

be.
131. # Returns a list with the player's tile as the

first item, and the computer's tile as the second.
132. tile = ''
133. while not (tile == 'X' or tile == 'O'):

134. print 'Do you want to be X or O?'
135. tile = raw_input().upper()

This function asks the player which tile they want to be, either 'X' or 'O' . The for loop will keep
looping until the player types in 'X' or 'O' .

1371. # the first element in the tuple is the pl ayer's
tile, the second is the computer's tile.

1372. if tile == 'X':
1373. return ['X', 'O']
1374. else:
1375. return ['O', 'X']

The enterPlayerTile() function then returns a two-item list, where the player's tile choice is the
first item and the computer's tile is the second. We use a list here instead of a dictionary so that the
assignment statement calling this function can use the multiple assignment trick. (See line 252.)

144. def whoGoesFirst():
145. # Randomly choose the player who goes first .
146. if random.randint(0, 1) == 0:
147. return 'computer'
148. else:
149. return 'player'

The whoGoesFirst() function randomly selects who goes first, and returns either the string
'computer' or the string 'player' .

152. def playAgain():
153. # This function returns True if the player wants to

play again, otherwise it returns False.
154. print 'Do you want to play again? (yes or n o)'
155. return raw_input().lower().startswith('y')

We have used the playAgain() in our previous games. If the player types in something that begins
with 'y' , then the function returns True . Otherwise the function returns False .

158. def makeMove(board, tile, xstart, ystart):
159. # Place the tile on the board at xstart, ys tart,

and flip any of the opponent's pieces.
160. # Returns False if this is an invalid move, True

if it is valid.
161. tilesToFlip = isValidMove(board, tile, xsta rt,

ystart)

makeMove() is the function we call when we want to place a tile on the board and flip the other
tiles according to the rules of Reversi. This function modifies the board data structure that is passed as
a parameter directly. Changes made to the board variable (because it is a list) will be made to the
global scope as well. Most of the work is done by isValidMove() , which returns a list of XY
coordinates (in a two-item list) of tiles that need to be flipped. (Remember, if the the xstart and
ystart arguments point to an invalid move, then isValidMove() will return the boolean value
False .)

163. if tilesToFlip == False:
164. return False
165.
166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:
168. board[x][y] = tile
169. return True

If the return value of isValidMove() was False , then makeMove() will also return False .

Otherwise, isValidMove() would have returned a list of spaces on the board to put down our tiles
(the 'X' or 'O' string in tile). Line 166 sets the space that the player has moved on, and the for
loop after that sets all the tiles that are in tilesToFlip .

172. def getBoardCopy(board):

173. # Make a duplicate of the board list and re turn the
duplicate.

174. dupeBoard = getNewBoard()
175.
176. for x in range(8):
177. for y in range(8):
178. dupeBoard[x][y] = board[x][y]
179.
180. return dupeBoard

getBoardCopy() is different from getNewBoard() . getNewBoad() will create a new game
board data structure which is blank. getBoardCopy() will create a new game board data structure, but
then copy all of the pieces in the board parameter. This function is used by our AI to have a game board
that it can change around without changing the real game board. This is like how you may imagine
making moves on a copy of the board in your mind, but not actually put pieces down on the real board.

A call to getNewBoard() handles getting a fresh game board data structure. Then the nested for
loops copies each of the 64 tiles from board to our duplicate board, dupeBoard .

183. def isOnCorner(x, y):
184. # Returns True if the position is in one of the

four corners.
185. return (x == 0 and y == 0) or (x == 7 and y == 0)

or (x == 0 and y == 7) or (x == 7 and y == 7)

This function is much like isOnBoard() . Because all Reversi boards are 8 x 8 in size, we only need
the XY coordinates to be passed to this function, not a game board data structure itself. This function
returns True if the coordinates are on either (0,0), (7,0), (0,7) or (7,7). Otherwise isOnCorner()
returns False .

188. def getPlayerMove(board, playerTile):
189. # Let the player type in their move.
190. # Returns the move as [x, y] (or returns th e

strings 'hints' or 'quit')
191. DIGITS1TO8 = '1 2 3 4 5 6 7 8'.split()

The getPlayerMove() function is called to let the player type in the coordinates of their next
move (and check if the move is valid). The player can also type in 'hints' to turn hints mode on (if it
is off) or off (if it is on). The player can also type in 'quit' to quit the game.

The DIGITS1TO8 constant is the list ['1', '2', '3', '4', '5', '6', '7', '8'] .
We create this variable because it is easier type DIGITS1TO8 than the entire list.

192. while True:
193. print 'Enter your move, or type quit to end

the game, or hints to turn off/on hints.'
194. move = raw_input().lower()
195. if move == 'quit':
196. return 'quit'
197. if move == 'hints':
198. return 'hints'

The while loop will keep looping until the player has typed in a valid move. First we check if the
player wants to quit or toggle hints mode, and return the string 'quit' or 'hints' . We use the
lower() method on the string returned by raw_input() so the player can type 'HINTS' or
'Quit' but still have the command understood by our game.

The code that calls getPlayerMove() will handle what to do if the player wants to quit or toggle
hints mode.

200. if len(move) == 2 and move[0] in DIGITS 1TO8
and move[1] in DIGITS1TO8:

201. x = int(move[0]) - 1
202. y = int(move[1]) - 1
203. if isValidMove(board, playerTile, x , y) ==

False:
204. continue
205. else:
206. break

Our game is expecting that the player would have typed in the XY coordinates of their move as two
numbers without anything in between them. The if statement first checks that the size of the string the
player typed in is 2. After that, the if statement also checks that both move[0] (the first character in

the string) and move[1] (the second character in the string) are strings that exist in DIGITS1TO8 ,
which we defined at the beginning of the function.

Remember that our game board data structures have indexes from 0 to 7, not 1 to 8. We show 1 to 8
when we print the board using drawBoard() because people are used to numbers beginning at 1
instead of 0. So when we convert the strings in move[0] and move[1] to integers, we also subtract 1.

Even if the player typed in a correct move, we still need to check that the move is allowed by the rules
of Reversi. We do this by calling isValidMove() , passing the game board data structure, the player's
tile, and the XY coordinates of the move. If isValidMove() returns False , then we execute the
continue statement so that the flow of execution goes back to the beginning of the while loop and
asks the player for the move again.

If isValidMove() does not return False , then we know the player typed in a valid move and we
should break out of the while loop.

207. else:
208. print 'That is not a valid move. Ty pe the

x digit (1-8), then the y digit (1-8).'
209. print 'For example, 81 will be the top-

right corner.'
210.

If the if statement's condition on line 200 was False , then the player did not type in a valid move.
We should display a message instructing them how to type in moves that our Reversi program can
understand. Afterwards, the execution moves back to the while statement on line 192 because line 209
is not only the last line in the else-block, but also the last line in the while-block.

211. return [x, y]

Finally, getPlayerMove() returns a two-item list with the XY coordinates of the player's valid
move.

214. def getComputerMove(board, computerTile):

215. # Given a board and the computer's tile, de termine
where to

216. # move and return that move as a [x, y] lis t.
217. possibleMoves = getValidMoves(board, comput erTile)

getComputerMove() and is where our Reversi AI is implemented. The getValidMoves()
function is very helpful for our AI. Normally we use the results from getValidMoves() for hints
move. Hints mode will print '.' period characters on the board to show the player all the potential
moves they can make. But if we call getValidMoves() with the computer AI's tile (in
computerTile), we can get all the possible moves that the computer can make. We will select the best
move from this list.

The random.shuffle() Function

219. # randomize the order of the possible moves
220. random.shuffle(possibleMoves)

First, we are going to use the random.shuffle() function to randomize the order of moves in the
possibleMoves list. This is a function in the random module which will reorder the list that you pass
to it. For example, try typing the following into the interactive shell:

import random
spam = [1, 2, 3, 4, 5, 6, 7, 8]
spam
random.shuffle(spam)
spam
random.shuffle(spam)
spam
random.shuffle(spam)
spam

Your results may be different, because the reshuffling is random. As you can see,
random.shuffle() itself does not have a return value. It modifies the list directly, much like our
resetBoard() function does. This is why you must type spam into the shell to see the new value it
has taken on.

Code Explanation continued...

We will explain why we want to shuffle the possibleMoves list, but first let's look at our
algorithm.

222. # always go for a corner if available.
223. for x, y in possibleMoves:
224. if isOnCorner(x, y):
225. return [x, y]

First, we loop through every move in possibleMoves and if any of them are on the corner, we
return that as our move. Corner moves are a good idea because once a tile has been placed on the corner,
it can never be flipped over. Since possibleMoves is a list of two-item lists, we use the multiple
assignment trick in our for loop to set x and y .

Because we immediately return on finding the first corner move in random , if random contains
multiple corner moves we always go with the first one. But since possibleMoves was shuffled on
line 220, it is completely random which corner move is first in the list.

227. # Go through all the possible moves and rem ember
the best scoring move

228. bestScore = -1
229. for x, y in possibleMoves:
230. dupeBoard = getBoardCopy(board)
231. makeMove(dupeBoard, computerTile, x, y)
232. score = getScoreOfBoard(dupeBoard)

[computerTile]
233. if score > bestScore:
234. bestMove = [x, y]
235. bestScore = score
236. return bestMove

If there are no corner moves, we will go through the entire list and find out which move gives us the
highest score. The for loop will set x and y to every move in possibleMoves . bestMove will be
set to the highest scoring move we've found so far, and bestScore will be set to its score. When the
code in the loop finds a move that scores higher than bestScore , we will store that move and score as
the new values of bestMove and bestScore .

In order to figure out the score of the possible move we are currently iterating on, we first make a
duplicate game board data structure by calling getBoardCopy() . We want a copy so we can modify
without changing the real game board data structure stored in the board variable.

Then we call makeMove() , passing the duplicate board instead of the real board. makeMove() will
handle placing the computer's tile and the flipping the player's tiles on the duplicate board.

We call getScoreOfBoard() with the duplicate board, which returns a dictionary where the keys
are 'X' and 'O' , and the values are the scores. getScoreOfBoard() does not know if the computer
is 'X' or 'O' , which is why it returns a dictionary.

By making a duplicate board, we can simulate a future move and test the results of that move without
changing the actual game board data structure. This is very helpful in deciding which move is the best
possible move to make.

Pretend that getScoreOfBoard() returns the dictionary {'X':22, 'O':8} and
computerTile is 'X' . Then getScoreOfBoard(dupeBoard)[computerTile] would
evaluate to {'X':22, 'O':8}['X'] , which would then evaluate to 22 . If 22 is larger than
bestScore , bestScore is set to 22 and bestMove is set to the current x and y values we are
looking at. By the time this for loop is finished, we can be sure that bestScore is the highest possible
score a move can make, and that move is stored in bestMove .

You may have noticed that on line 228 we first set bestScore to -1. This is so that the first move we
look at in our for loop over possibleMoves will be set to the first bestMove . This will guarantee
that bestMove is set to one of the moves when we return it.

Say that the highest scoring move in possibleMoves would give the computer a score of 42 . What

if there was more than one move in possibleMoves that would give this score? The for loop we
use would always go with the first move that scored 42 points, because bestMove and bestScore
only change if the move is greater than the highest score. A tie will not change bestMove and
bestScore .

We do not always want to go with the first move in the possibleMoves list, because that would
make our AI predictable by the player. But it is random, because on line 220 we shuffled the
possibleMoves list. Even though our code always chooses the first of these tied moves, is random
which of the moves will be first in the list because the order is random. This ensures that the AI will not
be predictable when there is more than one best move.

239. def showPoints(playerTile, computerTile):
240. # Prints out the current score.
241. scores = getScoreOfBoard(mainBoard)
242. print 'You have %s points. The computer has %s

points.' % (scores[playerTile], scores[computerTile])

showPoints() simply calls the getScoreOfBoard() function and then prints out the player's
score and the computer's score. Remember that getScoreOfBoard() returns a dictionary with the
keys 'X' and 'O' and values of the scores for the X and O players.

That's all the functions we define for our Reversi game. The code starting on line 246 will implement
the actual game and make calls to these functions when they are needed.

246. print 'Welcome to Reversi!'
247.
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. playerTile, computerTile = enterPlayerTile()
253. showHints = False
254. turn = whoGoesFirst()
255. print 'The ' + turn + ' will go first.'

The while loop on line 248 is the main game loop. The program will loop back to line 248 each time
we want to start a new game. First we get a new game board data structure by calling getNewBoard

() and set the starting tiles by calling resetBoard() . mainBoard is the main game board data
structure we will use for this program. The call to enterPlayerTile() will let the player type in
whether they want to be 'X' or 'O' , which is then stored in playerTile and computerTile .

showHints is a boolean value that determines if hints mode is on or off. We originally set it to off
by setting showHints to False .

The turn variable is a string will either have the string value 'player' or 'computer' , and will
keep track of whose turn it is. We set turn to the return value of whoGoesFirst() , which randomly
chooses who will go first. We then print out who goes first to the player on line 255.

257. while True:
258. if turn == 'player':
259. # Player's turn.
260. if showHints:
261. validMovesBoard =

getBoardWithValidMoves(mainBoard, playerTile)
262. drawBoard(validMovesBoard)
263. else:
264. drawBoard(mainBoard)
265. showPoints(playerTile, computerTile)

The while loop that starts on line 257 will keep looping each time the player or computer takes a
turn. We will break out of this loop when the current game is over.

Line 258 has an if statement whose body has the code that runs if it is the player's turn. (The else-
block that starts on line 282 has the code for the computer's turn.) The first thing we want to do is
display the board to the player. If hints mode is on (which it is if showHints is True), then we want
to get a board data structure that has '.' period characters on every space the player could go.

Our getBoardWithValidMoves() function does that, all we have to do is pass the game board
data structure and it will return a copy that also contains '.' period characters. We then pass this board
to the drawBoard() function.

If hints mode is off, then we just pass mainBoard to drawBoard() .

After printing out the game board to the player, we also want to print out the current score by calling
showPoints() .

266. move = getPlayerMove(mainBoard,

playerTile)

Next we let the player type in their move. getPlayerMove() handles this, and its return value is a
two-item list of the X and Y coordinate of the player's move. getPlayerMove() makes sure that the
move the player typed in is a valid move, so we don't have to worry about it here.

267. if move == 'quit':
268. print 'Thanks for playing!'
269. sys.exit() # terminate the prog ram
270. elif move == 'hints':
271. showHints = not showHints
272. continue
273. else:
274. makeMove(mainBoard, playerTile, move

[0], move[1])

If the player typed in the string 'quit' for their move, then getPlayerMove() would have
returned the string 'quit' . In that case, we should call the sys.exit() to terminate the program.

If the player typed in the string 'hints' for their move, then getPlayerMove() would have
returned the string 'hints' . In that case, we want to turn hints mode on (if it was off) or off (if it was
on). The showHints = not showHints assignment statement handles both of these cases, because
not False evaluates to True and not True evaluates to False . Then we run the continue
statement to loop back (turn has not changed, so it will still be the player's turn after we loop).

Otherwise, if the player did not quit or toggle hints mode, then we will call makeMove() to make the
player's move on the board.

276. if getValidMoves(mainBoard, compute rTile)
== []:

277. break
278. else:
279. turn = 'computer'

After making the player's move, we call False to see if the computer could possibly make any moves.

If False returns a blank list, then there are no more moves left that the computer could make (most
likely because the board is full). In that case, we break out of the while loop and end the current game.

Otherwise, we set turn to 'computer' . The flow of execution skips the else-block and reaches the
end of the while-block, so execution jumps back to the while statement on line 257. This time,
however, it will be the computer's turn.

281. else:
282. # Computer's turn.
283. drawBoard(mainBoard)
284. showPoints(playerTile, computerTile)
285. raw_input('Press Enter to see the

computer\'s move.')
286. x, y = getComputerMove(mainBoard,

computerTile)
287. makeMove(mainBoard, computerTile, x , y)

The first thing we do when it is the computer's turn is call drawBoard() to print out the board to
the player. Why do we do this now? Because either the computer was selected to make the first move of
the game, in which case we should display the original starting picture of the board to the player before
the computer makes its move. Or the player has gone first, and we want to show what the board looks
like after the player has moved but before the computer has gone.

After printing out the board with drawBoard() , we also want to print out the current score with a
call to showPoints() .

Next we have a call to raw_input() to pause the script while the player can look at the board. This
is much like how we use raw_input() to pause the program in our Jokes chapter. Instead of using a
print statement to print a string before a call to raw_input() , you can pass the string as a
parameter to raw_input() . raw_input() has an optional string parameter. The string we pass in
this call is 'Press Enter to see the computer\'s move.' .

After the player has looked at the board and pressed Enter (any text the player typed is ignored since
we do not assign the return value of raw_input() to anything), we call getComputerMove() to
get the X and Y coordinates of the computer's next move. We store these coordinates in variables x and
y , respectively.

Finally, we pass x and y , along with the game board data structure and the computer's tile to the
makeMove() function to change the game board to reflect the computer's move. Our call to
getComputerMove() got the computer's move, and the call to makeMove() makes the move on
the board.

289. if getValidMoves(mainBoard, playerT ile) ==
[]:

290. break
291. else:
292. turn = 'player'

Lines 289 to 292 are very similar to lines 276 to 279. After the computer has made its move, we
check if there exist any possible moves the human player can make. If getValidMoves() returns an
empty list, then there are no possible moves. That means the game is over, and we should break out of
the while loop that we are in.

Otherwise, there is at least one possible move the player should make, so we should set turn to
'player' . There is no more code in the while-block after line 292, so execution loops back to the
while statement on line 257.

294. # Display the final score.
295. drawBoard(mainBoard)
296. scores = getScoreOfBoard(mainBoard)
297. print 'X scored %s points. O scored %s poin ts.' %

(scores['X'], scores['O'])
298. if scores[playerTile] > scores[computerTile]:
299. print 'You beat the computer by %s poin ts!

Congratulations!' % (scores[playerTile] - scores
[computerTile])

300. elif scores[playerTile] < scores[computerTi le]:
301. print 'You lost. The computer beat you by %s

points.' % (scores[computerTile] - scores[playerTil e])
302. else:
303. print 'The game was a tie!'

Line 294 is the first line beyond the while-block that started on line 257. This code is executed when
we have broken out of that while loop, either on line 290 or 277. (The while statement's condition on
line 257 is simply the value True , so we can only exit the loop through break statements.)

At this point, the game is over. We should print out the board and scores, and determine who won the
game. getScoreOfBoard() will return a dictionary with keys 'X' and 'O' and values of both
players' scores. By checking if the player's score is greater than, less than, or equal to the computer's

score, we can know if the player won, if the player lost, or if the player and computer tied.

Subtracting one score from the other is an easy way to see by how much one player won over the
other. Our print statements on lines 29 and 301 use string interpolation to put the result of this
subtraction into the string that is printed.

305. if not playAgain():
306. break
307.

The game is now over and the winner has been declared. We should call our playAgain()
function, which returns True if the player typed in that they want to play another game. If playAgain
() returns False (which makes the if statement's condition True), we break out of the while loop
(the one that started on line 248), and since there are no more lines of code after this while-block, the
program terminates.

Otherwise, playAgain() has returned True (which makes the if statement's condition False),
and so execution loops back to the while statement on line 248 and a new game board is created.

Tips for Inventing Your Own Games

That does it for this book as far as games go. The next chapter expands on creating new Reversi AIs,
and having AIs play against each other instead of against a human player. Using the programming
techniques in this book, you can start building your own simple games. Here are a few pointers:

� Drawing out a flow chart before you start writing code might help you remember everything that
you want to happen in your game.

� Use the interactive shell to test out what an expression or function call might evaluate to. The
shell is a great way to experiment with different functions.

� If something strange is happening when you run your program, try adding some print
statements in the middle of the code to print out the values of different variables. Or you can use
print statements to check if some functions are being called when you expect them too, or how
often a loop is iterated.

� If you ever find yourself writing identical code in several places of the program, see if you can put
that code in a function and call that function several times. This way, if you want to change the
code in the function, there is only one place you have to make changes.

Things Covered In This Chapter:

� The bool() Function

� The random.shuffle() Function

Chapter 11 - AI Simulation

"Computer vs. Computer" Games

The Reversi AI algorithm was very simple, but it beats me almost every time I play it. This is because
the computer can process instructions very fast, so checking each possible position on the board and
selecting the highest scoring move is easy. If I took the time to look at every space on the board and
write down the score of each possible move, it would take a long time for me to find the best move.

Did you notice that our Reversi program in Chapter 11 had two functions, getPlayerMove() and
getComputerMove() , which both returned the move selected as a two-item list like [x, y] ? The
both also had the same parameters, the game board data structure and which tile they were.
getPlayerMove() decided which [x, y] move to return by letting the player type in the
coordinates. getComputerMove() decided which [x, y] move to return by running the Reversi
AI algorithm.

What happens when we replace the call to getPlayerMove() with a call to getComputerMove
() ? Then the player never types in a move, it is decided for them! The computer is playing against
itself!

Save the old reversi.py file as AISim1.py by clicking on File and then Save As, and then entering
AISim1.py for the file name and clicking Ok. This will create a copy of our Reversi source code as a
new file that we can make changes to, while leaving the original Reversi game the same (we may want
to play it again). Change the following code in AISim1.py:

266. move = getPlayerMove(mainBoard,
playerTile)

To this (the change is in bold):

266. move = getComputerMove (mainBoard,
playerTile)

And run the program. Notice that the game still asks you if you want to be X or O, but it will not ask
you to enter in any moves. When we replaced getPlayerMove() , we no longer call any code that
takes this input from the player. We still press Enter after the original computer's moves (because of the
raw_input('Press Enter to see the computer\'s move. ') on line 285), but the
game plays itself!

Let's make some other changes. All of the functions we defined for Reversi can stay the same. But
change the entire main section of the program (line 246 and on) to look like the following:

AISim1.py

246. print 'Welcome to Reversi!'
247.
248. while True:
249. # Reset the board and game.
250. mainBoard = getNewBoard()
251. resetBoard(mainBoard)
252. if whoGoesFirst() == 'player':
253. turn = 'X'
254. else:
255. turn = 'O'
256. print 'The ' + turn + ' will go first.'
257.
258. while True:
259. drawBoard(mainBoard)
260. scores = getScoreOfBoard(mainBoard)
261. print 'X has %s points. O has %s points ' %

(scores['X'], scores['O'])
262. raw_input('Press Enter to continue.')
263.
264. if turn == 'X':
265. # X's turn.
266. otherTile = 'O'
267. x, y = getComputerMove(mainBoard, ' X')
268. makeMove(mainBoard, 'X', x, y)
269. else:
270. # O's turn.
271. otherTile = 'X'
272. x, y = getComputerMove(mainBoard, ' O')
273. makeMove(mainBoard, 'O', x, y)
274.
275. if getValidMoves(mainBoard, otherTile) == []:
276. break
277. else:
278. turn = otherTile
279.
280. # Display the final score.
281. drawBoard(mainBoard)
282. scores = getScoreOfBoard(mainBoard)
283. print 'X scored %s points. O scored %s poin ts.' %

(scores['X'], scores['O'])
284.

285. if not playAgain():
286. sys.exit()

Code Explanation

When you run the AISim1.py program, all you can do is press Enter for each turn until the game ends.
Run through a few games and watch the computer play itself. Since both the X and O players are using
the same algorithm, it really is just a matter of luck to see who wins. The X player will win half the time,
and the O player will win half the time.

But what if we created a new algorithm? Then we could set this new AI against the one implemented in
getComputerMove() , and see which one is better. Let's make some changes to our program. Click on
File and then Save As, and save this file as AISim2.py so that we can make changes without affecting
AISim1.py.

Add the following code. The additions are in bold, and some lines have been removed:

AISim2.py

246. print 'Welcome to Reversi!'
247.
248. xwins = 0
249. owins = 0
250. ties = 0
251. numGames = int(raw_input('Enter number of games to run:

'))
252.
253. for game in range(numGames):
254. print 'Game #%s:' % (game),
255. # Reset the board and game.
256. mainBoard = getNewBoard()
257. resetBoard(mainBoard)
258. if whoGoesFirst() == 'player':
259. turn = 'X'
260. else:
261. turn = 'O'
262.
263. while True:
264. if turn == 'X':
265. # X's turn.
266. otherTile = 'O'
267. x, y = getComputerMove(mainBoard, ' X')
268. makeMove(mainBoard, 'X', x, y)
269. else:

270. # O's turn.
271. otherTile = 'X'
272. x, y = getComputerMove(mainBoard, ' O')
273. makeMove(mainBoard, 'O', x, y)
274.
275. if getValidMoves(mainBoard, otherTile) == []:
276. break
277. else:
278. turn = otherTile
279.
280. # Display the final score.
281. scores = getScoreOfBoard(mainBoard)
282. print 'X scored %s points. O scored %s poin ts.' %

(scores['X'], scores['O'])
283.
284. if scores['X'] > scores['O']:
285. xwins += 1
286. elif scores['X'] < scores['O']:
287. owins += 1
288. else:
289. ties += 1
290.
291. numGames = float(numGames)
292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)
294. tiepercent = round(((ties / numGames) * 100), 2)
295. print 'X wins %s games (%s%%), O wins %s games (%s% %),

ties for %s games (%s%%) of %s games total.' % (xwi ns,
xpercent, owins, opercent, ties, tiepercent, numGam es)

Code Explanation

We have added the variables xwins , owins , and ties to keep track of how many times X wins, O
wins, and when they tie. Lines 284 to 289 increment these variables at the end of each game, before it
loops back to start a brand new game.

We have removed most of the print statements from the program, and the calls to drawBoard() .
When you run AISim2.py, it asks you how many games you wish to run. Now that we've taken out the
call to drawBoard() and replace the while True: loop with a for game in range
(numGames): loop, we can run a number of games without stopping for the user to type anything. Here
is a sample run where we run ten games of computer vs. computer Reversi:

Sample Run

Welcome to Reversi!
Enter number of games to run: 10
Game #0: X scored 40 points. O scored 23 points.
Game #1: X scored 24 points. O scored 39 points.
Game #2: X scored 31 points. O scored 30 points.
Game #3: X scored 41 points. O scored 23 points.
Game #4: X scored 30 points. O scored 34 points.
Game #5: X scored 37 points. O scored 27 points.
Game #6: X scored 29 points. O scored 33 points.
Game #7: X scored 31 points. O scored 33 points.
Game #8: X scored 32 points. O scored 32 points.
Game #9: X scored 41 points. O scored 22 points.
X wins 5 games (50.0%), O wins 4 games (40.0%), tie s for 1
games (10.0%) of 10.0 games total.

Because the algorithm does have a random part, your run might not have the exact same numbers as
above.

Printing things out to the screen slows the computer down, but now that we have removed that code,
the computer can run an entire game of Reversi in about a second or two. Think about it. Each time our
program printed out one of those lines, it ran through an entire game (which is about fifty or sixty
moves, each move carefully checked to be the one that gets the most points).

Percentages

Percentages are a portion of a total amount, and range from 0% to 100%. If you had 100% of a pie,
you would have the entire pie. If you had 0% of a pie, you wouldn't have any pie at all. 50% of the pie
would be half of the pie. A pie is a common image to use for percentages. In fact, there is a kind of chart
called a pie chart which shows how much of the full total a certain portion is. Here is a pie chart with
10%, 15%, 25%, and 50% portions:

We can calculate the percentage with division. To get a percentage, divide the part you have by the
total, and then multiply by one hundred. For example, if X won 50 out of 100 games, you would

calculate the expression 50 / 100.0 , which would evaluate to 0.5 . We multiple this by 100 to
get a percentage (in this case, 50%).

Integer Division

Did you notice that we divided 50 / 100.0 , not 50 / 100 ? The reason behind this is that there
are two types of division in the Python language. Regular division is done when at least one of the
numbers in the division expression is a float data type, that is, a number that has a decimal point and
then a certain fraction after it. Regular division will evaluate to another float value. (For example, 50 /
100.0 evaluates to 0.5 .)

However, if both numbers in the division expression are integers (that is, whole numbers without a
decimal point), then Python will do integer division. Integer division is division of two integer
numbers that evaluate to a rounded-down integer.

For example, the expression 20 / 3.0 or the expression 20.0 / 3 will evaluate to
6.666666666666667 . However, the expression 20 / 3 evaluates to the integer 6. This is because
twenty divided by three is six, with a remainder of two. In integer division, the remainder part is
dropped.

We want to use regular division when we calculate our percentages, because otherwise instead of a
float value like 0.5 , integer division for percentages will always evaluate to 0.

The round() Function

The round() function will round a float number to the nearest whole float number. Try typing the
following into the interactive shell:

round(10.0)
round(10.2)
round(8.7)
round(4.5)
round(3.5)
round(3.4999)
round(2.5422, 2)

As you can see, whenever the fraction part of a number is .5 or greater, the number is rounded up.
Otherwise, the number is rounded down. The round() function also has an optional parameter, where
you can specify to what place you wish to round the number to. For example, the expression round
(2.5422, 2) evaluates to 2.54 .

Code Explanation continued...

291. numGames = float(numGames)
292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)
294. tiepercent = round(((ties / numGames) * 100), 2)
295. print 'X wins %s games (%s%%), O wins %s games (%s%%),

ties for %s games (%s%%) of %s games total.' % (xwi ns,
xpercent, owins, opercent, ties, tiepercent, numGam es)

The code at the bottom of our program will show the user how many wins X and O had, how many
ties there were, and how what percentages these make up. Statistically, the more games you run, the
more accurate your percentages will be. If you only ran ten games, and X won three of them, then it
would seem that X's algorithm only wins 30% of the time. However, if you run a hundred, or even a
thousand games, then you may find that X's algorithm wins closer to 50% (that is, half) of the games.

To find the percentages, we divide the number of wins or ties by the total number of games. We
convert numGames to a float to ensure we do not use integer division in our calculation. Then we
multiple the result by 100 . However, we may end up with a number like 66.66666666666667 . So
we pass this number to the round() function with the second parameter of 2) , so it will return a float
like 66.67 instead (which is much more readable).

Let's try another experiment. Run AISim2.py again, but this time have it run a hundred games:

Sample Run

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 42 points. O scored 18 points.
Game #1: X scored 26 points. O scored 37 points.
Game #2: X scored 34 points. O scored 29 points.
Game #3: X scored 40 points. O scored 24 points.

...skipped for brevity...

Game #96: X scored 22 points. O scored 39 points.
Game #97: X scored 38 points. O scored 26 points.
Game #98: X scored 35 points. O scored 28 points.
Game #99: X scored 24 points. O scored 40 points.
X wins 46 games (46.0%), O wins 52 games (52.0%), t ies for 2
games (2.0%) of 100.0 games total.

Depending on how fast your computer is, this run might have taken a about a couple minutes. We can
see that the results of all one hundred games still evens out to about fifty-fifty, because both X and O are
using the same algorithm to win.

Let's add some new functions with new algorithms. But first click on File, then Save As, and save this
file as AISim3.py. Before the print 'Welcome to Reversi!' line, add these functions:

AISim3.py

245. def getRandomMove(board, tile):
246. # Return a random move.
247. return random.choice(getValidMoves(board, tile))
248.
249.
250. def isOnSide(x, y):
251. return x == 0 or x == 7 or y == 0 or y ==7
252.
253.
254. def getCornerSideBestMove(board, tile):
255. # Return a corner move, or a side move, or the

best move.
256. possibleMoves = getValidMoves(board, tile)
257.
258. # randomize the order of the possible moves
259. random.shuffle(possibleMoves)
260.
261. # always go for a corner if available.

262. for x, y in possibleMoves:
263. if isOnCorner(x, y):
264. return [x, y]
265.
266. # if there is no corner, return a side move .
267. for x, y in possibleMoves:
268. if isOnSide(x, y):
269. return [x, y]
270.
271. return getComputerMove(board, tile)
272.
273.
274. def getSideBestMove(board, tile):
275. # Return a corner move, or a side move, or the best

move.
276. possibleMoves = getValidMoves(board, tile)
277.
278. # randomize the order of the possible moves
279. random.shuffle(possibleMoves)
280.
281. # return a side move, if available
282. for x, y in possibleMoves:
283. if isOnSide(x, y):
284. return [x, y]
285.
286. return getComputerMove(board, tile)
287.
288.
289. def getWorstMove(board, tile):
290. # Return the move that flips the least numb er of

tiles.
291. possibleMoves = getValidMoves(board, tile)
292.
293. # randomize the order of the possible moves
294. random.shuffle(possibleMoves)
295.
296. # Go through all the possible moves and rem ember

the best scoring move
297. worstScore = 64
298. for x, y in possibleMoves:
299. dupeBoard = getBoardCopy(board)
300. makeMove(dupeBoard, tile, x, y)
301. score = getScoreOfBoard(dupeBoard)[tile]
302. if score < worstScore:
303. worstMove = [x, y]
304. worstScore = score
305.

306. return worstMove
307.
308.
309. def getCornerWorstMove(board, tile):
310. # Return a corner, a space, or the move tha t flips

the least number of tiles.
311. possibleMoves = getValidMoves(board, tile)
312.
313. # randomize the order of the possible moves
314. random.shuffle(possibleMoves)
315.
316. # always go for a corner if available.
317. for x, y in possibleMoves:
318. if isOnCorner(x, y):
319. return [x, y]
320.
321. return getWorstMove(board, tile)
322.
323.
324.
325. print 'Welcome to Reversi!'

Code Explanation

A lot of these functions are very similar to one another, and some of them use the new isOnSide()
function. Here's a review of the new algorithms we've made:

Now the only thing to do is replace one of the getComputerMove() calls in the main part of the
program with one of the new functions. Then we can run several games and see how often one algorithm
wins over the other. First, let's replace O's algorithm with the one in getComputerMove() with
getRandomMove() on line 386:

getRandomMove() Randomly choose a valid move to make.

getCornerSideBestMove
()

Take a corner move if available. If there is no corner, take a space on
the side. If no sides are available, use the regular
getComputerMove() algorithm.

getSideBestMove()
Take a side space if there is one available. If not, then use the regular
getComputerMove() algorithm (side spaces are chosen before
corner spaces).

getWorstMove() Take the space that will result in the fewest tiles being flipped.

getCornerWorstMove() Take a corner space, if available. If not, use the getWorstMove()
algorithm.

386. x, y = getRandomMove (mainBoard, 'O')

When we run the program with a hundred games now, it may look something like this:

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 25 points. O scored 38 points.
Game #1: X scored 32 points. O scored 32 points.
Game #2: X scored 15 points. O scored 0 points.
Game #3: X scored 50 points. O scored 14 points.

...skipped for brevity...

Game #96: X scored 31 points. O scored 33 points.
Game #97: X scored 41 points. O scored 23 points.
Game #98: X scored 33 points. O scored 31 points.
Game #99: X scored 45 points. O scored 19 points.
X wins 84 games (84.0%), O wins 15 games (15.0%), t ies for 1
games (1.0%) of 100.0 games total.

Wow! X win far more often than O did. That means that the algorithm in getComputerMove()
(take any available corners, otherwise take the space that flips the most tiles) wins more games than the
algorithm in getRandomMove() (which just makes moves randomly). This makes sense, because
making intelligent choices is usually going to be better than just choosing things at random.

What if we changed X's algorithm to also use the algorithm in getRandomMove() ? Let's find out
by changing X's function call from getComputerMove() to getRandomMove() and running the
program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 37 points. O scored 24 points.
Game #1: X scored 19 points. O scored 45 points.

...skipped for brevity...

Game #98: X scored 27 points. O scored 37 points.
Game #99: X scored 38 points. O scored 22 points.
X wins 42 games (42.0%), O wins 54 games (54.0%), t ies for 4
games (4.0%) of 100.0 games total.

As you can see, when both players are making random moves, they each win about 50% of the time.

(In the above case, O just happen to get lucky and won a little bit more than half of the time.)

Just like moving on the corner spaces is a good idea because they cannot be flipped, moving on the
side pieces may also be a good idea. On the side, the tile has the edge of the board and is not as out in
the open as the other pieces. The corners are still preferable to the side spaces, but moving on the sides
(even when there is a move that can flip more pieces) may be a good strategy.

Change X's algorithm to use getComputerMove() (our original algorithm) and O's algorithm to
use getCornerSideBestMove() , and let's run a hundred games to see which is better. Try
changing the function calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 52 points. O scored 12 points.
Game #1: X scored 10 points. O scored 54 points.

...skipped for brevity...

Game #98: X scored 41 points. O scored 23 points.
Game #99: X scored 46 points. O scored 13 points.
X wins 65 games (65.0%), O wins 31 games (31.0%), t ies for 4
games (4.0%) of 100.0 games total.

Wow! That's unexpected. It seems that choosing the side spaces over a space that flips more tiles is a
bad strategy to use. The benefit of the side space is not greater than the cost of choosing a space that
flips fewer of the opponent's tiles. Can we be sure of these results? Let's run the program again, but this
time let's have the program play one thousand games. This may take a few minutes for your computer to
run (but it would take days for you to do this by hand!) Try changing the function calls and running the
program again.

Welcome to Reversi!
Enter number of games to run: 1000
Game #0: X scored 20 points. O scored 44 points.
Game #1: X scored 54 points. O scored 9 points.

...skipped for brevity...

Game #998: X scored 38 points. O scored 23 points.
Game #999: X scored 38 points. O scored 26 points.
X wins 611 games (61.1%), O wins 363 games (36.3%), ties for
26 games (2.6%) of 1000.0 games total.

The more accurate statistics from the thousand-games run are about the same as the statistics from the
hundred-games run. It seems that choosing the move that flips the most tiles is a better idea than
choosing a side move.

Now set the X player's algorithm to use getComputerMove() and the O player's algorithm to
getWorstMove() , and run a hundred games. Try changing the function calls and running the
program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 50 points. O scored 14 points.
Game #1: X scored 38 points. O scored 8 points.

...skipped for brevity...

Game #98: X scored 36 points. O scored 16 points.
Game #99: X scored 19 points. O scored 0 points.
X wins 98 games (98.0%), O wins 2 games (2.0%), tie s for 0
games (0.0%) of 100.0 games total.

Whoa! The algorithm in getWorstMove() , which always choose the move that flips the fewest
tiles, will almost always lose to our regular algorithm. This isn't really surprising at all. How about when
we replace getWorstMove() with getCornerWorstMove() , which is the same algorithm except
it takes any available corner pieces. Try changing the function calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 36 points. O scored 7 points.
Game #1: X scored 44 points. O scored 19 points.

...skipped for brevity...

Game #98: X scored 47 points. O scored 17 points.
Game #99: X scored 36 points. O scored 18 points.
X wins 94 games (94.0%), O wins 6 games (6.0%), tie s for 0
games (0.0%) of 100.0 games total.

The getCornerWorstMove() still loses most of the games, but it seems to win a few more games
than getWorstMove() (6% compared to 2%). Does taking the corner spaces when they are available
really make a difference? We can check by setting X's algorithm to getWorstMove() and O's
algorithm to getCornerWorstMove() , and then running the program. Try changing the function
calls and running the program again.

Welcome to Reversi!
Enter number of games to run: 100
Game #0: X scored 25 points. O scored 39 points.
Game #1: X scored 26 points. O scored 33 points.

...skipped for brevity...

Game #98: X scored 36 points. O scored 25 points.
Game #99: X scored 29 points. O scored 35 points.
X wins 32 games (32.0%), O wins 67 games (67.0%), t ies for 1
games (1.0%) of 100.0 games total.

Yes, it does seem like taking the algorithm that takes the corners when it can does translate into more
wins. While we have found out that going for the sides makes you lose more often, going for the corners
is always a good idea.

Learning New Things by Running Simulation Experimen ts

This chapter didn't really cover a game, but it modeled various strategies for Reversi. If we thought
that taking side moves in Reversi was a good idea, we would have to spend days, even weeks, carefully
playing games of Reversi by hand and writing down the results. But if we know how to program a
computer to play Reversi, then we can have the computer play Reversi using these strategies for us. If
you think about it, you will realize that the computer is executing millions of lines of our Python
program in seconds! Your experiments with the simulation of Reversi can help you learn more about
playing Reversi in real life.

And it is all because you know exactly how to instruct the computer to do it, step by step, line by line.
You can speak the computer's language, and get it to do large amounts of data processing and number
crunching for you. This is a very useful skill, and I hope you will continue to learn more about Python
programming. (And there is still more to learn!)

The next step you can take is looking at the help file that comes with Python. You can access this by
clicking on the Start button in Windows' lower left corner, then going to Programs (or All Programs),
then the Python 2.5 folder, and then clicking the "Python Manuals" link.

Another way you can find out more about Python is searching the Internet. Go to the website
http://google.com and search for "Python programming" or "Python tutorials" to find web sites that can
teach you more about Python programming.

Now get going and invent your own games. And good luck!

Things Covered In This Chapter:

� Simulations
� Percentages
� Pie Charts
� Integer Division
� The round() Function

Glossary

absolute value - The positive form of a negative number. For example, the absolute value of -2 is
2. The absolute value of a positive number is simply the positive number itself.

AI - see, artificial intelligence

algorithm - A series of instructions to compute something.

applications - A program that is run by an operating system. See also, program.

arguments - The values that are passed for parameters in a function call.

artificial intelligence - Code or a program that can intelligent make decisions (for example,
decisions when playing a game) in response to user actions.

ASCII art - Using text characters and spaces to draw simple pictures.

assembly language - The simplest programming language. Assembly language instructions are a
human-readable form that can directly translate into machine code instructions.

assignment operator - The = sign. Used to assign values to variables.

assignment statement - A line of code that assigns a value to a variable using the assignment
operator. This defines, that is, creates the variable when used with a new variable. For example: spam
= 42

asterisk - The * symbol. The asterisk is used as a multiplication sign.

augmented assignment operator - The +=, -= , *= , and /= operators. The assignment spam
+= 42 is equivalent to spam = spam + 42 .

block - A group of lines of code with the same amount of indentation. Blocks can contain other
blocks of greater indentation inside them.

boolean - A data type with only two values, True and False .

boolean operator - Boolean operators include and , or , and not .

break statement - The break statement immediately jumps out of the current while or for loop
to the first line after the end of the loop's block.

brute force - In cryptography, to try every possible key in order to decrypt an encrypted message.

caesar cipher - A simple substitution cipher in which each symbol is replaced by one and only one
other symbol.

cartesian coordinate system - A system of coordinates used to identify exact points in some area
of space (such as the monitor, or on a game board). Cartesian coordinates systems commonly have two
coordinates, one of the X-axis (that is, the horizontal left-right axis) and one of the Y-axis (that is, the
vertical up-down axis).

case-sensitivity - Declaring different capitalizations of a name to mean different things. Python is a
case-sensitive language, so spam, Spam, and SPAM are three different variables.

central processing unit - CPU, the main chip that your computer uses to process software
instructions.

cipher - In cryptography, an algorithm used to encrypt and decrypt messages with a certain key.

ciphertext - In cryptography, the encrypted form of a message.

comment - Part of the source code that is ignored by the Python interpreter. Comments are there to
remind the programmer about something about the code. Comments begin with a # sign and go on for
the rest of the line.

commutative property - The property of addition and multiplication that describes how the order
of the numbers being added or multiplied does not matter. For example, 2 + 4 = 6, and 4 + 2 = 6. Also, 3
* 5 = 15, and 5 * 3 = 15.

comparison operators - The operators < ("less than"), <= ("less than or equal to"), > ("greater
than"), >= ("greater than or equal to"), == ("equal to"), and != ("not equal too").

condition - Another name for an expression, one that exists in an if or while statement that
evaluates to a boolean True or False value.

constant variables - Variables whose values do not change. Constant variables are often used
because it is easier to type the name of the variable then the value that they store. As a convention,
constant variable names are typed in all uppercase letters.

convention - A way of doing things that is not required, but is usually done to make a task easier.

conversion specifiers - The text inside a string that makes use of string interpolation. The most
common conversion specifier is %s, which specifies that the variable it interpolates should be converted
to a string.

cpu - see, Central Processing Unit

cryptanalysis - The science of breaking secret codes and ciphers.

cryptography - The science of making secret codes and ciphers.

data types - A category of values. Some types in Python are: strings, integers, floats, boolean, lists,
and NoneType.

decrementing - To decrease a numeric value by one.

decrypting - To convert an encrypted message to the readable plaintext version.

def statement - A statement that defines a new function. The def statement begins with the def
keyword, followed by the function name and a set of parentheses, with any number of parameter names
delimited by commas. At the end is a : colon character. For example, def funcName(param1,
param2):

delimit - To separate with. For example, the string 'cats,dogs,mice' is delimited with
commas.

dictionary - A container data type that can store other values. Values are accessed by a key. For
example, spam['foo'] = 42 assigns the key 'foo' of the spam dictionary the value 42 .

else statement - An else statement always follows an if statement, and the code inside the else-
block is executed if the if statement's condition was False .

empty list - The list [] , which contains no values and has a length of zero. See also, empty string.

empty string - The string '' , which contains no characters and has a length of zero. See also,
empty list.

encrypting - To convert a message into a form that resembles garbage data, and cannot be
understood except by someone who knows the ciphr and key used to encrypt the message.

escape character - Escape characters allow the programmer to specify characters in Python that
are difficult or impossible to type into the source code. All escape characters are preceeded by a \
forward backslash character. For example, \n displays a newline character when it is printed.

evaluate - Reducing an expression down to a single value. The expression 2 + 3 + 1 evaluates to
the value 6.

execute - The Python interpreter executes lines of code, by evaluating any expressions or
performing the task that the code does.

exit - When a program ends. "Terminate" means the same thing.

expression - Values and function calls connected by operators. Expressions can be evaluated down
to a single value.

file editor - A program used to type in or change files, including files of Python source code. The
IDLE program has a file editor that you use to type in your programs.

floating point numbers - Numbers with fractions or decimal points are not integers. The numbers
3.5 and 42.1 and 5.0 are floating point numbers.

flow chart - A chart that informally shows the flow of execution for a program, and the main events
that occur in the program and in what order.

flow control statements - Statements that cause the flow of execution to change, often depending
on conditions. For example, a function call sends the execution to the beginning of a function. Also, a
loop causes the execution to iterate over a section of code several times.

flow of execution - The order that Python instructions are executed. Usually the Python interpreter
will start at the top of a program and go down executing one line at a time. Flow control statements can
move the flow of execution to different parts of code in the program.

function - A collection of instructions to be executed when the function is called. Functions also
have a return value, which is the value that a function call evaluates to.

function call - A command to pass execution to the code contained inside a function, also passing
arguments to the function. Function calls evaluate to the return value of the function.

garbage data - Random data or values that have no meaning.

global scope - The scope of variables outside of all functions. Python code in the global scope
cannot see variables inside any function's local scope.

hard-coding - Using a value in a program, instead of using a variable. While a variable could allow
the program to change, by hard-coding a value in a program, the value stays permanently fixed unless
the source code is changed.

hardware - The parts of a computer that you can touch, such as the keyboard, monitor, case, or
mouse. See also, software.

higher-level programming languages - Programming languages that humans can understand,
such as Python. An interpreter can translate a higher-level language into machine code, which is the only
language computers can understand.

IDLE - Interactive DeveLopment Environment. IDLE is a program that helps you type in your
programs and games.

I/O - Input/Output. This is a term used in reference of the data that is sent into a program (input) and
that is produced by the program (output).

immutable sequence - A container data type that cannot have values added or deleted from it. In
Python, the two immutable sequence data types are strings and tuples.

import statement - A line of code with the import keyword followed by the name of a module.
This allows you to call any functions that are contained in the module.

incrementing - To increase the value of a numeric variable by one.

indentation - The indentation of a line of code is the number of spaces before the start of the actual
code. Indentation in Python is used to mark when blocks begin and end. Indentation is usually done in
multiples of four spaces.

index - An integer between square brackets that is placed at the end of an ordered container variable
(most often a list) to evaluate to a specific item in that container. The first index starts at 0, not 1. For
example, if spam refers to the list ['a', 'b', 'c', 'd'] , then spam[2] evaluates to 'c' .

index error - An index error occurs when you attempt to access an index that does not exist. This is
much like using a variable that does not exist. For example, if spam refers to the list ['a', 'b',
'c', 'd'] , then spam[10] would cause an index error.

input - The text or data that the user or player enters into a program, mostly from the keyboard.

integer division - Division that ignores any remainder and rounds the evaluated number down.
Integer division occurs when both numbers in the division expression are integers. For example, 20 /
7 evaluates to the integer 6, even though the answer is 6.666 or 6 remainder 2.

integers - Integers are whole numbers like 4 and 99 and 0. The numbers 3.5 and 42.1 and 5.0
are not integers.

interactive shell - A part of IDLE that lets you execute Python code one line at a time. It allows
you to immediately see what value the expression you type in evaluates to.

interpreter - A program that translates instructions written in a higher-level programming language
(such as Python) to machine code that the computer can understand and execute.

iteration - A single run through of the code in a loop's block. For example, if the code in a while-
block is executed ten times before execution leaves the loop, we say that there were ten iterations of the
while-block's code.

key-value pairs - In dictionary data types, keys are values that are used to access the values in a
dictionary, much like a list's index is used to access the values in a list. Unlike lists, dictionary keys can
be of any data type, not just integers.

keys - In dictionaries, keys are the indexes used to

keys - In cryptography, a specific value (usuaully a number) that determines how a cipher encrypts a
message. To decrypt the message, you must know both the cipher and the key value that was used.

list - The main container data type, lists can contain several other values, including other lists. Values
in lists are accessed by an integer index between square brackets. For example, if spam is assigned the
list ['a', 'b', 'c'] , then spam[2] would evaluate to 'c' .

list concatenation - Combining the contents of one list to the end of another with the + operator.
For example, [1, 2, 3] + ['a', 'b', 'c'] evaluates to [1, 2, 3, 'a', 'b', 'c'] .

local scope - The scope of variables inside a single functions. Python code inside a function can
read the value of variables in the global scope, but any changes or new variables made will only exist
while execution is inside that function call.

loop - A block of code inside a loop (after a for or while statement) will repeatedly execute until
some condition is met.

loop unrolling - Replacing code inside a loop with multiple copies of that code. For example,
instead of for i in range(10): print 'Hello' , you could unroll that loop by having ten
lines of print 'Hello'

machine code - The language that the computer's CPU understands. Machine code instructions are
series of ones and zeros, and is generally unreadable by humans. Interpreters (such as the Python
interpreter) translate a higher-level language into machine code.

methods - Functions that are associated with values of a data type. For example, the string method
upper() would be invoked on a string like this: 'Hello'.upper()

module - A separate Python program that can be included in your programs so that you can make
use of the functions in the module.

modulus operator - The "remainder" operator that is represented with a % percent sign. For
example, while 20 / 7 is 6 with a remainder of 2, 20 % 7 would evaluate to 2.

mutable sequence - A container data type that is ordered and can have values added or removed
from it. Lists are a mutable sequence data type in Python.

negative numbers - All numbers less than 0. Negative numbers have a minus sign in front of them
to differentiate them from positive numbers, for example, -42 or -10.

nested loops - Loops that exist inside other loops.

None - The only value in the NoneType data type. "None" is often used to represent the lack of a
value.

operating system - A large program that runs other software programs (called applications) the
same way on different hardware. Windows, Mac OS, and Linux are examples of operating systems.

operators - Operators connect values in expressions. Operators include +, - , * , / , and , and or

ordinal - In ASCII, the number that is represented by an ASCII character. For example, the ASCII
character 'A' has the ordinal 65.

origin - In cartesian coordinate systems, the point at the coordinates 0, 0.

OS - see, operating system

output - The text that a program produces for the user. For example, print statements produce
output.

overwrite - To replace a value stored in a variable with a new value.

parameter - A variable that is specified to have a value passed in a function call. For example, the
statement def spam(eggs, cheese) defines a function with two parameters named eggs and
cheese .

pie chart - A circular chart that shows percentage portions as portions of the entire circle.

plaintext - The decrypted, human-readable form of a message.

player - A person who plays the computer game.

positive numbers - All numbers equal to or greater than 0.

pound sign - The # sign. Pound signs are used to begin comments.

print statement - The print keyword followed by a value that is to be displayed on the screen.

program - A collection of instructions that can process input and produce output when run by
computer.

programmer - A person who writes computer programs.

reference - Rather than containing the values themselves, list variables actually contain references
to lists. For example, spam = [1, 2, 3] assigns spam a reference to the list. cheese = spam
would copy the reference to the list spam refers to. Any changes made to the cheese or spam variable
would be reflected in the other variable.

return statement - The return followed by a single value, which is what the call to the function
the return statement is in will evaluate to.

return value - The value that a call to the function will evaluate to. You can specify what the return
value is with the return keyword followed by the value. Functions with no return statement will
return the value None.

scope - See, local scope and global scope.

sequence - A sequence data type is an ordered container data type, and have a "first" or "last" item.
The sequence data types in Python are lists, tuples, and strings. Dictionaries are not sequences, they are
unordered. See also, unordered.

shell - see, interactive shell

simple substitution ciphers -

slice - A subset of values in a list. These are accessed using the : colon character in between the
square brackets. For example, if spam has the value ['a', 'b', 'c', 'd', 'e', 'f'] , then
the slice spam[2:4] has the value ['c', 'd'] . Similar to a substring.

software - see, program

source code - The text that you type in to write a program.

statement - A command or line of Python code that does not evaluate to a value.

string concatenation - Combining two strings together with the + operator to form a new string.
For example, 'Hello ' + 'World!' evaluates to the string 'Hello World!'

string formatting - Another term for string interpolation.

string interpolation - Using conversion specifiers in a string as place holders for other values.
Using string interpolation is a more convenient alternative to string concatenation. For example,
'Hello, %s. Are you going to %s on %s?' % (name, ac tivity, day) evaluates
to the string 'Hello, Albert. Are you going to program on Thursda y?' , if the
variables have those corresponding values.

string - A value made up of text. Strings are typed in with a single quote ' or double " on either side.
For example, 'Hello'

substring - A subset of a string value. For example, if spam is the string 'Hello' , then the
substring spam[1:4] is 'ell' . Similar to a list slice.

symbols - In cryptography, the individual characters that are encrypted.

syntax error - An error that occurs when the Python interpreter does not understand the source
code.

terminate - When a program ends. "Exit" means the same thing.

tracing - To follow through the lines of code in a program in the order that they would execute.

truth tables - Tables showing every possible combination of

tuple - A container data type similar to a list. Tuples are immutable sequence data types, meaning
that they cannot have values added or removed from them. For example, (1, 2, 'cats',
'hello') is a tuple of four values.

type - see, data types

unordered - In container data types, unordered data types do not have a "first" or "last" value
contained inside them, they simply contain values. Dictionaries are the only unordered data type in
Python. Lists, tuples, and strings are ordered data types. See also, sequence.

user - The person using the program.

value - A specific instance of a data type. 42 is a value of the integer type. 'Hello' is a value of
the string type.

variables - A container that can store a value. List variables contain references to lists.

while loop statement - The while keyword, followed by a condition, ending with a : colon
character. The while statement marks the beginning of a while loop.

x-axis - In cartesian coordinate systems, the horizontal (left-right) coordinate axis.

y-axis - In cartesian coordinate systems, the vertical (up-down) coordinate axis.

About the Author

Albert Sweigart (but you can call him Al), is a software developer in San Francisco, California who
enjoys bicycling, reading, volunteering, network security, haunting coffee shops, and making useful
software.

He is originally from Houston, Texas. He finally put his University of Texas at Austin computer
science degree in a frame. He is a friendly introvert, a cat person, and fears that he is losing brain cells
over time. He laughs out loud when watching park squirrels, and people think he’s a simpleton.

His web site and blog are located at http://coffeeghost.net

