SOMETHING oM Prks EGT Bl Y DIFFERENT SERIES
BOOK ONE

Copyright 2008 © by Albert Sweigart

"Invent Your Own Computer Games with Python" is licensed under a Creative Commons
Attribution-Share Alike 3.0 United States License.

You are free:

e to Share - to copy, distribute, display, and perform the work
¢ to Remix -to make derivative works

Under the following conditions:

e Attribution - You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the
work).

(Visibly include the title and author's name in any excerpts of this work.)

e Share Alike - If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same or similar license to this one.

This summary is located here:
http://creativecommons.org/licenses/by-sa/3.0/us/

Your fair use and other rights are in no way affected by the above.
There is a human-readable summary of the Legal Code (the full license), located here:
http://creativecommons.org/licenses/by-sa/3.0/us/legalcode

@creative
commons

IYOCGWP - Version 4

ISBN 978-0-9821060-0-6

For Caro, with more love
than | ever knew | had.

A Note to Parents and Fellow Programmers

| have more thanks for your interest and more apeofor this book's deficiencies than | can
enumerate. My motivation for writing this book casrfeom a gap | saw in today's literature for kids
interested in learning to program. | started prograng when | was 9 years old in the BASIC language
with a book similar to this one. During the couodevriting this, I've realized how a modern langeag
like Python has made programming far easier ane roapable. Python has a gentle learning curve
while still being a serious language that is usggiogrammers professionally.

The current crop of programming books for kids thag seen fell into two categories. First, books
that did not teach programming so much as "ganegioresoftware" or in dumbed down languages to
make programming "easy". Or second, they taughgraraming like a mathematics textbook: all
principles and concepts with application left te tkader. This book takes a different approachwsho
the game source code right up front and explaignarmming principles from the examples.

My fellow programmers may notice that the gamethis book all use console text, and also use a
single stream of text rather than a console windgstem such as the one the Curses library provides.
This is on purpose. Even though there are no geaghisound, | think that the games are compelling
enough in their own right. | also think that gragghand images (and especially game constructish kit
mask the true nature of programming. | have thbgges outdated notion that games do not require
fancy graphics to be fun.

The list of things that this book also does notezographics, sound, graphical user interfaces,
debugging, file I/O, exceptions, networking, datacures such as stacks and queues, and object
oriented programming. After trudging through masbiwerbose programming manuals myself, I've
tried to strip down this book to its most concisati. These other concepts have been reservedéor la
books.

| have also made this book available under thetee&ommons license, which allows you to make
copies and distribute this book (or excerpts) withfull permission, as long as attribution to méef$
intact and it is used for noncommercial purpose@geWw the last nine months of on and off efforthis
book as my gift to world. Thank you again for resgthis book.

Al Sweigart
al@coffeeghost.net

The full text of this book is available in HTML &DF format at:
http://pythonbook.coffeeghost.net

Who is this book for?

« Anyone who wants to teach themselves computer arogring, even if they have no previous
experience programming.

¢ Kids and teenagers who want to learn computer progring by programming games. Kids as
young as 9 or 10 years old should be able to foltmmg.

¢ Adults and teachers who wish to teach others prognag.

o Programmers who want to teach others "real" progrenm by example.

This book is available for free under a Attributi®hare-Alike Creative Commons license. You can
make as many copies of it as you like, as longeditcto the author is left in. The Python prograimgn
language software this book teaches is also fir@edylable from www.python.or

Table of Contents

Chapter 1 -

Chapter 2 -

Chapter 3 -

Chapter 4 -

"Hello World!" - Your First Program

Hello!

Downloading and Installing Python
Starting the Python Interpreter
Some Simple Math Stuff
Evaluating Expressions

Variables

Strings

Writing Programs

Hello World!

The Difference Between Statements and Expressions

"My Favorite Stuff"

Crazy Answers and Crazy Names for our Favoritef Stuf

Capitalizing our Variables

Guess the Number
Source Code

Arguments

Blocks

Conditions and Booleans

if Statements

Step by Step, One More Time
Some Changes We Could Make
What Exactly is Programming?

A Web Page for Program Tracing

Jokes

How Programs Run on Computers
Source Code

Some Other Escape Characters
Quotes and Double Quotes

Dragon Realm

Source Code
def Statements

X X X X X

X

Chapter 5 -

Chapter 6 -

Boolean Operators

Variable Scope

Parameters

Local Variables and Global Variables with the Saviaene
Where to Put Function Defintions

The Colon :

Step by Step, One More Time

Designing the Program

A Web Page for Program Tracing

Hangman

ASCII Art

Source Code

Designing the Program
Multi-line Strings

Constant Variables

Lists

Changing the Values of List Items with Index Assigant
List Concatenation

Thein Operator

Removing Items from Lists with del Statements
Lists of Lists

Methods

Thelen() Function
Therange() Function

for Loops

Strings Act Like Lists

List Slicing and Substrings
elif ("Else If') Statements
And that's it!

Dictionaries

Sets of Words for Hangman

Tic Tac Toe
Source Code
Designing the Program
Game Al

List References

X

X

X
X

X X s X x x x x x X

X X X X X X

X X X

x x x x X

Chapter 7 -

Chapter 8 -

Chapter 9 -

Chapter 10 -

Short-Circuit Evaluation
TheNone Value

A Web Page for Program Tracing

Bagels

Source Code

Augmented Assignment Operators
Thesort() List Method

Thejoin() String Method

String Interpolation

Sonar

Grids and Cartesian Coordinates
Negative Numbers

Changing the Signs

Absolute Values

Coordinate System of a Computer Monitor
Source Code

Designing the Program

Theremove() List Method

Caesar Cipher

About Cryptography

ASCII, and Using Numbers for Letters
Thechr() andord() Functions
Source Code

Theisalpha() String Method

Theisupper() andislower() String Methods

Cryptanalysis
Brute Force

Reversi

How to Play Reversi

Source Code

Thebool() Function
Therandom.shuffle() Function
Tips for Inventing Your Own Games

X X X X X X

x x x x X

Chapter 11 - Al Simulation X
"Computer vs. Computer" Games
Percentages X
Integer Division X
Theround() Function X
Learning New Things by Running Simulation Experitsen X

Chapter 1 - "Hello World!", Your First
Program

Hello!

This is a book that will show you how to make cotepgames. All you need is a computer, some
software called the Python Interpreter, and thiskbd he software is free. You can download it at no
charge from the Internet. This book will show yawhto set up your computer and program a few
games. Once you learn how these games work, ybdbevdble to use that knowledge to create games
of your own.

When | was a kid, | found a book like this thatghtime how to write my first programs and games.
It was fun and easy. Now as an adult, | still heeprogramming computers as a job, and | get fmai
it. But even if you don't become a computer progreanwhen you grow up, programming is a useful
and fun skill to have. (I still sometimes invent myn computer games.)

Computers are very useful machines. In the fukmewing how to program a computer may be as
useful as knowing how to read a book. The good nswsat learning to program isn't as hard as
learning to read. If you can read this book, yow geogram a computer.

To tell a computer what you want it to do, thatasprogram a computer, you will need to learn the
computer's language. There are many different progring languages: Basic, Java, Python, Pascal,
Haskell, and C++ (pronounced, "see plus plus").

The book | read when | was a kid taught me BASI@pamming. Back then, most people who
started to learn programming would learn to prognaBASIC. But new programming languages have
been invented since then. This book is about Pyginogramming. Python is even easier to learn than
Basic. Not only is it easy, but it is also a sesi@md useful programming language. Many adults use
Python in their own jobs and hobbies. That's wichdse to make this book about Python programming.

Downloading and Installing Python

You might want the help of an adult or someone &ls#wnload and install the Python software.
The software that runs programs you write is callednterpreter. Thiterpreter is a program that
runs programs written in the Python language. rtiexpreter program is called the Python interprete
(or sometimes, we just plainly call it Python). Yoan download the Python interpreter from this
website:

http://www.python.org

Click on the Download link on the left side of tweb page. On the download page, click on the
Python 2.5.1 Windows Installer to download the Bytinterpreter for Windows. (If you are running an
operating system other than Windows, download tfited? installer for your operating system inste
There may be newer versions by the time you reiadtiok. If so, you can download the new vers

and the programs in this book will still work.

I-Jl.j LT T
= Diownload
BOU Download Standard Pvthon Softw
EWS Mote: there's a security fix for Python 2.2, 23
NTATION the frx
CWHLOAD The cument production version is Python 2.5.1

rmost stable version Here are somie quick dov
look at the detailed Python 2.5.1 page

pleages

+ Python 2.5.1 compressed source tarball |

Elamk 5l (for L

e AMLo< mstaller (V]

a Bhahan T E Y Whndesees Bonneren metslioe

Double-click on the python-2.5.1.msi file that yeijust downloaded. This will start the Python
installer. All you need to do in the installer Iick the Next button. The default choices in thstatler
are just fine. When the install is finished, cli€ikish. You may have to restart your computer. You
should save any work you have in any other progridwaisare running, and then click "Yes". Then you
will be ready to start programming!

The games we'll create may seem simple compargan@s yowe played on the XBox, Playstatic
or Wii. These games don’t have fancy graphics osimuBut games don’t have to be very complicated
to be fun. And unlike those video game consoles,gan always get more games by creating them
yourself for free. All you need is a computer anid book.

Okay, let’s get started!

Starting the Python Interpreter

After you have installed the Python interpreten) gan start it by clicking on Start, then Programs,
then Python 2.5, then IDLE (Python GUI). Look astpicture for an exampls

[T Mocilla Firefox]
T MySoL »
[T Startup 3
&£ Inkernat Explorer

W s

(%3] tusdook Express

o Pemote Asskkance

Y Windows Madia Plaver

A Windows Messenger
W, SWindows Movie Maker

Progranms

A Module Docs
| Pyithon {command lins)
25 Python Maruals
jlfﬂ Urinstal Python

Lo CFF eser. .

Windows XP Professional

a Turn Sff Computer..,

]
@
-4
@

You will see a new window with the title, "Pythohedl". It will look like this:

NECTTY T EE—— =10 x|

Fil= Edt Shel Dwbug Opbions Windows Help

Python 2.5.1 (c251:54863, Akpr 18 2007, 08:51:08) [MSC +.1310 32 bic (Intel)] on ;J
windi

Type “copyright®, Meredita™ or "license()® for more information.

TedtidEdidrdigedided i et ed i ettt de vt v et v ek vtk v ek e ek ke AR R

Fersonal firewall software may wacn about the connection IDLE
malkes to i1ts subprocess using this computer's intetnal loopback
interface. This connection iz not visible on any excernal
interface and no data iz sent to or received from the Intecnet.

tEA2 2 R 2 RS RS s R R R Rt Rt Ri Rt RRRERiRiRE R 2]

IDLE 1.2.1

start| @ |74 Python Shell

This is the Interactive DeveLopment Environmentl(H) program.IDLE is a program that helps us
type in our own programs and games. This windoweappwhen you first run IDLE and is called the
interactive shell . We can type Python instructions into the sheihtike the computer do what we

want. A program is a whole bunch of instructions fogether, like a story is made up of a whole lbunc
of sentences.

Let's learn some basic instructions first. Wedirlehow to make the computer solve some math
problems in the Python shell. Don't worry if younédknow a lot of mathematics. If you know how to

add and multiply, you know enough math to do prograng. Even if you aren't very good at math,
programming is more about problem solving in genidian it is about solving math problems.

Some Simple Math Stuff

First, type in2+2 into the shell and press the Enter key.

= -

[pythonshel Bl

File Edit Shell Debug Options ‘Windows Help

Python 2.5.1 (r251:54863, Lpr 18 2007, 05:51:08) [M3C v.1310 32 bit (Intel)] or
Winiz

Type "copyright™, "ocredits™ or "license ()" for more information.

e e e e el e el e e e e i e e e e e e e e e e e el e e il i e e e e e e e e e e e e e

Ferzonal firewall software mway warh sbout the connection IDLE
makes to its subprocess using this computer's internal loopbhack
interface. This connection is not wisible on any external

interface and no data is sent to or recelived from the Internet.
i e e e el e e e e e i e e e e e el e e e e e e e e e e e e e e e el e e e e e e e e e e e e el

IDLE 1.2.1
T3n 242

g

sz |

Notice that the Python shell can be used like eutatior. The + sign will do addition and the - sign
will do subtraction. The * sign (which is called asterisk) is used for multiplication.

We'll have the computer solve some math problemagoln programming (and in mathematics),
whole numbers are callédtegers . Integers are whole numbers like 4 and 99 andubnidérs with
fractions or decimal points are not integers. Thmbers 3.5 and 42.1 and 5.0 are not integers. In
Python, the number 5 is an integer but if we wibées 5.0 it would not be an integer. Numbers i
decimal point are callefibating point numbers

Try typing some of these math problems into thélSRemember to press the Enter key after typing
each one in.

2+2+42+2+2
8*6

10-5+6

2+ 2

1nterface and no data 15 Ser]
AR FE R AR TN AT N AT TN TN T ENTTNNN

IDLE 1.2.1
3 Z4E

e

3 ZHZHEHEHE
10

3% BFE

45

> 10-54+6
11

>3m 2 4 z
e

o |

These math problems are called expressions in Rytho

You can put any amount of spaces in between tlegéns and the math signs (which are called
operators), and Python can tell what you mean. There areraiperators besides the mathematical
operators, but we will go into them later. Thedegers are also calleclues . There are other things
that are also values (such as strings) which wieta¥id about later.

Integers are a type of number. Numbers (and insg¢@ee a type of value. Even though integers are
numbers, not all numbers are integers. (For exanaletions and numbers with decimal points like
2.5 are numbers that are not integers.) This is I b cat is a type of pet, but not all pets ars.cat
Someone could have a pet dog.

Values, operators, and expressions may seem liky faords for numbers, math signs, and math
problems. But knowing these terms will help explaiher programming instructions later on.

Actually, expressions include other things besidash problems. Aexpression is made up of
values (such as integers liBeand6) connected by an operator (such as the * mulagbn sign). A
single value by itself is also considered an exgogs

operator
value

I
RN
2+ 2

e

expression

The Python shell is handy for solving large matbbems very quickly. Try typing i@063 *
3581.

Fr» Z063 % 3581
7387603
Frl

Notice that in Python, we don't put commas insidertumbers. We type 2063 instead of 2,063. The
computer can do what you tell it to very quicklyt it needs you to tell it in a very specific way.
Computer programming is all about writing out psecinstructions to get the computer to do exactly
what you want.

In the expressioB +5+7 ,the2+5 partis also an expression. Expressions can coather
expressions, like a large Lego building made ugnadller Lego blocks.

So even though computers are very fast and caa sttt of information, they aren't very smart at
all. They need human programmers to tell them éxadtat to do.

Evaluating Expressions

When the computer solves the expresdidrnr 5 and gets the valukb, we say the computer has
evaluated the expressidivaluating an expression reduces the expression to a siagle \just like
solving a math problem reduces the problem to glssinumber: the answer. The expressibds 5
and10 + 3+ 2 have the same value, because they both evaluadte ®emember that single valt
by themselves are also considered expressionseXpgressiorl5 evaluates to the valuéb (that was
pretty easy to evaluate, wasn't it?)

However, if you just typ® + into the interactive shell, you will get an erressage.

Frx 5+
JyvntaxError: invalid svntax
e

This error happened because is not an expression. Expressions have valuesecteh by
operators, bub + has an operator that is not connecting two vallies is why the error message
appeared. The error message means that the condpetenot understand the instruction you gave it.

This may not seem important, but a lot computeg@mming is about knowing how the computer
will evaluate expressions. And remember, expressioa just values connected by operators, or one
value by itself.

Variables

When we start programming, we will often want toesthe values that our expressions evaluate
we can use them later. We can store values ingleatiedvariables . Think of variables like a mailbc
that you can put values inside of. You can stoteesinside variables with the = sign (which idexl
theassignment operator). Try typingspam = 15 into the shell:

*xx Spam = 15
s |

This instruction (called aassignment statement) stores the valug5 in a variable namespam.
Unlike expressionsstatements are instructions that do not evaluate to any vakech is why there
is no value that is displayed on the next linéhi; $hell. However, this statement does contain an
expression. The value 15 by itself is an expressubnch evaluates to the value 15.

Variables store values, not expressions. If wethadstatemengpam =10+ 5 | then the
expressiorlO + 5 would first be evaluated down 1&®. Then thisl5 value would be the value stored
in the variablespam.

You can think of the variable like a mailbox witketvalue 15 inside of it. The variable name "spam"
is the label on the mailbox (so we can tell onellnoai from another) and the value stored in itk la
postcard inside the mailbox.

15

If we typespam into the shell by itself, it will show us what val is stored inside the variable.

x> sSpam = 15
>r> Spam

15

s |

If we typespam + 5 into the shell, this is the sameXs+ 5 because the value insidpam is
15.

Fxx Spam = 15
Frx Spam + 5
Z0

x|

spam + 5 is also an expression, just lik® + 5 would be an expression. When you see a var

inside an expression, the value that is storedétie variable is used when the computer evaluate
the expression. But we can change which valueredtin the variable by typing in another assignimen
statement:

x> Spam = 15
Frrx Spam + 5
20

>x>> Spam
>»> Spam +

]
o

s |

Notice that the first time we typed épam + 5 , the expression evaluated20. This is because we
had stored the valukb inside the variable spam. But then we stored #teeB inside ofspam. The
old value ofl5 was erased to let the new value3dfe stored inside the variable. In programming, we
say that the value df5 wasoverwritten . Then, when we typed spam + 5 , then that expression
evaluates t&. If the variable is like a mailbox and the valsdike a postcard inside the mailbox, then
the mailbox can only hold one postcard at a time.

We can also have expressions on the right sideeot tsign. Python will evaluate this expression to
get the final value, and then store this valued@gif the variable. If you ever want to know wia t
current value is inside of a variable is, just tyipe variable name into the shell.

»rx Spam = 5 + 7
x> Spam

12

s |

Remember, in expressions, the variable acts ama far a value. We can use the variable as many
times as we want. Look at this example:

Frr Spam = 15
Frr Spam + Spam
30

Frr Spam — Spam
]

FrE

When the variable spam has the integer valustored in it, theispam + spam is the same ak5
+ 15 . This is whyspam + spam evaluates t80. Andspam - spam s the same ak5 - 15
which evaluates t6.

We can even use the value in #pg@am variable to assigapam with a new value:

>xx Spam = 15

>x> Spam = sSpam + 5
x> Spam

z0

s |

The assignment statemetam = spam + 5 is sort of like saying "the new value of the spam
variable will be the current value of spam plugfivRemember that the variable on the left sidihef
sign will be assigned the value that the expressiothe right side evaluates to. We can also keep
increasing the value ispam by 5 several times:

Frx Spam = 15

rr» Spam = Spam + 5
Frx Spam = sSpam + 5
Frx Spam = sSpam + 5
*r» Spam

3n

s |

Let's assign a couple of values to another twaalsées nameeggs andfizz . We can do this by
typing infizz =10 | then press Enter, then typggs = 15 , then press Enter.

x> fizz = 10
F=rx oegygs = 15
wx |

These two variables are like two mailboxes, oneetwfimz and the other nameaf)gs . Thefizz
variable had 0 inside it, and theggs variable had5 inside it.

Now let's try assigning a new value to the spanabée. Typespam = fizz + eggs into the
shell, then press Enter. Then tyggam into the shell to see what the new value of sgar€an you
guess what it will be?

»x» fizz = 10

Frr oeggs = 15

»»> gpam = fizz + eggs
*rx Spam

25

FEF

The value irspam become®5. This is because when we diitt andeggs , we are adding the
values stored insidézz andeggs .

Strings

That's enough of integers and math for now. Nois ke what Python can do with text. In the
Python programming language, we work with littleicks of text calledtrings . We can store string
values inside variables just like we can store nemvlalues inside variables. When we type strings, w

put them in between two single quotes. Try tygpgm = 'hello’ into the shell:
>x> sSpam = 'hello’
= |

The single quotes are not part of the string, jusitell the computer where the string begins and
ends. If you typspam into the shell to display the contents of spamiilitdisplay the'hello’
string.

x> spam = 'hellao!
»»> Spam

"hellao!

s |

Strings can have any sort of character or sighemt Strings can have spaces and numbers as well.
These are all strings:

‘hello’

'Hi there!’

'‘Albert’

'KITTENS'

'7 apples, 14 oranges, 3 lemons' 'A long time ago i na
galaxy far, far away...'

HO*&HWY %*&OCfsdYO*&gfC%Y O*&%3yc8r2'

We can also put string values inside expressioss like we can put number values inside
expressions. The + operator can add one striffgetend of another. In programming, we call

string concatenation . Try typing'Hello' + "World!' into the shell:
»>» 'Hello' + 'World!!
'HelloWorld!'
i
The string it produces IslelloWorld!' . We should put a space at the end ofttadlo’ string
if we don't want the words bunched together. Tpirtg 'Hello ' + "World! into the shell:

x> 'Hello' + 'World!!
'"HellaWorld!'

»»x 'Hello ' + 'World!!
'"Hella World!!

x|

You can't add a string to an integer, or an integenber to a string. This is because a string and a

integer are differerdata types . The data type of the valtigello’ is a string. The data type of the
value5 is an integer.

Adding 5 and the strindHello' doesn't really make any sense anyway. If we toedb it, Python

would think we were trying to concatenate a stang an integer, or maybe trying to add an integdi
a string, and give us an erl

x> 'Hello ' + 5

Traceback [(most recent call last):
File "<pyshell#d>", line 1, in <module>
'"Hello ' + 5

TypeError: cannot concatenate 'str!' and 'int' objects
*»> 5 + '"Hello!

Traceback [(most recent call last):
File "<pyshell#S>", line 1, in <modulex
5 4+ 'Helle!

TypeError: unsupported operand type(s)] for +: 'int' and 'str!
i

These error messages may look strange and confumintater we'll learn what they mean and how
they can help us figure out what went wr¢

However, there is a difference between using tteger5 and the stringd’ . You can tell thatb’

is a string because it has quotes around it.

¥rx 'Hello' + '5!
"Hellos!
g

You may have noticed that the IDLE program makasgd appear in green text to help make them
stand out while you type them. The value that tt@ression evaluates to, however, will show up ure
in the shell no matter what the data type.

Writing Programs

Let's write our first program! Until now we havedpetyping instructions one at a time into the
interactive shell. When we write programs though,type in several instructions and have them run al
at once. Click on the File menu at the top of tiigh&n Shell window, and select New Window. A new
blank window will appear. We will type our programso this window, which is called tHée editor .

Prl:hun Shell

File Edit Format Run Options windows Help

:ls.:ﬂl"

I1

Hello World!

A tradition for programmers learning a new langusg® make their first program display the text
"Hello world!" on the screen. We'll create our ottallo World program now.

You don't have to type in the numbers or periodhenleft side of the source code. That's just tke
we can refer to each line by number in our expianatf you look at the botto-right corner of the

source code window, it will tell you which line tlearsor is currently on.

>

L 12|Cal: 0
In the picture, the cursor is currently on line 12.

Type the following text into this new window. Welldhis text thesource code of the program.
These are the instructions to the Python interpthtg explain exactly how the program should behav
(Do not type the numbers at the beginning of eseh Those numbers are for making this book more
readable, and they are not part of the source rode.

hello.py

This program says hello and asks for my name.
print 'Hello world!

print 'What is your name?’

myName = raw_input()

print 'lt is good to meet you, ' + myName

Qi g @3 [N [=

The IDLE program will give different types of ingtitions different colors. After you are done typ
this code in, the window should look like this:

hello.py - C:\Python25% hello.py

File Edt 5Shel Fle Edit Format Run Options Windows Help
Fython 2.J| § This program says hello and asks for my name.
I winiz print 'Hello world!!
G| Type "copi| print 'What iz your nswme?!
i wyllame = raw_inputl::l
FEEEE print 'It iz good to meet you, ' + mylame
Persot
makes=
1 interi
- interi
iC FTHEREFF
IDLE 1.Z2.:
=
Ll e
cl

We will want to save this source code so we daveho retype it each time we start IDLE. Click

the File menu at the top, and then click on SaveAsew window will open that asks us what name
we want to give this file. Type inello.py | so it looks like this:

D'E':'I-t ap

[Z] LIENMSE. bt
‘] MEWS bxt
[Z] README. txt

Py Blocuments:

oo B
-

by Computer

Filz name: |he|||:|.|:_|ﬂ j Save
E

‘Save az bype; IF'_I,Ithu:un and text files [py.” pw,” tat] ‘Cancel

I

Then click on the Save button.

You should save your program every once in a waslgou type them. If the computer crashes ol
accidentally exit from IDLE, any typing you havendosince you last saved will be lost.

To load this saved program later, click on the Rilenu at the top, and then click on Open. A new
window will appear that asks you to choose whithth open. Click on hello.py and then click on the
Open button.

Now we want to run the program we have just typediick on the Run menu at the top, and then
click on Run Module. Or, instead of clicking on timenu, you can just push the F5 key on your
keyboard. The program will run in the Python Sketidow that appeared when we first ran the IDLE
program. Our program asks us for our name. Go aheddype it in, and then press the Enter

File EdE Shel Debug Opbions Windows Help

Python 2.5.1 (ra51:545863, Apr 185 2007, 05:51:05) [M]
wingz
Type "copyright™, "ocredits"™ or "license() "™ for more

e i e e e i il i e el e e e e e e e

Personal firewall software mway warh about the og
makes to its subprocess using this computer's in
interface. This connection is not wisikble on ay

interface and no data is sent to or received frg
ol ol o i e e i |

IDLE 1.2.1
Frr SESSSsssssssssssssssssss=sss=s==== BEFTART ======3
FEr

Hello world!

WMhat iz vour name?

When we push Enter, the program will greet the byarame. We call the person who will run and
use the program theser. We call the person who wrote the programghegrammer .
Congratulations! You've written your first progradou are now a computer programmer. You can run
this program again if you like. Just click on thme@ow with our source code again, and click on the
Run menu, then Run Module. (Or press F5. This iatwhke to do since it is quicker.)

How does this program work? Well, each line thatyped in is performed one after the other. The
program starts at the very top and tlegecutes each line. After the program executes the firss,lit
moves on and executes the second line, and tlesecutes the third line, and so on.

Think of the program like a cake recipe. The re¢gdls you the exact steps you need to take to b
cake. Do the first step first, then the second,keep going until you reach the end. The instruntim

your program are executed one by one starting thentop and then going down. We call this filogv
of execution , or just the execution for short.

Code Explanation

So what does all of that code we typed in mean’ latk at each line we typed in, one line at atim

1. # This program says hello and asks for my name.

This line is called @omment . Comments are ignored in the program. Commentaatréor the
computer, but for the programmer. They are therenand the programmer of what the program does.
Any text after the # sign (called tipeund sign) is a comment. Programmers usually put comments at
the top of their code to give their program a tiflee IDLE program (the program that we are typog
code into) makes comments appear in red text prmeake them stand out.

2. print 'Hello world"

This line is gorint statement . A print statement is thprint keyword followed by an
expression. The statement will display the evalliatgression on the screen. Unlike typing strimgs i
the shell, when we write a program, the value #ma¢xpression evaluates to is not displayed on the
screen. To display the expression's value on tleescwe use print statement. We want to display
Hello world! on the screen, so we type the print keyword foldwy the 'Hello world!" string.

The Difference Between Statements and Expressions

What is the difference between a statement andaregsion? All expressions evaluate to a single
value, and statements do not evaluate to anytingxpression is made up of values connected by
operators, which evaluate to a single value (faneple,2 + 3 evaluates t&. But theprint
statement does not evaluate to a value.

You could not assign the value thatrint statement evaluates because statements do noat&val
to values. If you tried, you would get a syntaoerfJust for fun, try typing it into the interaati shell.)
A syntax error happens when Python cannot understand what ya@ggam is trying to do.

»rx Spatn = print 'Hello!!
JyntaxError: invalid syntax
FEF

In fact, you can type print statement into the shell:

x> 'hellao!
'hello!

e "hello!
hello

i

When theprint statement runs, it shows the string itself withthkt quotes. But remember that in
programs, nothing will appear on the screen unlessuse @rint statement.

Code Explanation continued...

3. print ‘What is your name?’

This line is also @rint statement. This time, the program will displ&at is your name?

4. myName = raw_input()

This line has a variable andunction call . The variable is namedyNameand the function is
namedraw_input() . Afunction is a bit of code that does a particular actionewWive call a
function, the program does whatever the functigoriggrammed to do. Whaaw_input() is called
the program waits for the user to type in text preks Enter. This text string is what the functaf to
theraw_input() evaluates to. The value that a function call esvéluate to is called threturn
value . Theraw_input() function returns the string that the user typedecause function calls ¢
be evaluated, they can also be part of an expresbien this looks like a regular assignment where
myNamestores a string inside it.

Notice that when | talk about thiaw_input() function, | add parentheses to the end of it. This
how we type out function names, because if | justtewaw_input you would not know if | meant a
variable namedaw_input or a function namethw_input . The parentheses at the end let us know
we are talking about a function, much like the @gan'42' let us know we are talking about the
string'42' and not the integet2.

5. print "It is good to meet you, ' + myName

On the last line we havepiint statement again. This time, we use the plus opefa} to
concatenate the striniy is good to meet you, ' and the string stored in tinyName
variable. This is how we get the program to gregbyiname.

After the program executes the last line, it stépyegrammers say the program texsninated or
exited . All of the variables are forgotten by the compuiecluding the string we stored imyName
Try running the program again and enter a differamhe

e e e T = EEE e
interface. Thiz connection iz not wvisible o

interface and no data is sent to or received
T FF T FF T T T F T FF T T F I FF T AT FF LT FF IS FFEIFEF TSI FFTEFEFT R

IDLE 1.2.1
¥rr S=============================== REITART ==5
Fr

Hello world!

What iz your name?

blhert

It iz good to meet vou, Alhert
=z |

Remember, the computer only does exactly what yogrpm it to. In this program, it is programrm
to ask you for your name, let you type in a stringd then it will say hello and display the stryay
typed. But you don't have to type in your name. ¥au type in anything you want and the computer
will treat it the same:

interface and no data iz sent to f
FEEFFT LI FEFT I EIFFTEIFFFTEAFFTEAFEFFAFFTEEF T L FA

IDLE 1.2.1
»rp SE=====s=====s=ss===s============= |
el

Hello world!

What iz your name?

poop

It iz good to meet you, poop
=z |

"My Favorite Stuff"

Let's make another program. Open a new window ibkioly on the File menu at the top and then
clicking on New Window. (And remember to not type humbers at the beginning of each line. Those
are only to make the source code more readable) here

favorites.py

1. # Favorite stuff

2. print 'Tell me what your favorite color is.'
3. favoriteColor = raw_input()

4.

5. print 'Tell me what your favorite animal is.'

. favoriteAnimal = raw_input()

. print 'Tell me what your favorite food is.'
. favoriteFood = raw_input()

display our favorite stuff

. print 'You entered: ' + favoriteFood + ' ' +
favoriteAnimal + ' ' + favoriteColor

13. # print 'Here is a list of your favorite things.

14. print 'Color: ' + favoriteColor

15. print 'Animal: ' + favoriteAnimal

16. print 'Food: ' + favoriteFood

e e
NP OO

Save this program dsvorites.py and then press F5 to run it.

interface and no data is sent Lo or recel
o e e e e e ol e e e e e e e e el ol e e e e e e e

IDLE 1.2.1

Py SESSSSssssssssssssssssss=ss==s===== REZTLRT
FEE

Hello world!

What iz yvour name?

Albhert

It iz good to meet you, Llbhert

Py SESSSSssssssssssssssssss=ss==s===== REZTLRT
FEE

Tell me what wyour favorite color is.

blue

Tell me what wyour favorite animal is.

cats

Tell me what wyour favorite food is.

pasta

You entered: pasta cats blue

Color: blue

Animal: cats

Food: pasta

FEE

Code Explanation

This program looks similar to our Hello World pragr. Let's look at each line carefully.

VO I U “

This is another comment. The program will ignorétis just there to remind us what this program
loes if we look at the source code e

2. print 'Tell me what your favorite color is.'

Here we display a bit of text asking the user fetin their favorite color by using thpgint
ceyword

3. favoriteColor = raw_input()

Now we are going to call thaw_input() function to let the user type in their favoritdaro Wher
hey press enter, the string the user enterediisdin thefavoriteColor variable.

favoriteColor

5. print "Tell me what your favorite animal is.’
6. favoriteAnimal = raw_input()

These two lines are similar to the ones beforeidddhat there is a blank line in between thenth&

Python language, blank lines are just ignored. Ehielpful because then we don't have to have all
the lines bunched together.

This time, the user will type what their favoriteimal is, and the string will be stored in a valeab
namedfavoriteAnimal

8. print 'Tell me what your favorite food is.’'
9. favoriteFood = raw_input()

Finally, we will let the user type in their favagifood. This string is stored in yet another vdaab
calledfavoriteFood

11. # display our favorite stuff

Here's another comment. Comments don't always toagre at the top of the program. They can s
up anywhere. All the text after the pound signwi) be ignored by the program and won't be shoan t
the user. It just reminds the programmer what tiogiam doe:

12. print "You entered: ' + favoriteFood + "' +
favoriteAnimal + ' ' + favoriteColor

Thisprint statement will show us the favorite food, aninagig color we entered. The plus sign is
used to combine the stringou entered: ' with the strings we stored in our variables earlée
don't want the strings in the variable to be buddiogether, so we add a string with one space in
between them. This will make the entire string Isoknething like this:

'You entered: pasta cats blue'

Instead of this:

'You entered: pastacatsblue’

13. # print 'Here is a list of your favorite things.

This line looks like anothgyrint statement. But do you see the pound sign at éreddtit? That
means this line is really a comment and the proggmores this code. Sometimes the programmer may
want to remove code from the source code withribeni to add it back in later. Instead of deletimg
code, you can just put a pound sign to have itngehdor now. If you delete the pound sign, thes thi
code will no longer be a comment and would be etegtwith the rest of the program. In IDLE, you
easily see that this is a comment and not codeuleddis in red text.

14. print 'Color: ' + favoriteColor
15. print 'Animal: ' + favoriteAnimal
16. print 'Food: ' + favoriteFood

These three lines will display our favorite thirggece again. When the last line of the program
executes, the program terminates.

Crazy Answers and Crazy Names for our Favorite Stuf f

The computer doesn't really care what you typét ithoesn't understand what food or animals or
colors are. All it knows is that the user will typesome string. We don't have to type in our féeor
things at all. Look at this run of the program whéetype in some crazy answers:

i

Tell me what wyour favorite color is.
WAFFLES

Tell me what wyour favorite animal is.
Twaz but vesterdawyw...

Tell me what wyour favorite food i=.
vastpuwo*fizo

Tou entered: vasSpuwo*fizo Twas but yvesterday... WAFFLES
Color: WAFFLES

Aunimwal: Twas but yvesterday...

Food: wasSpumo*fizo

v |

All the program understands is that it should stbeestring the user enters into the variables and
display the string in those variables later on.

favariteColar :WAFF LES’
5

favoriteAnimal

I

favoriteFood ’vasspumo*ﬁza’

‘Twas but yesterday...'

The program also does not care what name we gigartgariables. Our program would work just
same if it looked like this:

|| favorites2.py "

. # Favorite stuff 2
. print 'Tell me what your favorite color is.’
. g =raw_input()

. print 'Tell me what your favorite animal is.'
. fizzy = raw_input()

. print 'Tell me what your favorite food is.'
. AbrahamLincoln = raw_input()

©CONOOUAWNER

11. # display our favorite stuff

12. print'You entered: '+ q+ "'+ fizzy + "' +
AbrahamLincoln

13. #print 'Here is a list of your favorite things.'

14. print 'Color: '+ q

15. print 'Animal: ' + fizzy

16. print 'Food: ' + AbrahamLincoln

The names we give the variables are more for onefitehan the computer's benefit. One name looks
he same as any other to the computer. The 1q doesn't help us remember that this variable is
supposed to store the string of the user's favodter. And the namfizzy isn't any type of animal.

And using the namAbrahamLincoln for the variable to store our favorite color istjsilly. But sinc
ve use the variables in the same way as beforgrtdggam works the exact sai

Capitalizing our Variables

Have you noticed that variable names that are rapd# more than one word have the other words
>apitalized? This is to make the variable namegetsread because variable names can't havesp
hem

thisnameiskindofhardtoread
thisNamelsEasierToRead

Leave the first word in lowercase, but start tHeeotwords in uppercase. We call something in a
sertain way like this convention : we don't have to do it this way, but doing istiiay makes it a litt
2asier. The convention for capitalizing variablenea is to leave the first word in lowercase but $kee
yther words in upperca:

Remember, the computer doesn't care how we namedables. It only cares how we use them in
he program. Look at this progre

|| favorites3.py "

Favorite stuff 3
print "Tell me what your favorite color is.’
g = raw_input()

print "Tell me what your favorite animal is.'
AbrahamLincoln = raw_input()

print "Tell me what your favorite food is.'
AbrahamLincoln = raw_input()

CoNoOr~WNE

11. # display our favorite stuff

12. print'You entered: '+ q + "' + AbrahamLincoln +'
+ AbrahamLincoln

13. #print 'Here is a list of your favorite things.'

14. print 'Color: '+ q

15. print 'Animal: ' + AbrahamLincoln

16. print 'Food: ' + AbrahamLincoln

When we run this program, it looks like this:

IIILEL LICE. IIIIES TUIININETL I IS IO IS IEIE 1

interface and no data iz sent to or received
i i i i i i i e i i i e i e e e i e e e e i e

IDLE 1.2.1

Fr» SESSSss==s=s=ssss=s=s=ssss==s=s=s====== QEZTLART ===
e

Tell me what wyour favorite color is.
hlue

Tell me what wyour favorite animal is.
cats

Tell me what your fawvorite food is.
pasta

¥You entered: blue pasta pasta

Color: blue

Lnimal: pasta

Food: pasta

s |

What happened here? The favorite animal and favtoad are the same thing. If you notice, we use
he same variable namAbrahamLincoln to store a string of our favorite animal and awdrite
ood. When the user typed in their favorite anintiaik string was stored in ttAbrahamLincoln
/ariable. But when the user typed in their favofited, this string was also stored in-
AbrahamLincoln variable and the favorite food string was forgott€he favorite food value was
werwritten. The computer can't tell the differebhetween them because they use the same namee

computer thinks we mean to use the same variable.

A variable can only store one value at a time.

The computer will do exactly what we tell it to daven if we tell it to do the wrong thing. The

computer can't read our minds and figure out whextwant it to do. It is up to the programmer to make
sure the program works just right.

As a final note about variable and function nanhebpuld tell you that the computer does pay

attention to the capitalization of the name. Thepoter considers these names to be four separate
variables:

fizzy
Fizzy
Flzzy
flzZy

Four differently-cased names means four differemiables.

We call thiscase-sensitivity . In the Python language, variable and function emare case-
sensitive. If you try to call thRAW_INPUT() function instead of theaw_input() function, you
will get an error because the computer doesn't kofoavfunction name&®AW_INPUT(). It only knowvs
a function namedaw_input()

So remember that even though the computer doese'twhat you hame your variables or how you
capitalize them, be sure to always use the samtabagtion. It is also a convention to never use t
different variables with the same name but diffec@pitalization. If you use the variable
favoriteFOOD to store the string of your favorite breakfastd@mnd the variableAVORITEfood

to store your favorite dinner food, it is easydogiet which is which.

You don't always have to finish typing in a progrbaefore you run it. You can just have some of the
code complete, and then run it just to see hovptbhgram behaves. Programmers will often type some
code, run the program, type some more code, ruprtsggam again, and so on in order to make sur
code is coming along the way they like. You cai allsvays use the interactive shell to type sinigles
of code in to see what it does.

Now that we have some of the basics down, in tixé cteapter we will create our first game!

Things Covered In This Chapter:

Downloading and installing the Python interpreter.
Using IDLE's interactive shell to run instructions.
Flow of execution

Expressions, and evaluating express

Integers

Operators (such as + - *)

Variables

Assignment statements

Overwriting values in variables.
Strings

String concatenation

Data types (such as strings or integers)
Using IDLE to write source code.
Saving and running programs in IDLE.
Theprint statement.

Theraw_input() function.
Comments

o Case-sensitivity
o Conventions

Chapter 2 - Guess the Number

We are going to make a "Guess the Number" ganmthidrgame, the computer will think of a rand
number from 1 to 20, and ask you to guess the nunvloel only get six guesses, but the computer will
tell you if your guess is too high or too low. by guess the number within six tries, you win.

Because this program is a game, we'll call the tnegylayer .

First, type this code in exactly as it appears jend then save it by clicking on the File menu and
then Save As. Give it a file name lilgyess.py . Then run it by pressing the F5 key. Don't wofry i
you don't understand the code now, I'll explastép by step.

Be sure to type it exactly as it appears. Sombaefihes don't begin at the leftmost edge of the, li
but are indented by four or eight spaces. Be supaitin the correct amount of spaces for the start
each line.

Some of these lines are too long to fit on oneilmine page, and it wraps around to the next line.
When you type them into the file editor, type thises of code all on the same line. You can tedl i
new line starts or not in this book by the line tn@rs on the left side. For example, this has amty t
lines of code, even though the first line wrapsuach

1. print 'This is the first line! XXxXxxxxxxjx
XXXXXXX'
2. print 'This is the second line!’

Sample Run

Here is the text from a sample run of this game fExt that the program prints out is in blue, Hre
text that the player types in is in black and ifdbo

Hello! What is your name?

Albert

Well, Albert, | am thinking of a number between 1 a nd 20.
Take a guess.

10

Your guess is too high.

Take a guess.

2

Your guess is too low.

Take a guess.

4

Good job, Albert! You guessed my number in 3 guesse s!

Source Code

guess.py

1. # This is a guess the number game.
2. import random
S}
4. guessesTaken =0
5.
6. print 'Hello! What is your name?'
7. myName = raw_input()
8.
9. number = random.randint(1, 20)
10. print 'Well, ' + myName + ', | am thinking of a number
between 1 and 20.
11.
12. while guessesTaken < 6:
13. print 'Take a guess.' # There are four space sin

front of print.
14. guess =raw_input()
15. guess = int(guess)

16.

17. guessesTaken = guessesTaken + 1

18.

19. if guess < number:

20. print "Your guess is too low." # There a re
eight spaces in front of print.

21.

22. if guess > number:

23. print "Your guess is too high.'

24,

25. if guess == number:

26. break

27.

28. if guess == number:

29. guessesTaken = str(guessesTaken)

30. print'Good job, ' + myName + 'l You guessed my
number in ' + guessesTaken + ' guesses!

31.

32. if guess != number:

33. number = str(number)

34. print 'Nope. The number | was thinking of wa s'+
number

Even though we are typing in our source code inoftle editor new window, we can still go bacl
the shell to type in individual instructions to seleat they do. The interactive shell is very gooo

experimenting with different instructions when we aot running a program.

Code Explanation

Let's look at each line of code.

1. # This is a guess the number game.

This is a comment. Remember that Python will igrererything after the # sign. This just reminds
us what this program does.

2. import random

This is animport statement . Theimport statement is not a function (it does not havehese:
after its name). The statement has a special Pybpnord, like theprint statement has, called the
import keyword. Many functions likeaw_input() are included with every Python program. But
some functions exist in separate programs calleduhes.Modules are other Python programs that
contain other functions that we can use. irhgort statement will add these modules and their
functions to our program.

Theimport statement is made up of timeport keyword followed by the module name.
This line imports a module nameahdom . Therandom module has several functions related to

random numbers. We'll use one of these functiaes ta have the computer come up with a random
number for us to guess.

4. guessesTaken =0

This creates a new variable nangeessesTaken . We will store the number of guesses we've
made in this variable. Since the player hasn't neayeguesses so far, we will store the intéhbere.

. . you
7. myName = raw_inp

ut()

These two lines are identical to our Hello Worldgnam. Programmers will often reuse code from
heir other programs when they need the progrado tsomething similar. When these two lines are
axecuting, the string of the player's name wilsb@ed in themyNamevariable. (Remember, the string
night not really be the player's name. It's jusateler string the player typed i

9. number = random.randint(1, 20)

Here we are calling a new function nammaddint() , and then storing the return value in a vari
1amecdnumber . Becausgandint() is one of the functions that thendom module provides, we [
andom. (that is, the word "random"” followed by a periaal¥ront of it to tell our program the functi
s in therandom module. Theandint() function will return a random integer between (and
ncluding) the two integers we give it. Here, weajit the integers 1 and 20 between the parenttibat
ollow the function name (separated by a comma)atéer the random integer tirandint has
‘eturned is, it is stored in a variable narnumber .

Just for a moment, go back to the interactive shadl typagmport random to import the random
nodule. Then typrandom.randint(1, 20) to see what the function call evaluates to. It veturi
an integer that between 1 and 20. Type it agait tlae function call will probably evaluate to afdient
nteger. This is because each timerandint() function is called, it will evaluate to some rantdo
wumber. This is like when you roll some dice, yall @ome up with a random number each ti

e randotm

»r> random.randint (1, 20)
1z

»r> random.randint (1, 20)
15

»r> random.randint (1, 20)
3

»r> random.randint (1, 20)
15

»r> random.randint (1, 20)
-

Frr

Whenever we want to add randomness to our gamesamvase theandint() function. And we
Ise randomness in most games. (Think of how maaydbgames use dic

You can also try out different ranges of numberslgnging the arguments. Ty

random.randint(1, 4) to only get integers between 1 and 4 (includinthdoand 4). Or try
random.randint(1000, 2000) to get integers between 1000 and 2000.

»rx random.randint (1, 4]

3

»rx random.randint (1, 4]

4

»rx random.randint (1, 4]

1

»rx random.randint (1, 4]

3

»»> random.randint (1000, 2000)
1294

»»> random.randint (1000, 2000)
1555

»»> random.randint (1000, 2000)
1000

»»> random.randint (1000, 2000)
1971

=z |

Be sure to typeandom.randint(1, 20) and notandint(1, 20) , otherwise the computer
will not know to look inside theandom module for theandint() function. Then it will show you
an error like below:

x> randint (1, 20)

Traceback (most recent call last):
File "<pwyshell#lax"™, line 1, in <wmodulex
randintil, 20)
NaweError: name 'randint' is not defined
i

Remember, your program needs to vaport random before it can call theandom.randint
() function. This is whymport statements usually go at the beginning of the rarog

Arguments

The integers between the parentheses imahdom.randint(1, 20) function call are called

arguments . Some functions require that you pass them vaiiles you call them. Look at these
function calls:

raw_input()
random.randint(1, 20)

Theraw_input() function has no arguments. Trandint() function has two arguments.
When we have more than one argument, we sepagatelif putting commas in between

arguments. Programmers say that the argumenteéinaited (that is, separated) by commas. This
is how the computer knows when one value ends aather begins.

If you pass too many or too few arguments in ationacall, Python will display an error message
the picture below, we first callgandint() with only one argument (too few), and then weezll
randint() with three arguments (too many).

»»> rahndom.randint (1)

Traceback [(moszt recent call last):
File "<pyshell#z=", line 1, in <module:
random. randint (1)
TypeError: randint () takes exactly 3 arguments (2 given)
»»> rahdom.randintil, 2, 31

Traceback [(moszt recent call last):
File "<pyshell#i=", line 1, in <module:x
random.randint (1, 2, 31
TypeError: randint () takes exactly 3 arguments (4 given)
o

Code Explanation continued...

10. print 'Well, ' + myName + ', | am thinking of a number
between 1 and 20.

Thisprint statement welcomes the player by name, and kedha that the computer is thinking ¢
random number. Remember how | saidphiat statement only takes one string? It does. Lodkeat
line carefully. The plus signs concatenate theetlstengs to evaluate down to one string, andighiie
one string for thg@rint statement. It might look like the commas are s&jrag the strings, but if you
look closely you see that the commasiasale of the quotes and part of the strings themselves.

12. while guessesTaken < 6:

This is awhile statement . Like import , it has a special keyword to Python. Wiale statemer
is made up of thevhile keyword, followed by an expression, followed byadon (the : sign). The
next line after thevhile statement is the beginning of a while-block. ThHelerblock is made up of
the lines of code that have at least 4 or moreespicfront of it (which are lines 13 through 26he

expression next to the while keyword is also caiedndition . Before we understand what is going
on with this code, let's learn about blocks andddams.

Blocks

A block is made up of several lines of code grouped t@getou can tell when the block begins
and ends by looking at the liné'glentation (that is, the number of spaces in front of the)liThe
block starts when the indentation of a line of cad®ore than the previous line. The block ends when
the indentatiometurns to what it was before the block started. It is easier to see with a picture. This
picture has each block highlighted with a differealor:

while guessesTaken < 6:
print ‘Take a guess.’

guess = raw_input ()}
guess = int (guess)
guessesTaken = guessesTaken + 1

1if iueas < number:

if guess > number:
print ‘Your guess is too high.’

The lines of code inside the yellow box are allha same block. Because this block follows the
while statement, we call it a while-block. Blocks camtzin other blocks. Notice that the yellow
block contains the blue and green blocks. The dhegreen blocks are still blocks, even though they
only have one line of code and are inside anotlwmkbThe Python interpreter knows when a block is
finished because a line of code will have the samdentation before the block started.

It is important to get the indentation correct. bBlbuthe indentation of a block is four spaces. The
indentation of a blocknside another block is eight spaces. And the indentation of a bloslkdi@ a block
inside a block is twelve spaces. Notice that whertype code into IDLE, each letter is the same lwidt
You can look at how many letters are on the linevalor below to see how many spaces you have put
in.

The indentation doesn't have to be four spaces tharethe last indentation, but that is the
convention (that is, the usual way of doing thingshe Python language.

Here is a picture of that same code, except nowave red boxes for each space to make it easier to
count the spaces. The yellow block includes alllities with at least four spaces in front. The blue
block is the first line with eight spaces of indaidan. The green block is the second line with €

spaces of indentation. Because there is a line saithller indentation after the blue block, we know
that the blue block has ended. This is why the bl green blocks are separate blocks.

while guessesTaken < 6:
ssesprint ‘Take a guess.’

REmEgIEsSs = raw_input[]
=sssguess = int(guess)
ssnnguessesTaken = guessesTaken + 1

=sssif guess < number:
=sssssseprint ‘Your guess is too low.’

=susif guess > number:
=ssssseeprint ‘Your guess is too high.’

We call the block after thehile keyword a loop block because when the programhesathe
bottom of the block, it will loop back to the tophen it rechecks if the condition is still trueitlfs, our
program enters the loop block again. If the condiis false, then our program jumps down to the lin
after the loop block. The loop block is also caldedhile-block, because it starts with the while
keyword. You can learn what it means for a conditim be true or false in the next section.

Conditions (a special kind of expression) and
Booleans (a new data type)

Remember we were talking about the line of codé tiewhile statement:

12. while guessesTaken < 6:

| called the expression that came afterwtile keyword the condition. How do we know it is an
expression? Because it contains two values (theevialthe variablguessesTaken |, and the integer
value6) connected by an operator (tResign, which is called the "less than" sign). Tikia new type
operator called aomparison operator . Expressions with comparison operators won't etelto an
integer or a string, but a new data type calledalean .

What's a boolean? Well, for the integer data tyipere are many different integer values we can

4
99

0
1236892892

And for the string data type, there are also mafigrént string values we can have:

'Hello world!"

'‘My name is Albert.'
'fhsu$Siwehiuratihggs@is34
I42l

But for the boolean data type, there are two ary twvo values:

True
False

When you type one of these values into your programember that they are case-sensitive. You
must typelrue orFalse , nottrue or TRUEorfAISe . Boolean values are not string values, so you
do not put a ' quote character around them.

A condition is an expression that uses comparison operataeh és the< "less than" sign).
Conditions will always evaluate to a boolean vallias is like how expressions with math operators
(like + or - or *) will evaluate to integers.

Let's look at the condition in our codgiessesTaken < 6

What this translates to is "is the value storeguassesTaken less than the valug?" If it is, then
the condition evaluates forue . If it does not, then the condition evaluate§#adse . Remember in
line 4, we stored the valukin guessesTaken . So this condition is asking, "is the value 0 &
the value 6". We know that this is true, so thedibon evaluates to the boolean valuelofie .

Let's go back to the interactive shell for a bitp& in the following conditions (which are also
expressions):

0<6
6<0
50<10

10 < 11
10< 10

The conditiorD < 6

x> 0 < 6
True

x> B < 0
Fal=se

=r> 50«10
Fal=se

x> 10 <
True

x> 10 < 10
Fal=se

i

11

returns the boolean valdgue because the number O is less than the number

6. But because 6 is not less than 0, the cond@isr® evaluates téalse . 50 is not less than 10, so
50<10 isFalse .10 isless than 11, 4& <

11 is True .

But what aboul0 <10 ? Why does it evaluate fealse ? Because the number 10 is not smaller
than the number 10. They are exactly the samel§iadéce was the same height as Bob, if would be
false to say that Alice was shorter than Bob. Lilseyl0 < 10 evaluates té-alse .

There are some other comparison operators besidésre they are:

Operator Sign

Operator Name
Less than
Greater than
Less than or equal tg
Greater than or equal
Equal to
Not equal to

Let's try typing some conditions into the shels&® how these operators work:

0>6
6>0
10> 10
10==10
10==11
11 ==10
10!=10
10!1=11
'Hello'
'Hello’
'Hello' == 'HELLO'
'‘Good bye' I= "Hello'

'Hello'

'‘Good bye'

x> 0 > B
False

>xx B > 0
True

»xx 10 > 10
False
>xx 10
True
>xx 10
False
>xx 11
False
»xx» 10 '= 10

False

Fxxo10 1= 11

True

>»>» 'Hella' == 'Hello!
True

>»» 'Hello' == 'Good hye!
False

»x» 'Hello' == 'HELLO!
False

>»» 'Good bhye' !'=s 'Hello!
True

x|

10

11

10

Notice that there is a difference between the assent operator (the sign) and the "equal to"
comparison operator (the= sign). The= sign is used to assign a value to a variable tlaed= sign is
used in expressions to see if two values are time ga not. It's easy to accidentally use one wioen y
meant to use the other, so be careful of what ype in.

Now that we have covered what conditions, comparggeerators, and booleans are, let's talk about
whatwhile statements do.

12. while guessesTaken < 6:

Thewhile statement marks the beginning déap . Sometimes in our programs, we want the
program to do something over and over again. Wherexecution reachesnile statement, it
evaluates the condition next to twbile keyword. If the condition evaluatesToue , the execution
moves inside the while-block. (In our program, wigle-block begins on line 13.) If the condition
evaluates tdralse , the execution moves past the while-block. (Inmnagram, the first line after the
while-block is line 28.

if False... if True...

while guessesTaken < 6:
print 'Take a guess.'
guess = raw_input ()
guess = int (guess) ...go hE.r'E.,

guessesTaken = guessesTaken + 1

if guess < number:
print 'Your guess 1is too low.'

if guess > number:
print 'Your guess 1s too high.'

if guess == number:
break

if guess == number:

...go here.

Let's say the condition evaluatesTiwe (which it does the first time, because the value o
guessesTaken is0.) Execution will enter the while-block at line 48d keep going down. After the
reaches the end of the while-block, instead of goiown to the next line, it jumps back up to the
while statement's line (line 12). It then re-evaluabesdondition, and if it igrue then we enter the
while-block again.

This is how the loop works. As long as the conditi®True , we will keep executing the code inside
the while-block over and over again until we retdhend of the while-block and the condition is
False . So untilguessesTaken is equal to or greater th&n we will keep looping. Think of the
while statement as saying, "while this condition is tkeep looping through the code in this block".

Code Explanation continued...

13. print 'Take a guess.' # There are four space sin
front of print.
14. uess = raw_input()

The program will now ask us for a guess. We typehiat we guess the number is, and then this is
stored in a variable nam@uess .

15. guess = int(guess)

Here we call a new function calléat() . Theint() function takes one argument. The
aw_input() function returned a string of text that playeregipBut in our program, we will want an
nteger, not a string. Remember that Python consithe string '5' and the integer 5 to be diffe
ralues. So thint() function will take the value we give it and retuhe integer form of it.

Let's play around with th@t() function in the interactive shell. Try typing tf@lowing:

int('42")
int(42)
int("hello’)
int(‘forty-two")
int" 42)
2 +int('2")

3w oint (' 42')
4z

> int (42)

4z

»>» int({'hello')

Traceback (most recent call last):
File "<pyshell#d>", line 1, in <module>
int ('hellc')
ValueError: inwvalid literal for int()] with base 10: 'hello!
Fr» int ['forty-two')

Traceback (most recent call last):
File "<pyshell#&>", line 1, in <module>
int ('forty-twao')

ValueError: inwvalid literal for int()] with base 10: 'forty-two!
=rx o odint (! 42 "

4z

Frx 2 4 Ant ('2')

4

s |

We can see that thiet('42") call will return the integer value 42. The(42) will also do this

(though it is kind of pointless to convert an irge¢p an integer). However, even though you cas
a string to thent() function, you cannot just pass any string. Pashielp' toint() (like we
do in theint('hello’) call) will result in an error. The string we passnt() must be made up
of numbers.

And the integer we passiat() must be in numbers, it cannot be written out. Thishyint
(‘forty-two") also fails and produces an error. Thi€) function is slightly forgiving, because
if our string has spaces on either side, it will ain without error. (This is why thiat
¢ 42) call works.)

The?2 + int('2") line shows an expression that adds an integetl#teeturn value dft
('2") (which evaluates to 2 as well). The expressiohuatas to 2 + 2, which then evaluates to 4. So
even though we cannot add an integer and a sirg4’' would show us an error), we can add an
integer to a string that has been converted tot@ger.

Theguess variable originally held the string of what theyér typed. We will overwrite the string
value stored in guess with the integer value retifoy thent function.

In our Guess the Number game, if the player typesbimething that was not a number, then the
function callint would result in an error and the program wouldlran the other games in this bo
we will add some more code to check for error cboais like this and give the player another chaoce
enter a correct response.

17. guessesTaken = guessesTaken + 1

Now that the player has taken a guess, we wantctease the number of guesses that we remember
the player taking. The first time we enter the Idbgpck, guessesTaken has the value of 0. Python
will take this value and add 1 to it. 0 + 1 is heh Python will store the new value of 1 to
guessesTaken . After this line, the value afuessesTaken will be 1 more than it was previously.

It is easy to think of this line as meaning, "thessesTaken variable should be one more than
what it already is". When we add one to a valueg@mmers say they airecrementing the value
(because it is increasing by one). When we subtmaetfrom a value, programmers say they are
decrementing the value (because it is decreasing by one).

if Statements

19. if guess < number:
20. print "Your guess is too low." # There a re

H eight spaces in front of print. “

This is called aiif statement. It has a new keywoifd,. Next to théf keyword is the condition. T
Jlock that follows thdf keyword is called an if-block. ThHé statement is very similar to théhile
statement. They both have a keyword, followed byradition, and then a block of co

fiz=y < 10:
I | | |

if condition
keyword

fizzy > 61
I | | |

while condition
keyword

Theif statement works almost the same way whie statement, too. If the conditionTsue
hen execution enters theblock. If the condition ig-alse , then the execution skips past the if-block.
Jnlike the while-block, execution does not jump back to thestatement at the end of the if-block. It
ust continues on down to the next |

Thisprint statement is the only line inside theblbck. If the integer the player typed is less thtze
andom integer the computer thought up, then wkdigiplay to the playe"Your guess is too
ow." If the integer the player entered is equal tcaoger than the random integer (in which case, the
>ondition next to thif keyword would have bedtalse), then this block would have been skipped
wer

Code Explanation continued...

22. if guess > number:
23. print "Your guess is too high.'

Here is anothelf statement. This time, we check if the player'ssgtis larger than the random
nteger. If so, we will enter the-block that follows it. Therint line tells the player that their guess is

too big.

In case you haven't thought of it, these two camalét cannot both bérue . The player's guess
(which is stored in thguess variable) can either be higher OR lower than th@pguter's guess, but it
can not be higher AND lower. This means we will @esee both messages at the same time. There is
one more case to consider, and that is if the gsesgual to the random integer. We will cover this
the next line.

25. if guess == number:
26. break

Thisif statement's condition checks to see if the guesgual to the random integer. If it is, we \
enter the if-block that follows it.

The line inside the if-block is just@meak statement. Thbreak statement tells the program to
immediately jump to the out of the whildeck that it is inside of, and to the first linkteat the end of th
while-block. Thewhile statement's condition is not rechecked.

Thebreak statement is just tHeeak keyword by itself, with no condition or colon (thsign).

If the player's guess is not equal to the randdeger, we do not break out of the while-block, we
will reach the bottom of the while-block anyway. @nwe reach the bottom of the while-block, the
program will loop back to the top and recheck thedition QuessesTaken <6). Remember after
theguessesTaken = guessesTaken + 1 line of code executed, the new value of
guessesTaken is1. Becausd is less tha®, we enter the loop again.

If the player keeps guessing too low or too higle,talue ofjuessesTaken will change ta2, then
3, then4, then5, then6. If the player guessed the number correctly, thaition in theif guess
== number statement would b&érue , and we would have executed threak statement. Otherwis
we keep looping. But when guessesTaken has theenfivgiored, thavhile statement's condition is
False . (6 is not less thaf, rather6 is equal td&5) Because thevhile statement's condition is
False , we will not enter the loop and instead jump te émd of the while-block.

28. if guess == number:

This line of code isn't the same line in line 2BisTline has no indentation, and is outside thdawhi
block. When we got out of thehile block, it was either because thhile statement's condition w

False (which happens if the player ran out of guesseff)we executed thbreak statement

(which happens if the player guessed the numbhbt)ri@n this line we recheck if the player guessed
correctly, and if so, we enter the if-block thatdas.

29. guessesTaken = str(guessesTaken)

This line is inside the if-block, and only execuifethe condition wagrue .

This line is like theguess = int(guess) line of code. Here we call the new functistn()
which returns the string form of the argument weegt. We want to change the value in
guessesTaken (which is an integer) into the string versiontsgif.

Thestr() andint() functions are very important, because it is imgaoirto know that integers
and strings are different data types with diffeneadties. The intege¥2 and the stringd2" are entirel
different. But if we ever need to get the valu®oé data type as a value of another data Stpg,
andint() can be very handy.

30. print'Good job, ' + name + ' You guessed m y
number in ' + guessesTaken + ' guesses!

This line is also inside the if-block, and only extes if the condition wakrue .

This line will tell the player that they have wand how many guesses it took them. The reason why

we had to change the guessesTaken value intang sdrbecause we can only add strings to other

strings. If we tried to add a string to an intedlee, Python interpreter would get confused andlaysan
error.

32. if guess != number:

Thisif statement's condition has a new sign. Just ligethsign means "is equal to", ttre sign
means "is not equal to". If the value of guessvedr than or higher than (and therefore, not etp)al
the random number, then this condition evaluatdsuwe , and we would then enter the block that

follows thisif statement.

33. number = str(number)

This line is inside the if-block, and only execuifethe condition wagrue .

In this block, because the player did not guessahdom number we will tell them what it is. But
first we will have to store the string versionmafmber as the new value efumber .

34. print 'Nope. The number | was thinking of wa s'+
number

This line is also inside the if-block, and only extes if the condition wabrue . This line tells the
player what the random number was. At this poim,have reached the end of the source code, so the
program terminates.

We've just programmed our first real game! In tst thapter we learned about values and
expressions and variables. In this chapter we éshhow we can use those along with while , and
break statements to make the program do different thioaged on the value of variables or
expressions.

Step by Step, One More Time

Let's go over the code one more time. To help ywetstand everything, | will briefly go through
program just like the computer would, starting frma top. We will remember what the values of
variables are ourselves (you can write them dowa piece of paper as we go). This is catlagding
through the program. It's what programmers dogoré out exactly how the program will behave.
Some lines of code are executed more than oncabedhey are inside loops), so we will go over
those lines of code more than once.

1. # This is a guess the number game.

This line is a comment. The computer will ignorestime, and move down to line 2.

2. import random

This line willimport therandom module so that we can use tiae@dint() function in our
program. Line 3 is blank, so the computer will s&hpgead to line 4.

4. guessesTaken =0

The computer will create a new variable calie@ssesTaken , and the integed will be stored
inside this variable.

6. print 'Hello! What is your name?'

A greeting is displayed to the player.

7. myName = raw_input()

Theraw_input() function is called, and will let the user typeaistring. This string is then stored
in a variable calledhyName Let's pretend that when the program runs, thgepleypes in Bob. The
value of themyNamevariable is the stringBob'

9. number = random.randint(1, 20)

On line 9 we call theandint() function, which is inside theandom module. Because this
function is inside a module we imported, we havpubthe module name and a period in front of the
function name. The two arguments we pass are tagaemsl and20. This tells theandint()
function to return a random integer between 1 @h{iritluding 1 and 20). Let's pretend that it retur
the intege8. The value ohumber will be 8.

10. print 'Well, ' + myName + ', | am thinking of a number
between 1 and 20.

Because the value inside&yNameis the stringBob' , this will print outWell, Bob, | am
thinking of a number between 1 and 20.

12. while guessesTaken < 6:

This is the start of a while-block. If the condities True , then the program execution will enter the
while-block. If the condition isalse , we will skip past the while-block to line 28. Thariable
guessesTaken hasO stored inside of it, and is less tha, which makes the conditiofrue . So
the next line to run is line 13.

13. print 'Take a guess.' # There are four space sin
front of print.

We print a message that asks the player to typevadue. There is a comment on this line that the
computer ignores. The comment reminds the prograrttmaéwe should put four spaces at the
beginning of the line because we are now insideekb

14. guess =raw_input()

The player now types in a string, and this strinlfjlve stored in thgguess variable. Let's pretend
that the player typed in the striig’

15. guess = int(guess)

We want to store the integer value of what the gildyped in, not the string valuet() function
will return the integer value of the argument weegt. (The argument is the value in between the
parentheses next to the function name "int".) Tinesg variable holds the stril@' , s0'12' s the
argument we pass to th#() function, and the integer vall2 is what thent() function returns.
This value is then stored as the new value irgthess variable. After this line runs, guess stores the
integerl? instead of the string 2’

17. guessesTaken = guessesTaken + 1

The value stored iguessesTaken isO (this was set on line 4). We want to keep trackaf
many guesses the player has taken, so we maketwhealue ofguessesTaken to be the current

value ofguessesTaken plus one. After this line executegjessesTaken will now hold the
integerl.

19. if guess < number:

Now we check if the if-statement's conditionTisie . The value ofjuess is the integell2 (set on
line 15), and the value oumber is 8 (set on line 9)12 is not less thaB, so this condition ifalse .
That means we will skip the if-block that followsdago directly to line 22.

22. if guess > number:

This if-statement's condition lBue , becausé? is larger thar8, so the program execution enters

the if-block at line 23.

23. print "Your guess is too high.'

We display a message that tells the player thessgwas too high.

25. if guess == number:

The condition in this if-statementksilse , becausd? is not equal t&. We skip the if-block that
follows. But line 28 has fewer spaces than the gmaces we have been indenting our code inside the
while-block. That means we have reached the emldeofvhile-block too, and execution will loop back
to the while-statement on line 12.

12. while guessesTaken < 6:

The condition for the while-statementlisue , becausguessesTaken is1, butl is still less than
6. So the program execution enters the while-blddina 13.

13. print 'Take a guess.' # There are four space sin
front of print.

We display this message to the player again.

14. guess = raw_input()

We get a string typed by the player, and stone ihe variablguess . Let's pretend that the user
typed in the stringg’ . The string6' is stored in the variable guess, and the old vafue is
forgotten.

15. guess = int(guess)

We want to get the integer value of the stringdagiuess . We pass that() function an
argument of6’ |, and it will return6. The new value ajuess is the integeb.

17. guessesTaken = guessesTaken + 1

We want to increase the number of guesses takendyso the new value gfiessesTaken is the
current value (the integédy) plus one. The new value géiessesTaken is?2.

19. if guess < number:

We check to see if this if-statement's conditiofrige . It is, becausé is less tha®. That means
our program'’s execution will enter the if-blocKiage 20.

20. print "Your guess is too low.' # There a re
eight spaces in front of print.

We display a message to the player tell them tiet guess was too low. The text after the # pound
sign is a comment and is ignored.

T ou u T “

We check ifguess (the integeb) is greater thanumber (the integeB). It is not, so this condition
-alse and we skip the if-block.

25. if guess == number:

We check ifguess (the integeb) is equal tonumber (the integeB). It is not, so this condition is
-alse and we skip the if-block. We have reached thedadrile while-block, so we jump back to line
L2.

12. while guessesTaken < 6:

This time when we check the conditigquessesTaken has the valu8. But3 is still less tha®, sc
he condition isTrue and we enter the while-block again.

13. print 'Take a guess.' # There are four space sin
front of print.

We ask the player to type in a number again.

14. guess = raw_input()

The function call to theaw_input() function lets the player type in a string. Let'stpnd that the
Jlayer types in the strin'8' . Then the new value guess is'8'

15. guess = int(guess)

We want to get the integer value of the stringdagiuess . We pass that() function an
argument of8" , and it will return8. The new value ofuess is the integeB.

17. guessesTaken = guessesTaken + 1

We want to increase the number of guesses takendyso the new value gfiessesTaken is the
current value (the integ@) plus one. The new value géiessesTaken is 3.

19. if guess < number:

We check ifguess (the integeB) is less thamumber (the integeB). It is not. (If | had 8 apples
and you had 8 apples, you would not say | haddpptes than you because we have an equal num
apples.) This condition Kalse and we skip the if-block. Next we execute line 22.

22. if guess > number:

We check ifguess (the integeB) is greater thanumber (the intege®B). It is not, so this condition
is False and we skip the if-block. Next we execute line 25.

25. if guess == number:

We check ifguess (the integeB) is equal thamumber (the integeB). It is, so we enter the if-
block at line 26.

26. break

Thebreak statement tells us to break out of the while-bltiekt we are inside, and go to the first
line after the while-block. This will be line 28.

28. if guess == number:

We check ifguess (the integeB) is equal thamumber (the integeB). It is, so we enter the if-
block at line 29.

29. guessesTaken = str(guessesTaken)

On this line we conveguessesTaken to the string3'

30. print'Good job, ' + myName + 'l You guessed my
number in ' + guessesTaken + ' guesses!

Now we display the winning message to the playke WariablenyNameholds the string value
'‘Bob' andguesses holds the string valu&' , so the final string printed ISood job, Bob!
You guessed my number in 3 guesses!

“ 32. if quess != number: “

This condition will evaluate téalse , so we skip past the Hlock that follows it. But there is no m
>ode after it, so the program termine

Some Changes We Could Make

This has been our first game! It was kind of loago through everything and a lot to learn, but now
/ou are a real game programmer. Just for fun,langing this program to change the way the g
yehaves

For example, you can change these lines:

9. number = random.randint(1, 20)
10. print 'Well, ' + name + ', | am thinking of a nu mber
between 1 and 20.’

into these lines:

9. number = random.randint(1, 100)
10. print'Well, ' + name + ', | am thinking of a nu mber
between 1 and 100"

and now the computer will think of an integer bedw#& and100.

Or you can change this line:

12. while guessesTaken < 6:

into this line:

12. while guessesTaken < 4:

and now the player only gets four guesses instéack guesses.

What Exactly is Programming?

If someone asked you, "What exactly is programnaingway?" what could you say back to them?
Programming is just the action of writing the cddeprograms, that is, creating programs that ean b
executed by a computer.

"But what exactly is a program?" When you see saoraasing a computer program (for example,
playing our Guess The Number game), all you seense text appearing on the screen. The program
decides what exact text to show on the screen fwhicalled theutput), based on its instructions a
on the text that the player typed on the keyboatddh is called thénput). The program has very
specific instructions on what text to show the ugeprogram is a collection of instructions.

"What kind of instructions?" There are only a feiffedtent kinds of instructions, really.

o Expressions, which are made up of values connéxtegberators. Expressions are all evaluated
down to a single value, like + 2 evaluates téd or'Hello' + ' ' + "World' evaluates
to 'Hello World' . Function calls are also part of expressions bexthey evaluate to a sin
value themselves, and this value can be connegtegdrators to other values. When expressions
are next to th& andwhile keywords, we also call them conditions.

¢ Assignment statements, which simply store valuesimables so we can remember the values
later in our program.

o if ,while andbreak areflow control statements because they decide which instructions
are executed. The normal flow of execution for@gpam is to start at the top and execute each
instruction going down one by one. But these fl@mtool statements can cause the flow to skip
instructions, loop over instructions, or break olbops. Function calls also change the flow of
execution by jumping to the start of a function.

e Theprint statement, which displays text on the screen. Alssraw_input() function can
get text from the user through the keyboard. Thsalledl/O (pronounced like the letters, "eye-
oh"), because it deals with theput and atput of the program.

And that's it, just those four things. Of coursmre are many details about those four types of
instructions. In this book you will learn about ndata types and operators, new flow control staigs
besidesf ,while andbreak , and several new functions. There are also difterges of I/O (input
from the mouse or files on the hard drive, and otlitpg sound and graphics and pictures insteadsif |
text.)

For the person using your programs, they really cate about that last type, 1/0. The user types on
the keyboard and then sees things on the screegaos things from the speakers. But for the conmmpute

to figure out what sights to show and what soundddy, it needs a program, and programs are just a
bunch of instructions that you, the programmer ghaxitten.

A Web Page for Program Tracing

If you have access to the Internet and a web bngwee can go to these web sites and see a "v

tracing" web page that will show each step of ttegpam. This might make it more clear what the
Guess the Number program does.

REET
_E‘ﬂ Edt ¥ew Hegtory WH Iooks - Help
@ - - it | [heopeffpyvthorbost eoffeschest natftrace | Guecs Thetiumber himl R e A

L|Huwﬂwﬂmdmuﬁwﬂunhumnmga__

Pevons | Mea | [_wme | Sep#t1 | Current variable values
Source code:guess.py

guessesTaken==0
rmytame == "Albert’

1. # This is a gquess the number game. number ==

Z. 1mport random guess =="12

€

4. guessesTaken = 0

i Notes

&:. print 'Hellol What is your namey’

7. mytame = raw_input{) We change gusss to the inkeger version of it's valus
8.

9, number = random.randint(l. 20)

10.

print ‘Well, ' + mMame + ', Ton Program output

thinking of a number between 1 and 20.

12. while guessesTaken < E&: Hello! YWhat is your nama?

13. print 'Take a guess.' # There are |Albert =1
four spaces 1n front of print. Well, Albert, | am thinking of 8 number betweaen 1 and

14, quess = raw_input() 20

15. guess = 1nt(guess) Taka & guess

16. 12

17. guesseslaken = guessesTaken + 1

18.

19, 1f guess < npumber:

20. print 'Your guess is too low.”
There are sight spaces in front of
primt.

45 | Done 1 0

The left side of the web page shows the source,@utkthe highlighted line is the line of code fis:
about to be executed. You execute this line andento¥he next line by clicking the "Next" buttonoty
can also go back a step by clicking the "Previdugton, or jump directly to a step by typing ittive
white box and clicking the "Jump" button.

On the right side of the web page, there are theegons. The "Current variable values" sectiome
you each variable that has been assigned a vatungy with the value itself. The "Notes" sectionIwil
give you a hint about what is happening on thellggted line. The "Program output” section showe
output from the program, and the input that is senhe program. (This web page automatically enter
text to the program when the program asks.)

So go to each of these web pages and click thet"exl "Previous" buttons to trace through the
program like we did abov

e Guess the Number, trace 1 -
http://pythonbook.coffeeghost.net/bookl/tracesétasuessTheNumber.html

o Guess the Number, trace 2 -
http://pythonbook.coffeeghost.net/bookl/traceséPasuessTheNumber.html

Things Covered In This Chapter:

import statements

Modules

Arguments

while statements
Conditions

Blocks

Comparison operators

The difference between and==.
if statements

Thebreak keyword.

Thestr() function.
Therandom.randint() function.

Chapter 3 - Jokes

How Programs Run on Computers

Now we will write a program to tell jokes to theensBefore we go into the code, you should know
how your programs run on the computer.

The computer you use runs a very large progrartectahoperating system . Your operating
system (called a@S (pronounced like the letters, "oh-ess") for shor@y be Windows, MacOS, Linux
or another one. The OS is a program that runs pitograms calledpplications like a web browser,
word processor, emalil client, or computer games. @8 makes it easy for programmers to write
applications and games that can run on computede ma of different hardware.

Hardware includes the parts of the computer that you canfidthe monitor, or the keyboard and
mouse, or a printerfoftware is another name for programs like the OS or appbos or games that
run on the computer. Think of the computer aswate a book. The book's hardware would be the
cover and paper pages and even the ink on the(flegthings you can touch.) The book's software
would be the story and characters that the boo&ribes. Using software or playing games that were
made by someone else is like reading a book ofesttiat was written by another person. But writing
software (such as your own games) is like writiogryown stories.

It would be very difficult for programmers to matkeir programs run on several different pieces of
hardware. For example, when you write your games,don't need to know how to make text appear
on all the different monitors made by all the diffiet companies in the world. Your program just &as
print statement, which tells the OS to figure out howntke it appear on the monitor no matter what
brand or type of monitor the user has.

The OS makes running programs easy on us, buit drsy knows a language calledachine
code . Machine code has some very, very, very basicuosbns that are simple enough for computer's
main microchip (called th€PU ("see-pee-you"), oCentral Processing Unit) to understand.
Writing programs in the machine code language iig ieng and boring.

Machine code is written in ones and zeros and likekpages and pages of this: 10101101 00110000
11000000. These instructions aren't very easydardns to work withAssembly language gives
instructions names like MOV, JMP, PUSH, or XOR.dlimakes reading and writing the instructions
easier but putting them together in a programilidetg and complicated.

This is wherehigher-level programming languages come in. High-level languages include
Python, Java, C++, Pascal, Perl, Basic, and mdmratThese languages take care of many of the
details of machine code. A programmer writes hegm@m in a higher-level language like Python, and
then a program called theterpreter translates this language into machine code tleatdmputer
executes. Even though our "Hello world!" programswast one line long when written in Python, in
machine code it would be several hundred or a fewdand lines.

The interpreter is the program you downloaded fhaitp://www.python.org and installed in chapter
one. That download also included a program callddHE, which is the program we type our code it

When we run a program in the file editor, or typerastruction into the interactive shell, the IDLE
program sends that source code to the Python neterpfor translation. The interpreter translatesto
machine code, and then the CPU understands hawtthe program.

Whew! That was a lot of information. As computees faster and faster, they also become more and
more complicated. To manage all of this complextpgrammers started to write programs that would
help them write new programs! One of these progiarttse Python interpreter that you are using. This
is kind of like using a stone axe to help buildsanmer, and then a hammer to help build a electilic d
and other power tools, and then using those poweds to build a large bulldozer.

The reason | am explaining all of this is so that ynderstand that when you write code in Pythion, i
is being passed to another program called the Ryititerpreter, which then translates it so that the
operating system and computer can run your code.

This next program is simpler compared to the "GuiessNumber" game in chapter two. Open a new
file editor window by clicking on File, then cliaky on New Window and enter this source code:

Sample Run

What do you get when you cross a snowman with a vam pire?
Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock.

Who's there?

Interrupting cow.

Interrupting cow wh MOO!

Source Code

jokes.py

1. print 'What do you get when you cross a snowman w ith a
vampire?'

raw_input()

print 'Frostbite!"

print

print 'What do dentists call a astronaut\'s cavit y?'

Dl 5= £O [

6. raw_input()

7. print ‘A black hole!

8. print

9. print 'Knock knock.'
10. raw_input()

11. print "Who's there?"
12. raw_input()

13. print 'Interrupting cow.'
14. raw_input()

15. print 'Interrupting cow wh',
16. print ‘'MOO!'

Don't worry if you don't understand everything e orogram. Just save and run the program.

Code Explanation

Let's look at the code more carefully.

1. print 'What do you get when you cross a snowman w ith a
vampire?'

2. raw_input()

3. print 'Frostbite!"

4. print

Here we have thregrint statements. Because we don't want to tell theeplajnat the joke's punch
ine is, we have a call to tlraw_input() function after the firsprint statement. The player can
‘ead the first line, press Enter, and then reagbtimeh line

The user can still type in a string and hit Enlbert, because we aren't storing this string in amiatée
he program will just forget about it and movelte hext line of cod

The last call to therint statement has no string. This tells the prograjusbprint a blank line.
3lank lines can be useful to keep our text frormgdaunched up togeth

5. print 'What do dentists call a astronaut\'s cavit y?'
6. raw_input()

7. print 'A black hole!

8. print

In the firstprint statement above, you'll notice that we have angight before the single quote (
s, the apostrophe). This backslash (\ is a basksl/ is a forward slash) tells us that the lettgrt after
t is anescape character . An escape character helps us print out lettextsate hard to enter into the
source code. There are several different escapaathes, but in oLprint statement the escape
sharacter is the single quc

We have to have the single quote escape charaataube otherwise the Python interpreter would
hink that this quote meant the end of the striBugt. we want this quote to be a part of the strivpen
ve print this string, the backslash will not show

Some Other Escape Characters

What if you really want to display a backslash?sTihie of code would not work:

print 'He flew away in a green\teal helicopter.’

That print statement would show up as:

He flew away in a green eal helicopter.

This is because the "t" in "teal” was seen as aapescharacter since it came after a backslash. The
ascape character t simulates pushing the Tab kgpunkeyboard. Escape characters are there s
strings can have characters that cannot be typ

Instead, try this line:

print 'He flew away in a green\\teal helicopter.'

Here is a list of escape characters in Python:

Escape Characters

\\ Backslash (\)
\' Single quote ('
\" Double quote ("
\n Newline

\t Tab

duotes and Double Quotes

Strings don't always have to be in between singtdes in Python. You can also put them in between
louble quotes. These two lines print the same 1

print 'Hello world'
print "Hello world"

But you cannot mix quotes. This line will give yan error if you try to use them:

print 'Hello world"

e 'Hello wor 1o
JyntaxError: EQOL while scanning single-cuoted string
= |

| like to use single quotes because | don't havetd down the shift key on the keyboard to type
them. It's easier to type, and the computer doeargt either way.

But remember, just like you have to use the eschpeacter \' to have a single quote in a string
surrounded by single quotes, you need the escapaathr \" to have a double quote in a string
surrounded by double quotes. For example, lookese two lines:

print 'l asked to borrow Abe\'s car for a week. He said,
"Sure."
print "He said, \"l can't believe you let him borro w your
car.\""
e 'T asked to horrow Akhe''s car for a week. He =aid, "Sure.™
I asked to korrow dbe's car for a week. He =said, "oure. ™
e "He =aid, "I can't heliewe wou let him bhorrow wour car.h ™"
He jaid, "I can't believe wou let him borrow wour car.™
Fr

Did you notice that in the single quote strings younot need to escape double quotes, and in the
double quote strings you do not need to escapéesingtes? The Python interpreter is smart enooigh t
know that if a string starts with one type of quake other type of quote doesn't mean the stang i
ending.

Code Explanation continued...

9. print 'Knock knock.’
10. raw_input()
11. print "Who's there?"
12. raw_input()
13. print 'Interrupting cow.'
14. raw_input()
15. print 'Interrupting cow wh’,

16. print 'MOOQO!" “

Did you notice the comma at the end of the secondst string? Normallyprint adds a newline
“haracter to the end of the string it prints. (Tisisshy a blankprint ~ statement will just print a
1ewline.) This comma means we do not warprint a newline at the end. This is wijOO!'
ippears next to the previous line, instead of ®own line

Things Covered In This Chapter

Usingprint with no parameters to display blank lines.
Escape characters.

Using single quotes and double quotes for strings.

e Using commas at the end of print statements.

Chapter 4 - Dragon Realm

In this game, the player is in a land full of dragoThe dragons all live in caves with their lapges
of collected treasure. Some dragons are friendig,vall share their treasure with you. Other dragon
are greedy and hungry, and will eat anyone whoretibeir cave. The player is in front of two caves,
one with a friendly dragon and the other with admyrdragon. The player is given a choice between th
two.

Open a new file editor window by clicking on théeRnenu, then click on New Window. In the bl
window that appears type in the source code anel theevsource code as dragon.py. Then run the
program by pressing F5.

Sample Run
You are in a land full of dragons. In front of you,
you see two caves. In one cave, the dragon is frien dly
and will share his treasure with you. The other dra gon

is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)

1

You approach the cave...

It is dark and spooky...

A large dragon jumps out in front of you! He opens his jaws
and...

Gobbles you down in one bite!

Do you want to play again? (yes or no)
no

Source Code

dragon.py

1. import random
2. import time

3.

4. def displayintro():

5. print 'You are on a planet full of dragons. | n
front of you,'

6. print 'you see two caves. In one cave, the dr agon
is friendly’

7. print ‘and will share his treasure with you. The

other dragon’

8. print'is greedy and hungry, and will eat you on

sight.'

9. print
10.
11. def chooseCave():
12. cave="
13. while cave !="1"and cave !="2"
14. print ‘Which cave will you go into? (1 o r2)
15. cave = raw_input()
16.
17. return cave
18.

19. def checkCave(chosenCave):

20. print "You approach the cave...'
21. time.sleep(2)

22. print'lt is dark and spooky...'
23. time.sleep(2)

24. print'A large dragon jumps out in front of you! He
opens his jaws and...'

25. print

26. time.sleep(2)

27.

28. friendlyCave = random.randint(1, 2)

29.

30. if chosenCave == str(friendlyCave):

31. print ‘Gives you his treasure!"

32. else:

33. print ‘Gobbles you down in one bite!"

34.

35. playAgain ='yes'
36. while playAgain =="yes' or playAgain =="'y"

37.

38. displayintro()

39.

40. caveNumber = chooseCave()

41.

42. checkCave(caveNumber)

43.

44. print 'Do you want to play again? (yes or no)’

45. playAgain = raw_input()

Code Explanation

Let's look at the source code in more de

1. import random
2. import time

Here we have twonport statements. We import ti@ndom module like we did in the Guess the
Number game. In Dragon Realm, we will also want edime-related functions that tHeme module
includes, so we will import that as well.

4. def displayintro():

5. print 'You are on a planet full of dragons. | n
front of you,'

6. print 'you see two caves. In one cave, the dr agon
is friendly’

7. print ‘and will share his treasure with you. The
other dragon'’

8. print'is greedy and hungry, and will eat you on
sight.’

9. print

Here is a new type of statement, tied statement. Thdef statement is made up of tHef
keyword, followed by a function name with parentteesand then a colon (the : sign). There is a block
after the statement called the def-block.

def keyword parentheses

$ J

chooseCave () :

T

function name colon

Parts of a def statement

def Statements

Thedef statement isn't a call to a function nandégplayintro() . Instead, thelef statement

means we are creating, @efining , a new function that we can call later in our peog. After we
define this function, we can call it the same wagyaall other functions. When we call this functitre
code inside the def-block will be executed.

We also say we define variables when we create thiédman assignment statement. The csp@m
=42 defines the variablgpam.

Remember, the def statement doesn't execute tleerighd now, it only defines what code is

executed when we call tlisplayintro() function later in the program. When the program's
execution reachesdef statement, it skips down to the end of the dethlaVe will jump back to the
top of the def-block when thdisplayintro() function is called. It will then execute all thert

statements inside the def-block. So we call thicfion when we want to display the "You are on a
planet full of dragons..." introduction to the user

When we call thelisplayintro() function, the program's execution jumps to thet sibthe
function on line 5. When the function's block ertig program's execution returns to the line tafied
the function.

11. def chooseCave():

Here we are defining another function calidwoseCave . The code in this function will prompt
the user to select which cave they should go into.

12. cave ="
13. while cave |="1" and cave I="2";

Inside thechooseCave() function, we create a new variable caliede and store a blank string
in it. Then we will start avhile loop. This while statement's condition contaime® operator we
haven't seen before calladd. Just like the or* are mathematical operators, amdor!= are
comparison operators, tl@d operator is &oolean operator .

Boolean Operators

Boolean logic deals with things that are eithee tou false. This is why the boolean data type biak
two values,True andFalse . Boolean statements aafways either true or false. If the statement is not
true, then it is false. And if the statement is fadde, then it is tru

Do you remember how theoperator will combine two integer values and p®la new integer
value (the product of the two original integersytdAdo you also remember how th@perator can
combine two strings and produce a new string vghe concatenation of the two original strings)®2Th
and operator combines two boolean values to produwnaboolean value. Here's how tred
operator works.

Think of the sentence, "Cats have whiskers and Hags tails." This sentence is true, because "cats
have whiskers" is true and "dogs have tails" is #ige.

But the sentence, "Cats have whiskers and dogswiangs." would be false. Even though "cats have
whiskers" is true, dogs do not have wings, so "duwg wings" is false. The entire sentence is tmuly
if both parts are true because the two parts areextied by the word "and." If one or both parts are
false, then the entire sentence is false.

Theand operator in Python works this way too. If the le@ol values on both sides of ted
keyword areTrue , then the expression with thed operator evaluates Torue . If either of the
boolean values aféalse , or both of the boolean values &@se |, then the expression evaluates to
False .

So let's look at line 13 again:

13. while cave |="1" and cave I="2":

This condition is made up of two expressions cotetkby theand operator. We first evaluate these
expressions to get their boolean values. Then \&kiate the boolean values with ted operator.

The string value stored tave when we first execute this while statement istitaak string,”
The blank string does not equal the stfitig , so the left side evaluatesTtoue . The blank string also
does not equal the string , so the right side evaluatesTe . So the condition then turns into
True and True . Because both boolean values aree , the condition finally evaluates foue .
And because the while statement's conditiohrig , the program execution enters the while-block.

This is all done by the Python interpreter, bus important to understand how the interpreter does
this. This picture shows the steps of how the priter evaluates the condition (if the valueave is
the blank string):

while cave !="1"' and cave = '2"

4

while " I="1"' and cave !="'2"

$

while True and cave !="'2"

'

while True and " 1= "2"

'

while True and True:

4

while True:

Try typing the following into the interactive shell

True and True

True and False
False and True
False and False

*>» True True
True

*>» True Fal=se
Fal=se

*»> False True
Fal=se

x> False Fal=se
Fal=se

v |

There are two other boolean operators. The nexisoteor operator. Th@r operator works
similar to theand, except it will evaluate tdrue if EITHER of the two boolean values areue . The
only time theor operator evaluates féalse is if both of the boolean values dralse .

The sentence "Cats have whiskers or dogs have wisgsue. Even though dogs don't have wings,
when we say "or" we mean that one of the two partsie. The sentence "Cats have whiskers or
have tails." is also true. (Most of the time whes say this OR that, we mean one thing is truelm
other thing is false. In programming, "or" meanret thither of the things are true, or maybe botthe
things are true

Try typing the following into the interactive shell

True or True
True or False
False or True
False or False

>x> True True
True

>x> True False
True

>>> False True
True

>>> False False
Fal=se

x|

The third boolean operatori®t . Thenot operator is different from every other operatoivee
seen before, because it only works on one valugww There is only value on the right side of the
not keyword, and none on the left. Thet operator will evaluate tdrue asFalse and will
evaluatgalse asTrue .

Try typing the following into the interactive shell

not True

not False

True not
e True
False
e False
True
»x» True

SyntaxError: invalid syntax
= |

Notice that if we put the boolean value on the $&fe of thenot operator results in a syntax error.

We can use both thend andnot operators in a single expression. Try typinge and not
False into the shell:

x> True Falzse
True
wx |

Normally the expressiofrue and False would evaluate téalse . But theTrue and not
False expression evaluatesfaoue . This is becauseot False evaluates tdrue , which turns the
expression intdrue and True , which evaluates tdrue .

If you ever forget how the boolean operators wgdy can look at these charts, which are called
truth tables :

Entire

statement
True and True is True
True and False is False
False and True IS False
False and False is False
. Entire
A or B IS Satement
True or True is True
True or False is True
False or True is True
False or False is False
. Entire
not A IS statement
not True is False
not False s True

Code Explanation continued...

14.
15. cave = raw_input()

print 'Which cave will you go into? (1 o

Here, the player is asked to enter which cave thege to enter by typing in 1 or 2 and hitting ente
Whatever string the player typed will be storedawe . After this code is executed, we jump back to

the top of thevhile statement and recheck the condition. Remembetthbdine was:

13. while cave |="'1"' and cave !="2":

If this condition evaluates tbrue , we will enter the while-block again and ask tleeypr for a cave

number to enter. But if the player typed in 1 ott&n thecave value will either bel'
causes the condition to evaluatd-ase , and the program execution will continue on phstwhile

loop.

or'2" . This

The reason we have a loop here is because ther pleyehave typed in 3 or 4 or HELLO. C

program doesn't make sense of this, so if the pldigenot enter 1 or 2, then the program loops back
and asks the player again. In fact, the computiipadiently ask the player for the cave numberrove
and over again until the player types in 1 or 2.eWthe player does that, the while-block's conditio
will be False , and we will jump down past the while-block anchitoue with the program.

17. return cave

This is thereturn keyword, which only appears inside def-blocks. Bether how theaw_input
() function returns the string value that the playped in? Or how theandint() function will
return a random integer value? Our function wiloateturn a value. It returns the string thatasest in
cave .

This means that if we had a line of code Bpam = chooseCave() , the code inside
chooseCave() would be executed and the function call will etutochooseCave() 's return
value. The return value will either be the strilg or the strind2' . (Ourwhile loop guarantees tr
chooseCave() will ONLY return eitherl’ or'2')

Thereturn keyword is only found inside def-blocks. Once te®irn statement is executed, we
immediately jump out of the def-block. (This isdikow thébreak statement will make us jump out
a while-block.) The program execution moves badkéoline that had called the function.

You can also use theturn keyword by itself just to break out of the functjqust like thebreak
keyword will break out of avhile loop.

Variable Scope

You should note that the value stored inthge variable in thechooseCave() function is
forgotten after the execution leaves the functiwst like the values in our program's variables are
forgotten after the program ends, variables indigefunction are forgotten after the execution ésav
the function. Note only that, but when executioms&de the function, we cannot see the variables
outside of the function, or variables inside otlugrctions. We call this the variablessope . The only
variables that we can use inside a function ar@ties we create inside of the function. That is, th
scope of the variable is inside in the functiomk. The scope of variables created outside aftians
is everywhere in the program outside of def-blocks.

Not only that, but if we have a variable nanspam created outside of a function, if we create a
variable namedpam inside of the function, the Python interpreter winsider them to be two sepal
variables. That means we can change the valapash inside the function, and this will not change the
spam variable that is outside of the function. Thibécause these variables have different scopes.

We have names for these scopes. The scope outsatidunctions is called thglobal scope . The

scope inside of a function is called tbeal scope . The entire program has only one global scope,
but each function has a local scope of its own.

Variables defined in the global scope can be us#side and inside functions. Variables defined in a
function's local scope can only be used insideftirattion.

When exactly is a variable defined? A variableafired the first time we use it in an assignment
statement. When the program first executes the line

12. cave ="

...the variableave is defined.

If we call thechooseCave() function twice, the value stored in the varialble first time won't be
remember the second time around. This is becausa thie execution left thehooseCave()
function (that is, lefthooseCave() 's scope), theave variable was forgotten and destroyed. But it
will be defined again when we call the functioneaand time.

The important thing to remember is that the valua wariable in the local scope is not remembered
in between function calls.

Code Explanation continued...

19. def checkCave(chosenCave):

Now we are defining yet another function nansbédckCave() . Notice that we put the text
chosenCave in between the parentheses. This is a type oabkricalled arameter . For some
functions, we would pass an argument, like forsti® orrandint() functions:

str(guessesTaken)
random.randint(1, 20)

When we caltheckCave() , we will also pass one value to it as an argumafhien execution
moves inside theheckCave() function, a new variable nametlosenCave will be assigned this
value. This is how we pass variable values to fonstsince functions cannot read variables outside
the function (that is, outside of the function'sse).

Parameters

For example, here is a short program that demdastgarameters. Imagine we had a short program
that looked like this:

def sayHello(hame):
print 'Hello, ' + name

print 'Say hello to Alice.’

fizzy = 'Alice’

sayHello(fizzy)

print ‘Do not forget to say hello to Bob.'
sayHello('Bob")

If we run this program, it would look like this:

FrE

Jay hello to ALlice,

Hello, Alice

Do not forget to say hello to Eob.,
Hello, Eoh

x|

This program calls a function we have creagayHello() and first passes the value in fiezy
variable as an argument to it. (We stored thegtAhce' infizzy .) Later, the program calls the
sayHello() function again, passing the strifdpb’ as an argument.

The value in thdizzy variable and the strin@ob’ are arguments. We send values as arguments
to a function. The variableame is a parameter. Parameters are always local Vasiamd only exist
inside the function. That is the difference betwasguments and parameters. It might be easiessto ju
remember that the thing in between the parenthingbedef statement is an argument, and the thing
in between the parentheses in the function callgarameter.

We could have just used tlizzy variable inside theayHello() function instead of using a
parameter. (This is because the local scope darestivariables in the global scope.) But then we
would have to remember to assign tizgy variable a string each time before we callshgHello
() function. Parameters make our programs simplesklat this code:

def sayHello():
print 'Hello, ' + fizzy

print ‘'Say hello to Alice.’

fizzy = 'Alice’

sayHello()

print ‘Do not forget to say hello to Bob.'
sayHello()

When we run this code, it looks like this:

Frr

Jay hello to Alice.

Hello, Alice

Do not forget to say hello to EBaob.
Hello, Alice

Frr

This program'sayHello() function does not have a parameter, but usesithalgvariable
fizzy directly. Remember that you can read global véemimside of functions, you just can't read
local variables outside of the function. But now hneve to remember to set thezy variable before
callingsayHello() . In this program, we forgot to do so, so the sddime we callecsayHello()
the value ofizzy was still'Alice’ . Using parameters makes function calling simpedd,
especially when our programs are very big and naaey functions.

Local Variables and Global Variables with the Same Name

Now look at this program, which is a bit different:

def spam(myName):
print 'Hello, ' + myName
myName = 'Waffles'
print "Your new name is ' + myName

myName = 'Albert’
spam(myName)
print 'Howdy, ' + myName

If we run this program, it would look like th

FEEEERFFFRRRRRFRFFFRFRRRRRRRRRRRRRRRRH

Personal firewall software may warn
makes to its subprocess using this co
interface. This connection i=s not wvi

interface and no dats is sent Lo or
FEEFFT LT FFT I EIFFTEIFF T LA FFT AT F TS FFTEAFTFFTEIFFT A AT A

IDLE 1.2.1
oy S=============================== REQT
i

Hello, Albert

Tour new name is Waffles
Howdy, Albert

i

This program defines a new variable caleyiNameand stores the stringlbert’ in it. Then the
program calls thepam() function, passing the value imyNameas an argument. The execution
moves to thespam() function. The parameter spam() is also namedtyName and has the
argument assigned to it. Remember,thdNameinside thespam() function (the local scope) is
considered a different variable than thgNamevariable outside the function (the global scope).

The function then print$iello, Albert' , and then on the next line changes the value in
myNameto 'Waffles' . Remember, this only changes thgNamevariable that is inside the
function. ThemyNamevariable that is outside the function still has ttalue'Albert’ stored in it.

The function now prints ou¥our new name is Waffles' , because themyNamevariable in
the local scope has changedWaffles’ . The execution has reached the end of the funcimit
jumps back down to where the function call was. [Beal myNameis destroyed and forgotten. The
next line after that iprint 'Howdy, ' + myName , which will displayHowdy, Albert

Remember, thenyNameoutside of functions (that is, in the global scogtdl has the value
‘Albert’ , hot'Walffles' . This is because theyNamein the global scope and theyNamein
spam() 's local scope are different variables, even thabgk have the same name.

Where to Put Function Definitions

A function's definition (where we put tloef statement and the def-block) has to come befaue yo
call the function. This is like how you must assagwalue to a variable before you can use the hiaria
If you put the function call before the functiorfidéion, you will get an error. Look at this code:

sayGoodBye()

def sayGoodBye():
print '‘Good bye!"

If you try to run it, Python will give you an erratessage that looks like this:

Traceback (mozt recent call last):
File "C:%WPythonz5itestl.py"™, line 1, in <modulex
zayeoodEye ()
Naijerr: name 'sayeoodEye' iz not defined
i

To fix this, put the function definition before thenction call:

def sayGoodBye():
print 'Good bye!

sayGoodBye()

Code Explanation continued...

20. print "You approach the cave...'
21. time.sleep(2)

We display some text to the player, and then baltime.sleep() function. Remember how in
our call torandint() , the functionrandint() is inside theandom module? In the Dragon Rea
game, we also imported ttieme module. Théime module has a function callsteep() that will
pause the program for a few seconds. We passtidgeinvalue2 as an argument to ttiene.sleep
() function to tell it to pause for exactly 2 seconds

22. print'lt is dark and spooky...'
23. time.sleep(2)

Here we print some more text and wait again foitla@o2 seconds. These short pauses add suspense
to the game, instead of displaying all the texaalbnce. In our jokes program, we called the
raw_input() function to wait until the player pressed the ek&yy. Here, the player doesn't have to
do anything at all except wait.

24, print A farge dragon jumps out i {font of your He |
opens his jaws and...’

25. print

26. time.sleep(2)

We have new action happening in our program. Whasdhe dragon do?

28. friendlyCave = random.randint(1, 2)

Now we are going to have the program randomly cldseh cave had the friendly dragon in it. Our
>all to therandom.randint() function will return either the integer 1 or timtdger 2, and store this

salue in a variable callefriendlyCave

30. if chosenCave == str(friendlyCave):
31. print ‘Gives you his treasure!"

Here we check if the integer of the cave we chdse (or'2') is equal to the cave randomly sele
o have the friendly dragon. But wait, the valuchosenCave was a string (becausaw_input()
‘eturns strings) and the valuefriendlyCave is an integer (becausandom.randint() returns
ntegers). We can't compare strings and integelts thwe== sign, because they will always be different
'1" does not equdl).

So we are passirfgendlyCave to thestr() function, which returns the string value of
riendlyCave

What the condition in thi§ statement is really comparing is the stringfwsenCave and the
string returned by thstr() function. We could have also had this line instead

if int(chosenCave) == friendlyCave:

Then thef statement's condition would compare the integkreveeturned by thmt() function tc
he integer value ifriendlyCave . The return value of that() function is the integer form of the
string stored irchosenCave .

If theif statement's condition evaluatesTtoie , we tell the player they have won the treasure.

32. else:
33. print '‘Gobbles you down in one bite!

Line 32 has a is a new keyword. Télse keyword always comes after the if-block. The dikmek
that follows theelse keyword executes if the condition in tiie statement waBalse . Think of it as

the program's way of saying, "If this conditiortnge then execute the if-block or else executestbe-
block."

Remember to put the colon (the : sign) after tke &kyword.

The Colon :

You may have noticed that we always place a coldheaend off , else , while , anddef

statements. The colon marks the end of the stateimed tells us that the next line should be the
beginning of a new block.

Code Explanation continued...

35. playAgain ='yes'

This is the first line that is notdef statement or inside a def-block. This line is veheur program
really begins.

36. while playAgain =="yes' or playAgain =="y"

Here is the beginning ofwhile loop. We enter the loop fflayAgain is equal to eitheyes'
or'y' . The first time we come to this while statemerg, ave just assigned the string vajes' to
theplayAgain variable. That means this condition will be True.

“ 38 dispraymtroQ) “

Here we call tha&isplaylntro() function. This isn't a Python function, it is dunction that we
lefined earlier in our program. When this functi®called, the program execution jumps to the firs

n thedisplayintro() function on line 5. When all the lines in the ftion are done, the execution
umps back down to the line after this ¢

40. caveNumber = chooseCave()

This line also calls a function that we creatednBmber that thehooseCave() function lets the
Jlayer type in the cave they choose to go into. Mthe return cave line in this function execuths.
yrogram execution jumps back down here, and thed i@riablecave 's value is the return value of this

unction. The return value is stored in a new J@daameccaveNumber . Then the execution move:
he next line

42. checkCave(caveNumber)

This line calls oucheckCave() function with the argument @aveNumber 's value. Not only
loes execution jump to line 20, but the value stamcaveNumber is copied to the parameter
hosenCave inside thecheckCave() function. This is the function that will displaitteer ‘Gives

/ou his treasure!’ or 'Gobbles you down in one bite!’ , depending on the cave the
Jlayer chose to go |

44. print 'Do you want to play again? (yes or no)’
45. playAgain = raw_input()

After the game has been played, the player is akikey would like to play again. The variable
JlayAgain stores the string that the user typed in. Themeseh the end of the while-block, so the

yrogram rechecks ttwhile statement's conditiomhile playAgain == 'yes' or
JlayAgain ==y’

The difference is, now the value piiyAgain is equal to whatever string the player typedfithé
player typed in the stringes' or'y' , then we would enter the loop again at line 38.

If the player typed irno’ or'n’ or something silly likeAbraham Lincoln’ , then thewhile
statement's condition would b@lse , and we would go to the next line after the wiileek. But
since there are no more lines after the while-hltio program terminates.

But remember, the strinES' is different from the strintyes' . If the player typed in the string
'YES' , then thewhile statement's condition would evaluatd-wdse and the program would still
terminate.

We've just completed our second game! In our Dr&gealm game, we used a lot of what we lea
in the "Guess the Number" game and picked up anfawtricks as well. If you didn't understand some
of the concepts in this program, then read the sampit the end of this chapter, or go over eaghdin
the source code again, or try changing the sowde and see how the program changes. In the next
chapter we won't create a game, but a computergmothat will create secret codes out of ordinary
messages and also decode the secret code baekdogimal message.

Step by Step, One More Time

But first, let's trace the code one more time. ¥ollonew programming ideas were taught in this
chapter. To help you understand everything, | lrikfly go through the program just like the conmgout
would, starting from the top.

1. import random
2. import time

We import theandom andtime modules, so that we can use thedom.randint() and
time.sleep() functions in our program.

4. def displayintro():

This defines a new function. We do not executectite inside this function block (because this
function is being defined, not called). We justidefit so that we can call this function later.

‘W Ve(): “

We define another function. Again, we skip pasbitnow.

19. def checkCave(chosenCave):

We define a third function. Again, we skip it fasw because we are only defining the function, not
salling it.

35. playAgain ='yes'

The variableplayAgain now has the string value ges'

36. while playAgain =="yes' or playAgain =="'y"

This is the start of a while-block. The valueptdyAgain is'yes' (we set it in the last line), so-
sondition evaluates iTrue and False |, evaluates téalse . But remember thafrue or False
vill evalute toTrue . So since the condition ®ue , we enter thevhile loop.

38. displayintro()

Now we are calling thdisplayIntro() function. You can tell this is a function call,canot
lefining a function because there isdef keyword in front of the function name. Now we jullmgack t
he beginning of thdisplayIntro() function on line 4.

4. def displayIntro():

The program execution has jumped to line 4. We numyen to the next line, which is line 5.

5. print 'You are on a planet full of dragons. | n
front of you,'

6. print 'you see two caves. In one cave, the dr agon
is friendly’

7. print 'and will share his treasure with you. The
other dragon’

8. print'is greedy and hungry, and will eat you on
sight.'

9. print

We print out the game introduction. This is thetfiext that the player sees, because this igrte f
time we have executedpsint statement. Thprint statement without a string will just print a bl
line. We know we have reached the end of this ttefky because line 11 does begin with less than fou
spaces. This means the execution jumps back dolmet88 (the line that sent us here).

38. displayintro()

We just made this call, so we move down to the heat

40. caveNumber = chooseCave()

We are going to assign the return value ofdhe@oseCave() function to the variable
caveNumber . In order to figure out what the return valuews, have to call the function. This moves
the execution to line 1

11. def chooseCave():

Here we are at line 11. This line doesn't do amgthit just marks the beginning of thbooseCave
function. We move down to line 12.

12. cave ="

The value of theave variable is now the blank string.

13. while cave |="'1"' and cave !="2":

Here is the start of a whilelock. To see if we enter the block or not, we &hiéthe condition is true
cave I="1' evaluates tdrue , because the blank string is not equal to thagstti . And
cave =2 also evaluates tbrue . So the condition evaluatesToue and True . Both sides
of the and operator must Beue for the expression to evaluateTiue , otherwise it will beFalse .
True and True evaluates tdrue , so we do enter thehile loop at line 14.

14. print 'Which cave will you go into? (1 o r2)

This line prints a question to the player. Move ddw the next line.

15. cave =raw_input()

The return value of theaw_input() function will be stored in theave variable. The
raw_input() guestion will let the player type in a string, ahd string will be the return value. Le
say the player accidentally types in 3. The stvalye'3" will be the new value of theave .

We have reached the end of the while-block (we ktlogvbecause the next line (line 17) does not
begin with 8 spaces). So execution jumps backdddp of the while-block at line 13.

13. while cave |="1" and cave I="2";

Now we re-evaluate the while statement's condifidre value of cave this time'® . The'3'!=
'1'" expression idrue , and thé3' 1= "2 expression igrue . And becausédrue and True
evaluates tdrue , we have to re-enter the while-block again.

Until the player types in the striff or'2" |, thiswhile statement's condition will bErue and
the program will keep asking the user for whietve they want to enter.

14. print 'Which cave will you go into? (1 o r2)

Again, we display a message that asks the playmhwhve they want to enter. Move down to the
next line.

15. cave =raw_input()

Let's say the player this time enters the sti?hg. This string is stored inave . We've reached the
end of the while-block, so we jump back up to ttaetof the while-block to line 13 one more time.

13. while cave |="'1"' and cave !="2":

Now we re-evaluate thehile statement's conditiosave now equals2' . The expression
cave !I="1"' is True . The expressiopave != "2 is False , becauseave really does equal
'2' . The expression evaluatesTitue and False . This expression evaluatesRalse . Because
thewhile statement's condition is ndvalse , we skip past the while-block to the next lineeatt,
which is line 17.

17. return cave

Thereturn statement will return the value inside ttayve variable, which is the strin@'
Execution goes back to where this function wasedditom, which was line 40.

40. caveNumber = chooseCave()

Here we are back at line 40. But this time we knioat the return value of this call thooseCave
() isthe string2' , so we store this string in tikaveNumber variable. Move to the next line.

42. checkCave(caveNumber)

Now we call thecheckCave() function. This function has one parameter. We palés the value
insidecaveNumber (the string2’) as an argument for this parameter. Execution guogpto line 19.

19. def checkCave(chosenCave):

Now we are at the top of tleneckCave() function. Since the strin@' was passed as the
argument for the first parameter, the variatiliesenCave will be assigned the stridd' . When we
jump back out of this function (and leave the fimts scope), the value insichosenCave() will
be erased. Move down to the next |

20. print "You approach the cave...'

We print a message to the player in this line.

21. time.sleep(2)

We call thesleep() function (which is inside thtme module). Thesleep() function has one
parameter, so we pagsas the argument for this parameter. Sleep() function pauses for however
many seconds is given for the parameter. We makerbgram pause for two seconds, to add suspense
for the player.

22. print'lt is dark and spooky...'
23. time.sleep(2)

We display another message to the player, andtwaiseconds again.

24. print 'A large dragon jumps out in front of you!
He opens his jaws and...'
25. print

26. time.sleep(2)

We display another message telling the player thgah has jumped out, followed by a blank line.
We then pause again for two seconds, to let theepl@onder what the dragon is going to do.

” 28. friendlyCave = random.randint(1, 2) “

ThefriendlyCave variable will be assigned the return value ofrfredom.randint()
unction. Therandint() function returns a random integer between thertwobers we pass to the
wo parameters. We want a random number bet\l and2 (includingl and?2). Pretend that the inte:
L was returned by the function call. $as stored irfriendlyCave . Remember, this function call
>ould have returned eitheil or a2. We don't know which until we actually run the gram, and it
von't always return the same number each time Wéheafunction. But we will just pretend that tt

ime it returned 1.

30. if chosenCave == str(friendlyCave):

This is anf statement. We must checKaf (the string stored insidghosenCave) is equal to
vhat str(friendlyCave) evaluates str() is a function that returns the string form of amyggers
)assed to it. (Remember, the string vé'7' is not equal to the integer valide

friendlyCave evaluates to the integérthat is stored inside of it. So the function ¢adiks like
str(1) and returns a value &f

So now, to finish evaluating the statement's condition, we seé&if=="1' . This evaluates to
-alse , because they are not the same. So execution p&gighe if-block.

32. else:

This is the first line after the if-block. It isdlelse keyword, which means that if the previdlis
statement's condition wiFalse , we should execute the code inside the bleek. This means we mc

jown one line to line 33, which is inside the -block.

33. print ‘Gobbles you down in one bite!"

The player has been eaten. There are no moreitiirtbe function, so execution goes back to line

42. checkCave(caveNumber)

We have just come back from the function call. Negvgo to the next line down.

44. print 'Do you want to play again? (yes or no)’
45. playAgain = raw_input()

The player is asked if they want to play again:d ptetend the player typed in the string’ . This
is the end of the while-block, so execution jumpskbup to line 36.

36. while playAgain =="yes' or playAgain =="y".

TheplayAgain variable contains the striigo’ . That makes the condition evaluatd-alse
or False , which evaluates tbalse . Since the condition isalse , we skip past the while-block.
But there are no more lines of code after the whlibek, so the program terminates.

Designing the Program

Dragon Realm was a pretty simple game. The othmegan this book will be a bit more
complicated. It sometimes helps to write down etleng you want your game or program to do before
you start writing code. This is called "designihg program.”

For example, it may help to draw a flow chartfléw chart is a picture that shows every possible
action that can happen in our game, and in wharohlormally we would create a flow chart before
writing our program, so that we remember to wriide for each thing that happens in the game. Here's
a flow chart for Dragon Reall

Start

¢

Show introduction

i)

Player chooses a cave

¥
Check for friendly

or hungry dragon
"

¥ N

Player wins Player loses

=

Ask to play again

To see what happens in the game, put your fingéherStart" box and follow one arrow from the
box to another box. Your finger is kind of like theogram execution. Your finger will trace out dlpa
from box to box, until finally your finger lands dhe "End" box. As you can see, when you get to the
"Check for friendly or hungry dragon" box, the pragn could either go to the "Player wins" box or the
"Player loses" box. Either way, both paths will eqat the "Ask to play again" box, and from thire
program will either end or show the introductiorthie player again.

A Web Page for Program Tracing

There is also a web page that lets you trace nenb through the Dragon Realm game. Go to the
following web page to use it.

o Dragon Realm, trace 1hitp://pythonbook.coffeeghost.net/bookl/traceséifiragonRealm.html

Things Covered In This Chapter:

e Thetime module.

e Thetime.sleep() function.

e Thereturn keyword.

¢ Creating our own functions with tlief keyword.
e Theand andor andnot boolean operators.

o Truth tables

o Variable scope (Global and Local)

o Parameters and Argumet

e Flow charts

Chapter 5 - Hangman

This game introduces many new concepts. But damityywwe'll experiment with these programming
concepts in the interactive shell first. Once yoderstand these concepts, it will be much easier to
understand the game in this chapter: Hangman.

In case you don't know, Hangman is a game two pgalply with paper and pencil. One person tr
of a word, and then draws blanks for each letténénsecret word. The other person guesses |#tters
might be in the word. If they guess correctly, fingt person writes the letter into the blank.néy
guess wrong, the first person draws another bodygb#he hangman. If the second person can guk
the letters in the word before the hangman has teip been drawn, they win.

ASCII Art

The code for Hangman is about four times largen tha Dragon World game! But don't worry. Half
of the lines of code aren't really code at all, 4nat strings that use keyboard characters to diewres.
This type of graphics is calle®SCII art (pronounced "ask-ee"), because keyboard chargsigch as
letters, numbers, and also all the other signdierkéyboard) are called ASCII characters. ASChdsa
for American Standard Code for Information Intemtp@. Here are a couple cats done in ASCII art:

AN N
)
|)
(v)
|
[\
|
| \
[
[\
| I---
[/|
((((0]e—
[XX XXX \ _
_IxXxx XX XXX XXX \
XXX XXX XX XXX \
IXXXXX XX XX XX XXX x\
IXXXXXXXXX XX XX XX XX XXX\
[XXXXX X X X X X xxx\
/ xx N\ X X XX\
/ [\ X XX\
| .=\ [\ XX X\
[|\ |\ XX XXX|
|

| v | \ XX\

| | \ |
| / \ \
\V \ | \
/ I / |
| \ | x|
/ | e / X|
I | | _ _ |
| oooo\ -------- \ / | | XXX/
|oooo \ / | / xXX_/
\ \ _ XX/
\ \ / x_ 1
\ x
\ xx [
\ XX x_/
\ X |
\ /

So this program's code is only about twice the sf2zBragon World (if you don't count the pictures).
Go ahead and type in this code into the file eddod save the file as hangman.py. Then run the
program by pressing F5. It might be a good idesatee the file every once in a while as you typsat,
that if something happens to your computer or IRk&shes, you won't lose everything you have typed.

Sample Run

HANGMAN

Guess a letter.
e

Missed letters:
e

Guess a letter.

Missed letters: a
___¢€_
Guess a letter.

Missed letters: a u
e

Guess a letter.

Missed letters: a u
__er
Guess a letter.

Missed letters: a u i
__er

Guess a letter.

0

Missed letters: a u i

o__er

Guess a letter.

t

Yes! The secret word is "otter"! You have won!
Do you want to play again? (yes or no)

no

Source Code

hangman.py
. import random

1
2.
3. HANGMANPICS =["
4.
5
6
7
8

|
|
: |
9. |
10. |
11. |
12. |
13. |
14, |
15. |
16. ::::::::::::::'", "
17.
18. +o-ee- +
19. | |
20. | |

21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
4.
55.
56.
S7.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

69.

70.

71, A +

72. | |

73. | |

74. O |

75. I\ |

76. |\ |

7. | |

78. [/ |

79. |/ |

80. |

81. |

82. =============="' "

83.

84.

85. - +

86. | |

87. | |

88. O |

89. /\ |

90. /|\ |

91. | |

92. /\ |

93. / \ |

94. |

95. |

06. ::::::::::::::"']

97.

98. words = "ant baboon badger bat bear beaver beetl e bird
camel cat clam cobra cougar coyote crab crane crow deer
dog donkey duck eagle ferret fish fox frog goat goo se
hawk iguana jackal koala leech lemur lion lizard Il ama
mite mole monkey moose moth mouse mule newt otter o wil
oyster panda parrot pigeon python quail rabbit ram rat
raven rhino salmon seal shark sheep skunk sloth slu g
snail snake spider squid stork swan tick tiger toad
trout turkey turtle wasp weasel whale wolf wombat w orm
zebra'.split()

99.

100. def getRandomWord(wordList):

101. # This function returns a random string fro m the
passed list of strings.

102. wordIndex = random.randint(0, len(wordList) -1)

103. return wordList[wordindex]
104.

105

106.
107.

. def displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord):

print HANGMANPICSJ[len(missedLetters)]

print

108.

109.
110.
111.
112.

print ‘Missed letters:’,

for letter in missedLetters:
print letter,

print

113.

114.

blanks ="' ' * len(secretWord)

115.

116.

117.
118.

for i in range(len(secretWord)): # replace
with correctly guessed letters
if secretWord[i] in correctLetters:
blanks = blanks[:i] + secretWord][i]
blanks[i+1:]

119.

120.

121.
122.

for letter in blanks: # show the secret wor
spaces in between each letter
print letter,
print

123.

124

125.

126.
127.
128.
129.
130.
131.
132.
133.

134.
135.
136.
137.

. def getGuess(alreadyGuessed):

Returns the letter the player entered. Th
function makes sure the player entered a single let
and not something else.

while True:

print 'Guess a letter.'
guess = raw_input()
guess = guess.lower()
if len(guess) !=1:
print 'Please enter a single letter
elif guess in alreadyGuessed:
print "You have already guessed tha
letter. Choose again.'
elif guess not in 'abcdefghijkimnopgrst
print 'Please enter a LETTER.'
else:
return guess

138.

139

140.

141.
142.

. def playAgain():
This function returns True if the player
play again, otherwise it returns False.
print ‘Do you want to play again? (yes or n
return raw_input().lower().startswith('y")

143.

blanks

d with

ter,

uvwxyz'":

wants to

0)'

144.
145.
146.
147.
148.
149.
150.
151.
152.

153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.

168.
169.
170.
171.
172.

173.
174.

175.

176.
177.
178.

179.
180.
181.
182.

print HANGMAN'

missedLetters ="

correctLetters ="

secretWord = getRandomWord(words)
gamelsDone = False

while True:
displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Let the player type in a letter.
guess = getGuess(missedLetters + correctLet

if guess in secretWord:
correctLetters = correctLetters + guess

Check if the player has won
foundAllLetters = True
for i in range(len(secretWord)):
if secretWord[i] not in correctLett
foundAllLetters = False
break
if foundAllLetters:
print 'Yes! The secret word is ™ +
secretWord + ™! You have won!'
gamelsDone = True
else:
missedLetters = missedLetters + guess

Check if player has guessed too many
and lost
if len(missedLetters) == len(HANGMANPIC
displayBoard(HANGMANPICS, missedLet
correctLetters, secretWord)
print "You have run out of guesses!
'+ str(len(missedLetters)) + ' missed guesses and
str(len(correctLetters)) + ' correct guesses, the w
was " + secretWord + "
gamelsDone = True

Ask the player if they want to play again
only if the game is done).
if gamelsDone:
if playAgain():
missedLetters ="
correctLetters ="

ters)

ers.

times

S)-1:
ters,

\nAfter

+
ord

(but

183. gamelsDone = False

184. secretWord = getRandomWord(words)
185. else:

186. break

187.

After typing in the source code (don't forget teedgyou can run this game by pressing F5. If any
arrors come up, be sure you typed the source ccexactly as it appears here. Remember that the
ndentation is important, and that lines will haeo, four, eight, or even twelve spaces in frdrthem

Designing the Program

This game is a bit more complicated, so it willghiglwe take a moment to think about how we wil
he program together. We will create a flow chike(the flow chart at the end of the Dragon Re
>hapter) to think about what this program will @j.course, we donhave to write out a flow chart. We
>ould just start writing code. But many times whemare writing code, we will think of new things
add or other events in the program that we didimiktof. We may have to end up changing the cod
1ave already written, or deleting a lot of the cotleat would be a waste of effort. We can savd af
ime if we think about the program before writirty

This flow chart is provided as an example for wil@ai charts look like and how to make them.
3ecause you only have to copy the source code tinssbook, you don't need to draw a flow ct
yefore writing code. But when you make your own gana flow chart can be very har

This flow chart will also help you learn how to agsgames yourself, instead of just copying the
source code from this book. Your flow chart doekaite to look exactly like this one. You may hi
axtra boxes or fewer boxes. But as lonyou understand the flow chart you made, it will bepifiel
vhen you start codin

First we'll start with a flow chart that only hasStart" and an "End" bo

Start

Now let's think about what happens when the plaggfzan. Well, there is a secret word (the
computer will think of this) and then the othergmar guesses letters (the player will do this) e &ld

boxes for those:

Start

l

Come up with
a secret word.

{

Ask player to
guess a letter.

The game doesn't end after the player guesseten [Bte game should check if the letter is in the
secret word or not. The letter either will be therdt won't be, so we should ptwo new boxes ir

Start

!

Come up with
a secret word.

Ask player to
guess a letter.

v —y

Letter is in Letter is not
secret word. in secret word.

If the letter was in the secret word, we should alseck if the player has won. And if the lettelswa
not in the secret word, another body part gets @ddae the player might have lost. We can add boxes
for those cases too. We don't need an arrow franiltbtter is in secret word." box to the "Playes ha
run out of body parts and loses."” box becauseuftiink about it, you cannot possibly lose as laag
you are guessing correct letters. Also, you capnesibly win if you are guessing wrong letters. fliba
why we don't have those arrows. The flow chart taoks like

Start

l

Come up with
a secret word.

Ask player to
guess a letter.

VS

Letter is in Letter is not
secret word. in secret word.

! \

Player has guessed Player has run out of
all letters and wins. | |body parts and loses.

After the player has won or lost, we will ask thayer if they want to play again with a new secret
word. If the player doesn't want to play again, phagram will terminate. Otherwise, we will think@
new secret wor

Start

&

Come up with
a secret word.

4

Ask player to
guess a letter.

T —E

Letter is in Letter is not
secret word. in secret word.

!)

Player has guessed Player has run out of
all letters and wins. | |body parts and loses.

Ask player to
play again.

This flow chart looks like it is finished, but isdre something we are forgetting? Oh yes! The playe
doesn't guess a letter just once. The player ailehto keep guessing letters over and over uryl th
win or lose. We should draw two new arrows so tbe thart shows thi

Start

i

Come up with
a secret word.

4

Ask player to
guess a letter.

i

Letter is in Letter is not
secret word. in secret word.

{

Player has guessed Player has run out of
all letters and wins. | | body parts and loses.

Ask player to
play again.

What else are we forgetting? What if when the playeesses a letter, they guess a letter they have
guessed before. The player should not win or lngkis case, but should be allowed to guess ardiit
letter insteac

Start

&

Come up with Player alread
a secret word. y .

"' /-’1 guessed this letter.

Ask player to
guess a letter.

T i—

Letter is in Letter is not
secret word. in secret word.

{

Player has guessed Player has run out of
all letters and wins. | |body parts and loses.

Ask player to
play again.

Wait a second. How can the player figure out how arehow bad they're doing in this game? We
need to remember to show them the hangman boardlsmthe secret word (with the unguessed letters
blanked out). Then the player will be able to see& many body parts of the hangman there are, or how
much of the secret word they have guessed so li@s.should happen each time the player guesses. We
can add this box in between the "Come up with aeseord.” box and the "Ask player to guess a
letter.” box

Start

+

Come up with
a secret word.

o+

Show the board and
blanks to the player.

Player already
guessed this letter.

Ask player to
guess a letter.

=

Letter is in Letter is not
secret word. in secret word.

Player has guessed Player has run out of
all letters and wins. body parts and loses.

Ne

Ask player to
play again.

N\

That looks good! We can always look at this flovaxttwhile we are coding to remind ourselves of
everything we want this program to do. The flowrtlgkind of like a cake recipe or blueprints &or
house. We could just start baking a cake or bugl@dithouse, but without the plans we may forgette
step. You won't really need this flow chart becayme will just copy the source code given here. But
when you design your own games, a flow chart cdm y@&u remember everything you need to code.

Code Explanation

1. import random

The Hangman program is going to randomly seleetcae$s word from a list of secret words. This
means we will need thendom module imported.

HANGMANPICS = ["

3.
4.
ST e— +
6
7
8

|

|

: |
9. |
10. |
11. |
12. |
13. |
14, |
15. |
16. ::::::::::::::'", "

...the rest of the code is too big to show here. ..

This "line" of code a simple variable assignment,ibactually stretches over several real linegha
source code. The actual "line" doesn't end umd B6. To help you understand what this code means,
you should learn about multi-line strings and lists

Multi-line Strings

Ordinarily when you write strings in your sourcalegthe string has to be on one line. However, if
you use three single-quotes instead of one singt¢eqto begin and end the string, the string caorbe
several lines:

>rx fizz = '''Dear ALlice,

I will return homwe at the end of the month., I will see wou then.
Your friend,

Eokh'!'!

i fiz=

Dear Alice,

I will return homwe at the end of the month., I will see wou then.
Tour friend,

Eob

x|

If we didn't have multi-line strings, we would haeeuse thén escape character to represent the
new lines. But that can make the string hard td redhe source coc

#=»» figg = 'Dear Alice,‘nl will return home at the end of the month. I will =ee
wou then.'\n¥our friend,'nBohk'

e fiz=

ear Alice,

I will return homwe at the end of the month., I will see you then.

Your friend,

Boh

wx |

Multi-line strings do not have to keep the sameemtdtion to remain in the same block. Within the
multi-line string, Python ignores the indentatioies it normally has for where blocks end.

def writeLetter():
inside the def-block
print "'Dear Alice,
How are you? Write back to me soon.

Sincerely,
Bob™ # end of the multi-line string and print s tatement
print 'P.S. | miss you.' # still inside the def -block
writeLetter() # This is the first line outside the def-
block.

Constant Variables

You may have noticed thetANGMANPICS name is in all capitals. This is the programming

convention for constant variabléSonstants are variables whose values do not change througheu
program. Although we can changdNGMANPICiust like any other variable, the all-caps remitius

programmer to not write code that does so.

Constant variables are helpful for providing dgstoons for values that have a special meaning.&
the multi-string value never changes, there iseason we couldn't copy this multi-line string etinte
we needed that value. TRHANGMANPICSariable never varies. But it is much shorteryjoet

HANGMANPIC$han it is to type that large multi-line string.

Also, there are cases where typing the value le¥f ilsay not be obvious. If we set a variab@gs
=72 , we may forget why we were setting that variabléhe integei72. But if we define a constant
variableDOZEN = 12, then we could setiggs = DOZEN *6 and by just looking at the code kn
that theeggs variable was set to six dozen.

Like all conventions, we dorttave to use constant variables, or even put the namesnstant
variables in all capitals. But doing it this way kea it easier for other programmers to understand h
these variables are used. (It even can help yyaouifare looking at code you wrote a long time ago.)

Lists

| will now tell you about a new data type callelisa. A list value can contain several other values in
it. Try typing this into the shel['apples’, 'oranges’, 'HELLO WORLD'] . This is a list
value that contains three string values. Justdikg other value, you can store this list in a \@eaTry
typing spam = [‘apples’, 'oranges’, 'HELLO WORLD'] , and then typspam to view the
contents ospam.

x> spam = ['apples', 'oranges', 'HELLO WoORLD']
> Spam

['apples', 'oranges', 'HELLO WORLD']

s |

Lists are a good way to store several differeni@glinto one variable. The individual values ingé
a list are also calleiiems . Try typing:animals = ['aardvark’, ‘anteater’,
‘antelope’, 'albert’] to store various strings into the variabl@mals . The square brackets
can also be used to get an item from a list. Tpyjniyanimals[0] , oranimals[1] , oranimals
[2] , oranimals[3] into the shell to see what they evaluate to.

>x» ahimals = ['aardwvark', 'anteater', 'antelope', 'alkert']
>xx oahimals[0]

"aardwvark'

=xx ahimals[1]

'anteater'

x> animals[Z2]

'antelope'

x> animals[3]

'albert'

s |

The number between the square brackets isttex . In Python, the first index is the number O
instead of the number 1. So the first item in thei$ at index 0, the second item is at indexhé&,third
item is at index 2, and so on. Lists are very gabdn we have to store lots and lots of valueswaut
don't want variables for each one. Otherwise wel@vbave something like this:

*x» animall = 'gardwvark!'
*x» animal:zZ = 'anteater!
»rx @animwali = 'antelope!
*x» animald = 'albert!
Frx

This makes working with all the strings as a greapy hard, especially if you have hundreds or
thousands (or even millions) of different stringattyou want stored in a list. Using the squarehets,
you can treat items in the list just like any othalue. Try typinganimals[0] + animals[2]
into the shell:

x> animals[0] + animals[2]
'aardvarkantelope!
Frx

Becausanimals|0] evaluates to the stringardvark’ andanimals[2] evaluates to the
string'antelope’ , then the expressi@nimals[0] + animals[2] is the same as
‘aardvark’ + 'antelope’ . This string concatenation evaluatesrdvarkantelope’

What happens if we enter an index that is largen the list's largest index? Try typiagimals
[4] oranimals[99] into the shell:

»>> ahimals = ['aardvark', 'anteater', 'antelope', 'albert']
x> ahimals[4]

Traceback (most recent call last):
File "<pyshell#aa>", line 1, in <wmodule:
animals[4]
IndexError: list index out of range
rr> animals[99]

Traceback (most recent call last):
File "<pyshell#a?>", line 1, in <wmodule:
animals[99]
IndexError: list index out of range
i

If you try accessing an index that is too largey yall get anindex error .

Changing the Values of List Items with Index Assign ment

You can also use the square brackets to changalhe of an item in a list. Try typirgnimals
[1] ='ANTEATER' , then typeanimals to view the list.

»rx @ahimals = ['aardwvark', 'anteater', 'antelope', 'alkbert']
»x> ahnimals[1l] = 'ANTELTER'

*x» animals

['aﬁrdvark', '"ANTEATER', 'antelope', 'albert']

Frx

The second item in thenimals list has been overwritten with a new string.

List Concatenation

You can join lists together into one list with the@perator, just like you can join strings. When
joining lists, this is known &list concatenation . Try typing[1, 2, 3, 4] + ['apples’,
‘oranges'] + ['Alice’, 'Bob’] into the shell:

x> [1, 2, 3, 4] + ['apples', 'oranges'] + ['Alice', 'Eok']
[1, 2, 3, 4, 'apples', 'oranges', 'Alice', 'EBobkh']
wrr |

Notice that lists do not have to store values efsame data types. The example above has a st wit
both integers and strings in it.

The in Operator

Thein operator makes it easy to see if a value is insilit or not. Expressions that use ithe
operator return a boolean valdeue if the value is in the list andalse if the value is not in the list.

Try typing 'antelope’ in animals into the shell:
>r> animwals = ['aardvark', 'anteater', 'antelope', 'alkhert']
>»> 'antelope’ animals
True
x|
The expressiofantelope' in animals returnsTrue because the strigntelope' can

be found in the lisanimals . (It is located at index 2.)

But if we type the expressidant' in animals , this will returnFalse because the string
ant' does not exist in the list. We can try the expoesaint' in ['beetle’, ‘wasp’,
‘ant'] |, and see that it will returfirue .

»rx ahnimals = ['aardvark', 'anteater', 'antelope', 'albert']
x> 'antelope' animals

True

Fxx lant! animals

False

x> 'ant' ['beetle', 'wasp', 'ant']

True

Frx

Thein operator also works for strings as well as li¥tsu can check if one string exists in another
the same way you can check if a value exists istallry typing'hello’ in 'Alice said

hello to Bob.' into the shell. This expression will evaluateltoe .
x> 'hello! '"Alice said hello to Bob.!
True
s |

Removing Items from Lists with del Statements

You can remove items from a list wittdal statement. ("del" is short for "delete.") Try dieg a
list of numbers by typingspam = [2, 4, 6, 8, 10] and therdel spam[1] . Typespam to
view the list's content

+>> gpam = [Z, &4, 6, &, 10]
i Spat[1]

Frx Spam

[2, &, &, 10]

v |

Notice that when you deleted the item at indeshé item that used to be at index 2 became the new
index 1. The item that used to be at index 3 mdudzk the new index 2. Everything above the iteat
we deleted moved down one index. We can tyglespam[1l] again and again to keep deleting it
from the list:

»x> spam = [, 4, 6, &, 10]
T Spatn[1]
*rx Spam

[z, &, 8, 10]
T Spatn[1]
*xx Spam

[z, &, 10]

e Sparn[1]
*xx Spam

[z, 10]

x|

Lists of Lists

Lists are a data type that can contain other vadgatems in the list. But these items can alsotber
lists. Let's say you have a list of groceriesstadf chores, and a list of your favorite pies. Yoam put
all three of these lists into another list. Tryitygpthis into the shell:

groceries = ['eggs’, 'milk’, 'soup’, ‘apples’, 'bre ad']
chores = ['clean’, 'mow the lawn’, 'go grocery shop ping’]
favoritePies = ['apple’, ‘frumbleberry’]

listOfLists = [groceries, chores, favoritePies]

listOfLists
*x> groceries = ['eggs', 'milk', 'soup', 'apples', 'hread']
»>» chores = ['clean', 'mow the lawn', 'go grocery shopping']
»»> favoritePies = ['apple', 'frumblekerry']
»»» listOflists = [groceries, chores, fawvoritePies]

Fr> listoflists

[['eggs', 'wilk', 'soup', 'apples', 'bread'], ['clean', 'mow the lawn', 'go groc
ery shopping'], ['apple', 'frumbleherry']]

el

You could also type the following and get the samleies for all four variables:

listOfLists = [['eggs’, 'milk’, 'soup’, 'apples’, ' bread'], ['clean’,

'mow the lawn’, 'go grocery shopping'], ['apple’, ' frumbleberry]
groceries = listOfLists[0]
chores = listOfLists[1]
favoritePies = listOfLists[2]
listOfLists

»rx listoflists = [['eggs', 'milk', 'soup', 'apples', 'bread'], ['clean', 'mow €
he lawn', 'go grocery shopping']l, ['apple', 'frumblebherry']]

»r> groceriez = listOfListzs[0]

»x> chores = listOfList=s[1]

»r> favoritePiezs = listOflists[2]

x> listDflists

i['egys', 'milk', 'soup', 'apples', 'bread']l, ['clean', 'mow the lawn', 'go groc
ery shopping'], ['apple', 'frumbleherry'])

Fr» groceries

['eggs', 'wmilk', 'soup', 'apples', 'bread']

>>> chores

['clean', 'mow the lawn', 'go grocery shopping']

>>> favoritePies

['apple', 'frumbleberry']

s |

To get an item inside the list of lists, you woukktwo sets of square brackets like this:

listOfLists[1][2] which would evaluate to the strifgp grocery shopping' . Thisis
becausdistOfLists[1] evaluates to the ligclean’, 'mow the lawn’, 'go
grocery shopping’][2] . That finally evaluates tgo grocery shopping'

Here is another example of a list of lists, alonthwome of the indexes that point to the itemthen
list of lists namedk. The red arrows point to indexes of the inneslisemselves. The image is also
flipped on its side to make it easier to re

E{X—XEUJ
5 x[0][0]
o x[0][1]
(-] — ~J e "
> % = % = $FITToT * (1]
e o AN, e = x[1][2]
SOkl SEEN SEiciel SR —
- - - = o o "
[[10, 20, 301, [3, 2, 1], [8, 8, 8, 81, [42]] e x[2][1]
o x[2][2]
= x[2]1[3]
— x| 3
§m3 . [3]

Code Explanation continued...

HANGMANPICS = ["

3.
4.
TR — +
6
7
8

|

|

: |
9. |
10. |
11. |
12. |
13. |
14. |
15. |
16. = == == '", "

...the rest of the code is too big to show here...

If you look from line 3 to line 96 in the code, yuiill see that the value we are assigning to

variableHANGMANPICS$ a list of multi-line strings. Each multi-linérisig in this list will be the
picture (in ASCII art) of the hangman board. ThingtatHANGMANPICS[O]is the hangman's noose
with no body parts. The string HANGMANPICS[1] has just the heaHANGMANPICS[2] has the
head and body, and so on.

98. words = 'ant baboon badger bat bear beaver beetl e bird
camel cat clam cobra cougar coyote crab crane crow
deer dog donkey duck eagle ferret fish fox frog goa t
goose hawk iguana jackal koala leech lemur lion liz ard

[lama mite mole monkey moose moth mouse mule newt

otter owl oyster panda parrot pigeon python quail

rabbit ram rat raven rhino salmon seal shark sheep

skunk sloth slug snail snake spider squid stork swa n
tick tiger toad trout turkey turtle wasp weasel wha le
wolf wombat worm zebra'.split()

Line 98 assigns a list to the variaerds . This will be the list of all possible secret wsiid this
game. The secret word will be selected from tlsis All of the possible secret words are some kihd
animal (so the player has some idea what the vejrd i

But the value being assignedwords doesn't look like a list. It does not have thand] square
brackets. But there is a special kind of functiah at the end of the long stringplit() . Thisis a
method on the string, and it will evaluate to awsich is then stored iwords . Read on to find out
what methods are.

Methods

Methods are functions that are attached with a certainezadFor example, the strings haviewaer
() method. You cannot just call thewer() by itself. You must attach the method call to acsfic
string. Try typing'Hello world!".lower() into the interactive shell:

Frx 'Hello world!'.lower ()
'hello world!!
wrr |

Thelower() method returns the lowercase version of the sttirmgattached to. There is also an
upper() method for strings. Try tyingello world'.upper() into the shell:

x> 'Hello world!'.lower ()
'hello world!!'

x> 'Hello world!'.upperi)
'"HELLO WoORLD !

wx |

Because thapper() method returns a string, you can call a methothatnstring as well. Try
typing 'Hello world!".upper().lower() into the shell:

rx» 'Hello world!'.,lower()

'hello world!!

x» 'Hello world!'! .upperi)

'HELLO WoORLD !

x> 'Hello world!'.upper () .lower ()
'hello world!!

s |

'Hello world!".upper() evaluates to the strifgfELLO WORLD!' , and then we cathat
string'slower() method. This returns the strititgllo world!' , Which is the final value in the

evaluation. The order is importattiiello world!".lower().upper() is not the same as
'Hello world!".upper().lower() :

x> 'Hello world!'.lower().upperi)
'"HELLZ WORLD!!

x> 'Hello world!'.upperi).loweri()
"hello world!!'
s |

Remember, if a string is stored in a variable, gan call a string method on that variable. Look at
this example:

*»>»> fizz = 'Hello world!
x> fizz.upperi()

'HELLO TORLD!

i

The list data type also has methods. Teherse() method will reverse the order of the items in
the list. Try typingspam = [1, 2, 3, 4, 5, 6, 'meow’, ‘woof] and then

spam.reverse() (to reverse the list). Then tygpam to view the contents of trspam variable.

>xx Spawm = [1, 2, 3, 4, 5, 6, 'meow',
>»x> Spam.reverse ()

*>> Spam

["woof', 'weow', &6, 5, 4, 3, 2, 1]

s |

'woof!']

The most common list method you will use&jpend() . This method will add the value you pass
as an argument to the end of the list. Try typhayfollowing into the she

eggs =[]
eggs.append(‘hovercraft’)
eggs
eggs.append(‘eels’)
eggs

eggs.append(42)

eggs

Frx oeggs =[]

>»x> eggs.append | hovercraft!')
P eggs

["hovercraft']

>r> eggs.append('esls')
rrxr BgOgs

['hovercraft', 'eels']

Frx eggs.append (42)

Frr eggs

['"hovercraft', 'eels', 42]
x|

While strings and lists have methods, integersatdappen to have any methods.

You may be wondering why Python has methods anysiage they do the same thing as functions.
Attaching functions to values (which is what methagle) becomes a lot more useful in object-oriented
programming (OOP). Strings and lists are also knawa special type of data type called objects. But
object-oriented programming is a bit advancedHi@ book, and you don't need to know OOP to make

these games. You only need to know about strindpodistand thappend()

Code Explanation continued...

list method.

98. words = 'ant baboon badger bat bear beaver beetl
camel cat clam cobra cougar coyote crab crane crow
deer dog donkey duck eagle ferret fish fox frog goa
goose hawk iguana jackal koala leech lemur lion liz
[lama mite mole monkey moose moth mouse mule newt
otter owl oyster panda parrot pigeon python quail
rabbit ram rat raven rhino salmon seal shark sheep
skunk sloth slug snail snake spider squid stork swa
tick tiger toad trout turkey turtle wasp weasel wha
wolf wombat worm zebra'.split()

e bird

ard

As you can see, this line is just one very, venglstring that has th&plit()

method called on it.

Thesplit() method will return a list made up of the wordsha string that are separated by a space.

(The string is split up into a list of items.) Treason we do it this way instead of just writing the
list is that it is easier to type as one long stri@therwise you would have to tyga&nt',
'‘baboon’, 'badger’, ... with all the quotes and commas. Werds list will contain the possibl
secret words that can show up in the game. Yowaddror remove your own words to this string later i
you want to change the words used in the Hangmarega

For an example of how ttsplit() string method works, try typinily very energetic
mother just served us nine pies'.split() into the shell:

x> "My wery energetic mother just served 12 nine pies'.split()
['Hy!', 'wery', 'energetic', 'mother', 'just', 'served', 'uz', 'nine', 'pieza']
s |

The result is a list of nine strings, one stringdach of the words in the original string. Thecgsa
are dropped from the items in the list.

100. def getRandomWord(wordList):

101. # This function returns a random string fro m the
passed list of strings.
102. wordindex = random.randint(0, len(wordList) -1)

103. return wordList[wordIndex]

Starting on line 100, we define a new functionedfietRandomWord() which has a single
parameter nameaordList . We will call this function when we want to picksacret word from a list
of secret words. This function makes use of a ngtludh function nameten() , which I will explain
first.

The len() Function

Thelen() function ("len" is short for "length") takes atl&s a parameter and returns the integer of

how many items are in a list. Try typitgn(animals) into the shell:
x> animals = ['aardvark', 'anteater', 'antelope', 'alhbert']
x> lenlanimals)
E:
wrr |

The integer value returned Bn() is like any other integer value:

>r> animwals = ['aardvark', 'anteater', 'antelope', 'albert']
>r> len(animals)

>»> people = ['Alice', 'Eaok']
>»> len(people)

>»> len(animals) + len(people)

x|

The square brackets by themselves are also alig¢ known as thempty list . If you pass the
empty list to thden() function, it returns the integ@;, because there are zero items in that list:

x> leni[])

o

Frx gSpam = []
>»> len(spai)
o

Fri

Code Explanation continued...

100. def getRandomWord(wordList):

101. # This function returns a random string fro m the
passed list of strings.
102. wordindex = random.randint(0, len(wordList) -1)

103. return wordList[wordIndex]

The functiongetRandomWord() is passed a list of strings as the argument fowtrdList
parameter. On line 102, we will store a randomnidethis list in thewordindex variable. We do
this by callingrandint() with two arguments. Remember that arguments unation call are
separated by commas, so the first argumedtand the second argumentés(wordList) - 1
The second argument is an expression that isefirauatedlen(wordList) will return the integer
size of the list passed getRandomWord() , minus one.

For example, if we pass¢apple’, ‘'orange’, grape'] as an argument to
getRandomWord() , thenlen(wordList) would return the integeé¥ and the expressidh- 1
would evaluate to the integer

That means thavordindex would contain the return value &ndint(0, 2) , which means
wordIindex would equaD, 1, or2. On line 103, we would return the elemenwordList at the
integer index stored iwordindex

Let's pretend we did seifdpple’, ‘orange’, grape'] as the argument to
getRandomWord() and tharandint(0O, 2) returned the integ&t. That would mean that line
103 would becomeeturn wordList[2] , which would evaluate teeturn ‘grape’ . This is
how thegetRandomWord() returns a random string in therdList list.

But remember, we can pass any list of stringgetilkandomWord() . This function will be very
useful to our Hangman game when we call it.

105. def displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord):

106. print HANGMANPICS[len(missedLetters)]

107. print

This code defines a new function naneksplayBoard() . This function has four parameters.
This function will implement the code for the "Shetlve board and blanks to the player" box in owwvi
chart. Here is what each parameter means:

o HANGMANPICSThis is a list of multi-line strings that wiligplay the board as ASCII art. We
will always pass the glob&#lANGMANPICSariable as the argument for this parameter.

e MissedLetters - This is a string made up of the letters the @tdyas guessed that are not in
the secret word.

e correctlLetters - This is a string made up of the letters the @idyas guessed that are in the
secret word.

e secretWord - This string is the secret word.

The firstprint statement will display the boaldANGMANPIC®iill be a list of strings for each
possible boarddANGMANPICS[0] shows an empty gallowslANGMANPICS[1] shows the head
(this happens when the player misses one leti&NGMANPICS[2] shows a head and body (this
happens when the player misses two letters), and smtil HANGMANPICS[6]when the full
hangman is shown and the player loses.

The number of letters imissedLetters will tell us how many missed guesses the playsr ha
made. We can calgén(missedLetters) to find out this number. This number can also $&duas
the index to thélANGMANPICSst for the specific string we want to print. SomissedLetters is
‘aetr' thenlen(aetr’) will return4 and we will display the strinANGMANPICS[4] This is
whatHANGMANPICS[len(missedLetters)] evaluates to. This line shows the correct hangman
board to the player.

109. print '‘Missed letters:’, “

110. for letter in missedLetters:
111. print letter,
112. print

Line 110 is a new type of loop, calledcst loop. They are kind of likevhile loops. Line 111 is the

antire body of thfor loop. Therange() function is often used witfor loops. | will explain both in
he next two sectior

The range() Function

Therange() function is easy. You can call it with either asretwo integer arguments. When called

vith one argumenrange() will return a list of integers from 0 up to (buttrincluding) the argumer
Iry typingrange(10) into the shell:

»r> range [(10)
(0, 1, 2z, 3, 4, 5, &6, 7, 8, 2]
i

It's very easy to generate huge lists withrdmege() function. Try typing inrange(10000) into
he shell

I, o0&, -uO->J, oI, -u-J, -Oo-o, oy, SOo-g, SuU-D, -oug, Soo0l, SO0, oo0J, oo0I;
9905, 9906, 9907, 9908, 9909, 9910, 9911, 9912, 9913, 9914, 9915, 991§, 9917, 9
915, 9919, 9920, 9921, 9922, 9925, 9924, 9925, 992§, 9927, 9925, 9929, 9930, 993
1, 9932, 9933, 9934, 9935, 993§, 9937, 9935, 9939, 9940, 9941, 9942, 0943, 0944,
0945, 9945, 9947, 9945, 9949, 9950, 9951, 9952, 9953, 9954, 9955, 995§, 9957, O
058, 9959, 9980, 9961, 9962, 9983, 9984, 9985, 9986, 9987, 9988, 9989, 9970, 997
1, 9972, 9973, 9974, 9975, 997§, 9977, 9978, 9979, 9980, 9951, 9952, 9983, 09854,

0985, 9986, 9987, 9985, 9989, 9990, 9991, 9992, 9993, 9994, 9995, 999§, 9997, O
995, 9999]

s |

Lr: 143[Ca

The list is so huge, that it won't even all fit otihe screen. But we can save the list into thelker
ust like any other list by typinspam = range(10000)

I, I/, 913, I3, FFi3, FFI/0, FFI+, I 10, FF 15, 900, FF0l, 0z, 03, FIo4,
9935, 9934, 9937, 9933, 9939, 9990, 9991, 9992, 9993, 9994, 99495, 9995, 9997, 9
993, 9999]

x> Spatn = range [10000)

s |

Lr: 144[Co

If you pass two argumentstange() , the list of integers it returns is from the fissgument up to
but not including) the second argument. Try tygrange(10, 20) into the shell:

x> range (10, 20)
[io, 11, 12, 13, 14, 15, 1l&, 17, 15, 19]
wrr |

Therange() is a very useful function, because we often ugef@r loops (which are much like
thewhile loops we have already seen).

for Loops

Thefor loop is very good at looping over a list of valu€his is different from th&hile loop,
which loops as long as a certain condition is tAiér statement begins with tfier keyword,
followed by a variable, followed by the keyword, followed by a sequence (such as a listrimg)
and then a colon. Each time the program execut@s ¢hrough the loop (that is, on ed&ehation
through the loop) the variable in ther statement takes on the value of the next iterherist.

For example, you just learned that thage() function will return a list of integers. We wilka
this list as thdor statement's list. In the shell, tyfaa i in range(10): and press Enter.
Nothing will happen, but the shell will indent thersor, because it is waiting for you to type ia fa-
block. Typeprint i and press Enter. Then, to tell the interactivel slo& are done typing in the for-
block, press Enter again to enter a blank line. Sl will then execute yodor statement and block:

e i range (10 :
i

L O w R (s SO I Y = L T S ST

W
W
e

Thefor loop executes the code inside the for-block onceéch item in the list. Each time it
executes the code in the for-block, the variabis assigned the next value of the next item inigtelf
we used théor statement with the 1ig0, 1, 2, 3, 4,5, 6, 7, 8, 9] instead ofange
(10) , it would have been the same sincerdrgge() function's return value is the same as that list:

T i (o, 1, 2, 3, 4, 5, 6, 7, 8, 9]:

O o -1 o Nk W= O

N
N
N

Try typing this into the shelfor thing in ['cats’, 'pasta’, 'programming’,
'spam’]: and press Enter, then typent 'l really like ' + thing and press Enter,
and then press Enter again to tell the shell totkeador-block. The output should look like this:

e thing ['eats', 'pasta', 'programoing', 'sSpam'] o
'I really like ' + thing

really like cats

really like pasta
really like programmoing
really like =pam

v |

I
I
I
I

And remember, because strings are also a sequatecéyde just like lists, you can use thenfion
statements as well. This example uses a singleactearfrom the string on each iteration:

e e i 'Hello world!':
i

[e | =]

- RO

i

Thefor loop is very similar to thevhile loop, but when you only need to iterate over itéms
list, using a@or loop is much less code to type. You can mawdide loop that acts the same way as
afor loop by adding extra code:

»x> gequence = ['cats', 'pasta', 'programming', 'spam']
Fx> index = 0
e e [index < len(sedquence]]:

thing = sedquence[index]
'TI really like ' + thing
index = index + 1

really like cats

really like paszsta
really like prograrming
really like =pam

wax |

HHH H

But using thdor statement automatically does all this extra cadei$ and makes programming
easier since we have less to type. Our Hangman galinesefor loops so you can see how useful
they are in real games.

One more thing abodor loops, is that théor statement has the keyword in it. But when you
use than keyword in &or statement, Python does not treat it likeitheoperator you would use in
something liked2 in [0, 42, 67] . Thein keyword infor statements is just used to separat
variable and the list it gets its values from.

Code Explanation continued...

109. print 'Missed letters:’,

110. for letter in missedLetters:
111. print letter,

112. print

Thisfor loop will display all the missed guesses thatplager has made. When you play Hangman
on paper, you usually write down these letterdmthe side so you know not to guess them again. On
each iteration of the loop the valuelefter will be each letter imissedLetters in turn.
Remember that a comma at the end ofpiliet statement will make it print a space instead of a
"newline" character, so all the missed letters tdlon the same line.

If missedLetters was'ajtw' then thisfor loop would display j t w

So by this point we have shown the player the hamgboard and the missed letters. Now we wa

print the secret word, except we want blank lireglie letters. We can use the _ character (ctile
underscore character) for this. But we should ghatletters in the secret word that the player has
guessed, and use _ characters for the letterdaierghas not guessed yet. We can first createng st
with nothing but one underscore for each lettehesecret word. Then we can replace the blanks for

each letter ircorrectlLetters . So if the secret word wastter' then the blanked out string
would be' ' (five _ characters). forrectLetters was the stringt" then we would
want to change the blanked string_tt_r' . Here is the code that does that:

114. blanks ="' _'* len(word)

115.

116. foriin range(len(secretWord)): # replace blanks
with correctly guessed letters

117. if word[i] in correctLetters:

118. blanks = blanks[:i] + word[i] + bla nks
[i+1:]

Line 114 creates tHalanks variable full of _ underscores using string reqiien. Remember that
the* operator can also be used on a string and anentsg the expressidhello’ * 3 evaluates
to 'hellohellohello’ . This will make sure thdilanks has the same number of underscores as
secretWord has letters.

Then we use tor loop to go through each lettergacretWord and replace the underscore with
the actual letter if it exists iporrectLetters . Line 118 may look confusing. It seems that we are
using the square brackets with thlanks andsecretWord variables. But wait a seconanks
andsecretWord are strings, not lists. And then() function also only takes lists as parameters
strings. But in Python, many of the things you darto lists you can also do to strings:

Strings Act Like Lists

Surprise! Strings act a lot like lists. In factynalst all of the things you can do on lists you akso dc
on strings. Just think of strings as "lists" of detter strings. S&ello’ acts similar tq'H’,

‘e, 'l I, '0'] . (They are still different values and have différdata types though.
'Hello' ==['H', 'e", 'I', 'I', '0'] would beFalse .)) The square brackets can also
pick out individual characters from a string jukelit can pick out individual items from a lish the
interactive shell, typézz = 'Hello world! and therfizz[0]

x> fizez = 'Hello world!!

»xx fizz[0]

1 HI

s |

You can also find out how many characters arestring with theen() function. Type inen

(fizz) into the shell:

**» fizz = 'Hello world!!
>»> fizz[0O]

IHI

>»> len(fizz)

12

x|

However, you cannot change a character in a strimgmove a character wittel statement. This
because a list ismutable sequence and a string is aimmutable sequence . "Mutable" is anothe
word for "changeable.” The word "immutable” meagarihot be changed.” A sequence is a series of
things (like in real life, a dance sequence isreesef different dance steps done one after anpthbe
reason strings are immutable and lists are mutasdeo do with how the Python interpreter is
programmed, but it isn't important for us to knaworder to make games. If we want to change ags’
we can create a copy of the string with slices l@rpd next) the same way we do on line 118.

Seqguences

(Mutable)

Lists

(Immutable)

Strings

So remember, you can use index assignme@iélorwith lists but not with strings.

List Slicing and Substrings

Slicing is like indexing with multiple indexes insteadjo$t one. Instead of putting one index in
between the square brackets, we put two indexesatep by a colon. To grab the first three iteroa
ouranimals list with animals[0:3] , which means "all items in animals from item Otagbut not

including) item 3."

x> ahnimwals = ['aardwvark', 'anteater', 'antelope', 'alkert']
x> ahnimals[0:3]

['aardwvark', 'anteater', 'antelope']

sz |

To grab items 2 and 3 froanimals , use the slicanimals[2:4] . Try typing it into the shell:

Frx ahimals = ['aardvark', 'anteater', 'antelope', 'albert']
x> ahimals[2:4]

['antelope', 'albert']

wx |

You can use slicing to get a part of a string ézhlisubstring from a string. Try typingHello
world!'[3:8] into the shell:

>»» 'Hello world!'[3:8]
"1la wa!
s |

So remember that on the right side of any listtiong value (or a variable that contains a lisstsing
value), you can put square brackets to extraciglesor several items from tlsequence .
("Sequence" refers to a group of data types tlthide strings and lists.)

Code Explanation continued...

116. foriin range(len(secretWord)): # replace blanks
with correctly guessed letters
117. if secretWord[i] in correctLetters:
118. blanks = blanks[:i] + secretWord][i] +
blanks[i+1:]
Let's pretend the value eécretWord s otter' and the value igorrectLetters is'tr'
Thenlen(secretWord) will return5. Thenrange(len(secretWord)) becomesange(5) ,

which in turn returns the 1i§0, 1, 2, 3, 4]

Because the value ofwill take on each value ii®, 1, 2, 3, 4] , then thdor loop code is
equivalent to this:

if secretWord[0] in correctLetters:

blanks = blanks[:0] + secretWord[0] + blank s[1:]
if secretWord[1] in correctLetters:

blanks = blanks[:1] + secretWord[1] + blank s[2:]
if secretWord[2] in correctLetters:

blanks = blanks[:2] + secretWord[2] + blank s[3:]
if secretWord[3] in correctLetters:

blanks = blanks][:3] + secretWord[3] + blank s[4:]
if secretWord[4] in correctLetters:

|| blanks = blanks[:4] + secretWord[4] + blank s[5:] ||

(By the way, writing out the code like this instezfdusing a loop is calleldop unrolling .)

If you are confused as to what the value of somgthke secretWord[0] or blanks[3:] is,
hen look at this picture. It shows the value @secretWord andblanks variables, and the index
or each letter in the strir

blanks |

secretWord O t t e r

If we replace the list slices and the list indexgth the values that they represent, the unrolbexgbl
>ode would be the same as t

if ‘0" in 'tr": # Condition is F alse,
blanks == '
blanks="+"'0'+' '"#Thislineiss kipped.
if 't in'tr # Conditionis T rue,
blanks == '
blanks ="' "+'t'+' '#Thislineis e xecuted.
if 't in'tr # Conditionis T rue,
blanks=="1t1
blanks =' t'+'t'+' '# Thislineis e xecuted.
if 'e" in 'tr": # Condition is F alse,
blanks ==" tt '
blanks ="' tt'+'e'+"' "# Thislineis s kipped.
if'r'in'tr'. # Conditionis T rue,
blanks ==" tt '
blanks =" tt '+'r"+ " # This line is e xecuted.
blanks now has the value ' tt r'

The above three boxes of code all dogdree thing (at least, they do whesecretWord is
otter' andcorrectLetters is'tr' . The first box is the actual code we have in amg. The
second box shows code that does the same thingtexitbout afor loop. The third box is the same as
he second box, except we have evaluated manyeapressions in the second |

The next few lines of code display the new valublafiks with spaces in between each letter.

120. for letter in blanks: # show the secret wor d with
spaces in between each letter

121. print letter,

122. print

Thisfor loop will print out each character in the strisignks . Remember that by nowl|anks
may have some of its underscores replaced witketters insecretWord . The comma at the end of
theprint statement causes it to display a space insteadheWline character.

This is the end of thdisplayBoard() function.

124. def getGuess(alreadyGuessed):

125. # Returns the letter the player entered. Th is
function makes sure the player entered a single
letter, and not something else.

ThegetGuess() function has a string parameter calidadyGuessed which contains the

letters the player has already guessed, and willresplayer to guess a single letter. This sithgfker
will be the return value for this function.

126. while True:

127. print 'Guess a letter.’'
128. guess = raw_input()
129. guess = guess.lower()

We will use awhile loop because we want to keep asking the playea fetter until they enter text
that is a single letter they have not guessed puosly. Notice that the condition for théhile loop is
simply the boolean valuérue . That means the only way execution will ever lethig loop is by
executing dreak statement (which leaves the loop) oeturn statement (which leaves the entire
function)

The code inside the loop asks the player to enligttexr, which is stored in the varialgaess . If the
player entered a capitalized letter, it will be werted to lowercase on line 129.

elif ("Else If") Statements

Take a look at the following code:

if catName == "Fuzzball':
print "Your cat is fuzzy.'
else:
print "Your cat is not very fuzzy at all.'

We've seen code like this before and it's rathmapka. If thecatName variable is equal to the string
'Fuzzball’ , then thef statement's condition T®ue and we tell the user that her cat is fuzzy. If
catName is anything else, then we tell the user her cabtfuzzy.

But what if we wanted something else besides "fiang "not fuzzy"? We could put anothiér and
else statement inside the firstse block like this:

if catName == "Fuzzball':
print "Your cat is fuzzy.'
else:
if catName == 'Spots".
print "Your cat is spotted.’
else:
print "Your cat is neither fuzzy nor spotte d.'

But if we wanted more things, then the code startgave a lot of indentation:

if catName == "Fuzzball':
print "Your cat is fuzzy.'
else:
if catName == 'Spots'
print "Your cat is spotted.’
else:
if catName == "FattyKitty'
print "Your cat is fat.’
else:
if catName == "Puff'
print "Your cat is puffy.’
else:
print "Your cat is neither fuzzy no r spotted
nor fat nor puffy.'

Typing all those spaces means you have more chahoesking a mistake with the indentation. So
Python has thelif keyword. Usineelif , the above code looks like this:

if catName == "Fuzzball':
print "Your cat is fuzzy.'
elif catName == 'Spots'
print "Your cat is spotted.'
elif catName == "FattyKitty'
print "Your cat is fat.'
elif catName == "Puff’
print "Your cat is puffy.'
else:
print "Your cat is neither fuzzy nor spotted no r fat nor

puffy.’

If the condition for thef statement isalse , then the program will check the condition for fhist
elif statement (which isatName == 'Spots' . If that condition id~alse , then the program will
check the condition of the neglif statement. If ALL of the conditions for tlife andelif
statements arealse , then the code in thedlse block executes.

But if one of theelif conditions ardrue , the elifblock code is executed and then execution jt

down to the first line past the else-block.dby one of the blocks in this if-elif-else statement vk
executed. You can also leave off the else-blogkif don't need one, and just have an if-elif stat@m

Code Explanation continued...

130. if len(guess) != 1:

131. print 'Please enter a single letter '

132. elif guess in alreadyGuessed:

133. print 'You have already guessed tha t
letter. Choose again.'

134. elif guess not in
‘abcdefghijklmnopgrstuvwxyz':

135. print '‘Please enter a LETTER.'

136. else:

137. return guess

Theguess variable contains the text the player typed intf@ir guess. We need to make sure they
typed in a single lowercase letter. If they didwé, should loop back and ask them again.iThe
statement's condition checks that the text is owecaly letter. If it is not, then we execute thélbck
code, and then execution jumps down past the étsdlBut since there is no more code after this if
elif-else statement, execution loops back to line

If the condition for thef statement i§alse , we check thelif statement's condition on line 1:
This condition isTrue if the letter exists inside tr@readyGuessed variable (remember, this is a
string that has every letter the player has alreashssed). If this condition Igue , then we display th
error message to the player, and jump down pasl#ieeblock. But then we would be at the end of the
while-block, so execution jumps back up to line 126

If the condition for thef statement and thadif statement are boffalse , then we check the
seconcelif statement's condition on line 134. If the playged in a number or a funny character
(makingguess have a value lik&' or'!"), thenguess would not exist in the string

‘abcdefghijklmnopgrstuvwxyz' . If this is the case, thagif statement's condition T&rue
it leniguess) != 1:
¥ 'Please enter a single letter.!
1T guess 1n alreadyGuessed:

¥ '¥Fou have already guessed that letter. Choose again.!
2l1T guess not 1n 'asboedefghijklmnopgrstuwuxyzs!

print !'Please enter a LETTER.!

FELUFD guess ﬁ

One and only one of these blocks will execute.

Unless these three conditions areFallse , the player will keep looping and keep being asked
letter. But when all three of the conditions &edse , then the else-blockteturn statement will run
and we will exit this loop and function.

139. def playAgain():

140. # This function returns True if the player wants
to play again, otherwise it returns False.
141. print ‘Do you want to play again? (yes or n 0)'

142. return raw_input().lower().startswith('y’)

TheplayAgain() function has just grint statement andf@turn statement. Thesturn

statement has an expression that looks complichtedye can break it down. Once we evaluate this
expression to a value, that value will be returfiech this function.

The expression on line 142 doesn't have any opsrdiat it does have a function call and two
method calls. The function calligw_input() and the method calls alaver() and
startswith('y") . Remember that method calls are function callsdahaattached by a period to
thevalue on theirleft. lower() is attached to the return valuerefv_input()

raw_input() returns a string of the text that the user typedHere's a step by step look at how
Python evaluates this expression if the user typ&€S.

return raw_input().lower().startswith('y")

return 'YES'.lower().startswith('y")

return 'yes'.startswith('y")

return True

The point of theplayAgain() function is to let the player type in yes or ndelh our program if
they want to play another round of Hangman. Ifgleger types in YES, then the return value of
raw_input() is the strindYES' .'YES'.lower() returns the lowercase version of the attached
string. So the return value ES'.lower() is'yes'

But there's the second method csifrtswith('y") . This function returngrue if the
associated string begins with the string paranteteveen the parentheses, &adse if it doesn't. The
return value ofyes'.startswith('y") is True .

Now we have evaluated this expression! We canhsdenhat this does is let the player type in a
response, we lowercase the response, check ifimbeavith the lettely’ or'Y' , and then return
True if it does andralse if it doesn't. Whew!

On a side note, there is alseradswith(someString) string method that will returrue if the
string ends with the string someString andFalse if it doesn't.

Code Explanation continued...

That's all the functions we are creating for trasng!getRandomWord(wordList) will take a
list of strings passed to it as a parameter, angimre®ne string from it. That is how we will choase
word for the player to guess.

displayBoard(HANGMANPICS, missedLetters, correctLet ters, secretWord)
will show the current state of the board, includimyv much of the secret word the player has guessed
so far and the wrong letters the player has gue3sesl function needs four parameters passed t& wor
correctly. HANGMANPIC$ a list of strings that hold the ASCII art faaoh possible hangman board.
correctLetters andmissedLetters are strings made up of the letters that the plager
guessed that are in and not in the secret word.s&actetWord is the secret word the player is trying
to guess. This function has no return value.

getGuess(alreadyGuessed) takes a string of letters the player has alreaghsged and will

keep asking the player for a letter that is a tdtiat he hasn't already guessed. (That is, a kb is
not inalreadyGuessed . This function returns the string of the accemdbtter the player guessed.

playAgain() is a function that asks if the player wants to/@aother round of Hangman. This
function returnslrue if the player does anfdalse if the player doesn't.

We'll now start the code for the main part of tlaeng, which will call the above functions as needed.
Look back at our flow chart.

Start

+

Come up with
a secret word.

o+

Show the board and
blanks to the player.

J

Ask player to
guess a letter.

=

Letter is in Letter is not
secret word. in secret word.

Player already
guessed this letter.

Player has guessed Player has run out of
all letters and wins. body parts and loses.

Ne

Ask player to A
play again. __) ;

We need to write code that does everything inftbig chart, and does it in order. The main part of
the code starts at line 145:

145, print HANGMAN'
146. missedLetters ="
147. correctLetters ="

148. secretWord = getRandomWord(words)
149. gamelsDone = False

Line 145 is the first actual line that executesum game. Everything previous was just function
lefinitions and a very large variable assignmenHANGMANPICSNe start by assigning a blank sti
or missedLetters andcorrectLetters , because the player has not guessed any missed or
sorrect letters yet. Then we cgetRandomWord(words) , wherewords is a variable with the huge
ist of possible secret words we assigned on IBeT@e return value (getRandomWord(words) s
ne of these words, and we save it tosecretWord variable. Then we also set a variable named
JjamelsDone to False . We will setgamelsDone to True when we want to signal that the game is
yver and the program should ask the player if thagt to play agai

Setting the values of these variables is what wkedore the player starts guessing letters.

151. while True:
152. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Thewhile loop's condition is alwaysrue , which means we will always loop forever untlh@ak
statement is encountered. We will execubreak statement when the game is over (either becaese th
Jlayer won or the player los

Line 152 calls oudisplayBoard() function, passing it the list of hangman ASCII gidtures anc

he three variables we set on lines 146, 147, 48d Rrogram execution moves to the sta
lisplayBoard() at line 105. Based on how many letters the plagsrcorrectly guessed and mis:

his function displays the appropriate hangman dbtathe playe

154. # Let the player type in a letter.
155. guess = getGuess(missedLetters + correctLet ters)

If you look at our flow chart, you see only oneaavrgoing from the "Show the board and the blan
he player." box to the "Ask a player to guesstizite’ box. Since we have already written a functio
Jet the guess from the player, let's call that fionc Remember that the function needs all thelstin
nissedLetters andcorrectLetters combined, so we will pass as an argument a stiiaigis a
soncatenation of both of those strings. This arqurniseneeded bgetGuess() because the function

has code to check if the player types in a letiat they have already guessed.

157. if guess in secretWord:
158. correctLetters = correctLetters + guess

Now let's see if the single letter in theess string exists irsecretWord . If it does exist, then we
should concatenate the letterguness to thecorrectlLetters string. Next we can check if we he
guessed all of the letters and won.

160. # Check if the player has won

161. foundAllLetters = True

162. for i in range(len(secretWord)):

163. if secretWord[i] not in correctLett ers:
164. foundAllLetters = False

165. break

How do we know if the player has guessed everyisilgter in the secret word? Well,
correctLetters has each letter that the player correctly gueasddecretWord s the secret
word itself. We can't just checkébrrectLetters == secretWord because consider this
situation: ifsecretWord was the strin¢ptter’ andcorrectLetters was the stringprte’ |
thencorrectLetters == secretWord would beFalse even though the player has guessed
each letter in the secret word.

The player simply guessed the letters out of oatherthey still win, but our program would
incorrectly think the player hasn't won yet. Evetiney did guess the letters in order,
correctLetters would be the stringpter’ because the player can't guess the letter t rhare t
once. The expressioatter' == 'oter' would evaluate téalse even though the player won.

The only way we can be sure the player won is tthgaugh each letter isecretWord and see if
exists incorrectLetters . If, and only if, every single letter secretWord exists in
correctLetters will the player have won.

Note that this is different than checking if evéetter incorrectLetters is insecretWord . If
correctLetters was the stringpt’ andsecretWord was'otter' , it would be true that
every letter idot' is in'otter’ , but that doesn't mean the player has guessexktihet word and
won.

So how can we do this? We can loop through eatdr lietsecretWord and if we find a letter that
does not exist icorrectLetters , we know that the player has not guessed alldtterk. This is
why we create a new variable nanfedndAllLetters and set it to the boolean vallisue . We
start out assuming that we have found all thergtteut will changdoundAllLetters to False
when we find a letter isecretWord that is not incorrectLetters

The for loop will go through the numbers 0 up tat(bot including) the length of the word.
Remember thatange(5) will evaluate to the lisf0, 1, 2, 3, 4, 5] . So on line 162, the

program executes all the code inside the for-bieitk the variablé will be set td0, thenl, then2,
then3, then4, then5.

We useange(len(secretWord)) so that can be used to access each letter in the secrdt
So if the first letter irsecretWord (which is located agecretWord[0]) is not in
correctLetters , we know we can séoundAllLetters to False . Also, because we don't
have to check the rest of the letters@tretWord , we can just break out of this loop. Otherwise, we
loop back to line 163 and check the next letter.

If foundAllLetters manages to survive every single letter withouhgéurned td-alse , then
it will keep the originallrue value we gave it. Either way, the valudanndAllLetters is
accurate by the time we get past this for loopramdine 166.

166. if foundAllLetters:

167. print 'Yes! The secret word is "' +
secretWord + "'! You have won!

168. gamelsDone = True

This is a simple check to see if we found all #téeks. If we have found every letter in the secret
word, we should tell the player that they have waie. will also set thgamelsDone variable to
True . We will check this variable to see if we showdtithe player guess again or if the player is done
guessing.

169. else:

This is the start of the else-block. Remembergctiae in this block will execute if the condition sva
False . But which condition? To find out, point your fiagat the start of thelse keyword and move
it straight up. You will see that tredse keyword's indentation is the same asithekeyword's
indentation on line 157. So if the condition orelib57 wad-alse , then we will run the code in this

else-block. Otherwise, we skip down past the eleekixo line 177.

170. missedLetters = missedLetters + guess

Because the player's guessed letter was wrong,ilvadd it to themissedLetters string. This is
like what we did on line 158 when the player gudssarectly.

172. # Check if player has guessed too many times
and lost

173. if len(missedLetters) == len(HANGMANPIC S)-1:

174. displayBoard(HANGMANPICS, missedLet ters,
correctLetters, secretWord)

175. print "You have run out of guesses! \nAfter
'+ str(len(missedLetters)) + ' missed guesses and "+
str(len(correctLetters)) + ' correct guesses, the w ord
was " + secretWord + ™"

176. gamelsDone = True

Think about how we know when the player has guessedany times. When you play Hangmar
paper, this is when the drawing of the hangmamisifed. We draw the hangman on the screen with
print statements, based on how many letters amgsaedLetters . Remember that each time the

player guesses wrong, we add (or as a programmadway, concatenate) the wrong letter to the®
in missedLetters . So the length afnissedLetters (or, in codelen(missedLetters)) can

tell us the number of wrong guesses.

At what point does the player run out of guesseslase? Well, thélANGMANPICS$st has 7
pictures (really, they are ASCII art strings). Sleenlen(missedLetters) equalss, we know the
player has lost because the hangman picture wiihished. (Remember thetANGMANPICS[O]is
the first item in the list, anHANGMANPICS][6]is the last one. This is because the index cftawith 7
items goes from 0 to 6, not 1 to 7.)

So why do we havken(missedLetters) == len(HANGMANPICS) - 1 as the condition
on line 173, instead dén(missedLetters) == ? Pretend that we add another string to the
HANGMANPICSst (maybe a picture of the full hangman withrad, tor a third mutant arm). Then the
last picture in the list would be BANGMANPICS[7] So not only would we have to change the
HANGMANPICSst with a new string, but we would also havedemember to change line 173lém
(missedLetters) == . This might not be a big deal for a

program like Hangman, but when you start writingyéa programs you may have to change several
different lines of code all over your program jtstmake a
change in the program's behavior. This way, if ve@tito make the game harder or easier, we just have
to add or remove ASCII art stringstHANGMANPIC&nd change nothing else.

A second reason we uden(HANGMANPICS) - 1 is so that when we read the code in this
program later, we know why this program behavesahy it does. If you wrotéen
(missedLetters) == and then looked at the code two weeks later, yay wonder what is so
special about the number 6. You may have forgdtian6 is the last index in the HANGMANPICS i
Of course, you could write a comment to remind gelir like:

173. if len(missedLetters) == 6: # 6 is the last
index in the HANGMANPICS list

But it is easier to just u3den(HANGMANPICS) - 1 instead.

So, when the length of theissedLetters string is equal teen(HANGMANPICS) -1 |, we
know the player has run out of guesses and hathegfame. We print a long string telling the user
what the secret word was, and then segdraelsDone value to the boolean valdgue . This is how
we will tell ourselves that the game is done andshauld start over.

Remember that when we have \n in a string, thaesgmts the newline character.

177. # Ask the player if they want to play again (but
only if the game is done).
178. if gamelsDone:

179. if playAgain():

180. missedLetters ="

181. correctLetters ="

182. gamelsDone = False

183. secretWord = getRandomWord(words)

If the player won or lost after guessing theirdetthen our code would have set gagnelsDone
variable toTrue . If this is the case, we should ask the playérefy want to play again. We already
wrote theplayAgain() function to handle getting a yes or no from thegypt. This function returns
boolean value ofrue if the player wants to play another game of HangnaadFalse if they've had
enougr

If the player does want to play again, we will tebe values inmissedLetters and
correctLetters to blank strings, segamelsDone to False , and then choose a new secret word
by callinggetRandomWord() again, passing it the list of possible secret word

This way, when we loop back to the beginning ofltdap (on line 151) the board will be back to the
start (remember we decide which hangman pictushdov based on the lengthrofssedLetters
which we just set as the blank string) and the gastide just as the first time we entered the lodpe
only difference is we will have a new secret wdrélcause we programmgédtRandomWord() to
return a randomly chosen word each time we call it.

There is a small chance that the new secret wdkd&the same as the old secret word, but this is
just a coincidence. Let's say you flipped a coid iicame up heads, and then you flipped the ogain
and it also came up heads. Both coin flips werdoan it was just a coincidence that they came ap th
same both times. Accordingly, you may get the sam&l return fromgetRandomWord() twice in a
row, but this is just a coincidence.

184. else:
185. break

If the player typed ifn0' when asked if they wanted to play again, then tieayn value of the ce
to theplayAgain() function would bdralse and the else-block would have executed. This else-
block only has one line,lareak statement. This causes the execution to jumpeetil of the loop
that was started on line 151. But because there more code after the loop, the program terminates

And that's it!

This program was much bigger than the Dragon Worddjram, but this program is also more
sophisticated. It really helps to make a flow cluarsmall sketch to remember how you want evergt
to work. Take a look at the flow chart and tryitadfthe lines of code that represent each block.

At this point, you can move on to the next cha@ert. | suggest you keep reading on to find out
about some ways we can improve our Hangman game.

After you have played Hangman a few times, you tiilgimk that six guesses aren't enough to get
many of the words. We can easily give the playerenguesses by adding more multi-line strings to the
HANGMANPICSst. It's easy, just change the] square bragkdine 96 to a ,"" comma and three qu
(see line 96 below). Then add the following:

96. —_———————— ===

100. | |
101. | |
102. [0 |
103. I\ |
104. /|\ |
105. | |
106. /\ |
107. / \ |
108. |
109. |
110. =============="" ;M
111.

112.

113, +---—-- T

114. | |

115. | |

116. [O] |

117. I\ |

118. /|\ |
119. | |
120. /\ |
121,/ \ |
122. |
123. |

We have added two new multi-line strings to HEENGMANPICS$st, one with the hangman's left ear
irawn, and the other with both ears drawn. Becaus@rogram will tell the player they have lost wut
he number of guesses is the same as the numbgimngfs inHANGMANPIC@ninus one), this is the
nly change we need to ma

We can also change the list of words by changiegnbrds on line 98. Instead of animals, we could
1ave colors, shapes, or fru

98. words = 'red orange yellow green blue indigo vio let
white black brown'.split()

98. words = 'square triangle rectangle circle ellips e “

rhombus trapazoid chevron pentagon hexagon septagon
octogon'.split()

98. words = "apple orange lemon lime pear watermelon grape
grapefruit cherry banana cantalope mango strawberry
tomato'.split()

Dictionaries

With some modification, we can change our codédhabdur Hangman game can use all of these
1S separate sets. We can tell the player whictheetecret word is from (like "animal”, "color" Hape",
r "fruit”). This way, the player isn't guessingraals all the time

To make this change, we will introduce a new dgpe tcalled a dictionary. Aictionary is a
>ollection of other values much like a list, bustelad of accessing the items in the dictionary ait
nteger index, you access them with an index ofdatg type (but most often string

Try typing the following into the shell:

stuff = {'hello":'Hello there, how are you?', ‘chat "'How is
the weather?', 'goodbye":'It was nice talking to yo ul'}

Those are curly braces { and }. On the keyboarg #re on the same key as the square braces [and].
Ne use curly braces to type out a dictionary vatueython. The values in between themkey-value
Jairs . The keys are the things on the left of the calod the values are on the right of the colon. You
>an access the values (which are like items ig)listthe dictionary by using the key (which ake

ndexes in lists). Try typing into the shstuff['hello’] andstuff['chat'] andstuff
‘goodbye’]
>»» gtuff = {'hello':'Hello there, how are wyou?', 'chat':'How is the weather?',
'goodbye' 1 ' It was nice talking to you!'}

x> gtuff['hellao']

'Hello there, how are you?'
Frx gtuff['chat']

'"How is the weather?!'

Fxx stuff['goodhbye']

'Tt was nice talking to you!'!
s |

You see, instead of putting an integer index imieeh the square brackets, you put a key string«ii
'his will evaluate to the value for that key. Yaanaget the size (that is, how many -value pairs in th

dictionary) with thden() function. Try typingen(stuff) into the shell:

x> len(stuff)
3
=z |

The list version of this dictionary would have otie values, and look something like this:

listStuff = ['Hello there, how are you?', 'How is t he
weather?', 'It was nice talking to you!']

The list doesn't have any keys, likello’ and'chat’ and'goodbye’ in the dictionary. We
have to use integer index@sl, and2.

Dictionaries are different from lists because thsgunordered . The first item in a list named
listStuff would belistStuff[0] . But there is no "first" item in a dictionary, lzese
dictionaries do not have any sort of order. Tryirtggthis into the shell:

favoritesl = {fruit":'apples’, ‘animal’:'cats’,
'number.42}

favorites2 = {"animal’:'cats’, 'number':42,
fruit':'apples'}

favorites1 == favorites2

x> favoritesl = {'fruit':'apples', 'animal':'cats', 'number' 42}
x> favoritessd = {'animal':'cats', 'number' 42, 'fruit':'apples'}
»»> fawvoritesl == favorites:d
True
= |
As you can see, the expressfamoritesl == favorites2 evaluates tdrue because

dictionaries are unordered, and they are considerbd the same if they have the same key-valus pai
in them. Lists are ordered, so a list with the saalaes in them but in a different order are net th
same. Try typing this into the shell:

listFavsl = ['apples’, ‘cats’, 42]
listFavs2 = ['cats’, 42, ‘apples']
listFavsl == listFavs2

>»> ligtFavzsl = ['applez', 'catzs', 42]

>»x> ligtFavssd = t'cats', 42, 'apple=']
>»> ligtFavsl == listFavs:
Falze

Frx

As you can see, the two lidtstFavsl andlistFavs2 are not considered to be the same
because order matters in lists.

You can also use integers as the keys for dictiesaDictionaries can have keys of any data typt
just strings. But remember, becalO and'0’ are different values, they will be different keysy
typing this into the shell:

myDict = {'0":'a string’, 0:'an integer'}
myDict[0]
myDict['0']

Frx myDict = {'0':1'a string', 0:'an integer'?}
>r» myDict[0] '

'an integer'

Frx omyDict['0']

'a string'

»ox |

You might think that using #or loop is hard with dictionaries because they dohaste integer
indexes. But actually, it's easy. Try typing thiédwing into the shell. (Here's a hint, in IDLE, yalo
not have to type spaces to start a new block. ID&€&s it for you. To end the block, just insert @l

line by just hitting the Enter key. Or you couldrsta new file, type in this code, and then pre&ssoF
run the program.)

favorites = {'fruit":'apples’, '‘animal‘:'cats’, 'nu mber':42}
for i in favorites:
print i

for i in favorites:
print favoritesyi]

x> favorites = {'fruit':'apples', 'animal':'cats', 'huwber!' 142}
e i favorites:
i
fruit
nurber
animal
e i favorites:

fawvorites[1i]

apples
42
cats
e

As you can see, if you just use a dictionary fora loop, the variablé will take on the values of tt
dictionary'skeys, not its values. But if you have the dictionargldhe key, you can get the value as we
do above witHfavoritesi] . But remember that because dictionaries are uneddgou cannot
predict which order théor loop will execute in. Above, we typed tlemimal' key as coming
before thénumber' key, but thdor loop printed outnumber' before'animal’

Dictionaries also have two useful methddsys() andvalues() . These will return (ordered) li¢
of the key values and the value values, respegtiVey typing the following into the shell:

favorites = {'fruit":'apples’, 'animal‘:'cats’, 'nu mber':42}
favorites.keys() favorites.values()

»»> fawvorites = {'fruit':'apples', 'animal':'cats', 'nuber' 142}
>>> favorites.keysi)

['fruit', 'number', 'animal']

»x»> favorites.wvaluesi)

['apples', 42, 'cats']

=z |

Using these methods to get a list of the keys ahges that are in a dictionary can be very helpful.

Sets of Words for Hangman

So how can we use dictionaries in our game? Fatst, change the listords into a dictionary

whose keys are strings and values are lists afgstriRemember that the string metisptit()
evaluates to a list.

98. words = {'Colors":'red orange yellow green blue indigo
violet white black brown'.split(),
99. 'Shapes''square triangle rectangle circle ellip se

rhombus trapazoid chevron pentagon hexagon septagon
octogon'.split(),

100. 'Fruits':'apple orange lemon lime pear watermel on
grape grapefruit cherry banana cantalope mango
strawberry tomato'.split(),

101. 'Animals':'bat bear beaver cat cougar crab deer dog
donkey duck eagle fish frog goat leech lion lizard
monkey moose mouse otter owl panda python rabbit ra t
shark sheep skunk squid tiger turkey turtle weasel
whale wolf wombat zebra'.split()}

This code is put across multiple lines in the fdeen though the Python interpreter thinks of ijuas
one "line of code.” (The line of code doesn't entlwhe final } curly brace.)

Now we will have to change ogetRandomWord() function so that it chooses a random word
from a dictionary of lists of strings, instead adrh a list of strings. Here is what the functiomgorally
looked like:

100. def getRandomWord(wordList):

101. # This function returns a random string fro m the
passed list of strings.
102. wordindex = random.randint(0, len(wordList) -1)

103. return wordList[wordIndex]

Change the code in this function so that it looks this:

100. def getRandomWord(wordDict):

101. # This function returns a random string fro m the
passed dictionary of lists of strings, and the key
also.

102.

103. # First, randomly select a key from the
dictionary:

104. wordKey = random.choice(wordDict.keys())

105.

106. # Second, randomly select a word from the k ey's

list in the dictionary:
107. wordindex = random.randint(0, len(wordDict
[wordKey]) - 1)
108.
109. return [wordDict[wordKey][wordIndex], wordK ey]

Line 100 just changes the name of the paramet&rteething a little more descriptive. Now instead
of choosing a random word from a list of stringsstfwe choose a random key from the dictionary and
then we choose a random word from the key's listrrfigs. Line 104 calls a new function in the
random module namedhoice() . Thechoice() function has one parameter, a list. The return
value ofchoice() is an item randomly selected from this list eantetit is called.

Remember thaiandint(a, b) will return a random integer between (and inclgglithe two

integersa andb andchoice(a) returns a random item from the l&tLook at these two lines of
code, and figure out why they do the exact sanmgythi

random.randint(0, 9)
random.choice(range(0, 10))

Line 103 (line 109 in the new code) has also bdwmged. Now instead of returning the string
wordList[wordIndex] , We are returning a list with two items. The fiitetm iswordDict
[wordKey][wordindex] . The second item igordKey . We return a list because we actually want
thegetRandomWord() to return two values, so putting those two vaines list and returning the li
is the easiest way to do this.

wordDict[wordKey][wordindex] may look kind of complicated, but it is just arpeassion
you can evaluate one step at a time like anythlisg €irst, imagine thavordkKey had the value
'Fruits’ (which was chosen on line 104) andrdindex has the valué (chosen on line 107).
Here is howwordDict[wordKey][wordindex] would evaluate:

wordDict[wordKey][wordIndex]

wordDict['Fruits'][5]
[apple’, 'orange’, 'lemon’, 'lime’, 'pear’, 'water melon’,
‘grape’, 'grapefruit’, 'cherry’, 'banana’, 'cantalo pe',

'mango’, 'strawberry’, 'tomato'][5]

‘watermelon'

In the above case, the first item in the list fhisction returns would be the stringatermelon’

There are just three more changes to make to ogrgm. The first two are on the lines that we call
thegetRandomWord() function. The function is called on lines 148 & in the original program:

147. correctLetters ="
148. secretWord = getRandomWord(words)
149. gamelsDone = False

182. gamelsDone = False
183. secretWord = getRandomWord(words)
184. else:

Because thgetRandomWord() function now returns a list of two items instedédtring,
secretWord will be assigned a list, not a string. We wouldrtthave to change the code as follows:

147. correctLetters ="

148. secretWord = getRandomWord(words)
149. secretKey = secretWord[1]

150. secretWord = secretWord[0]

151. gamelsDone = False

182. gamelsDone = False

183. secretWord = getRandomWord(words)
184. secretKey = secretWord[1]

185. secretWord = secretWord[0]

186. else:

With the above changesgcretWord s first a list of two items. Then we add a newiatle named
secretKey and set it to the second itemsacretWord . Then we setecretWord itself to the firs
tem in thesecretWord list. That means thaecretWord will then be a string.

But there is an easier way by doing a little tnakh assignment statements. Try typing the folloyvin
nto the shel

a, b, ¢ = ['apples’, 'cats’, 42]

O T O

»rx a, b, o = ['apples', 'cats', 42]
Frroa

'apples’

x> b

'cats!

o

4z

wrr |

The trick is to put the same number of variabledifuted by commas) on the left side of the = sag
are in the list on the right side of the = signtiéy will automatically assign the first item's walin the
Ist to the first variable, the second item's vaiu¢he second variable, and so on. But if you ofohave

the same number of variables on the left side @®tare items in the list on the right side, ththBy
interpreter will give you an error.

*>> a, b, o, d = ['apples', 'cats', 42]

Traceback (mwost recent call last):
File "<pyshell#S>", line 1, in <module>
a, b, o, d = ['apples', 'cats', 4Z]
ValueError: need more than 3 walues to unpack
*»> a, b, o = ['apples', 'cats']

Traceback (mwost recent call last):
File "<pyshell#9=", line 1, in <module>
a, b, o = ['apples', 'cats']
ValueError: need more than 2 walues to unpack
s |

So we should change our code in Hangman to uséritkswhich will mean our program uses fewer
lines of code.

147. correctLetters ="
148. secretWord, secretKey = getRandomWord(words)
149. gamelsDone = False

182. gamelsDone = False

183. secretWord, secretKey = getRandomWo rd
(words)

184. else:

The last change we will make is to add a simpletmtiatement to tell the player which set of words
they are trying to guess. This way, when the plgjays the game they will know if the secret wad i
an animal, color, shape, or fruit. Add this linecofde after line 151. Here is the original code:

151. while True:
152. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Add the line so your program looks like this:

151. while True:

152. print 'The secret word is in the set: ' +
secretKey

153. displayBoard(HANGMANPICS, missedLetters,
correctLetters, secretWord)

Now we are done with our changes. Instead of jsshgle list of words, the secret word will be
chosen from many different lists of words. We wilo tell the player which set of words the secret
word is from. Try playing this new version. You ocaasily change theords dictionary on line 98 to
include more sets of words.

We're done with Hangman. Let's move on to our gexbe, Tic Tac Toe!

Things Covered In This Chapter:

Designing our game by drawing a flow chart befaegpamming.
ASCII Art

Multi-line Strings

Lists

List indexes

Index assignment

List concatenation

Thein operator

Thedel operator

Methods

Theappend() list method

Thelower() andupper() string methods
Thereverse() list method

Thesplit() list method

Thelen() function

Empty lists

Therange() function

for loops

Strings act like lists

Mutable sequences (lists) and immutable sequest@sgs)
List slicing and substrings

elif statements

Thestartswith(someString) andendswith(someString) string

methods

The dictionary data type (which is unordered, umlikt data type which is
ordered)

key-value pairs

Thekeys() andvalues() dictionary methods

Multiple variable assignment, suchad, ¢ = [1, 2, 3]

Chapter 6 - Tic Tac Toe

We will now create a Tic Tac Toe game where thggiplays against a simple artificial intelligen
An artificial intelligence (or Al) is a computer program that can intelligently mgpto the player's
moves. This game doesn't introduce any complica¢éedconcepts. We will see that the artificial
intelligence that plays Tic Tac Toe is really jasteral lines of code. So in a new file editor vawvd
type in this source code and save it as tictacyodlpen run the game by pressing F5.

Sample Run

Welcome to Tic Tac Toe!
Do you want to be X or O?
X

The computer will go first.

The computer has beaten you! You lose.
Do you want to play again? (yes or no)
no

Source Code

tictactoe.py

. # Tic Tac Toe

: import random

: def drawBoard(board):

This function prints out the board that it
passed.

1
2
3
4
5
6

© N

"board" is a list of 10 strings representin

board (ignore index 0)

9 print" | |

10. print''+ board[7] +"'| "+ board[8] +
board[9]

11. print" | |

12. print '----------- '

13. print" | |

14. print''+ board[4] +'| "+ board[5] +

board[6]

was

g the

"+

15. print' | |

16. print '----------- '

17. print' | |

18. print''+ board[1] +'| "'+ board[2] + "+
board[3]

19. oprint' | |

20.

21. def inputPlayerLetter():

22. # Let's the player type which letter they wa nt to
be.

23. # Returns a list with the player's letter as the
first item, and the computer's letter as the second

24. letter="

25. while not (letter == "X or letter =="'O"):

26. print ‘Do you want to be X or O?'

27. letter = raw_input().upper()

28.

29. #the first element in the tuple is the play er's

letter, the second is the computer's letter.
30. if letter =="X"

31. return ['X', 'O']
32. else:

33. return ['O', 'X']
34.

35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == O:

38. return ‘computer

39. else:

40. return 'player’

41.

42. def playAgain():

43. # This function returns True if the player w ants to
play again, otherwise it returns False.

44. print 'Do you want to play again? (yes or no)’

45. return raw_input().lower().startswith('y")

46.

47. def makeMove(board, letter, move):

48. board[move] = letter

49.

50. def isWinner(bo, le):

51. # Given a board and a player's letter, this
function returns True if that player has won.

52. # We use bo instead of board and le instead of
letter so we don't have to type as much.
53. return ((bo[7] == le and bo[8] == |le and bo[9] ==

le) or # across the top

54.

55.

56.

57.

58.

59.

60.

61
62

63.

64.

(bo[4] == le and bo[5] == le and bo[6] == le
across the middle

(bo[1] == le and bo[2] == le and bo[3] == le
across the bottom

(bo[7] == le and bo[4] == le and bo[1] == le
down the left side

(bo[8] == le and bo[5] == le and bo[2] == le
down the middle

(bo[9] == le and bo[6] == le and bo[3] == le
down the right side

(bo[7] == le and bo[5] == le and bo[3] == le
diagonal

(bo[9] == le and bo[5] == le and bo[1] == le
diagonal

. def getBoardCopy(board):

Make a duplicate of the board list and ret
the duplicate.

dupeBoard =[]

65.

66.
67.

for i in board:
dupeBoard.append(i)

68.

69.

return dupeBoard

70.

71

72.

73.

74
75

76.
77.
78.

79.
80.
81.

. def isSpaceFree(board, move):

Return true if the passed move is free on
passed board.

return board[move] ==""

. def getPlayerMove(board):
Let the player type in their move.
move ="'
while move notin'12 3456 7 8 9.split(
not isSpaceFree(board, int(move)):
print 'What is your next move? (1-9)'
move = raw_input()
return int(move)

82.

83

84.

85.
86.
87.
88.
89.

. def chooseRandomMoveFromList(board, movesList):
Returns a valid move from the passed list
passed board.
Returns None if there is no valid move.
possibleMoves =[]
for i in movesList:
if isSpaceFree(board, i):
possibleMoves.append(i)

) or #
) or #
) or #
) or #
) or #

) or #

) #

urn it

the

) or

on the

90.
91.
92.
93.
94.
95.
. def getComputerMove(board, computerLetter):
97.

96

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.

113.
114.
115.
116.
117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.
129.
130.

131.
. def isBoardFull(board):

132

if len(possibleMoves) != 0:

return random.choice(possibleMoves)
else:

return None

Given a board and the computer's letter,
determine where to move and return that move.
if computerLetter == "X".
playerLetter = 'O’
else:
playerLetter = 'X'

Here is our algorithm for our Tic Tac Toe Al:
First, check if we can win in the next mo ve
foriin range(l, 9):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, computerLetter, i)
if isWinner(copy, computerLetter):
return i

Check if the player could win on their ne xt move,
and block them.
foriin range(1, 9):
copy = getBoardCopy(board)
if isSpaceFree(copy, i):
makeMove(copy, playerLetter, i)
if isWinner(copy, playerLetter):

return i
Try to take one of the corners, if they a re free.
move = chooseRandomMoveFromList(board, [1, 3,7,

9
if move != None:
return move

Try to take the center, if it is free.
if isSpaceFree(board, 5):
return 5

Move on one of the sides.
return chooseRandomMoveFromList(board, [2, 4, 6,

8])

133.

134.
135.
136.
137.
138.
139.
. print 'Welcome to Tic Tac Toe!'
141.

. While True:

143.
144,
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.

140

142

172.
173.
174.
175.
176.

Return True if every space on the board h
taken. Otherwise return False.
foriin range(1, 10):
if isSpaceFree(board, i):
return False
return True

Reset the board

theBoard =[] * 10

playerLetter, computerLetter = inputPlayerL
turn = whoGoesFirst()

print The ' + turn + " will go first.'
gamelsPlaying = True

while gamelsPlaying:
if turn == "player":
Player's turn.
drawBoard(theBoard)
move = getPlayerMove(theBoard)
makeMove(theBoard, playerLetter, mo

if isWinner(theBoard, playerLetter)
drawBoard(theBoard)
print '"Hooray! You have won the
gamelsPlaying = False
else:
if isBoardFull(theBoard):
drawBoard(theBoard)
print "The game is a tie!"
break
else:
turn = ‘computer’

else:
Computer's turn.
move = getComputerMove(theBoard,
computerLetter)
makeMove(theBoard, computerLetter,

if isWinner(theBoard, computerLette
drawBoard(theBoard)
print "'The computer has beaten
lose.'

as been

etter()

ve)

game!'

move)

you! You

177. gamelsPlaying = False
178. else:

179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print "‘The game is a tie!"
182. break

183. else:

184. turn = 'player’

185.

186. if not playAgain():

187. break

Designing the Program

Tic Tac Toe is a very easy and short game to phagamer. In our Tic Tac Toe computer game, we'll
et the player choose if they want to be X or @d@mly choose who goes first, and then let theepl
and computer take turns making moves on the bések is what a flow chart of this game could I¢
ike:

Start

v

Ask for
player's letter.

o

Decide who
goes first.

Player's turn Computer's turn

Get player's Get computer's
move. move,
Check if Check i
player won. computer won.

Check for tie.

Ask player to
play again.

End |

You can see a lot of the boxes on the left sidda@ichart are what happens during the player's turn
The right side of the chart shows what happenfiercdmputer's turn. The player has an extra box for
drawing the board because the computer doesn'tthedzbard printed on the screen. After the play
computer makes a move, we check if they won orexhadie, and then the game switches turns. If
either the computer or player ties or wins the gameeask the player if they want to play again.

First, we need to figure out how we are going fresent the board as a variable. We are going to
represent the Tic Tac Toe board as a list of tengst. The ten strings will represent each of time n
positions on the board (and we will ignore one wf strings). The strings will either b¢" for the X
player,'O" for the O player, or a space stririg to mark a spot on the board where no one has
marked yet. To make it easier to remember whickxnd the list is for which piece, we will mirrdne
numbers on the keypad of our keyboard. (Because th@&o 0 on the keypad, we will just ignore the
string at index O in our lis

718(9 .,
Home T PgUp N
4|5|/6 45 9
1 2 3 gnd 24’ P:jm Enter
0 .
Ins Del

So if we had a list with ten strings namaahrd , thenboard[7] would be the top-left square on
the board (either an X, O, or blank spat®gard[5] would be the very center. When the player types
in which place they want to move, they will typawamber from 1 to 9.

Game Al

Just to be clear, we will label three types of ggaun the Tic Tac Toe board: corners, sides, and th
center. Here is a chart of what each space is:

Corner Side Corner
Side Center Side
Corner Side Corner

The Al for this game will follow a simple algorithrAn algorithm is a series of instructions to
compute something. Our Tic Tac Toe Al's algorithith determine which is the best place to move.
algorithm will have the following steps:

1. First, see if there is a move the computer cakentizat will win the game. If there is, take that
move. Otherwise, go to step 2.
2. See if there is a move the player can make thatailse the computer to lose the game. If t

is, we should move there to block the player. Qitis=, go to step 3.

3. Check if any of the corner spaces (spaces 1,@8,9) are free. (We always want to take a corner
piece instead of the center or a side piece.) Boraer piece is free, then go to step 4.
4. Check if the center is free. If so, move thefd.isn't, then go to step 5.

5. Move on any of the side pieces (spaces 2, 4, 8).d here are no more steps, because if we have
reached step 5 the side spaces are the only dpéices

This all takes place in the "Get computer's motex on our flow chart. We could add this
information to our flow chart like this:

ikl |

=

Computer's turn

Get computer’'s move.

1. Make winning move.

R !

2. Block player’s winning move.

i

Get computer’s 3. Move on corner.
move. L
*I“ﬁ." | 4. Move on center.

5. Move on side.

: Check for tie.

We will implement this algorithm as code in @atComputerMove()

function.

Code Explanation

1. # Tic Tac Toe
2

3. import random

A comment and importing thendom module so we can use trandint() function in our game.

H 5. def drawBoard(board): “

6.

o N

11.
12.
13.
14.

15.
16.
17.
18.

19.

This function prints out the board that it
passed.

"poard" is a list of 10 strings representin
board (ignore index 0)

print' | |

print'' + board[7] +'| "'+ board[8] +'
board[9]

board[6]
print" | |

+ —
U_.

print"’
board[3]
print" | |

oard[1] +'|' + board[2] +"

was

g the

"+

This function will print out the game board, markeidirected by thieoard parameter. Many of ot
unctions will work by passing the board as adisten strings to our functions. Be sure to getdpacin
ight in the strings that are printed, otherwise ltloard will look funny when it is printed on theresen

Just as an example, here are some values thao@nd parameter could have (on the left) and what
hedrawBoard() function would print out:

board data structure drawBoard(board)
output
| |
X| |O
||
[L L 1 1 X! O! 1 x' 1 X|O|

01

|
| X|
[0, 0 X |
||] ___________
| |
0]0]|
| |
| |
| |
| |
[| |
1 1 b b b b b b) I] | |
| |
| |
| |
| |
| |
X | X | X
| |
XX X X X X X
[] X | X | X
| |
| |
X | X | X
| |

The last board filled with X's could not possibigve happened (unless the X player skipped alle
O player's turns!) But thérawBoard() function doesn't care. It just prints theard parameter that
it was passed.

21. def inputPlayerLetter():

22. # Let's the player type which letter they wa nt to
be.

23. # Returns a list with the player's letter as the
first item, and the computer's letter as the second

24. letter="

25. while not (letter =="X" or letter =="O"):
26. print ‘Do you want to be X or O?'

27. letter = raw_input().upper() “

TheinputPlayerLetter() is a simple function. It asks if the player watatve X or O, and wil
<eep asking the player (with twhile loop) until the player types in an X or O. Notime line 26 that
ve automatically change the string returned byctdeto raw_input() to uppercase letters with the
lpper() string method.

Thewhile loop's condition contains parentheses, which me@nsxpression inside the parentheses
s evaluated first. If thletter variable was set t&X' , the expression would evaluate like this:

while not (letter == "'X" or letter =="0’):

I

while not (‘X' =="'X"or 'X' =="0"):

-

while not (True or False):

-

while not (True):

-

while not True:

3}

while False:

As you can see, Ietter has the valu&X' or'O' , then the loop's condition will Healse and
ets the program execution contir

29. #the first element in the tuple is the play er's
letter, the second is the computer's letter.

30. if letter =="X"

31. return ['X', 'O']

32. else:

33. return ['O', 'X']

This function returns a list with two items. Thestiitem will be the player's letter, and the setoil
Je the computer's letter. Thicelse statement chooses the appropriate list toxetinis is much like th
jetRandomWord() function in the extended version of our Hangmamegan the last chapter.

35. def whoGoesFirst():
36. # Randomly choose the player who goes first.
37. if random.randint(0, 1) == 0:

38. return ‘computer
39. else:
40. return 'player’

ThewhoGoesFirst() function does a coin flip to determine who goestfithe computer or the
player. Instead of flipping an actual coin, thisle@ets a random number of eitReor 1 by calling the
random.randint() function. If this function call returns@ thewhoGoesFirst() function
returns the strinfgomputer’ . Otherwise, the function returns the stripigyer' . The code that
calls this function will use the return value tooknwho will make the first move of the game.

42. def playAgain():

43. # This function returns True if the player w ants
to play again, otherwise it returns False.
44. print 'Do you want to play again? (yes or no)’

45. return raw_input().lower().startswith('y")

TheplayAgain() function asks the player if they want to play &eotgame. The function returns
True if the player types ityes’ or'YES' or'y' or anything that begins with the letter Y. For any
other response, the function retufr@dse . The order of the method calls on line 151 is inguat. The
return value from the call to thiaw_input() function is a string that has itsver() method
called on it. Thdower() method returns another string (the lowercaseggtand that string has its
startswith() method called on it, passing the argunignt.

There is no loop, because we assume that if theemsered anything besides a string that begins
'y' , they want to stop playing. So, we only ask trey/et once.

47. def makeMove(board, letter, move):
48. board[move] = letter

ThemakeMove() function is very simple and only one line. Thegraeters are a list with ten
strings namedtboard , one of the player's letters (eithl or'O') namedetter , and a place on
the board where that player wants to go (whicmigéeger froml to 9) namedmove.

But wait a second. You might think that this funatidoesn't do much. It seems to change one of the
items in theboard list to the value idetter . But because this code is in a function,hbard
variable will be forgotten when we exit this furstiand leave the function's scope.

Actually, this is not the case. This is becauds bse special when you pass them as arguments to
functions. This is because you pass a referenttesthst.

List References

Try typing the following into the shell:

spam =42
cheese = spam
spam = 100
spam

cheese

When you type this into the shell, it should lotéelthis:

x> Spam = 42

»x» cheese = spat
x> Spam = 100
>x> Spam

100

»x» cheese

4z

s |

This makes sense from what we know so far. We agélgo thespam variable, then we copy the
value inspam and assign it to the variabtbeese . When we later change the valuespram to 100,
this doesn't affect the value ¢heese .

But lists don't work this way. When you assignsa o a variable with the = sign, you are actually
assigning a reference to the listré&erence is a pointer to some bit of data. When you asaigist
variable to a second variable, you are actuallyapthe reference and no the list itself. Thibesaus
the first variable doesn't contain a list; it consaareference to a list.

Here is some code that will make this easier teewstdnd. Type this into the shell:

spam =10, 1, 2, 3, 4, 5]
cheese = spam
cheese[1] = 'Hello"
spam

cheese

This code will look like this:

Frx gpawm = [0, 1, &, 3, 4, 5&]
>»> Ccheezse = zpat

>»»> cheege[l] = 'Hello!'

Frx Spam

[O, 'Hello!', 2, 3, 4, 5]

*x> cheese

[O, 'Hello!', 2, 3, 4, 5]
x|

Notice that the lineheese = spam copies the reference §pam to cheese . This means that
bothspam andcheese refer to the same list. So when you modifigese on thecheese[l] =
'Hello! line, you are modifying the same list tisgiam refers to. This is whgpam seems to have
the same list value thaheese does.

Remember when you first learned about variableaid that variables were like mailboxes that
contain values. List variables don't actually contsts at all, they contain references to litere are
some pictures that explain what happens in the godgust typed in:

@ spam = [0, 1, 2, 3, 4, 5]

Reference
\ 3 [0, 1, 2, 3, 4, 5]

On the first line, the actual list is not containedhespam variable but a reference to the list.

@ cheese = spam

kﬁ [0! l: 2; 31 4, 5]

When you assign the referencesjpam to cheese , thecheese variable contains a copy of the
reference irspam. Now bothcheese andspam refer to the same list.

(::) cheese[0] = ‘Hello!’

[0, ‘Hellol®, 2, 3, 4, §]

When you alter the list thaheese refers to, the list thatpam refers to is also changed because
they are the same list.

Let's go back to themakeMove() function:

47. def makeMove(board, letter, move):
48. board[move] = letter

When we pass a list value as the argument fobtlaed parameter, we are actually passing a copy
of the reference, not the list itself. Tledter andmove parameters are copies of the string and

integer values that we pass. Since they are capies,modifyletter ormove in this function, th
original variables we used when we calledkeMove() would not be modified. Only the copies
would be modified.

But a copy of the reference still refers to the sdist that the original reference refers to. Swef
make changes taoard in this function, the original list is modified. Mén we exit thenakeMove()
function, the copy of the reference is forgottesngl with the other parameters. But since we were
actually changing the original list, those changgsain after we exit the function. This is how the
makeMove() function modifies the argument that it is passed.

50. def isWinner(bo, le):

51. # Given a board and a player's letter, this
function returns True if that player has won.

52. # We use bo instead of board and le instead of
letter so we don't have to type as much.

53. return ((bo[7] == le and bo[8] == le and bo[9] ==
le) or # across the top

54. (bo[4] ==le and bo[5] == le and bo[6] == le) or #
across the middle

55. (bo[1] ==le and bo[2] == le and bo[3] == le) or #
across the bottom

56. (bo[7] ==le and bo[4] == le and bo[1] == le) or #
down the left side

57. (bo[8] ==le and bo[5] == le and bo[2] == le) or #
down the middle

58. (bo[9] ==le and bo[6] == le and bo[3] == le) or #
down the right side

59. (bo[7] ==le and bo[5] == le and bo[3] == le)or#
diagonal

60. (bo[9] ==le and bo[5] == le and bo[1] == le) #
diagonal

Lines 53 to 60 in thesWinner() function are actually one very loifg statement. We ud® and
le for the board and letter parameters so that we ks to type in this function. (This is a trick
programmers sometimes use to reduce the amounnh#eg/to type. Be sure to add a comment though,
otherwise you may forget whab andle are supposed to mean.)

There are eight possible ways to win at Tic Tac. Fest, have a line across the top, middle, and
bottom. Second, have a line down the left, middtejght. And finally, have either of the two
diagonals. Note that each line of the conditionckkef the three spaces are equal to the lettesiged
(combined with thend operator) and we use the operator to combine the eight different ways to
win. This means only one of the eight ways mudrbe in order for us to say that the player who wn
letter inle is the winner.

Let's pretend thde is'O’ , and the board looks like this:

If the board looks like that, thé’ must be equal tp', 'O’, 'O’, 'O’,

LXK . Here is how the expression after te&urn keyword on line 53 would
evaluate:

53. return ((bo[7] == le and bo[8] == le and bo[9] ==
le) or # across the top

54. (bo[4] == le and bo[5] == le and bo[6] == le) or #
across the middle

55. (bo[1] ==le and bo[2] == le and bo[3] == le)or#
across the bottom

56. (bo[7] ==le and bo[4] == le and bo[1] == le)or#
down the left side

57. (bo[8] ==le and bo[5] == le and bo[2] == le) or #
down the middle

58. (bo[9] ==le and bo[6] == le and bo[3] == le) or #
down the right side

59. (bo[7] ==le and bo[5] == le and bo[3] == le)or#
diagonal

60. (bo[9] ==le and bo[5] == le and bo[1] == le) #
diagonal

53. return ((X'=='O'and''==" ='0O'and’ ='0)
or # across the top

54, ('=='O'and'X'=='0O'and''=='0"0 r#
across the middle

55, (O'=='O'and'O'=='0O'and'O'=='0")o0 r#
across the bottom

56. (X'=='O'and''==" ='0'and'O'=="'0") 0 r #down

S7.

58.

59.

60.

53.

4.
55.
56.
S57.
58.
59.
60.

53.
54.
55.
56.
57.
58.
59.
60.

53.
54.
55.
56.
57.
58.
59.
60.

the left side

('=='O'and'X'=='O'and'O'=="'0") o
the middle

(I 1 :: IOI and L) :: IOI and IOI :: IOI) O
the right side

(X'=="'0O"and 'X'=='0O"and 'O'=="'0") o
diagonal

(I 1 _-— IOI and IXI _-— IOI and IOI —-— IOI))

diagonal
1

return ((False and False and False) or # acr
top
(False and False and False) or # across the
(True and True and True) or # across the bot
(False and False and True) or # down the lef
(False and False and True) or # down the mid
(False and False and True) or # down the rig
(False and False and True) or # diagonal
(False and False and True)) # diagonal

$

return ((False) or # across the top
(False) or # across the middle
(True) or # across the bottom
(False) or # down the left side
(False) or # down the middle
(False) or # down the right side
(False) or # diagonal

(False)) # diagonal

$

return (False or # across the top
False or # across the middle
True or # across the bottom
False or # down the left side
False or # down the middle
False or # down the right side
False or # diagonal

False) # diagonal

r # down

r # down

r#

#

oss the

middle
tom

t side
dle

ht side

$

53. return (True)

$

53. return True

So given those values fop andle , the expression would evaluateTie . Remember that the

value ofle matters. Ife is'O" and X has won the game, tis&Vinner()

would returnFalse .

62. def getBoardCopy(board):

63. # Make a duplicate of the board list and ret
the duplicate.

64. dupeBoard =]

65.

66. foriin board:

67. dupeBoard.append(i)
68.

69. return dupeBoard

urn it

ThegetBoardCopy() function is here so that we can easily make a eb@ygiven 10-string list
that represents a Tic Tac Toe board in our gamereTare times that we will want our Al algorithm
make temporary modifications to the board withdwdrnging the original board. In that case, we teé

function

Line 64 actually creates a brand new board, bedaisaot copying another variable's referencar
existing board. Thfor loop will go through thdoard argument that is passed to this function,
appending the values in the original board to aylidate board. Finally, after the loop, we wiltum

thedupeBoard variable's reference to the duplicate board.

71. def isSpaceFree(board, move):

72. # Return true if the passed move is free on
passed board.

73. return board[move] ==""

the

This is a simple function that, given a Tic Tac Tward and a possible move, will return if that &
is available or not. Remember that free spacesiobaard lists are marked as a single space string.

75. def getPlayerMove(board):
76. # Let the player type in their move.

77. move=""

78. while move notin'123456 78 9.split() or
not isSpaceFree(board, int(move)):

79. print 'What is your next move? (1-9)'

80. move = raw_input()

81. return int(move)

ThegetPlayerMove() function asks the player to enter the numberHergpace they wish to
move. The function makes sure that they enter eestheat is 1) a valid space (an integer 1 throygh 9
and 2) a space that is not already taken, giveiith&@ac Toe board passed to the function in the
board parameter.

The two lines of code inside théhile loop simply ask the player to enter a number fiota 9. The
loop's condition will keep looping, that is, it Wieep asking the player for a space, as longeas th
condition isTrue . The condition igrue if either of the expressions on the left or rigite of theor
keyword isTrue .

The expression on the left side checks if the ntbaethe player entered is equalto ,'2" ,'3"
and so on up t®' by creating a list with these strings (with gm@it() method) and checking if
move is in this list.'1 23456 7 8 9'.split() evaluates to be the same['as '2',

'3, '4','5','6", '7", '8, '9 , but it easier to type.

The expression on the right side checks if the mbaethe player entered is a free space on the
board. It checks this by calling tieSpaceFree() function we just wrote. Remember that
isSpaceFree() will return True if the move we pass is available on the boarde Nt
isSpaceFree() expects an integer fonove, so we use thmt() function to evaluate an integer
form of move.

We add thenot operators to both sides so that the conditionlv@llrue when both of these
requirements are unfulfilled. This will cause tbep to ask the player again and again until thegrem
proper move.

Finally, on line 81, we will return the integer forof whatever move the player entered. Remember

thatraw_input() returns a string, so we will want to use thi€) function to evaluate the string
as an integer.

Short -Circuit Evaluation

You may have noticed there is a possible probleouirgetPlayerMove() function. What if the
player typed inX' or some other non-integer string? Theve notin'1234567 8
9'.split() would returnFalse as expected, and then we would evaluate the esipresn the
right side. But when we pa% (the value irmove to theint() function, the call tant() would
give us an error. It gives us this error becausént)) function can only take strings of number
characters, lik&' or'42" | not strings likeX'

As an example of this kind of error, try typinggimto the shell:

int('42")
int('X’)

s> int['42')
4z
sex int['E')

Traceback (most recent call last):
File "<pyshell#iz", line 1, in <modules
int ('E")
ValuIEEerr: invalid literal for int() with hbaze 10: 'X'
e

But when you play our Tic Tac Toe game and tryrigpX' in for your move, this error doesn't
happen. The reason is becausevthde loop's condition is being short-circuited.

What short-circuiting means is that because theesgon on the left side of tloe keyword (move
notin'123456 7 89.split()) evaluates td rue , the Python interpreter knows
that the entire expression will evaluateltoie no matter if the expression on the right sidenefor
keyword evaluates tbrue or False . Python doesn't even bother calling the functidrs works out
well for us, because if the expression on the rije isTrue thenmove is not a string in number
form. That would causiat() to give us an error. The only tima®ve notin'123456
7 8 9'.split() evaluates té-alse are whermove is not a single-digit string. In that case, the
call toint() would not give us an error.

Here's a short program that gives a good examp@at-circuiting. Open a new file in the IDLE
editor and type in this program, then press Fautoit:

. def TrueFizz(message):
print message
return True

. def FalseFizz(message):
print message

1
2
3
4
5
6
7 return False

8.

9. if FalseFizz('Cats') or TrueFizz('Dogs'):
10. print'Step 1'
11.
12. if TrueFizz('Hello") or TrueFizz('Goodbye'):
13. print'Step 2'
14.
15. if TrueFizz('Spam’) and TrueFizz('Cheese):
16. print 'Step 3'
17.
18. if FalseFizz('Red’) and TrueFizz('Blue"):
19. print'Step 4'

When you run this program, you can see the output:

Cats
Dogs
Step 1
Hello
Step 2
Spam
Chees;
Step 3
Red

U

This small program has two functiorigueFizz() andFalseFizz() . TrueFizz() will
display a message and return the viTrue , while FalseFizz() will display a message and return
the valueFalse . This will help us determine when these functiarsbeing called, or when these
functions are being skipped due to s-circuiting.

The firstif statement on line 9 in our small program will fiesaluateTrueFizz() . We know this
happens becaucCats is printed to the screen. The entire expressiadcstill beTrue if the
expression to the right of ttor keyword isTrue . So the calllrueFizz('Dogs’) is evaluated,
Dogs is printed to the screen afdue is returned. Thé statement's condition evaluated-@lse
or True , which in turn evaluates fbrue . Step 1 is then printed to the screen. No short-circuiting
took place for this expression's evaluat

The secondf statement on line 12 does have short-circuitifgs 1 because when we call
TrueFizz('Hello") , it printsHello and returngrue . Because it doesn't matter what is on the
right side of theor keyword, the Python interpreter doesn't dalleFizz('Goodbye’) . You can
tell it is not called becausGoodbye is not printed to the screen. Tiie statement's condition Bue ,
soStep 2 is printed to the screen.

The thirdif statement on line 15 does not have short-cirayifiiihe call toTrueFizz('Spam’)
returnsTrue , but we do not know if the entire conditionTigie or False because of thend

operator. So Python will callrueFizz('‘Cheese’) , Which printsCheese and returngrue .
Theif statement's condition is evaluateditoe and True |, which in turn evaluates fbrue .
Because the conditionigue , Step 3 is printed to the screen.

The fourthif statement on line 18 does have short-circuitirigg FalseFizz('Red’) call prints
Red and return$-alse . Because the left side of thad keyword isFalse , it does not matter if the
right side isTrue orFalse , the condition will evaluate tbalse anyway. SalrueFizz('Blue’)
is not called an@lue does not appear on the screen. Becausié tletatement's condition evaluatec
False , Step 4 is not printed to the screen.

Short-circuiting can happen for any expression ithatides the boolean operataasd oror . It is

important to remember that this can happen; otlswou may find that some function calls in the
expression are never called and you will not kndwyw

Code Explanation continued...

83. def chooseRandomMoveFromList(board, movesList):

84. # Returns a valid move from the passed list on the
passed board.

85. # Returns None if there is no valid move.

86. possibleMoves =[]

87. foriin movesList:

88. if isSpaceFree(board, i):

89. possibleMoves.append(i)

ThechooseRandomMoveFromList function will be of use to us when we are impletiventhe
code for our Al. The first parameteoard is the 10string list that represents a Tic Tac Toe boarde
second parametenovesList s a list of integers that represent possible moker example, if
movesList is[1, 3,7, 9] , then that means we should return the numberrferad the corner
spaces on the board. This function will chooseafitbose moves from the list. It also makes sua¢ th
the move that it chooses is not already taken.d'thi$, we create a blank list and assign it to
possibleMoves . Thefor loop will go through the list of moves passedhis function in
movesList . If that move is available (which we figure outhva call toisSpaceFree()), then we
add it topossibleMoves with theappend() method.

91. if len(possibleMoves) !=0:

92. return random.choice(possibleMoves)
93. else:

94. return None

At this point, thepossibleMoves list has all of the moves that werenovesList that are also
ree spaces on the board representeboard . If the list is not empty, then there is at lems¢ possible
nove that can be made on the bc

This list might be empty. For examplepiovesList was[1, 3, 7, 9] but the board
‘epresented by ttboard parameter had all the corner spaces already tékepossibleMoves list
vould have been emp

If possibleMoves is empty, theten(possibleMoves) will evaluate td0 and the code in the
2lse-block will execute. Notice that it returns somatiicalledNone.

The None Value

None is a special value that you can assign to a viaiildlone is the only value of the data type
NoneType . TheNone value represents the lack of a value. It can Ipg wseful to use thilone value
vhen you have not set a variables value yet. Famgie, say you had a variable narquizAnswer
vhich holds the user's answer to some -False pop quiz question. You could getzAnswer to
\one if the user skipped the question or did not anstvéfsingNone would be better because if you
setittoTrue orFalse before assigning the value of the user's anstveray look like the user gave
answer the question even though they d

Calls to functions that do not return anything (tisathey exit by reaching the end of the funcizonl

10t from areturn statement) will evaluate fdone. TheNone value is written without quotes and
vith a capital "N" and lowercase "on

Code Explanation continued...

96. def getComputerMove(board, computerLetter):
97. # Given a board and the computer's letter,

determine where to move and return that move.
98. if computerLetter =="X"

99. playerLetter = 'O’
100. else:
101. playerLetter = X'

TheNone function is where our Al will be coded. The paraens are a Tic Tac Toe board (in the
yoard parameter) and which letter the computer is (eitkle or'O'). The first few lines simply
assign the other letter to a variable naiNone. This lets us use the same code, no matter wKkarsd
vho is O. This function will return the integer tlapresents which space the computer will rr

Remember how our algorithm works:

1. First, see if there is a move the computer cakentizat will win the game. If there is, take that
move. Otherwise, go to step 2.

2. See if there is a move the player can make thiatause the computer to lose the game. If there
is, we should move there to block the player. Qitiz, go to step 3.

3. Check if any of the corner spaces (spaces 1,@8,9) are free. (We always want to take a corner
piece instead of the center or a side piece.) Boraer piece is free, then go to step 5.

4. Check if the center is free. If so, move thefd.isn't, then go to step 6.

5. Move on any of the side pieces (spaces 2, 4, 8).d here are no more steps, because if we have
reached step 6 the side spaces are the only dpéices

103. # Here is our algorithm for our Tic Tac Toe Al
104. # First, check if we can win in the next mo ve
105. foriinrange(l, 9):

106. copy = getBoardCopy(board)

107. if isSpaceFree(copy, i):

108. makeMove(copy, computerLetter, i)

109. if isWinner(copy, computerLetter):

110. return i

More than anything, if the computer can win in omere move, the computer should make that v
We will do this by trying each of the nine spacastte board with &r loop. The first line in the loop
makes a copy of theoard list. This is because we want to make a move erctipy of the board, and
then see if that move results in the computer vagniWe don't want to modify the original Tic Tacelo
board, which is why we make a callgetBoardCopy() . We check if the space we will move is fi
and if so, we move on that space and see if tBidtein winning. If it does, we return that space'
integer.

If moving on none of the spaces results in winnthgn the loop will finally end and we move on to
line 112.

112. # Check if the player could win on their ne xt
move, and block them.
113. foriinrange(l, 9):

114. copy = getBoardCopy(board)

115. if isSpaceFree(copy, i):

116. makeMove(copy, playerLetter, i)
117. if isWinner(copy, playerLetter):

118. return i

At this point, we know we cannot win in one move.\# want to make sure the human player
cannot win in one more move. The code is very siméxcept on the copy of the board, we place the
player's letter before calling thi®/Vinner() function. If there is a position the player canvethat
will let them win, the computer should move there.

If the human player cannot win in one more movefeh loop will eventually stop and execution
continues on to line 120.

120. # Try to take one of the corners, if they a re
free.
121. move = chooseRandomMoveFromList(board, [1, 3,7,
9)
122. if move != None:
123. return move
Our call tochooseRandomMoveFromList() with the list of[1, 3, 7, 9] will ensure that i

returns the integer for one of the corner spadé&smember, the corner spaces are represented by the
integersl, 3, 7, and9.) If all the corner spaces are taken, cdowoseRandomMoveFromList()
function will return theNone value. In that case, we will move on to line 125.

125. # Try to take the center, if it is free.
126. if isSpaceFree(board, 5):
127. return 5

If none of the corners are available, we will mynhtove on the center space if it is free. If thetee
space is not free, the execution moves on to lige 1

129. # Move on one of the sides.
130. return chooseRandomMoveFromList(board, [2, 4,6,

8])

This code also makes a calldbooseRandomMoveFromList() , except we pass it a list of the
side spaced?, 4, 6, 8]). We know that this function will not retuiione, because the side
spaces are the only spaces we have not yet chebhisds the end of thgetComputerMove()
function and our Al algorithr

132. def isBoardFull(board):

133. # Return True if every space on the board h as been
taken. Otherwise return False.

134. foriinrange(1, 10):

135. if isSpaceFree(board, i):

136. return False

137. return True

The last function we will write issBoardFull() , Which returnsTrue if the 10-string lisboard
argument it was passed hasX@n or'O" on every single space. If there is at least oaeejnboard
that is set to a single space then it will returnFalse .

Thefor loop will let us check spaces 1 through 9 on tleeTRe Toe board. (Remember thange
(1,10) call returns the lisft, 2, 3, 4, 5, 6, 7, 8, 9] .) As soon as it finds a free space
in the board (that is, whaaSpaceFree(board, i) returnsTrue), theisBoardFull()
function will returnFalse .

If execution manages to go through every iteratibthe loop, we will know that none of the spaces
are free. So at that point, we will exectggurn True

140. print 'Welcome to Tic Tac Toe!"

Line 140 is the first line that isn't inside ofumEtion, so it is the first line of code that issexted
when we run this program.

142. while True:
143. # Reset the board
144. theBoard =['"* 10

Thiswhile loop hasTrue for the condition, so that means we will keep laggn this loop until
we encounter Areak statement. Line 144 sets up the main Tic Tac Teedthat we will use, named
theBoard . It is a 10-string list, where each string isragé spacé’ . Remember the little trick
using the multiplication operator with a list tgpreduce it['] * 10 . It evaluates t¢ ',
L , but is shorter for us to type.

145. playerLetter, computerLetter = inputPlayerL etter()

TheinputPlayerLetter() function lets the player type in whether they waribe X or O. The
function returns a 2-string list, eithgX', 'O’] or['O', X1 . We use the multiple assignment
trick here that we learned in the Hangman chafténputPlayerLetter() returng'X’,

'Ol , thenplayerLetter is'X' andcomputerLetter is'O" . If inputPlayerLetter()
returns['O’, 'X'] , thenplayerLetter is'O" andcomputerLetter is'X'

146. turn = whoGoesFirst()
147. print 'The ' + turn + " will go first.’
148. gamelsPlaying = True

ThewhoGoesFirst() function randomly decides who goes first, andmregieither the string
'player’ or the stringcomputer’ . On line 147, we tell the player who will go fir3the
gamelsPlayer variable is what we will use to keep track of wiegtthe game has been won, lost,
tied, or if is the other player's turn.

150. while gamelsPlaying:

This is a loop that will keep going back and fdsgtween the player's turn and the computer's as
long asgamelsPlaying s set tolrue .

151. if turn == "player":
152. # Player's turn.
153. drawBoard(theBoard)
154, move = getPlayerMove(theBoard)
155. makeMove(theBoard, playerLetter, mo ve)
Theturn variable was originally set byhoGoesFirst() . It is either set t¢player' or
‘computer' . If turn contains the stringomputer' |, then the condition iBalse and execution

will jJump down to line 16¢

The first thing we do when it is the player's t@@ocording to the flow chart we drew at the begig
of this chapter) is show the board to the playbedrawBoard() function, called with the
theBoard variable, will print the board on the screen. \Wert let the player type in their move by
calling ourgetPlayerMove() function, and set the move on the board by cathimgnakeMove()
function.

157. if isWinner(theBoard, playerLetter)

158. drawBoard(theBoard)

159. print '"Hooray! You have won the game!
160. gamelsPlaying = False

Now that the player has made his move, our progifaonld check if they have won the game with
this move. If thasWinner() function returndrue , we should show them the winning board (the
previous call talrawBoard() shows the board BEFORE they made the winning mand)print a
message telling them they have won.

Then we segamelsPlaying toFalse so that execution does not continue on to the coenjs
turn.

161. else:

162. if isBoardFull(theBoard):
163. drawBoard(theBoard)
164. print "'The game is a tie!"
165. break

If the player did not win with his last move, theraybe his last move filled up the entire board and
we now have a tie. In this else-block, we chedkéf board is full with a call to theBoardFull()

function. If it returnsTrue , then we should draw the board by calldvgwBoard() and tell the
player a tie has occurred. Theeak statement will break us out of tidiile loop we are in and jurr
down to line 186.

167. else:
168. turn = ‘computer’

If the player has not won or tied the game, thershauld just set thiirn variable to

‘computer’ so that when thigrhile loop loops back to the start it will execute tlogle for the
computer's turn.

169. else:

If theturn variable was not set tplayer' , then we know it is the computer's turn and theeeco
in this else-block will execute. This code is veimilar to the code for the player's turn, excépt t
computer does not need the board printed on tleesao we skip the call to tdeawBoard()

function.

170. # Computer's turn.
171. move = getComputerMove(theBoard,
computerLetter)
172. makeMove(theBoard, computerLetter, move)

This code is almost identical to the code for ttayexr's turn.

174. if isWinner(theBoard, computerLette r):

175. drawBoard(theBoard)

176. print "'The computer has beaten you!
You lose.'

177. gamelsPlaying = False

We want to check if the computer won with its lasive. The reason we caltawBoard() here is
because the player will want to see what move timepeiter made to win the game. We then set
gamelsPlaying toFalse so thatthe game does not continue.

178. else:

179. if isBoardFull(theBoard):
180. drawBoard(theBoard)
181. print "'The game is a tie!"

182. break

These lines of code are identical to the codermslil62 to 165. The only difference is this is eckh
for a tied game after the computer has moved.

183. else:
184. turn = 'player’

If the game is neither won nor tied, it then becsitie player's turn. There are no more lines oécod
inside thewhile loop, so execution would jump back to thbkile statement on line 150.

186. if not playAgain():
187. break

These lines of code are located immediately afiemthile-block started by thehile statement on
line 150. Remember, we would only exit out of thvifle loop if it's condition (the
gamelsPlaying variable) wad-alse .gamelsPlaying is set td~alse when the game has
ended, so at this point we are going to ask thgeplih they want to play again.

Remember, when we evaluate the condition inflise statement, we call tHeéalse function
which will let the user type in if they want to plar not.playAgain() will return True if the playel
typed something that began wittya like 'yes' or'y' . OtherwiseplayAgain() will return
False .

If playAgain() returnsFalse , then thef statement's condition Bue (because of theot
operator that reverses the boolean value) and eeusx thébreak statement. That breaks us out of
while loop that was started on line 142. But there arenore lines of code after that while-block, so
the program terminates.

A Web Page for Program Tracing

And that's the entire Tic Tac Toe game. If you wardee the code in action, go to the following web
page to see the how the program executes lineby i

e Tic Tac Toe, trace 1http://pythonbook.coffeeghost.net/tracelTicTacToelh

Things Covered In This Chapter:

« Artificial Intelligence

¢ List References
e Short-Circuit Evaluation
e The None Value

Chapter 7 - Bagels

Bagels is a simple game you can play with a friefalr friend thinks up a random 3-digit number,
and you try to guess what the number is. After eaass, your friend gives you clues. If the friéeits
you "bagels", that means that none of the threisdgyin the secret number. If your friend teltsuy
"pico”, then one of the digits is in the secret i@m but your guess has the digit in the wrongepléic
your friend tells you "fermi"”, then your guess laasorrect digit in the correct place. Of coursesrel
you get a pico or fermi clue, you still don't kn@kich digit in your guess is the correct one.

You can also get multiple clues after each guesg tl¥e secret number is 456, and your guess is 546.
The clue you get would be "fermi pico pico" becaase digit is correct and in the correct place (the
digit 6), and two digits are in the secret numhdrib the wrong place (the digits 4 and 5).

Sample Run

| am thinking of a 3-digit number. Try to guess wha titis.
Here are some clues:
When | say: That means:
Pico One digit is correct but in the wron g
position.
Fermi One digit is correct and in the righ t
position.
Bagels No digit is correct.
| have thought up a number. You have 10 guesses to get it.
Guess #1:
123
Fermi
Guess #2:
453
Pico
Guess #3:
425
Fermi
Guess #4:
326
Bagels
Guess #5:
489
Bagels
Guess #6:
075
Fermi Fermi
Guess #7:
015
Fermi Pico

Guess #8:

175

You got it!

Do you want to play again? (yes or no)
no

Source Code

bagels.py
. import random

1
2.
3. def getSecretNum(numbDigits):
4

Returns a string that is numDigits long, ma de up
of random digits.
5. secretNum ="
6. foriin range(numbDigits):
7. secretNum +=random.choice('0 123456 78
9'.split())
8.
9. return secretNum
10.
11. def getClues(guess, secretNum):
12. # Returns a string with the pico, fermi, bag els

clues to the user.
13. if guess == secretNum:

14. return 'You got it!'

15.

16. clue =]

17.

18. foriin range(len(guess)):
19. if guess|[i] == secretNum[i]:
20. clue.append('Fermi’)
21. elif guessJi] in secretNum:
22. clue.append('Pico’)

23. iflen(clue) ==0:

24. return 'Bagels’

25.

26. clue.sort()
27. return ' '.join(clue)

28.
29. def isOnlyDigits(num):
30. # Returns True if num is a string made up on ly of

digits. Otherwise returns False.
31. ifnum==":

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

42.
43.
44,
45.
46.
47.
48.

49.
50.
51.

52.

53.
54.
55.
56.
57.

58.
59.
60.
61.
62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

return False

foriin num:
ifinotin'0123456 7 89.split(
return False

return True

def playAgain():
This function returns True if the player w
play again, otherwise it returns False.
print 'Do you want to play again? (yes or no
return raw_input().lower().startswith('y")

NUMDIGITS =3
MAXGUESS =10

print 'l am thinking of a %s-digit number. Try t
what it is.' % (NUMDIGITS)

print 'Here are some clues:'

print'When | say: That means:'

print' Pico One digit is correct but i
wrong position.’
print' Fermi One digit is correct and i

right position.'
print' Bagels No digit is correct.'

while True:
secretNum = getSecretNum(NUMDIGITS)
print 'l have thought up a number. You have

guesses to get it.' % (MAXGUESS)

numGuesses = 1
while numGuesses <= MAXGUESS:
guess ="
while len(guess) != NUMDIGITS or not
isOnlyDigits(guess):
print '‘Guess #%s: ' % (numGuesses)
guess = raw_input()
clue = getClues(guess, secretNum)
print clue
numGuesses += 1
if guess == secretNum:
break
if numGuesses > MAXGUESS:

ants to

y

0 guess

n the

n the

%s

73. print "You ran out of guesses. The a nswer
was %s."' % (secretNum)

74.

75. if not playAgain():
76. break

77.

Designing the Program

Here is a flow chart for this program. The flow didescribes the basic events of what happenss
yame, and in what order they can hap

Start

Generate secret Ask to
number. play again.
See if player
has run out —)I Player has lost.

(of guesses.

"

Get player's
| n:nsf —)ll’larnr has won.

L |

Tell player
clues.

L

Increment
guess count.

_/

And here is the source code for our game. Stagtafitle and type the code in, and then save tleea
yagels.py. We will design our game so that it ig/\@asy to change the size of the secret numbean
e 3 digits or 5 digits or 30 digits. We will dagtby using a constant variable nanNUMDIGITS
nstead of har-coding the integer 3 into our source code.

Hard-coding means writing a program in a way that it chandimgbehavior of the program requi

changing a lot of the source code. For example;audd hard-code a name intg@ant statement
like: print 'Hello, Albert’ . Or we could use this lingrint 'Hello, ' + name which
would let us change the name that is printed bygimg thename variable while the program is
running.

Code Explanation

1. import random

This game imports theindom module so we can use the module's random numinectdn.

3. def getSecretNum(numDigits):

4. # Returns a string that is numDigits long, ma de up
of random digits.

5. secretNum ="

6. foriin range(numDigits):

7. secretNum +=random.choice('0123456 78
9'.split())

8.

9. return secretNum

Our first function is namedetSecretNum() , which will generate the random secret number.
Instead of having the code only produce 3-digit hars, we use a parameter namaedDigits to tell
us how many digits the secret number should have.

You may notice thasecretNum in this function is a string, not an integer. Thiay seem odd, but
remember that our secret number could be somelikm07" . If we stored this as an integer, it
would look like7 which would make it harder to work with in our gram.

This function is simple. TheecretNum variable starts out as a blank string. We thep Baumbe
of times equal to the integer valuenmmDigits . On each iteration through the loop, a new random
digit is concatenated to the endsefcretNum . So ifnumDigits is 3, the loop will iterate three tim
and three random digits will be concatenated. (Rebe, therandom.choice() function returns a
randomly chosen item from the list it is passedraargument0 12345678 9' isa
string, but thesplit() method called on it converts it into a list.)

Augmented Assignment Operators

The+= operator is new. This is called angmented assignment operator . Normally, if you
wanted to add or concatenate a value to a varigbileyould use code that looked like this:

spam =42
spam = spam + 10

cheese = 'Hello*
cheese = cheese + 'world!"

After running the above codspam would have the valug2 andcheese would have the value
'Hello world" . The augmented assignment operators are a shtratitees you from retyping
the variable name. The following code does the tes@ame thing as the above code:

spam =42
spam += 10 # Same as spam = spam + 10

cheese = 'Hello'
cheese +="'world!' # Same as cheese = cheese + ‘world!"

There are other augmented assignment operatonaill subtract a value from an integér will
multiply the variable by a valué will divide a variable by a value. Notice that $keaugmented
assignment operators do the same math operatichs-as*, and/ operators. Augmented assignment
operators are a neat shortcut.

Code Explanation Continued...

11. def getClues(guess, secretNum):

12. # Returns a string with the pico, fermi, bag els
clues to the user.

13. if guess == secretNum:

14. return 'You got it!'

ThegetClues() function will return a string with the fermi, picand bagels clue, depending on
what it is passed for thguess andsecretNum parameters. The most obvious and easiest step is t
check if the guess is the exact same as the seardier. In that case, we can just retiyiou got
it!’

16. clue =]
17.

18. foriin range(len(guess)):

19. if guess|[i] == secretNum[i]:
20. clue.append('Fermi’)
21. elif guessJi] in secretNum:
22. clue.append('Pico’)

If the guess is not the exact same as the seamdbemiwe need to figure out what clues to give the
Jlayer. First we'll set up a list namclue , which we will add the stringermi* and'Pico’ as

1eeded. We will combine the strings in this ligbia single string to retul

We do this by looping through each possible ingeguess andsecretNum . We will assume that
juess andsecretNum are the same size (we can guarantee this in thetbat callgetClues())
rheif statement checks if the first, second, third, @epending on the value bfbeing0, 1, 2, etc.)
etter ofguess is the same as the number in the same positisadaretNum . If so, we will add a
string'Fermi' toclue .

If that condition isFalse we will check if the number at that positiongness exists in
secretNum . If this condition isTrue we know that the number is somewhere in the saeci&ber but
10t in the same position. This is why we add'Pico’ toclue .

23. iflen(clue) ==0:
24. return '‘Bagels’

If we go through the entif®r loop above and never add anything toche list, then we know
hat there are no correct digits at alguess . In this case, we should just return the sttBagels'
1s our only clug

The sort() List Method

26. clue.sort()

Lists have a method namedrt() that rearranges the items in the list to be ihaletical order. T
yping the following into the interactive shi

Espam =[5, 3,4, 1, 2]
ispam.sort()

ispam

x> spam = [5, 3, 4, 1, 2]
>r> Spham.30rti)

>rx> SpaEm

[1, 2, 3, 4, 5]

wo |

Notice that thesort() method does nakturn a sorted list, but rather just sorts the liss icalled
on. You would never want to use this line of ccreturn spam.sort() because that would return
the valueNone (which is whatort() returns). Instead you would want a separatedjpaam.sort
() and then the lineeturn spam

The reason we want to sort ttlee list is because we might return extra clues thathd not inten
based on the order of the cluesclue had the valu¢Pico', 'Fermi', 'Pico’] , that would
tell us that the center digit of our guess is i ¢brrect position. Since the other two clues até Pico,
then we know that all we have to do is swap tret &nd third digit and we have the secret numbet
if the clues are always sorted in alphabetical Qrthe player would not know which number the Fe
clue refers tc

The join() String Method

27. return ' '.join(clue)

Thejoin() string method returns a string of each item inligteargument joined together. The
string that the method is called on (on line 215 iha single spac'') appears in between each item
in the list. So the string that is returned on @Yeis each string iclue combined together with a sin
space in between each str

For an example, type the following into the inténaxshell:

'X".join(['hello’, 'world')

'ABCDEF" join([x, 'Y, 'Z])

"join([My’, 'name’, 'is’, 'Sam’])

Frx ‘' join(['hello’', 'world'])
"helloxworld'

x> 'LBCDEF' .join(['=', 'v', '=2']]

' =% ABCDEFyABCDEFZ!

=rx ' joini['My', 'name', 'iz', 'Sam'])
'Mynatneis3am!

s |

Code Explanation Continued...

29. def isOnlyDigits(num):
30. # Returns True if num is a string made up on ly of
digits. Otherwise returns False.
31. ifnum==":
32. return False
TheisOnlyDigits() is a small function that will help us determinéhé player entered a guess

that was only made up of numbers. To do this, wkcleck each individual letter in the string named
numand make sure it is a number.

Line 31 does a quick check to see if we were senbtank string, and if so, we returalse .

34. foriinnum:

35. ifinotin'0123456 7 89.split():
36. return False
37.

38. return True

We use dor loop on the stringqum. The value of will have a single character from them string
on each iteration. Inside the for-block, we chddk does not exist in the list returned Byl 2 3 4
56 7 8 9.split() . If it doesn't, we know that there is a charagtegrumthat is something
besides a number. In that case, we should reteraatueFalse .

If execution continues past ther loop, then we know that every characteninmis a number. So
we return the valuérue .

40. def playAgain(): “

41. # This function returns True if the player w ants to
play again, otherwise it returns False.

42. print 'Do you want to play again? (yes or no)’

43. return raw_input().lower().startswith('y")

TheplayAgain() function is the same one we used in Hangman andd¢ Toe. The long
axpression on line 43 will evaluate to eitTrue or False . The return value from the call to the
aw_input() function is a string that has isver() method called on it. THewer() method
‘eturns another string (the lowercase string) &atigtring has itstartswith() method called on it,
)assing the argume'y'

45. NUMDIGITS =3

46. MAXGUESS =10

47.

48. print 'l am thinking of a %s-digit number. Try t 0 guess
what it is.' % (NUMDIGITS)

49, print 'Here are some clues:'

50. print ‘'When | say: That means:'

51. print" Pico One digit is correct but i n the
wrong position.’
52. print’ Fermi One digit is correct and i n the

right position.'
53. print' Bagels No digit is correct.'

This is the actual start of the program. Insteadawfl-coding three digits as the size of the secret
wumber, we will use the constant variaNUMDIGITS And instead of hard-coding a maximum of ten
juesses that the player can make, we will usedhstant variablMAXGUESSThis is because if we
ncrease the number of digits the secret numbeniasiso might want to give the player more gug:
Ne put the variable names in all capitals to shosy tare constant by conventic

The print statements will tell the player the rubdéshe game and what the Pico, Fermi, and Bagels

slues mean. Line 48print statement has the cotfe(NUMDIGITS) added to the end afélsinside
he string. This is a technique know as stringrpa&ation

String Interpolation

String interpolation is another shortcut, like awmted assignment operators. Normally, if you wa
Ise the string values inside variables in anottrgrgs you have to use the + concatenation ope

name = 'Alice’

event = 'party’

where = 'the pool'

when = 'Saturday’

time ='6:00pm’

print 'Hello, ' + name + . Will you go to the ' + event +'
at '+ where +'this' + when +"at "' + time +'? '

Fx> name = 'ALlice!

x> event = 'party!

»>> Where = 'the pool!

»rx When = 'Zaturdavy’

x> Lime = 'o:00pm'

e e '"Hello, ' 4+ name + '. Will wou go Lo the ' + event + ' at ' + where + !
Hellr, Alice. Will wou go to the party at the pool this Jaturday at o:00pm?

i

As you can see, it can be very hard to type athaeconcatenates several strings together. Instead
you can usstring interpolation , which lets you put placeholders likes (these placeholders are
calledconversion specifiers), and then put all the variable names at the Eadh%sis replaced
with the value in the variable at the end of time liFor example, the following code does the sduimg
as the above coc

name = 'Alice’

event = 'party’

where = 'the pool'

when = 'Saturday’

time ='6:00pm'’

print 'Hello, %s. Will you go to the %s at %s this %s at %
s?' % (name, event, where, when, time)

String interpolation can make your code much edsigype and read, rather than using several +
concatenation operatc

The final line has thprint keyword, followed by the string with conversioresfiers, followed by
the % sign, followed by a set of parentheses wighvariables in them. The first varialname will be
used for the firs%s the second variable with the secdftdand so on. The Python interpreter will give
you an error if you do not have the same numb®osconversion specifiers as you have variables.

Another benefit of using string interpolation iredieof string concatenation is that interpolatiorrks
with any data type, not just strings. All values automatically converted to the string data typais
is what thes in %sstands for.) If you typed this code into the shgu'd get an error:

spam =42
print 'Spam ==" + spam

Frx Spam = 42
FEE 'Spam == ' + spam

Tracebhack [(most recent call last):
File "<pyshell#ziz", line 1, in <mwodulex
print 'Ipaan == ' + Spam
TypﬁEerr: cannot concatenate 'str!' and 'int' objects
Fri

You get this error because string concatenatiorooncombine two strings, argpham is an integel
You would have to remember to @it(spam) in there instead. But with string interpolatioopuy
can have any data type. Try typing this into thellsh

spam =42
print 'Spam == %s' % (spam)

Fx> Spam = 42

> 'Spam == %=2' % [(=pam)
Spam == 42

x|

As you can see, using string interpolation instafastring concatenation is much easier because you
don't have to worry about the data type of thealde. Also, string interpolation can be done on any
strings, not just strings usedpnnt statements.

String interpolation is also known aging formatting

Code Explanation Continued...

55. while True:

56. secretNum = getSecretNum(NUMDIGITS)

57. print 'l have thought up a number. You have %s
guesses to get it.' % (MAXGUESS)

58.

59. numGuesses = 1
60. while numGuesses <= MAXGUESS:

We start with avhile loop that has a condition @fue , meaning it will loop forever until we
execute dreak statement. Inside the loop, we get a secret nufnds@r ourgetSecretNum()
function (passing INUMDIGITSto tell how many digits we want the secret nuntbdrave) and assic
it to secretNum . Remember thagecretNum is a string, not an integer.

We tell the player how many digits is in our secr@tber by using string interpolation instead of
string concatenation. We set a variatlenGuesses to 1, to denote that this is the first guess. The
enter a newvhile loop which will keep looping as long asmGuesses is less than or equal to

MAXGUESS

Notice that this secongthile loop on line 60 is inside anothehile loop that started on line 55.

Whenever we have these loops-inside-loops, wdltathnested loops . You should know that any
break orcontinue statements will only break or continue out of iftm@ermost loop, and not any of
the outer loops.

61.
62.

64.

guess ="
while len(guess) '= NUMDIGITS or not
isOnlyDigits(guess):
print ‘Guess #%s: ' % (numGuesses)
guess = raw_input()

Theguess variable will hold the player's guess. We will gdeoping and asking the player for a
guess until the player enters a guess that 1)heasame number of digits as the secret numberaisd 2
made up only of digits. This is what timile loop on line 62 is for. We sguess as the blank strin
on line 61 so that thehile loop's condition i$-alse the first time, ensuring that we enter the loop at

least once.

66.
67.
68.

clue = getClues(guess, secretNum)
print clue
numGuesses += 1

After execution gets past théhile loop on line 62, we know thguiess contains a valid guess.
We pass this and the secret numbegeiaretNum to ourgetClues() function. It returns a string
that contains our clues, which we will display be player. We then incrememimGuesses by 1
using the augmented assignment operator for additio

70.
71.
72.
73.

if guess == secretNum:
break
if numGuesses > MAXGUESS:
print "You ran out of guesses. The a nswer
was %s.' % (secretNum)

If guess is the same value ascretNum , then we know the player has correctly guessedehbeet
wumber and we can break out of this loop while loop that was started on line 60). If not, then

axecution continues to line 72, where we checletisthe player ran out of guesses. If so, thenel
he player that they have lost and what the secneitber was. We know that the condition for while

oop on line 55 will beFalse , so there is no need fobaeak statement.

At this point, execution jumps back to tivdile loop on line 60 where we let the player have agr
juess. If the player ran out of guesses (or weebonk of the loop with thbreak statement on line 7:
hen execution would proceed to line

75. if not playAgain():
76. break
77.

After leaving thewhile loop on line 60, we ask the player if want to péaain by calling our
layAgain() function. IfplayAgain() returnsFalse , then we should break out of timhile
oop that was started on line 55. Since there imnce code after this loop, the program termin

If playAgain() returnedTrue , then we would not execute theeak statement and execution

vould jump back to line 55. A new secret number Mtdae generated so that the player can play a
Jjame

Things Covered In This Chapter:

e Hard-coding

e Augmented Assignment Operators, +=, -=, *=, /=
e The sort() List Method

e The join() List Method

e String Interpolation (also called String Format)ing
o Conversion Specifier %s

o Nested Loops

Chapter 8 - Sonar

Sonar is a technology that ships use to locatecthyender the sea. In this chapter's game, theplay
places sonar devices at various places in the dodanate sunken treasure chests. The sonar dewi
our game can tell the player how far away a treashest is from the sonar device, but not in what
direction. But by placing multiple sonar deviceswiigpthe player can figure out where exactly the
treasure chest is. There are three chests to tdilgicthe player has only sixteen sonar deviceséoto

find them.

Imagine that we could not see the treasure chestréd dot) in the following picture. Because each
sonar device can only find the distance but nediiion, the possible places the treasure could be i

anywhere in a ring around the sonar device:

sonar device

Treasure chest

-
Sonar device

. :
sonar device

But if we have multiple sonar devices working tdgpet we can narrow it down to an exact place
where all the rings intersect each other:

sonar device

sure chest

L]
Sonar device

' v
sonar device

Grids and Cartesian Coordinates

A problem in many games is how to talk about examts on the board. A common way of solving
this is by marking each individual row and colummaoboard with a letter and a number. Here is as
board that has each row and each column marked.

o
=

c d e f g

a

=] 0

_
a0
]

Lo

ﬁ. c d e
X-axis

Y-axis
s
wks n o

e

o

In chess, the knight piece looks like a horse. Whige knight is located at the point e, 6 and tlzek
knight is located at point a, 4. We can also say ¢ivery space on row 7 or every space in column ¢
empty.

A grid with labeled rows and columns like the chlesard is called &artesian coordinate
system . By using a row label and column label, we caregivcoordinate that is to exactly one and
only one space. This can really help us descril@edomputer the exact location we want. If you have
learned about Cartesian coordinate systems in olasl, you may know that usually we have numbers
for both the rows and columns. This is handy, bseaitherwise after the 26th column we would run
out of letters. That board would look like ti

i 2 3 4 5 6 7 B
B 8
7 7
& 1 @ | &
C E
Lo ;
3 N 3
z 2
1 1

1 2 3 4 S 68 7 8

X-axis

The numbers going left and right that describectiiamns are part of thé-axis. The numbers goir
up and down that describe the rows are part o¥thgis . When we describe coordinates, we always
say the X coordinate first, followed by the Y cooate. That means the white knight in the above
picture is located at the coordinate 5, 6. Thelbkatght is located at the coordinate 1, 4.

Notice that for the black knight to move to the tgtknight's position, the black knight must move up
two spaces, and then to the right by four spa€asimove right four spaces and then move up two
spaces.) But we don't need to look at the boafidtiwe this out. If we know the white knight is kted
at 5, 6 and the black knight is located at 1, dntlve can just use subtraction to figure out this
information.

Subtract the black knight's X coordinate and whkitght's X coordinate: 5 - 1 = 4. That means the
black knight has to move along the X-axis by foquaces.

Subtract the black knight's Y coordinate and wkitght's Y coordinate: 6 - 4 = 2. That means the
black knight has to move along the Y-axis by twacqgs.

Negative Numbers

Another concept that Cartesian coordinates usedative numberd\legative numbers are
numbers that are smaller than zero. We put a ngigmsin front of a number to show that it is a
negative number. -1 is smaller than 0. -2 is smétlen -1. -3 is smaller than -2. If you think efyular
numbers (calleghositive numbers) as starting from 1 and increasing, you can tloihkegative
numbers as starting from -1 and decreasing. @ issabt positive or negative. In this picture, yoan
see the positive numbers increasing to the rigtitthe negative numbers decreasing to the

—— I -

98-76543-2-112 345267189

The number line is really useful for doing subti@etand addition with negative numbers. The
expression 4 + 3 can be thought of as the whitghtretarting at position 4 and moving 3 spaces ty

the right (addition means increasing, which ishia tight direction).
—] .
9 8 -7 6 -5 -4 -3 -2 -1 0 1 2 34 5 6 F 8 9

4+3=7

As you can see, the white knight ends up at pasitiol his makes sense, because 4 + 3is 7.

Subtraction can be done by moving the white knigtihe left. Subtraction means decreasing, which
is in the left direction. 4 - 6 would be the whikteight starting at position 4 and moving 6 spacethé
left:

VY IAAC)

9-8-76-54-3-2-10912345¢86789
4_-6=-2

The white knight ends up at position -2. That mean$ equals -2.

If we add or subtract a negative number, the winight would move in thepposite direction. If
you add a negative number, the knight moves toefhdf you subtract a negative number, the knight
moves to theight. The expression -6 - -4 would be equal to -2. Ringht starts at -6 and moves to the
right by 4 spaces. Notice th-6 - -4 has the same answer-6 + 4

N V'V VY

——tn o=

!
9 8-76-54-3-2-1 0123456789

6+ 4= -2

The number line is the same as the X-axis. If wdarthe number line go up and down instead of left
and right, it would model the Y-axis. Adding a gog& number (or subtracting a negative number)
would move the knight up the number line, and sdting a positive number (or adding a negative
number) would move the knight down. When we pusé¢htsvo number lines together, we have a
Cartesian coordinate system.

AV

™R
21 |
I

-3,1
o0l
I -
- 43
3 2 I 2 3

The 0, O coordinate has a special nameotiggn .
Changing the Signs

Subtracting negative numbers or adding negativebeusnseems easy when you have a number line
in front of you, but it can be easy when you ordyé the numbers too. Here are three tricks youwloan
to make evaluating these expressions easier

The first is if you are adding a negative number,example; 4 + -2. The first trick is "a minusseat
the plus sign on its left". When you see a mings svith a plus sign on the left, you can replaeephus
sign with a minus sign. The answer is still the sabecause adding a negative value is the same as
subtracting a positive value. 4 + -2 and 4 - 2 mxaluate to 2.

4+-2=2

(a minus eats the plus sign on its left)

4-2:=2

The second trick is if you are subtracting a negatiumber, for example, 4 - -2. The second trick is
"two minuses combine into a plus". When you sedwleeminus signs next to each other without a
number in between them, they can combine into a ilyn. The answer is still the same, because
subtracting a negative value is the same as addpagitive value.

4--2:6

(two minuses combine into a plus)

44+2=6

A third trick is to remember that when you add monbers like 6 and 4, it doesn't matter what order
they are in. (This is called tl@mmutative property of addition.) That means that 6 + 4 and 4 + 6
both equal the same value, 10.

6 + 4 4 + 6
HNNEEEENEE e EEEEEEEEEn

———— — \H__J
10 10

Say you are adding a negative number and a positiveer, like -6 + 8. Because you are adding
numbers, you can swap the order of the numbersuttthanging the answe-6 + 8 is the same as €

-6. But when you look at 8 + -6, you see that theus sign can eat the plus sign to its left, ared th
problem becomes 8 - 6 = 2. But this means that8Gstalso 2! We've rearranged the problem to have
the same answer, but made it easier to solve.

-6+8=2
(because this is addition, swap the order)

8+-6=2

(the minus sign eats the plus sign on its left)

8-6:=2

Of course, you can always use the interactive sisedl calculator to evaluate these expressiorss. It
still very useful to know the above three tricksemtadding or subtracting negative numbers. After al
you won't always be in front of a computer with iyt all the time!

Frr o4+ -2

Z

FrrE -4 + 2

-Z

e e
-6

Frr o4 - -2

f

Frr -4 - 2

-6

Frr -4 - -2
-Z

FErx

Absolute Values

Theabsolute value of a number is the number without the negativa sigront of it. This means
that positive numbers do not change, but negativelbers become positive. For example, the absolute
value of -4 is 4. The absolute value of -7 is 7e Blsolute value of 5 (which is positive) is 5.

We can find how far away two things on a numbeg line from each other by taking the absolute
value of their difference. Imagine that the whiteght is at position 4 and the black knight is asifion
-2. To find out the distance between them, you wéuld the difference by subtracting their positic

and taking the absolute value of that number.

It works no matter what the order of the numbersds 4 (that is, negative two minus four) is aéd
the absolute value of -6 is 6. However, 4 - -2t(thafour minus negative two) is 6, and the abisolu
value of 6 is 6. Using the absolute value of thHtedence is a good way of finding the distance leetmw
two points on a number line (or axis).

Coordinate System of a Computer Monitor

It is common that computer monitors use a coordisgstem that has the origin (0, 0) at the top left
corner of the screen, which increases going dowint@ihe right. There are no negative coordinates.
This is because text is printed starting at thel@ftpand is printed going to the right and downgga
Most computer graphics use this coordinate sysésahwe will use it in our games. Also it is common
to assume that monitors can display 80 text charagter row and 25 text characters per column. This
used to be the maximum screen size that monitarsl qupport. While today's monitors can usually
display much more text, we will not assume thatuber's screen is bigger than 80 by 25.

0,0

X increases

Y increases

Sample Run

SONAR!

Would you like to view the instructions? (yes/no)
no

1 2 3 4 5
012345678901234567890123456789012345678901234567 890123456789
0 e e e e e N RN
e e e S S S I
D T JUNSNEN

B N NS S e
) NS SN e g
B e NSNS e g

B N e eSS S

012345678901234567890123456789012345678901234567
1 2 3 4
You have 16 sonar devices left. 3 treasure chests r
Where do you want to drop the next sonar device? (0
10 10
1 2 3 4
012345678901234567890123456789012345678901234567

890123456789
5
emaining.
-59 0-14) (or type quit)

5
890123456789

012345678901234567890123456789012345678901234567
1 2 3 4
Treasure detected at a distance of 5 from the sonar
You have 15 sonar devices left. 3 treasure chests r
Where do you want to drop the next sonar device? (0
156
1 2 3 4
012345678901234567890123456789012345678901234567

012345678901234567890123456789012345678901234567
1 2 3 4
Treasure detected at a distance of 4 from the sonar
You have 14 sonar devices left. 3 treasure chests r
Where do you want to drop the next sonar device? (0
1510
1 2 3 4
012345678901234567890123456789012345678901234567

890123456789
5
device.
emaining.
-59 0-14) (or type quit)

5
890123456789

e g

890123456789
5
device.
emaining.
-59 0-14) (or type quit)

5
890123456789

012345678901234567890123456789012345678901234567 890123456789

1 2 3 4 5
You have found a sunken treasure chest!
You have 13 sonar devices left. 2 treasure chests r emaining.
Where do you want to drop the next sonar device? (0 -59 0-14) (or type quit)

...skipped over for brevity....

1 2 3 4 5
012345678901234567890123456789012345678901234567 890123456789
~ U0
e ——— l
—~— ~ 2
3 G B e e e e e O e g
D e e S e O e et e g
B N NSNS S S S s AN
P NN O e e 5
N NS S
8~ e e T T T T 00~ Vet
§ e N S SN S L g
10 T~ =0 O e T e e e e e ~~'~'~~T 10
T S e e S NS S LSS RNt
D e e e e N ISP
13 T e T e ~~ B K
Py SN NS 14
012345678901234567890123456789012345678901234567 890123456789
1 2 3 4 5
Treasure detected at a distance of 4 from the sonar device.
We've run out of sonar devices! Now we have to turn the ship around and head
for home with treasure chests still out there! Game over.
The remaining chests were here:
0,4
Do you want to play again? (yes or no)
no

Source Code

Knowing about Cartesian coordinates, number linegative numbers, and absolute values will help
us out with our Sonar game. Here is the source fardbe game. Type it into a new file, then sawe t
file as sonar.py and run it by pressing the F5 keu do not need to understand the code to tyipeait
play the game, the source code will be explaingt.la

sonar.py
. # Sonar

1
2.
3. import random
4. import sys
5
6

: def drawBoard(board):

7.

Draw the board data structure.

8.

9.

10.
11.

hline =" ' # initial space for the number
the left side of the board
foriin range(1, 6):
hline += ("' * 9) + str(i)

12.

13.
14.
15.
16.

print the numbers across the top
print hline

print' '+ ('0123456789' * 6)

print

17.

18.
19.
20.

21.
22.
23.
24,
25.

print each of the 15 rows
for i in range(15):
single-digit numbers need to be padded
an extra space
ifi < 10:
extraSpace ="'
else:
extraSpace ="
print '%s%s %s %s' % (extraSpace, i, get
(board, i), i)

26.

27.
28.
29.
30.

print the numbers across the bottom
print

print' '+ ('0123456789' * 6)

print hline

31.
32.

33

34.

35.
36.
37.
38.

. def getRow(board, row):
Return a string from the board data struct
a certain row.
boardRow ="
for i in range(60):
boardRow += board[i][row]
return boardRow

39.

40

41.
42.
43.

44,
45.

46.

. def getNewBoard():
Create a new 60x15 board data structure.
board =[]
for x in range(60): # the main list is a lis
lists
board.append([])
for y in range(15): # each list in the m
list has 15 single-character strings
use different characters for the o
make it more readable.

s down

with

Row

ure at

t of 60

ain

cean to

47.
48.
49.
50.
51.
52.
. def getRandomChests(numChests):
54.

53

55.
56.
57.

58.
59.
. def isValidMove(X, Yy):
61.

60

62.
63.
. def makeMove(board, chests, X, y):
65.

64

66.

67.

68.
69.
70.
71.

72.
73.
74.
75.
76.
7.
78.

79.
80.
81.
82.
83.
84.

if random.randint(0, 1) == 0:
board[x].append('~")
else:
board[x].append("™")
return board

Create a list of chest data structures (tw
lists of X, y int coordinates)
chests =]
for i in range(numChests):
chests.append([random.randint(0, 59),
random.randint(0, 14)])
return chests

Return True if the coordinates are on the
otherwise False.
returnx>=0andx<=59andy>=0andy <

Change the board data structure with a son
device character. Remove treasure chests

from the chests list as they are found. Re
False if this is an invalid move.

Otherwise, return the string of the result
this move.

if not isValidMove(X, y):

return False

smallestDistance = 100 # any chest will be ¢
than 100.
for cx, cy in chests:
if abs(cx - x) > abs(cy - y):
distance = abs(cx - x)
else:
distance = abs(cy - y)

if distance < smallestDistance: # we wan
closest treasure chest.
smallestDistance = distance

if smallestDistance == 0:
xy is directly on a treasure chest!
chests.remove([X, y])
return 'You have found a sunken treasure
chest!

o-item

board,

ar
turn

of

loser

t the

85.
86.
87.
88.

89.
90.
91.

92.
93.
94.
G S

96.

97.
98.
99.
100.
101.
102.
103.
104.

105.
106.

107.
108.
109.
110.

111.
112.
113.
114.
115.
116.
117.

118.
119.

120.
121.

else:
if smallestDistance < 10:
board[x][y] = str(smallestDistance)
return 'Treasure detected at a dista
%s from the sonar device.' % (smallestDistance)
else:
board[x][y] = 'O’
return 'Sonar did not detect anythin
treasure chests out of range.’

def enterPlayerMove():
Let the player type in her move. Return a
item list of int xy coordinates.
print 'Where do you want to drop the next so
device? (0-59 0-14) (or type quit)'
while True:
move = raw_input()
if move.lower() == "quit":
print "Thanks for playing!
sys.exit()

move = move.split()
if len(move) == 2 and move[0].isdigit()
move[1].isdigit() and isValidMove(int(move[0]), int
(move[1))):
return [int(move[0]), int(move[1])]
print 'Enter a number from 0 to 59, a s
then a number from O to 14.'

def playAgain():
This function returns True if the player
play again, otherwise it returns False.
print 'Do you want to play again? (yes or n
return raw_input().lower().startswith('y")

def showlnstructions():
print "'Instructions:
You are the captain of the Simon, a treasure-hu
ship. Your current mission
is to find the three sunken treasure chests tha
lurking in the part of the
ocean you are in and collect them.

To play, enter the coordinates of the point in

nce of

g. All

two-

nar

and

pace,

wants to

0)'

nting

tare

the

122.

123.

124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

140.
141.
142.
143.
144.
145.
146.
147.
148.

149.
150.

151.
152.
153.
154.
155.
156.

157.
158.

ocean you wish to drop a

sonar device. The sonar can find out how far aw
closest chest is to it.

For example, the d below marks where the device
dropped, and the 2's

represent distances of 2 away from the device.
represent

distances of 4 away from the device.

444444444
4 4
422222 4
42 24
42d24
42 24
422222 4
4 4
444444444
Press enter to continue...™
raw_input()

print "'For example, here is a treasure ch
c) located a distance of 2 away
from the sonar device (the d):

22222
c 2
2d2
2 2
22222

The point where the device was dropped will be
with a 2.

The treasure chests don't move around. Sonar de
can detect treasure

chests up to a distance of 9. If all chests are
range, the point

will be marked with O

If a device is directly dropped on a treasure ¢
you have discovered

the location of the chest, and it will be colle
The sonar device will

remain there.

When you collect a chest, all sonar devices wil

ay the
was

The 4's

est (the

marked

vices

out of

hest,

cted.

| update

159.
160.
161.
162.
163.
164.
165.
166.
167.

168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.

188.
189.
190.

191.
192.

193.
194.
195.
196.

197.

to locate the next
closest sunken treasure chest.
Press enter to continue...™
raw_input()
print

print' SONARYT
print
print 'Would you like to view the instructions?
(yes/no)'
if raw_input().lower().startswith('y"):
showlnstructions()

while True:
game setup
sonarDevices = 16
theBoard = getNewBoard()
theChests = getRandomChests(3)
drawBoard(theBoard)
previousMoves = []

while sonarDevices > 0:
Start of a turn:

sonar device/chest status

if sonarDevices > 1: extraSsonar ='s'

else: extraSsonar ="

if len(theChests) > 1: extraSchest = 's

else: extraSchest ="

print "You have %s sonar device%s left.
treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest)

X, Y = enterPlayerMove()
previousMoves.append([X, y]) # we must
all moves so that sonar devices can be updated.

moveResult = makeMove(theBoard, theChes
y)
if moveResult == False:
continue
else:
if moveResult == 'You have found a
treasure chest!".
update all the sonar devices
currently on the map.

06s

track

ts, X,

sunken

198. for x, y in previousMoves:

199. makeMove(theBoard, theChest S, X, Y)

200. drawBoard(theBoard)

201. print moveResult

202.

203. if len(theChests) == 0:

204. print "You have found all the sunke n
treasure chests! Congratulations and good game!'

205. break

206.

207. sonarDevices -= 1

208.

209. if sonarDevices == 0:

210. print 'We\'ve run out of sonar devices! Now we
have to turn the ship around and head'

211. print 'for home with treasure chests st il out
there! Game over.'

212. print' The remaining chests were he re:'

213. for x, y in theChests:

214. print' %s, %s' % (X, y)

215.

216. if not playAgain():

217. sys.exit()

218.

Designing the Program

Sonar is kind of complicated, so type in the gammete and play it a few times first. After you've
Jlayed the game a few times, you can kind of gatiea of the sequence of events in this ge

The Sonar game uses lists of lists and other caatgld variables. These complicated variables are
<nown asdata structures . Data structures will let us store complicatedagements of values in a
single variable. We will use data structures f@& 8onar board and the locations of the treasurgs

It is also helpful to write out the things we nerd program to do, and come up with some function
1ames that will handle these actions. Remembearterfunctions after what they spcifically
Jdtherwise we might end up forgetting a functiontyging in two different functions that do the sa
hing.

Thefunction that will

What the code should do. doit.

Prints the game board on the screen based drotitel data structure
it is passed, including the coordinates along ipe bottom, and left ar drawBoard()
right sides.

Create a freshoard data structure. getNewBoard()
Create a freshhests data structure that has a number of chests
randomly scattered across the game board.

Check that the XY coordinates that are passeddduhction are isvalidMove()
located on the game board or not.

Let the player type in the XY coordinates of higt@ove, and keep
asking until they type in the coordinates correctly

Place a sonar device on the game board, and ughddieard data

getRandomChests()

enterPlayerMove()

: : makeMove
structure then return a string that describes Wwhppened. 0
Ask the player if they want to play another gam&ohar. playAgain()
. : . showlnstructions
Print out instructions for the game. 0

These might not be all of the functions we need gdist like this is a good idea to help you get
started with programming your own games. For examphen we are writing thdrawBoard()
function in the Sonar game, we figure out that Ve aeed getRow() function. Writing out a
function once and then calling it twice is prefdeato writing out the code twice. The whole poifit o
functions is to reduce duplicate code down to daeq so if we ever need to make changes to thus
we only need to change one place in our program.

Code Explanation

1. # Sonar

2.

3. import random
4. import sys

Here we import two modulesgndom andsys . Thesys module contains thexit() function,
which causes the program to immediately terminate will call this function on line 101.

6. def drawBoard(board):

The backtick (*) and tilde (~) characters are lodatext to the 1 key on your keyboard. They
resemble the waves of the ocean. Somewhere in¢bsn are three treasure chests, but you don't know
where. Figure it out by planting sonar devices, ttidhe game program where by typing in the X and
Y coordinates (which are printed on the four sidiethe screen

ThedrawBoard() function is the first function we will define faur program. The sonar game's
board is an ASCIl-art ocean with coordinates gailumg the X- and Y-axis, and looks like this:

1 2 3 4 5
012345678901234567890123456789012345678901234567 890123456789
e s g
1 e LS T SRS
N NN ST,
B e TS ISR
4~ e e e S g
T T T T TN
P NSNS IS
NN S SN
o= o 8
9 N e TN e "9

10 S T ST SRSy
1] e LTSI T T N
17 S LT SIS
13 L TS TS -
14 L TN LT I
012345678901234567890123456789012345678901234567 890123456789
1 2 3 4 5

We will split up the drawing in thdrawBoard() function into four steps. First, we create a strin
variable of the line with 1, 2, 3, 4, and 5 spaocatiwith wide gaps. Second, we use that stringdplaly
the X-axis coordinates along the top of the scr&aird, we print each row of the ocean along wité t
Y-axis coordinates on both sides of the screen. fandh, we print out the X-axis again at the botto
Having the coordinates on all sides makes it edsighe player to move their finger along the gsatr
see where exactly they want to plan a sonar device.

7. # Draw the board data structure.

8.
9. hline=" "#initial space for the number S

down the left side of the board
10. foriinrange(l, 6):
11. hline += ("' * 9) + str(i)

Let's look again at the top part of the board, tinie with red plus signs instead of blank spaces s
we can count the spaces easier:

+++++++H 4+ I 2 S A S # first line
+++012345678901234567890123456789012345678901234507890123456789 # second 1:

+|:| Ly o R L I L L e r UL T UL TR |:| # thll“d -

The numbers on the first line which mark the teosifpon all have nine spaces in between them, and
there are thirteen spaces in front of the 1. Weganeg to create a string with this line and sibie a

variable namediline

13. # print the numbers across the top
14. print hline

15. print" '+ ('0123456789' * 6)

16. print

17.

To print the numbers across the top of the sonardyave first print the contents of théne

variable. Then on the next line, we print threecgga(so that this row lines up correctly), and thent
the string01234567890123456789012345678901234567890123456789 0123456789

But this is tedious to type into the source, stead we typd'0123456789' * 6) which evaluate
to the same string.

18. # print each of the 15 rows
19. foriin range(15):

20. # single-digit numbers need to be padded with
an extra space

21. if i < 10:

22. extraSpace ="'

23. else:

24. extraSpace ="

25. print '%s%s %s %s' % (extraSpace, i, get Row
(board, i), i)

Now we print the each row of the board, including humbers down the side to label the Y-axis. We
use thdor loop to print rows 0 through 14 on the board, glaith the row numbers on either side of
the board.

We have a small problem. Numbers with only onetdliie O, 1, 2, and so on) only take up one
space when we print them out, but numbers withdigds (like 10, 11, and 12) take up two spaces.
This means the rows might not line up and wouldk llice this:

B e e N S e g
0 N e SN S R 9
10 e NSNS NENENIENN
11— e e 11

The solution is easy. We just add a space in fobatl the single-digit numbers. Tlieelse
statement that starts on line 21 does this. Wepuwiitit the variablextraSpace when we print the

row, and ifi is less tharlO (which means it will have only one digit), we @agsa single space stril
to extraSpace . Otherwise, we se&xtraSpace to be a blank string. This way, all of our rowslwi
line up when we print them.

ThegetRow() function will return a string representing the rommber we pass it. Its two
parameters are the board data structure stordé boaird variable and a row number. We will look at
this function next.

27. # print the numbers across the bottom
28. print

29. print" '+ ('0123456789' * 6)

30. print hline

This code is similar to lines 14 to 17. This witlg the X-axis coordinates along the bottom of the
screen.

33. def getRow(board, row):

34. # Return a string from the board data struct ure at
a certain row.

35. boardRow ="

36. foriinrange(60):

37. boardRow += board]i][row]

38. return boardRow

This function constructs a string calledardRow from the characters storedbpnard . First we set
boardRow to the blank string. The row number (which is ¥heoordinate) is passed as a parameter.
The string we want is made by concatenatingrd[O][row] , board[1][row] , board[2]

[row] , and so on up tboard[59][row] . (This is because the row is made up of 60 charsct
from index O to index 59.)

Thefor loop iterates from integefsto 59. On each iteration the next character inibard data
structure is copied on to the endoofardRow . By the time the loop is donextraSpace s fully
formed, so we return it.

40. def getNewBoard():
41. # Create a new 60x15 board data structure.
42. board =]

43. for x in range(60): # the main listis a lis t of 60
lists
44, board.append([])

At the start of each new game, we will need a flesdrd data structure. Theoard data structure
1 list of lists of strings. The first list represgthe X coordinate. Since our game's board ihé@acter:
across, this first list needs to contain 60 liSis.we create for loop that will append 60 blank lists tc

45, for y in range(15): # each list in the m ain
list has 15 single-character strings

46. # use different characters for the o ceanto
make it more readable.

47. if random.randint(0, 1) == 0:

48. board[x].append('~')

49. else:

50. board[x].append("™")

But board is more than just a list of 60 blank lists. Ea€lthe 60 lists represents the Y coordinate of
yur game board. There are 15 rows in the boardasb of these 60 lists must have 15 charactelgm
Ne have anothefor loop to add 15 single-character strings that isgrethe ocean. The "ocean" will
ust be a bunch ¢~' and"" strings, so we will randomly choose between thage We can do this
)y generating a random number betwO andl1 with a call torandom.randint() . If the return
/alue ofrandom.randint() is0, we add thé~' string. Otherwise we will add the string.

This is like deciding which character to use bystog a coin. And since the return value from
andom.randint() will be 0 about half the time, half of the ocednaacters will be~' and the

sther half will be™ . This will give our ocean a nice random, choppki¢o it.

Remember that theoard variable is a list of 60 lists that have 15 stsinfjhat means to get the st
it coordinate 26, 12, we would accboard[26][12] , and notoard[12][26] . The X coordinat
s first, then the Y coordina

Here is the picture from the Hangman chapter teatahstrates the indexes of a list of lists named
l'he red arrows point to indexes of the inner lissmselves. The image is also flipped on its sidaak
t easier to rea

E(X_XEUJ
5 x[0][0]
o x[0][1]
(-] — ~J e "
> % = = = $FITToT * (1]
e o AN, e = x[1][2]
SOkl SEEN SEiciel SR —
- - - = o o "
[[10, 20, 301, [3, 2, 1], [8, 8, 8, 81, [42]] e x[2][1]
o x[2][2]
= x[2]1[3]
— x| 3
§m3 . [3]

51. return board

Finally, we return thdoard variable. Remember that in this case, we arenitgra reference to tl
list that we made. Any changes we made to thédrsthe lists inside the list) in our function walill be
there outside of the function.

53. def getRandomChests(numChests):

54. # Create a list of chest data structures (tw o-item
lists of X, y int coordinates)

55. chests =]

56. foriin range(numChests):

57. chests.append([random.randint(0, 59),
random.randint(0, 14)])

58. return chests

Another task we need to do at the start of the gardecide where the hidden treasure chests are. We
will represent the treasure chests in our gamelias @f lists of two integers. These two integet$ be

the X and Y coordinates. For example, if the clasa structure wd$2, 2], [2, 4], [10,
0]] , then this would mean there are three treasurgtghene at 2, 2, another at 2, 4, and a thirdabne
10, 0.

We will pass thaaumChests parameter to tell the function how many treasiests we want it to
generate. We set ug@ loop to iterate this number of times, and on etaiation we append a list of
two random integers. The X coordinate can be anysvftem O to 59, and the Y coordinate can be f
anywhere between 0 and 14. The expressamdom.randint(0, 59), random.randint
(0, 14)] that is passed to tla@pend method will evaluate to something likg 2] or|[2, 4]
or[10, 0] . This data structure is then returned.

60. def isValidMove(x, y):

61. # Return True if the coordinates are on the board,
otherwise False.

62. returnx>=0andx<=59andy>=0andy <

14

The player will type in X and Y coordinates of wléhey want to drop a sonar device. But they may
not type in coordinates that do not exist on thmg@aoard. The X coordinates must be between 0 and
59, and the Y coordinate must be between 0 an@Hid.function uses a simple expression that uses
and operators to ensure that each conditiofrige . If just one ig-alse , then the entire expression
evaluates tdralse . This Boolean value is returned by the function.

64. def makeMove(board, chests, x, y):

65. # Change the board data structure with a son ar
device character. Remove treasure chests

66. # from the chests list as they are found. Re turn
False if this is an invalid move.

67. # Otherwise, return the string of the result of
this move.

68. if notisValidMove(x, y):

69. return False

In our Sonar game, the game board is updated péaglia number for each sonar device dropped
number shows how far away the closest treasurd e when the player makes a move by giving
the program an X and Y coordinate, we will chartgelioard based on the positions of the treasure
chests. This is why oumakeMove() function takes four parameters: the game boaral staticture, tr
treasure chests data structures, and the X andMicates.

This function will return thd~alse Boolean value if the X and Y coordinates if wasg&l do not

exist on the game board.i#ValidMove() returnsFalse , thenmakeMove() will return
False .

If the coordinates land directly on the treasonakeMove() will return the stringYou have

found a sunken treasure chest! . If the XY coordinates are within a distance afrdess
of a treasure chest, we return the stfifrrgasure detected at a distance of %s from
the sonar device.' (where %s is the distance). Otherwis@keMove() will return the string
‘Sonar did not detect anything. All treasure chests out of range."
71. smallestDistance = 100 # any chest will be ¢ loser
than 100.
72. for cx, cy in chests:
73. if abs(cx - x) > abs(cy - y):
74. distance = abs(cx - x)
75. else:
76. distance = abs(cy - y)
77.
78. if distance < smallestDistance: # we wan t the
closest treasure chest.
79. smallestDistance = distance

Given the XY coordinates of where the player waotdrop the sonar device, and a list of XY
coordinates for the treasure chests (indests list of lists), how do we find out which treasufeest
is closest?

While thex andy variables are just integers (sayand0), together they represent the location or
game board (which is a Cartesian coordinate systdraje the player guessed. Tdhests variable
may have a value likg5, 0], [0, 2], [4, 2]] , that value represents the locations of three
treasure chests. Even though these variableskarech of numbers, we can visualize it like 1

5,0

0,2 4,2

A oW N ORBE O

We figure out the distance from the sonar devicatied at 0, 2 with "rings" and the distances around
it (in blue text):

O 1 2 3 4 5
01212121 3l14]l5.¢
111102 31l4ll5
210,21 1) 2 || 3(|14.4| 5
31T I 231415
412 12 12| 3l14]] 5
513 |33 |3|l4]|]5

But how do we translate this into code for our gaie need a way to represent distance as an
expression. Notice that the distance from an XYrdmate is always the larger of two values: the
absolute value of the difference of the two X cagates and the absolute value of the differendaef
two Y coordinate:

That means we should subtract the sonar devicet®oKdinate and a treasure chest's X coordinate,
and then take the absolute value of this numberddvihe same for the sonar device's Y coordinade an
a treasure chest's Y coordinate. The larger okthes values is the distance. Let's look at oungda
board with rings above to see if this algorithnocasrect.

The sonar's X and Y coordinates are 3 and 2. Thetfeasure chest's X and Y coordinates (first in
the list[[5, 0], [0, 2], [4, 2]] that is) are 5 and 0.

For the X coordinateS -5 evaluates te2 , and the absolute value ¢f is 2.
For the Y coordinate® -1 evaluates td, and the absolute value bfis 1.

Comparing the two absolute valugzandl, 2 is the larger value and should be the distance free
sonar device and the treasure chest at coordifafiedNe can look at the board and see that this
algorithm works, because the treasure chest as $iplthe sonar device's 2nd ring. Let's quickly
compare the other two chests to see if his dissamoek out correctly also.

Let's find the distance from the sonar device 2t8d the treasure chest at @Bs(3 - 0)
evaluates t@. Theabs() function returns the absolute value of the num®pass to itabs(2 -
2) evaluates t@. 3 is larger tha®, so the distance from the sonar device at 3,2lemtreasure chest
at 0,2 is3. We look at the board and see this is true.

Let's find the distance from the sonar device 2&8d the last treasure chest at 4[%5(3 - 4)
evaluates td.. abs(2 - 2) evaluates t@. 1 is larger tha®, so the distance from the sonar device at
3,2 and the treasure chest at 4,2.i8Ve look at the board and see this is true also.

Because all three distances worked out correctlyatgorithm works. The distances from the sonar
device to the three sunken treasure chestg8,&eandl. On each guess, we want to know the distance
from the sonar device to the closest of the thiegstre chest distances. To do this we use a lariab

calledsmallestDistance . Let's look at the code again:

71. smallestDistance = 100 # any chest will be c loser
than 100.

72. for cx, cy in chests:

73. if abs(cx - x) > abs(cy - y):

74. distance = abs(cx - x)

75. else:

76. distance = abs(cy - y)

7.

78. if distance < smallestDistance: # we wan t the
closest treasure chest.

79. smallestDistance = distance

You can also use multiple assignmentan loops. For example, the assignment statemght=
[5,10] will assign5 toa and10 tob. Also, thefor loopforiin [0, 1, 2, 3, 4] will
assign the variable the value8 andl and so on for each iteration.

The for loopfor cx, cy in chests: combines both of these principles. Becatlsests is a
list where each item in the list is itself a listtwo integers, the first of these integers isgssd tocx
and the second integer is assignedytoSo ifchests has the valuf5, 0], [0, 2], [4,

2]] , on the first iteration through the loap will have the valué andcy will have the valu®.

Line 73 determines which is larger: the absoluleevaf the difference of the X coordinates, or the
absolute value of the difference of the Y coordisa@bs(cx - x) < abs(cy -) seems like
much easier way to say that, doesn't it?). iHeése = statement assigns the larger of the values to the
distance variable.

So on each iteration of tHer loop, thedistance variable holds the distance of a treasure chest's
distance from the sonar device. But we want thetshb(that is, smallest) distance of all the tueas
chests. This is where tlsgnallestDistance variable comes in. Whenever ttlistance variable
is smaller tharsmallestDistance , then the value idistance becomes the new value of
smallestDistance

We givesmallestDistance the impossibly high value @hests at the beginning of the loop
so that at least one of the treasure chests wenfiihle put intosmallestDistance . By the time
thechests loop has finished, we know th&tnallestDistance holds the shortest distance
between the sonar device and all of the treaswestslin the game.

81. if smallestDistance == 0:
82. # xy is directly on a treasure chest!
83. chests.remove([x, y])
84. return 'You have found a sunken treasure
chest!
The only time thasmallestDistance is equal td is when the sonar device's XY coordinates

are the same as a treasure chest's XY coordifdissmeans the player has correctly guessed the
location of a treasure chest. We should removectigst's two-integer list from tlodests data
structure with theemove list method.

The remove() List Method

Theremove list method will remove the first occurence of tledue passed as a parameter from the
list. For example, try typing the following intoghnteractive she

x =[42, 5, 10, 42]
x.remove(10)
X

Frx o® o= [42, 5, 10, 42]
x> d.remove [(10)

Frr M

[42, 5, 4Z]

s |

You can see that tHED value has been removed from thést.

Theremove() method removes the first occurrence of the vatuepass it, and only the first. For
example, type the following into the shell:

x = [42, 5, 42]
x.remove(42)
X

Frxox o= [42, 5, 42]
Frx XK.remove [(42)
Frr ox

[2, 42]

wx |

Notice that only the firs42 value was removed, but the second one is stilethe

Theremove() method will cause an error if you try to removeadue that is not in the list:

Frron o= [5, 42]
Frr X.emove [(10)

Traceback [(most recent call last):
File "<pyshellf7>", line 1, in <module:
H.remove [10)
ValueError: list.remove (x)]: = not in list
x|

After removing the found treasure chest fromahests list, we return the stringyou have
found a sunken treasure chest! to tell the caller that the guess was correct. &aber
that any changes made to the list in a functiohexiist outside the function as well.

85. else:
86. if smallestDistance < 10:

87. board[x][y] = str(smallestDistance)
88. return ‘Treasure detected at a dista nce of
%s from the sonar device.' % (smallestDistance)
89. else:
90. board[x][y] = 'O’
91. return 'Sonar did not detect anythin g. All
treasure chests out of range.’
92.
Theelse block executes mallestDistance was notD, which means the player did not guess

an exact location of a treasure chest. We retuondifferent strings, depending on if the sonar dewe
Jlaced within range of any of the treasure chéfiiswas, we mark the board with the string versad
smallestDistance . If not, we mark the board with'@

94. def enterPlayerMove():

95. # Let the player type in her move. Return a two-
item list of int xy coordinates.
96. print 'Where do you want to drop the next so nar

device? (0-59 0-14) (or type quit)'
97. while True:

98. move = raw_input()

99. if move.lower() == "quit".
100. print "Thanks for playing!
101. sys.exit()

This function collects the XY coordinates of thay#r's next move. It hasaile loop so that it wil
<eep asking the player for her next move. The plage also type ichests in order to quit the game.

n that case, we call tksys.exit() function which immediately terminates the program.

103. move = move.split()

104. if len(move) == 2 and move[0].isdigit() and
move[1].isdigit() and isValidMove(int(move[0]), int
(move[1))):

105. return [int(move[0]), int(move[1])]

106. print 'Enter a number from 0 to 59, a s pace,
then a number from 0 to 14.

Assuming the player has not typeddait' , we call thesplit() method ormove and set the li

it returns as the new value move. What we expeanove to be is a list of two numbers. These
numbers will be strings, because tiests method returns a list of strings. But we can conthese
to integers with thent() function.

If the player typed in something likk2 3" , then the list returned tgplit() would be['1,
'2', '3 . In that case, the expressien(move) == would beFalse and the entire
expression immediately evaluatedtalse (because of expression short-circuiting.)

If the list returned bgplit() does have a length 8f then it will have anove[0] andmove
[1] . We call the string methaddigit() on those stringssdigit() will return True if the
string consists solely of numbers. Otherwise iimesFalse . Try typing the following into the
interactive shell:

'42" isdigit()
‘forty".isdigit()
".isdigit()
'hello'.isdigit()
x ="10'
x.isdigit()
Frx 420 isdigic ()
True
Fxx 'forty' .isdigit()
False
=rx ' Ldisdigit ()
False
»r» 'hello'.isdigic ()
Fal=se
rxow o= 10!
=rx oM.isdigit ()
True
s |
As you can see, bothove[0].isdigit() andmove[1].isdigit() must belrue . The

final part of this expression calls amove[l] function to check if the XY coordinates exist twe t
board. If all these expressions diele , then this function returns a two-integer listloé XY
coordinates. Otherwise, the player will be askednier coordinates again.

109. def playAgain():

110. # This function returns True if the player wants
to play again, otherwise it returns False.
111. print 'Do you want to play again? (yes or n 0)'

112. return raw_input().lower().startswith('y’)

TheplayAgain()

function will ask the player if they want to plagain, and will keep asking ur

the player types in a string that begins wyth . This function returns a boolean value.

115.
116.
117.

118.

119.
120.
121.

122.

123.

124.

125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

def showlnstructions():
print "'Instructions:
You are the captain of the Simon, a treasure-hu
ship. Your current mission
is to find the three sunken treasure chests tha
lurking in the part of the
ocean you are in and collect them.

To play, enter the coordinates of the point in
ocean you wish to drop a

sonar device. The sonar can find out how far aw
closest chest is to it.

For example, the d below marks where the device
dropped, and the 2's

represent distances of 2 away from the device.
represent

distances of 4 away from the device.

444444444
4 4
4 22222 4
42 24
42d24
42 24
4 22222 4
4 4
444444444
Press enter to continue..."
raw_input()

nting

tare

the
ay the
was

The 4's

The showlnstructions()

raw_input()

This is because the screen can only show 25 lihesbat a time.

is just a couple gbrint statements that print multi-line strings. The
function just gives the player a chance to pregertbefore printing the next string.

139.

140.
141.

print "'For example, here is a treasure ch
(the c) located a distance of 2 away
from the sonar device (the d):

est

142. 22222

143. ¢ 2

144. 2d2

145, 2 2

146. 22222

147.

148. The point where the device was dropped will be marked
with a 2.

149.

150. The treasure chests don't move around. Sonar de vices
can detect treasure

151. chests up to a distance of 9. If all chests are out of

range, the point
152. will be marked with O

153.

154. If a device is directly dropped on a treasure ¢ hest,
you have discovered

155. the location of the chest, and it will be colle cted.

The sonar device will

156. remain there.

157.

158. When you collect a chest, all sonar devices wil | update
to locate the next

159. closest sunken treasure chest.

160. Press enter to continue..."™

161. raw_input()

162. print

163.

This is the rest of the instructions in one mutielstring. After the player presses Enter, thetiom
‘eturns

These are all of the functions we will define far game. The rest of the program is the main dart o
Jur game

165. print'SONAR

166. print

167. print 'Would you like to view the instructions?
(yes/no)'

168. if raw_input().lower().startswith('y"):

169. showinstructions()

The expressioraw_input().lower().startswith('y") asks the player if they want to
see the instructions, and evaluatesnae if the player typed in a string that began with or'Y' . If
so,showlnstructions() is called.

171. while True:

172. # game setup

173. sonarDevices = 16

174. theBoard = getNewBoard()

175. theChests = getRandomChests(3)
176. drawBoard(theBoard)

177. previousMoves =]

Thiswhile loop is the main game loop. Here are what theabées are for:

sonarDevices The number of sonar devices (and turns) the plagsieft.

The board data structure we will use for this gage¢NewBoard
theBoard))

() will set us up with a fresh board.
theChests The list of chest data structurgetRandomChests() will return

a list of three treasure chests at random placekseohoard.
previousMoves A list of all the XY moves that the player has mauéhe game.

179. while sonarDevices > 0:

180. # Start of a turn:

181.

182. # sonar device/chest status

183. if sonarDevices > 1: extraSsonar ='s'

184. else: extraSsonar ="

185. if len(theChests) > 1: extraSchest = 's '
186. else: extraSchest ="

187. print "You have %s sonar device%s left. %s

treasure chest%s remaining.' % (sonarDevices,
extraSsonar, len(theChests), extraSchest)

Thiswhile loop executes as long as the player has sonacegereémaining. We want to print a

message telling the user how many sonar devicesreaslure chests are left. But there is a problem.
there are two or more sonar devices left, we waptint'2 sonar devices' . But if there is only

one sonar device left, we want to prihisonar device' left. We only want the plural form of
devices if there are multiple sonar devices. Timeesgoes fol2 treasure chests' and'l

treasure chest'

So we have two string variables namxedndy, which contain avhile if there are multiple sonar
devices or treasures chests. Otherwise, they ankkblWe use them in thvhile statement on line 187.

189. X, y = enterPlayerMove()
190. previousMoves.append([x, y]) # we must track
all moves so that sonar devices can be updated.
191.
192. moveResult = makeMove(theBoard, theChes ts, X,
y)
193. if moveResult == False:
194. continue
Line 189 uses the multiple assignment trighterPlayerMove() returns a two-item list. The

first item will be stored in th& variable and the second will be stored intheariable. We then put
these two variables into another two-item list, athive store in thpreviousMoves list with the
append() method. This meareviousMoves s a list of XY coordinates of each move the ptz
makes in this game.

Thex andy variables, along wittheBoard andtheChests (which represent the current state of
the game board) are all sent to thekeMove() function. As we have already seen, this functidh w
make the necessary modifications to the game bifamhkeMove() returns the valuBalse , then
there was a problem with thkeandy values we passed it. Théile statement will go back to the s
of thewhile loop that began on line 179 to ask the playeXfércoordinates again.

195. else:

196. if moveResult == "You have found a sunken
treasure chest!".

197. # update all the sonar devices
currently on the map.

198. for x, y in previousMoves:

199. makeMove(theBoard, theChest S, X,
y)

200. drawBoard(theBoard)

201. print moveResult

If makeMove() did not return the valulealse , it would have returned a string that tells us tvha
were the results of that move. If this string wdsle , then that means we should update all the sonar

devices on the board so they detect the secondstltreasure chest on the board. We have the XY
coordinates of all the sonar devices currentlyhenttoard stored ipreviousMoves . So we can just
pass all of these XY coordinates to thekeMove() function again to have it redraw the values on the
board.

We don't have to worry about this callt@keMove() having errors, because we already know all
the XY coordinates ipreviousMoves are valid. We also know that this callnr@keMove() won't

find any new treasure chests, because they wouwlkl dleeady been removed from the board when that
move was first made.

Thefor loop on line 198 also uses the same multiple asségt trick forx andy because the items
in previousMoves list are themselves twitem lists. Because we don't print anything hdre,flaye

doesn't realize we are redoing all of the previmoses. It just appears that the board has beerelgnti
updated.

203. if len(theChests) == 0:

204. print "You have found all the sunke n
treasure chests! Congratulations and good game!'

205. break

Remember that themakeMove() function modifies théheChests list we send it. Because
theChests is a list, any changes made to it inside the fonawill persist after execution returns fr
the functionmakeMove(0 removes items frortheChests when treasure chests are found, so
eventually (if the player guesses correctly) allref treasure chests will have been removed.

(Remember, by "treasure chest" we mean the twoditmof the XY coordinates inside the
theChests list.)

When all the treasure chests have been found dmodue and removed frotheChests | the
theChests list will have a length ob. When that happens, we display a congratulationise player
and then executelaeak statement to break out of thidile loop. Execution will then move down
to line 209 (the first line after thehile block.)

207. sonarDevices -=1

This is the last line of thehile loop that started on line 179. We decremenstiearDevices
variable because the player has used one. If Hyepkeeps missing the treasure chests, eventually
sonarDevices will be reduced t®. After this line, execution jumps back up to Iit# so we can
re-evaluate thevhile statement's condition (whichgsnarDevices > 0). If sonarDevices s
0, then the condition will bEéalse and execution will continue outside twlile block on line 209.

But until then, the condition will remainhile and the player can keep making guesses.

209. if sonarDevices == 0:

210. print 'We\'ve run out of sonar devices! Now we
have to turn the ship around and head'

211. print 'for home with treasure chests st ill out
there! Game over.'

212. print’ The remaining chests were he re:'

213. for x, y in theChests:

214. print" %s, %s' % (X, Yy)

Line 209 is the first line outside théhile loop. By this point the game is over. But how do tell if
the player won or not? The only two places wheegaitogram execution would have left thiile
loop is on line 179 if the condition failed. In theasewhile would bewhile and the player would
have lost.

The second place is tigeak statement on line 205. That statement is exedtitbd player has
found all the treasure chests before running osbaofr devices. In that casenarDevices would
be some value greater th@n

We've already printed a congratulations if the ptayon, so let's just check if the player lost and
display a message telling them so. We will alsaupedfor loop that will go through the treasure
chests remaining itheChests and show them to the player.

216. if not playAgain():
217. sys.exit()

Win or lose, we call thplayAgain() function to let the player type in whether theyniveo keep
playing or not. If not, theplayAgain() returnsFalse . Thenot operator changes this faue |,
making thef statement's conditiohrue and thesys.exit() function is executed. This will cause
the program to terminate.

Otherwise, execution jumps back to the beginnintdhehot loop on line 171.

Things Covered In This Chapter:

o Cartesian coordinate syster

The X-axis and Y-axis.
Absolute values and thabs()
Theremove() list method.

function.

Theisdigit() string method.

Chapter 9 - Caesar Cipher
About Cryptography

The science of writing secret codes is callggtography . Cryptography has been used for
thousands of years to send secret messages thahemkcipient could understand, even if someone
captured the messenger and read the coded mefsseeret code system is calledipher . There are
thousands of different ciphers that have been wessath using different techniques to keep the messag
a secret.

In cryptography, we call the message that we wabgetsecret thplaintext . The plaintext could
look something like this:

Hello there! The keys to the house are hidden under the
reddish flower pot.

When we convert the plaintext into the encoded agsswe call thiencrypting the plaintext. The
plaintext is encrypted into thephertext . The ciphertext looks like random letters (alslecha
garbage data), and we cannot understand what the original f#airwas by just looking at the
ciphertext. Here is an example of some ciphertext:

Ckkz fkx kj becqgnejc kgp pdeo oaynap iaoowca!

But if we know about the cipher used to encryptrtiessage, we can convert the ciphertext back to
the plaintext. This is calledecrypting . (Decryption is the opposite of encryption.)

Many ciphers also use keyseys are secret values that let you decrypt ciphetteattwas encrypted
using a specific cipher. Think of the cipher asgdike a door lock. Although all the door lockstbé
same type are built the same, a particular lockamily unlock if you have the key made for thatdoc
You cannot use another key on that door lock, andgannot use a different key to decrypt ciphertext
that was encrypted with a different key.

When we encrypt a message using a cipher, we olbse the key that is used to encrypt and de
this message. The key for our Caesar Cipher wid bember from 1 to 26. Unless you know the key
(that is, know the number), you will not be ablalexrypt the encrypted message.

The Caesar Cipher was one of the earliest ciphers ever inventethigcipher, you encrypt a
message by taking each letter in the messageyography, these letters are calfganbols becaus
they can be letters, numbers, or any other sigdyeplacing it with a "shifted” letter. If you shihe
letter A by one space, you get the letter B. If gbift the letter A by two spaces, you get thesle@.
Here is a picture of some letters shifted over Isp&ce:

A|B|C|ID|E]|F

To get each shifted letter, draw out a row of boxgk each letter of the alphabet. Then draw a
second row of boxes under it, but start a certamiver of spaces over. When you get to the leftover
letters at the end, wrap around back to the staheoboxes. Here is an example with the letteifsesh
by three spaces:

ABCDEFGH]IZJKLI"-iIN?FI’ RISIT[UI[V

[| 1 1 1 1 1 1 1 1 1 11| | 1 1 1 |
XIYI1Z|A[B[CID[E[FIGIH[T[I[K[L[M[N[O|P|QIR]S

Alphabet shifted by 3 spaces.

The number of spaces we shift is the key in thes@a€ipher. The example above shows the key 3.

Using a key of 3, if we encrypt the plaintext "Hopdthen the "H" becomes "E". "0" becomes "I".
"w" becomes "t". "d" becomes "a". "y" becomes "Vhe ciphertext of "Hello" with key 3 becomes
"Eltav".

We will keep any noretter characters the same. In order to decrygaVEMith the key 3, we just (
from the bottom boxes back to the top. "E" becolk¥s "' becomes "0", "t" becomes "w", "a"
becomes "d", and "v" becomes "y" to form "Howdy".

ASCII, and Using Numbers for Letters

How do we implement this shifting of the lettersomr program? We can do this by representing
letter as a number (called ardinal), and then adding or subtracting from this nuntbdorm a new
number (and a new letter). ASCII is a code thaneats each character to a number between 32 and
127. The numbers less than 32 refer to "unprintadflaracters, so we will not be using them.

For example, the letter "A" is represented by thmber 65. The letter "m" is represented by the
number 109. Here is a table of all the ASCII chemecfrom 32 to 127:

[s A Y B B B

32| (space 48| 0 64| @ 80(P 96 |- 112|p
33| 1 49| 1] 65| A 81| 0 97 |a] 113 q |
34| " 50| 2 66| B 82| R 98 |b] 114 r |
35| # 51 3] 67| C 83| s 99 [c]| 115] s |
36| $ 52| 4| 68| D 84| T 100/ d | 116t |
37| % 53] 5 69| E 85| U 101]e | 117] u|
38| & 54| 6| 70| F 86| v 102t | 118] v]
39]" 55| 7] 71| G 87| w 103| g | 119 w|
40| (56| 8] 72| H 88| x 104] h | 120| x |
41]) 57| 9] 73] 89| v 105|i | 121]y |
42| * 58| : | 74] 3 90| Z 106|j | 122] 7|
43| + 59| ;| 75| K 91| [107| k | 123]{ |
44 | 60| < 76| L 92|\ 108|1 | 124]] |
45| - 61| =] 77| ™ 93|] 109| m 125|} |
46) . 62| >| 78|'N 94] 110/ n | 126 ~ |
47|/ 63| 7] 79| 0 95| 111] 0 |]

The capital letters "A" through "Z" have the nun®8b through 90. The lowercase letters "a"
through "z" have the numbers 97 through 122. Theanric digits "0" through "9" have the numbers 48
through 57.

So if we wanted to shift "A" by three spaces, wstfconvert it to the number 65. Then we add 3 to
65, to get 68. The number 68 is connected to tiber [eD".

The chr() and ord() Functions

Thechr() function (short for "character") takes a singlex@itter string for the parameter, and
returns the integer ASCII number for that stringe®rd() function (short for "ordinal") takes an
integer for the parameter, and returns the ASGtiéddor that number. Try typing the following intioe
interactive shell:

 chr(65)
{ord('A)
i chr(65+8)

{chr(52)
ichr(ord('F"))
ord(chr(68))

Fxx chr(eh)

IAI

Frx oordi L")

65

Frx chr (65+8)
III

Frx chr(52)

I_ql

Frx chriord({'F'1)
IFI

x> ordichr (68))
65

On the third linechr(65+8) evaluates tehr(73) . If you look at the ASCII table, you can see
that 73 is the ordinal for the capital letter '©n the fifth line,chr(ord('F")) evaluates techr
(70) which evaluates td~' . Feeding the result @fd() tochr() will give you back the original
argument. The same goes for feeding the resichr() toord() , as shown by the sixth line.

Usingchr() andord() will come in handy for our Caesar Cipher programg also whenever we
need to do math operations on strings as if they wamber:

Sample Run
Here is a sample run of the Caesar Cipher progeasrypting a message:

Do you wish to encrypt or decrypt a message?

encrypt

Enter your message:

The sky above the port was the color of television, tuned to
a dead channel.

Enter the key number (1-26)

13

Your translated text is:

Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivivba, gharq gb
n grng punaary.

Now we will run the program and decrypt the texttive just encrypted.

Do you wish to encrypt or decrypt a message?

decrypt

Enter your message:

Gur fxl nobir gur cbeg jnf gur pbybe bs gryrivivba, gharqg gb

n grng punaary.

Enter the key number (1-26)

13

Your translated text is:

The sky above the port was the color of television, tuned to
a dead channel.

On this run we will try to decrypt the text thatswvancrypted, but we will use the wrong key.
Remember that if you do not know the correct kibg,decrypted text will just be garbage data.

Do you wish to encrypt or decrypt a message?

decrypt

Enter your message:

Gur fxI nobir gur cbeg jnf gur pbybe bs gryrivivba, gharqg gb
n grng punaary.

Enter the key number (1-26)

15

Your translated text is:

Rfc giw yzmtc rfc nmpr uyq rfc amjmp md rcjctgggml, rsicb rm
y bcyb afylicj.

Source Code

caesar.py
. # Caesar Cipher - Simple Substitution Cipher
: MAX_KEY_SIZE = 26

. def getMode():
while True:
print ‘Do you wish to encrypt or decrypt a
message?'

8. mode = raw_input().lower()

9. if mode in 'encrypt e decrypt d'.split():
10. return mode
11. else:
12. print 'Enter either "encrypt" or "e" or

"decrypt" or "d".'

13.
14. def getMessage():
15. print 'Enter your message:'
16. return raw_input()
17.
18. def getKey():

1
2
3
4
5
6
7

19. key=0
20. while True:

21. print 'Enter the key number (1-%s)' %
(MAX_KEY_SIZE)

22. key = int(raw_input())

23. if (key >= 1 and key <= MAX_KEY_SIZE):

24. return key

25.

26. def getTranslatedMessage(mode, message, key):
27. if mode[0] =="'d"

28. key = -key

29. translated ="

30.

31. for symbol in message:
32. if symbol.isalpha():

33. num = ord(symbol)
34. num += key

35.

36. if symbol.isupper():
37. if num > ord('Z"):
38. num -= 26

39. elif num < ord('A"):
40. num += 26

41. elif symbol.islower():
42. if num > ord('z"):
43. num -= 26

44, elif num < ord('a’):
45. num += 26

46.

47. translated += chr(num)
48. else:

49. translated += symbol
50. return translated

51.

52. mode = getMode()

53. message = getMessage()

54. key = getKey()

55.

56. print "Your translated text is:'

57. print getTranslatedMessage(mode, message, key)
58.

Code Explanation

[L. # Caesar Cipner - Simpie subsututon Cipher
2.
3. MAX_KEY_SIZE = 26

The first line is a comment. The Caesar Ciphenis cipher of a type of ciphers called simple
substitution ciphersSimple substitution ciphers are ciphers that replace one symbol in the pl=i
vith one (and only one) symbol in the ciphertext.ifSa "G" was substituted with "Z" in the ciphexer
single "G" in the plaintext would be replaced wigmd only with) a "Z'

MAX_KEY_SIZEis a variable that stores the inte@érin it. MAX_KEY_SIZEreminds us that in th
yrogram, the key used in our cipher should be betwleand 2t

5. def getMode():
6. while True:

7. print ‘Do you wish to encrypt or decrypt a
message?'
8. mode = raw_input().lower()
9. if mode in 'encrypt e decrypt d'.split():
10. return mode[0]
11. else:
12. print 'Enter either "encrypt" or "e" or

"decrypt” or "d".'

ThegetMode() function will let the user type in if they wantémcrypt or decrypt the message.
‘eturn value oraw_input() (which then has thiewer() method called on it, which returns the
owercase version of the string) is storemode. Theif statement's condition checks if the string

stored inmode exists in the list returned bgncrypt e decrypt d'.split() . This list is
‘encrypt’, ‘e, 'decrypt’, 'd’] , but it is easier for the programmer to just type
encrypt e decrypt d'.split() and not type in all those quotes and commas. Buitcan us

vhatever is easiest for you; they both evaluatéeécsame list valu

This function will return the first characterimode as long asnode is equal tdencrypt’ ,'e" ,
decrypt' ,or'd . This means thajetMode() will return the strinde' or the stringd’

14. def getMessage():
15. print 'Enter your message:'
16. return raw_input()

ThegetMessage() function simply gets the message to encrypt ornyg¢drom the user and uses
his string as its return valt

18. def getKey():

19. key=0

20. while True:

21. print 'Enter the key number (1-%s)' %
(MAX_KEY_SIZE)

22. key = int(raw_input())

23. if (key >=1 and key <= MAX_KEY_SIZE):

24. return key

ThegetKey() function lets the player type in key they will useencrypt or decrypt the message.
rhewhile loop ensures that the function only returns adviedly. A valid key here is one that is
yetween the integer valul and26 (remember thalAX_KEY_SIZEwill only have the valu@6
)ecause it is constant). It then returns this Remember that on line 363 ttkey was set to the integ
rersion of what the user typed in, ancgetkey() returns an integer.

26. def getTranslatedMessage(mode, message, key):
27. if mode[0] =="'d"

28. key = -key
29. translated ="
30.
getTranslatedMessage() is the function that does the encrypting and daang in our

yrogram. It has three parametémode sets the function to encryption mode or decryptimde.
nessage is the plaintext/ciphertext to be encrypted/detagipkey is the key that is used in this cipher.

The first line in thegetTranslatedMessage() function determines if we are in encryption m
)r decryption mode. If the first letter in tMAX_KEY_SIZEvariable is the strinylAX_KEY_SIZE
hen we are in decryption mode. The only differebegveen the two modes is that in decryption m
hekey is set to the negative version of itselfkéfy was the intege22, then in decryption mode we
tto-22 . The reason for this will be explained later.

translated is the string that will hold the ciphertext (if vaee encrypting) or the plaintext (if we

are decrypting). We will only be concatenatingrgjs to this variable, so we first $&tnslated
to the blank string. (You cannot concatenate agtio a variable that has not had a value setytetit
The reason is because you can only concatenatgsto other strings. If the variable has no vallus,
not of the string data type.)

31. for symbol in message:

32. if symbol.isalpha():
33. num = ord(symbol)
34. num += key

We will run afor loop over each letter (remember that in cryptolgyaphey are called symbols) in
themessage string. Strings are treated just like lists ofgd&character strings. ihessage had the
string'Hello' , thenfor symbol in 'Hello' would be the same &g symbol in
['H', e, 'l ', '0] . On each iteration through this logymbol will have the value
of a letter inmessage.

The isalpha() String Method

Theisalpha() string method will returfrue if the string is an uppercase or lowercase letter
from A to Z. If the string contains any non-lettdraracters, theMAX_KEY_SIZEwill return
MAX_KEY_SIZE Try typing the following into the interactive she

'Hello".isalpha()
'Forty two'.isalpha()
'Fortytwo'.isalpha()

'42'.isalpha()
".isalpha()
>»> 'Hello'.isalphal)
True
>»> 'Forty two'.isalphall
False
>»> 'Fortytwo' .isalphal)
True
Frx 42 Jisalphall
False
x> '!'.isalphal)
False
x|

As you can seeforty two'.isalpha() will return False becausé&-orty two' has a

space in it, which is a non-letter characteertytwo'.isalpha() returnsTrue because it
does not have this space.

'42'.isalpha() returnsFalse because botd' and'2' are non-letter characters. And
".isalpha() is False becausésalpha() only returnsTrue if the string has only letter
characters and is not blank.

The reason we have tife statement on line 32 is because we will only epitdecrypt letters in the
message. Numbers, signs, punctuation marks, amgtleivey else will stay in their untranslated form.

Thenumvariable will hold the integer ordinal value ottletter stored isymbol . Line 34 then
"shifts" the value imum by the value irkey .

The isupper() and islower() String Methods

Theisupper() andislower() string methods (which are on line 36 and 41) wora way that
is very similar to thesdigit() andisalpha() methodsisupper() will return True if the
string it is called on contains at least one uppsgdetter and no lowercase lettésgwer() returns
True if the string it is called on contains at leasé dowercase letter and no uppercase letters.
Otherwise these methods retli@se . The existence of non-letter characters like nusbad spaces
does not affect the outcome. Although strings tltahot have any letters, including blank stringsl, w
also returrFFalse . Try typing the following into the interactive she

'HELLO".isupper()

‘hello'.isupper()

'hello'.islower()

'Hello".islower()

'LOOK OUT BEHIND YOU!.isupper()
'42".isupper()

'42'".islower()

".isupper()
".islower()

»xx» 'HELLO' .isupper()
True

»rx 'hellao' . isupper()
False

Frx 'hello' . islower()
True

x> 'Hello'.islower()
False

Frx 'LOOE OUT BEHINMD YOU!''.isupper ()
True

Frx 42" Jisupper()
False

Frx 42" Jislower ()
False

x> ' Jlsupper()
False

Frx 'Y lislower()
False

v |

Code Explanation continued...

36. if symbol.isupper():
37. if num > ord('Z"):
38. num -= 26

39. elif num < ord('A"):
40. num += 26

This code checks if the symbol is an uppercaserldftso, there are two special cases we need to
worry about. What isymbol was'Z' andkey was4? If that were the case, the valuenafn here
would be the charact&’ . But this isn't a letter at all. We wanted theheigext to "wrap around" to
the beginning of the alphabet. The way we can @oishto check ikey has a value larger than the

largest possible letter's ASCII value (which isagital "Z"). If so, then we want to subtract 26 ¢aese
there are 26 letters in total) fromum. After doing this, the value ofumis 68, which is the ASCII

value for'D' .

36. if symbol.isupper():
37. if num > ord('z"):
38. num -= 26

39. elif num < ord('a’):

40. num += 26

If the symbol is a lowercase letter, the programsrcode that is very similar to lines 36 through 40
The only difference is that we ueed('z’) andord('a’) instead obrd('Z") andord('A")

If we were decrypting, thelkey would be negative. Then we would have the specis¢ where the
new value ohummight be less than the smallest possible valuécfwisord('A) | that is,65). If
this is the case, we want to add 2@6oto have it "wrap around”.

47. translated += chr(num)
48. else:
49. translated += symbol

Thetranslated string will be appended with the encrypted/deagptharacter. If the symbol w
not an uppercase or lowercase letter, then thebédss on line 48 would have executed instead tiAd!
code in the else-block does is append the origiymlbol to theranslated string. This means that
spaces, numbers, punctuation marks, and otherathesavill not be encrypted (or decrypted).

50. return translated

The last line in thgetTranslatedMessage() function returns th&ranslated string.

52. mode = getMode()

53. message = getMessage()

54. key = getKey()

55.

56. print "Your translated text is:'

57. print getTranslatedMessage(mode, message, key)

This is the main part of our program. We call eatthe three functions we have defined above in
turn to get the mode, message, and key that thenasds to use. We then pass these three values as
arguments tgetTranslatedMessage() , whose return value (the translated string) istpd to
the usel

Brute Force

That's the entire Caesar Cipher. However, while ¢ipher may fool some people who don't
understand cryptography, it won't keep a messagetsgom someone who knows cryptanalysis. W
cryptography is the science of making codegptanalysis is the study of breaking codes.

Do you wish to encrypt or decrypt a message?

encrypt

Enter your message:

The door key will be hidden under the mat until the fourth
of July.

Enter the key number (1-26)

8

Your translated text is:

Bpm lwwz smg eqtt jm pglimv cvimz bpm uib cvbgt bpm nwczbp
wn Rctg.

The whole point of cryptography is that so if someelse gets their hands on the encrypted mes
they cannot figure out the original unencrypted sage from it. So we pretend we are the attacker and
all we have is the encrypted text:

Bpm Iwwz smg eqtt jm pgllmv cvimz bpm uib cvbqgt bpm nwczbp
wn Rctg.

One method of cryptanalysis is called brute foBraite force is the technique of trying every sin
possible key. If the cryptanalyst knows the cipthet the message uses (or at least guesses yt);dhe
just go through every possible key. Because therely 26 possible keys, it would be easy fi
cryptanalyst to write a program than prints thergeied ciphertext of every possible key and semyf
of the outputs make sense. Let's add a brute featare to our program.

First, change lines 7, 9, and 12 (which are inciyptanalysis to look like the following (the
changes are in bold):

5. def getMode():
6. while True:
7. print ‘Do you wish to encrypt or decrypt or
brute force a message?'
8. mode = raw_input().lower()
9 if mode in 'encrypt e decrypt d brute b ".split
0:
10. return mode[0]
11. else:
12. print 'Enter either "encrypt" or "e" or
"decrypt" or "d" or "brute" or "b" :

This will let us select "brute force" as a modedar program. Then modify and add the following
hanges to the main part of the progi

57

52.
53.
54.
55.
56.

58.
59.
60.
61.
62.

mode = getMode()
message = getMessage()
if mode[0] !="b"
key = getKey()

. print 'Your translated text is:'
if mode[0] I="b":
print getTranslatedMessage(mode, message, ke
else:
for key in range(1, MAX_KEY_SIZE + 1):
print key, getTranslatedMessage(‘'decrypt’,
message, key)

y)

These changes make our program ask the user &y é they are not in "brute force" mode. If they

are not in "brute force" mode, then the origigetTranslatedMessage()

ranslated string is printe

However, otherwise we are in "brute force" model @we run getTranslatedMessage()

call is made and the

loop

hat iterates fronl all the way up ttMAX_KEY_SIZE(which is26). Remember that when thange

) function returns a list of integers up to but mzuding the second parameter, which is why weehav
F1 . This program will print out every possible tratgn of the message (including the key number
Ised in the translation). Here is a sample rutisfrhodified progran

Do you wish to encrypt or decrypt or brute force a

brute

Enter your message:

Bpm lwwz smg eqtt jm pglimv cvimz bpm uib cvbgt bpm
Your translated text is:

1 Aol kvvy rlf dpss il opkklu bukly aol tha buaps a

2 Znk juux gke corr hk nojjkt atjkx znk sgz atzor z

3 Ymj ittw pjd bngqg gj mniijs zsijw ymj rfy zsynq y

4 Xli hssv oic ampp fi Imhhir yrhiv xli gex yrxmp x

5 Wkh grru nhb zloo eh klgghg xqghu wkh pdw xqwlo w
6 Vjg fqgt mga yknn dg jkffgp wpfgt vijg ocv wpvkn v

7 Uif epps Ifz xjmm cf ijeefo voefs uif nbu voujm u

8 The door key will be hidden under the mat until t

9 Sgd cnnq jdx vhkk ad ghccdm tmedq sgd Izs tmshk s
10 Rfc bmmp icw ugjj zc fgbbcl slbcp rfc kyr slrgj

11 Qeb allo hbv tfii yb efaabk rkabo geb jxq rkqfi

12 Pda zkkn gau sehh xa dezzaj gjzan pda iwp gjpeh
13 Ocz yjjm fzt rdgg wz cdyyzi piyzm ocz hvo piodg

message?

nwczbp wn Rctg.

ol mvbyao vm Qbsf.
nk luaxzn ul Pare.
mj ktzwym tk Ozqd.
li jsyvxl sj Nypc.

kh irxuwk ri Mxob.
jg hgwtvj gh Lwna.
if gpvsui pg Kvmz.
he fourth of July.

gd entgsg ne Itkx.
rfc dmsprf md Hsjw.
geb clroge Ic Griv.
pda bkgnpd kb Fghu.
ocz ajpmoc ja Epgt.

14 Nby xiil eys qcff vy bexxyh ohxyl nby gun ohncf

15 Max whhk dxr pbee ux abwwxg ngwxk max ftm ngmbe
16 Lzw vggj cwq oadd tw zavvwf mfvwj Izw esl mflad

17 Kyv uffi bvp nzcc sv yzuuve leuvi kyv drk lekzc

18 Jxu teeh auo mybb ru xyttud kdtuh jxu cqj kdjyb

19 Iwt sddg ztn Ixaa gt wxsstc jcstg iwt bpi jcixa

20 Hvs rccf ysm kwzz ps vwrrsb ibrsf hvs aoh ibhwz

21 Gur gbbe xrl jvyy or uvqgra haqre gur zng hagvy

22 Ftg paad wgk iuxx nq tuppgz gzpqd ftg ymf gzfux

23 Esp ozzc vpj htww mp stoopy fyopc esp xle fyetw

24 Dro nyyb uoi gsvv lo rsnnox exnob dro wkd exdsv

25 Cgn mxxa tnh fruu kn grmmnw dwmna cqgn vjc dwcru
26 Bpm lwwz smg eqtt jm pglimv cvimz bpm uib cvbqt

nby ziolnb iz Dofs.
max yhnkma hy Cner.
lzw xgmijlz gx Bmdag.
kyv wiliky fw Alcp.

jxu vekhjx ev Zkbo.
iwt udjgiw du Yjan.
hvs tcifhv ct Xizm.
gur sbhegu bs Whyl.
ftq ragdft ar Vgxk.
esp gzfces zq Ufwj.
dro pyebdr yp Tevi.
cgn oxdacq xo Sduh.
bpm nwczbp wn Rctg.

After looking over each row, you can see that ttherBessage is not garbage, but plain English! The
cryptanalyst can deduce that the original key lfitgg €ncrypted text must have béenThis brute force
would have been difficult to do back in the day<aksars and the Roman Empire, but today we have
computers that can quickly go through millions wer billions or keys. You can even write a program
that can recognize when it has found a messageghdgh, so you don't have read through all the
garbage text. (In fact, we will do this in the néxtent Your Own Computer Games with Python book!)

Things Covered In This Chapter:

Cryptography and ciphers

Encrypting and decrypting

Ciphertext, plaintext, keys, and symbols
The Caesar Cipher

ASCII ordinal values

Thechr() andord() functions
Theisalpha() string method
e Theisupper() andislower()
o Cryptanalysis

e The brute force technique

string methods

Chapter 10 - Reversi

How to Play Reversi

Reversi (also called Othello) is a board gameithptayed on a grid (so we will use a Cartesian
coordinate system with XY coordinates, like we @ith Sonar.) It is a game played with two players.
Our version of the game will have a computer At isanore complicated than the Al we made for Tic
Tac Toe. In fact, this Al is so good that it wiliglably beat you almost every time you play. (I\krio
lose whenever | play against it!)

Reversi has an 8 x 8 board with tiles that arekbtacone side and white on the other (our game will
use O's and X's though). The starting board loidesthis:

123456 7238

o ~N Oy L W N

Each player takes turn placing down a new tilehefrtcolor. Any of the opponent's tiles that are
between the new tile and the other tiles of thatras flipped. For example, say the white playkrces
a new white tile on space 5

123456 738

o~ T v B w2

The black tile at 5, 5 is in between the new whiteand the existing white tile at 5, 4. That tdaite
is flipped over and becomes a new white tile:

123 45¢6 738

0o ~I O w1 BN

Tiles in all directions are flipped as long as tlaeg in between the player's new tile and exidileg
Below, the white player places a tile at 3, 6 dipsfolack tiles in both directions (marked by tled
lines.

123456 7238 123456 738

O N Oy LT BW N
O NV B oW N

123 45¢6 738

CoO ~l O w1 Do N

As you can see, each player can quickly grab anapf the tiles on the board. But the more titd:
one color there are, the more that can be takeéhégpponen

123 45¢6 7238 123 45¢6 738

CoO ~l O w1 bW N
Co ~1 & v B ow M

Players must always make a move that capturessitdae tile. The game ends when a player either
cannot make a move, or the board is completely lfiulilnost games, the board fills up to end the game
The player with the most tiles of their color wins.

The basic strategy of Reversi is to look at whiatvewwould turn over the most tiles. But you should
also consider taking a move that will not let yopponent recapture many tiles after your move.
Placing a tile on the sides or, even better, thiears is good because there is less chance trs ties
will end up between your opponent's tiles.

The Al we make for this game will simply look fom@acorner moves they can take. If there are no
corner moves available, then the computer willtelee move that claims the most tiles.

Sample Run

Welcome to Reversi!
Do you want to be X or O?

X
The player will go first.
123456738
B
|

e SR S S et
T I A O
501 110X | |1

[B B A
B s N
I Y A A
S I I A B B B

T I O

e SR S S et
T T O
40 T I O O O

[B B A
B s N
I Y A A
2 I I I I B B B

T I O

e SR S S et
You have 2 points. The computer has 2 points.
Enter your move, or type quit to end the game, or h ints to turn off/on hints.
53

1234586738
B s N
[A I A
S T O I O O

[O B B A

e SR S S s
T T O
N I O I I B B B

T I O
B s N
[N B A
< I I I I . I B O

[O B B A

S S S S S——

(I N B N
AL IXEX]|

S S S S——
[I I e N O O

5111 1OIX]I | |1

T T O O

i S S S S——
T O

L T T T O O O O

T T I O B O O
S S S S——
T I T A O

A R A

T T O O

i S S S S——
T O

2 T T T O O O O

T T I O B O O

B ek T R B LR R
You have 4 points. The computer has 1 points.
Press Enter to see the computer's move.

123456738

e SR S S s

T T O
S T O I O O

[B B A

B ek T R B LR R

I Y A A
N o O I I B B B

T I O

e SR S S s

T I A O
3T IOIX] | |1

[B B A

B s N

T I N O
L I I I 0 g I B

T I O

i S S S S——

511 110X |11

T T O O

R S S S S——
I I A A

61 11111111

T I O B O O
S S S S——
T A O

L0 T T T O O O O

T T O O

R S S S S——
I I A A

I N I R R A

T I O B O O

e SR S S et
You have 3 points. The computer has 3 points.
Enter your move, or type quit to end the game, or h ints to turn off/on hints.
35

123456738

e SR S S s

T T O
S T O I O O

[B B A

B s N

I Y A A
N I O I I B B B

T I O

e SR S S s

T I A O
3T IOIX] | |1

[B B A

B s N

[A B N
AT IXEXE

T I O

e SR S S s

[N N
S5 1 IXIXIX] |||

[B B A

B s N

T T O
S I I O B B B

T I O

e SR S S s

[A I A
40 T I O O O

[B B A

B s N

T T O
2 I I I I B B B

T I O

e SR S S s
You have 6 points. The computer has 1 points.
Press Enter to see the computer's move.

...Skipped for brevity...

123456738

T S S S——
I T o T I
1]0]|0JO|O|0O|O|O]|O]
I O B A B

S S S S——
L
2]0|0|0O|O|O|O|O|O]|
T T O O

i S S S S——
I T I O I
3|0|0|O|O|O|O|O|O]|
T T I O B O O

S S S S——

NN
4|0]0[|X]0O]O|O|O]O]|

S S S S——

[N
5/0]00[X]O[X]|O]X]
I

B s N

You have 12 points. The computer has 48 points.

Enter your move, or type quit to end the game, or h ints to turn off/on hints.
86

X scored 15 points. O scored 46 points.

You lost. The computer beat you by 31 points.

Do you want to play again? (yes or no)

no

As you can see, the Al was pretty good at beatiagTo help the player out, we'll program our game
to provide hints. If the player typdsnts' as their move, they can toggle the hints modenaihad.
When hints mode is on, all the possible moves thgep can make will show up on the board.as
characters, like this:

1 23 456 7 8

R SR T A S S S S—
T T T I
(O I O O
I I

R SR T A S S S S—
I O T O T A
72 I O T T T I O
N T I

S SR ST S S S S S S—
I T T T I O O O
3l [-[-1-1 IX[O].]
N T I

R SR T A S S S S—
N R R
4/0|0|O[O|O|O|O] |
I I

S SR ST S S S S S S—
I
50 1 | [X[O]X] [.]
N T I

R SR T A S S S S—
T T I T I
61 | [X[.|O]X] | |
I I

N S S S S S ———

NN

L0 T T 1 O B O
Ll
T Y T
NN

=2 I T O O O O
N
S TR S U S Y Y S —

You have 5 points. The computer has 10 points.

Enter your move, or type quit to end the game, or h ints to
turn off/on hints.
Source Code
reversli.py
1. # Reversi
2.
3. import random
4. import sys
5.
6. def drawBoard(board):
7. # This function prints out the board that it was
passed. Returns None.
8. HLINE ="' 444ttt
9. VLINE="| | [[[I [T
10.
11. print* 1 2 3 4 5 6 7 8
12. print HLINE
13. fory in range(8):
14. print VLINE
15. print y+1,
16. for x in range(8):
17. print | %s' % (board[x][y]),
18. print |’
19. print VLINE
20. print HLINE
21.
22.
23. def resetBoard(board):
24. # Blanks out the board it is passed, except for

the original starting position.
25. for x in range(8):
26. for y in range(8):

27.
28.
29.
30.
31.
32.
33.
34.
35.
. def getNewBoard():
37.
38.
39.
40.
41.
42.
43.
44,
. def isValidMove(board, tile, xstart, ystart):
46.

36

45

47.

48.

49.
50.
51.

52.
53.
54.
55.
56.
57.
58.
59.

60.
61.
62.
63.
64.

65.

board[x][y] =""

Starting pieces:
board[3][3] = 'X'
board[3][4] = 'O’
board[4][3] = 'O’
board[4][4] =X’

Creates a brand new, blank board data stru
board =[]
for i in range(8):

board.append(['] * 8)

return board

Returns False if the player's move on spac
xstart, ystart is invalid.

If it is a valid move, returns a list of s
that would become the player's if they made a move
here.

if board[xstart][ystart] ="' or not isOnB
(xstart, ystart):

return False

board[xstart][ystart] = tile # temporarily s
tile on the board.

if tile == 'X":
otherTile ='O'
else:
otherTile ='X'
tilesToFlip =]

for xdirection, ydirection in [[O, 1], [1, 1
01, [1,-1], [0, -1], [-1, -1], [-1, O], [-1, 1]:
X, y = Xstart, ystart
X += xdirection # first step in the dire
y += ydirection # first step in the dire
if isOnBoard(x, y) and board[x][y] ==
otherTile:
There is a piece belonging to the
player next to our piece.
X += xdirection

cture.

paces

oard

et the

1. [1,

ction
ction

other

66.
67.
68.
69.
70.
71.
72.

73.
74.
75.
76.
7.

78.
79.
80.
81.
82.
83.
84.
85.

86.
87.

88.
89.

90
91

93.
94.
95.
. def getBoardWithValidMoves(board, tile):
97.

96

98.

99.
100.
101.
102.
103.
104.

y += ydirection

if not isOnBoard(X, y):
continue

while board[x][y] == otherTile:

X += xdirection

y += ydirection

if not isOnBoard(x, y): # break
while loop, then continue in for loop

break
if not isOnBoard(X, y):
continue
if board[x][y] == tile:

There are pieces to flip over.
the reverse direction until we reach the original
space, noting all the tiles along the way.

while True:

X -= xdirection

y -= ydirection

if x == xstart and y == ysta
break

tilesToFlip.append([x, y])

board[xstart][ystart] ="' # restore the em
space
if len(tilesToFlip) == 0: # If no tiles were
flipped, this is not a valid move.
return False
return tilesToFlip

: def isOnBoard(x, y):
92.

Returns True if the coordinates are locate
the board.
returnx>=0and x<=7andy>=0andy <=

Returns a new board with . marking the val
moves the given player can make.
dupeBoard = getBoardCopy(board)

for x, y in getValidMoves(dupeBoard, tile):
dupeBoard[X][y] ="'
return dupeBoard

105. def getValidMoves(board, tile):

out of

Goin

rt:

pty

don

106.

107.

Returns a list of [x,y] lists of valid mo
the given player on the given board.
validMoves =[]

108.

109.
110.
111.
112.
113.

for x in range(8):
for y in range(8):
if isValidMove(board, tile, x, y) !
validMoves.append([x, y])
return validMoves

114.
115.

116

117.

118.
119.
120.
121.
122.
123.
124.
125.
126.

. def getScoreOfBoard(board):
Determine the score. Returns a dictionary
keys 'X'and 'O".
xscore =0
oscore =0
for x in range(8):
for y in range(8):
if board[x][y] == 'X"
xscore +=1
if board[x][y] =="'O"
oscore +=1
return {'X":xscore, 'O".0score}

127.
128.

129

130.
131.

132.
133.
134.
135.

. def enterPlayerTile():
Let's the player type which tile they wan
Returns a list with the player's tile as

first item, and the computer's tile as the second.

tile ="

while not (tile == 'X" or tile =="0O"):
print ‘Do you want to be X or O?'
tile = raw_input().upper()

136.

137.

138.
139.
140.
141.

the first element in the tuple is the pla
tile, the second is the computer's tile.
if tile =="X":
return ['X', 'O']
else:
return ['O', 'X']

142.
143.

144

145.
146.
147.
148.

. def whoGoesFirst():
Randomly choose the player who goes first
if random.randint(0, 1) == 0:
return ‘computer
else:

ves for

= False:

with

t to be.
the

yer's

149. return 'player’

150.

151.

152. def playAgain():

153. # This function returns True if the player wants to
play again, otherwise it returns False.

154. print 'Do you want to play again? (yes or n 0)'

155. return raw_input().lower().startswith('y’)

156.

157.

158. def makeMove(board, tile, xstart, ystart):

159. # Place the tile on the board at xstart, ys tart,
and flip any of the opponent's pieces.

160. # Returns False if this is an invalid move, True if
it is valid.

161. tilesToFlip = isValidMove(board, tile, xsta rt,
ystart)

162.

163. if tilesToFlip == False:

164. return False

165.

166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:

168. board[x][y] = tile

169. return True

170.

171.

172. def getBoardCopy(board):

173. # Make a duplicate of the board list and re turn the
duplicate.

174. dupeBoard = getNewBoard()

175.

176. for x in range(8):

177. for y in range(8):

178. dupeBoard[x][y] = board[x][y]

179.

180. return dupeBoard

181.

182.

183. def isOnCorner(x, y):

184. # Returns True if the position is in one of the
four corners.

185. return(x==0andy==0)or(x==7andy ==0)
or(x==0andy==7)or(x==7andy==7)

186.

187.

188. def getPlayerMove(board, playerTile):

189.
190.

191.
192.
193.

194.
195.
196.
197.
198.
199.
200.

201.
202.
203.

204.
205.
206.
207.
208.

209.

210.
211.
212.
213.

Let the player type in their move.
Returns the move as [x, y] (or returns th
strings 'hints' or 'quit’)
DIGITS1TO8="'123456 7 8.split()
while True:
print 'Enter your move, or type quit to
game, or hints to turn off/on hints.'
move = raw_input().lower()
if move =="quit":
return 'quit’
if move == 'hints":
return 'hints'

if len(move) == 2 and move[0] in DIGITS
move[l] in DIGITS1TOS:
x = int(move[0]) - 1
y = int(move[l]) - 1
if isValidMove(board, playerTile, x
False:
continue
else:
break
else:
print "That is not a valid move. Ty
digit (1-8), then the y digit (1-8).'
print 'For example, 81 will be the
right corner.’

return [x, y]

214. def getComputerMove(board, computerTile):

215.

216.
217.
218.
219.
220.
221.
222.
223.
224,
225.
226.
227.

Given a board and the computer's tile, de
where to

move and return that move as a [x, y] lis

possibleMoves = getValidMoves(board, comput

randomize the order of the possible moves
random.shuffle(possibleMoves)

always go for a corner if available.
for x, y in possibleMoves:
if isOnCorner(x, y):
return [x, y]

Go through all the possible moves and rem
the best scoring move

end the

1TO8 and

,y) ==

pe the x

top-

termine

t.
erTile)

ember

228.
229.
230.
231.
232.

233.
234.
235.
236.

bestScore = -1
for x, y in possibleMoves:
dupeBoard = getBoardCopy(board)
makeMove(dupeBoard, computerTile, X, y)
score = getScoreOfBoard(dupeBoard)
[computerTile]
if score > bestScore:
bestMove =[x, y]
bestScore = score
return bestMove

237.
238.

239

240.
241.
242.

. def showPoints(playerTile, computerTile):

Prints out the current score.

scores = getScoreOfBoard(mainBoard)

print "You have %s points. The computer has
points.’ % (scores[playerTile], scores[computerTile

243.
244,
245,

246

. print 'Welcome to Reversi!

247.

248

249.
250.
251.
252.
253.
254,
255.

. While True:

Reset the board and game.

mainBoard = getNewBoard()
resetBoard(mainBoard)

playerTile, computerTile = enterPlayerTile(
showHints = False

turn = whoGoesFirst()

print "The ' + turn + " will go first.'

256.

257.
258.
259.
260.
261.

262.
263.
264.
265.
266.
267.
268.
2609.
270.
271.

while True:
if turn == "player":
Player's turn.
if showHints:
validMovesBoard =
getBoardWithValidMoves(mainBoard, playerTile)
drawBoard(validMovesBoard)
else:
drawBoard(mainBoard)
showPoints(playerTile, computerTile
move = getPlayerMove(mainBoard, pla
if move == "quit":
print "Thanks for playing!
sys.exit() # terminate the prog
elif move == "'hints":
showHints = not showHints

%s

)

yerTile)

ram

272.
273.
274,

275.
276.

277.
278.
279.
280.
281.
282.
283.
284.
285.

286.

287.
288.
289.

290.
291.
292.
293.
294,
295.
296.
297.

298.
299.

300.
301.

302.
303.
304.
305.
306.
307.

continue
else:
makeMove(mainBoard, playerTile,
[0], move[l1])

if getValidMoves(mainBoard, compute

break
else:
turn = ‘computer

else:

Computer's turn.

drawBoard(mainBoard)

showPoints(playerTile, computerTile

raw_input('Press Enter to see the
computer\'s move.")

X, Yy = getComputerMove(mainBoard,
computerTile)

makeMove(mainBoard, computerTile, X

if getValidMoves(mainBoard, playerT

break
else:
turn = 'player’

Display the final score.
drawBoard(mainBoard)
scores = getScoreOfBoard(mainBoard)
print "X scored %s points. O scored %s poin
(scores['X, scores['O")
if scores[playerTile] > scores[computerTile
print 'You beat the computer by %s poin

Congratulations!" % (scores|playerTile] - scores

[computerTile])
elif scores[playerTile] < scores[computerTi
print "You lost. The computer beat you

points.' % (scores[computerTile] - scores[playerTil

else:
print "'The game was a tie!'

if not playAgain():
break

move

rTile)

,Y)

ile) ==

ts.' %
ts!

le]:
by %s
e])

Code Explanation

Before we get into the code, we should talk ablbettoard data structure. This data structureigt a |
of lists, just like the one in our previous Sonamg. The list is created so thaard[x][y] will
represent the character on space located at X6.cft@aracter can either bé'a space character (to
represent a blank space),'a period character (to represent a possible mowninmode), or afX'
or'O' (to represent a player's tile). Whenever you sgarameter nameabard , that parameter
variable is meant to be this list of lists boarthdstructure.

1. # Reversi

2.

3. import random
4. import sys

We import theandom module for itgrandint() andchoice() functions and theys module
foritsexit() function.

6. def drawBoard(board):
7. # This function prints out the board that it was
passed. Returns None.
8. HLINE ="' 444ttt
9. VLINE="| | [[[T1T
10.
11. print* 1 2 3 4 5 6 7 8
12. print HLINE

ThedrawBoard() function will print out the current game board éd®n the data structure in
board . Notice that each square of the board looks hike t

—t

+--a

I

| X | (or maybe an O or . or space instead of X)
|

+---

-—t

Since we are going to print the string with theibamtal line (and plus signs at the intersectian®@r
and over again, we will store that in a constamiade namediLINE. There are also lines above and

below the very center of X or O tile that are nothbut'|' characters (called "pipes") with three
spaces in between. We will store this string imastant namedLINE.

Line 11 is the firsprint statement executed, and it prints out the lalmelghe X-axis along the top
of the board. Line 12 prints the top horizontaélof the board.

13. fory in range(8):

14. print VLINE

15. print y+1,

16. for x in range(8):

17. print | %s' % (board[x][y]),
18. print |’

19. print VLINE

20. print HLINE

Printing each row of spaces on the board is faghetitive, so we can use a loop here. We will loop
eight times, once for each row. Line 15 printsldizel for the Y-axis on the left side of the boaadd
has a comma at the end of it to prevent a new Tih& is so we can have another loop (which again
loops eight times, once for each space) print aohespace (along with th¢' ,'O" ,or'' character
for that space depending on what is storeloard .

Theprint statement inside the inner loop also has a contriiee &nd of it, meaning a space
character is printed instead of a newline charadteis produces the second space in the pipe-dpace-
space string that we print out, over and over fghtetimes. That will produce a single line on Hueeer
that looks like| X | X | X[X | X | X | X | X" . After the inner loop is done, the
print statement on line 18 prints out the filal character along with a newline (since it does not
end with a comma).

(Theprint statement forces us to always print a newlineadtar or a space at the end of
everything we print. If we do not want this lasacicter, then we can always use the
sys.stdout.write() function, which has a single string parameter ithatints out. Be sure to
import sys first before calling this function.)

The code inside the outprint loop that begins on line 13 prints out an entine bf the board like
this:

NN
| XTX] XXX XXX

SR S S S S S S——

When printed out eight times, it forms the entioatul (of course, some of the spaces on the t

will have'O' or'' instead ofX'

[U T R O B

[XXX XXX X]X]
I O N A
S S S S S—
T I N A I A

[XXX XXX X]X]
T T O O O
S S S S S S—
T I A I

[XIXXX]X XX]X]
T I I O O O
S S S S S—
T I N I N A

[XXX XXX XX
T T O O O
S S S S S S—
T I A O

[XX XXX XXX
T I I O O O
S S S S S—
T I N A N R

[XXX XXX X]X]
T T O O O
S S S S S S—
T I N A R A

[XX XXX XXX
T I I O O O
S S S S S—
T I o I

[XXX XXX X]X]
T T O O O
S S S S S S—

An important thing to remember is that the coortBedhat we print out to the player are from 1,to 8
but the indexes in theoard data structure are from 0 to 7.

23. def resetBoard(board):

24. # Blanks out the board it is passed, except for
the original starting position.

25. for x in range(8):

26. for y in range(8):

27. board[x][y] ="'

Here we use a loop inside a loop to setitbard data structure to be all blanks. We will call the
resetBoard() function whenever we start a new game and wardrtmve the tiles from a previous
game.

29. # Starting pieces:
30. board[3][3] =X
31. board[3][4] ='O'

32. board[4][3] ='O
33. board[4][4] =X

When we start a new game of Reversi, it isn't endadhave a completely blank board. At the very
Jeginning, each player has two tiles already lanmin the very center, so we will also have to
hose

We do not have to return theard variable, becaudsoard is a reference to a list. Even when we
nake changes inside the local function's scopsgetbkanges happen in the global scope to thdét
vas passed as an argument. (Remember, this isanksivwariables are different from r-list
/ariables.

36. def getNewBoard():

37. # Creates a brand new, blank board data stru cture.
38. board =]

39. foriinrange(8):

40. board.append(['] * 8)

41.

42. return board

Theboard function creates a new board data structure andiit. Line 38 creates the outer list
assigns a reference to this lisboard . Line 40 create the inner lists using list repiima. (' '] *
3Jisthesameds', ', """t but with less typing.) The
or loop here runs line 40 eight times to create thkténner lists. The spaces represent a completely
2mpty game boar

45. def isValidMove(board, tile, xstart, ystart):

46. # Returns False if the player's move on spac e
xstart, ystart is invalid.

47. #Ifitis a valid move, returns a list of s paces
that would become the player's if they made a move
here.

48. if not isOnBoard(xstart, ystart) or board[xs tart]
[ystart] I=""

49. return False

50.

51. board[xstart][ystart] = tile # temporarily s et the
tile on the board.

52.
53. iftile =="X"

54, otherTile ='O’
55. else:

56. otherTile = 'X'
57.

58. tilesToFlip =]

isValidmove() Is one of the more complicated functions. Givdioard data structure, the play
ile, and the XY coordinates for player's moves thinction should returTrue if the Reversi game ru
lllow that move anFalse if they don't.

The easiest check we can do to disqualify a mote see if the XY coordinates are on the game |
and if the space at XY is empty. This is whatif statement on line 48 checks fmOnBoard is a
unction we will write that makes sure both thenda coordinates are betwe0O and7.

For the purposes of this function, we will go ahaad mark the XY coordinate pointed toxstart
andystart with the player's tile. We set this place on tbard back to a space before we leave this
unction

The player's tile has been passed to us, but we@ed to be able to identify the other playelés tf
he player's tile i'X" then obviously the other player's tilé@ . And it is the same the other way.

Finally, if the given XY coordinate ends up as &dsposition, we will return a list of all the
pponent's tiles that would be flipped by this m

59. for xdirection, ydirection in [[0, 1], [1, 1], [1,
o], [1, -1], [O, -1], [-1, -1], [-1, O], [-1, 1]]):

Thefor loop iterates through a list of lists which regneisdirections you can move on the game
yoard. The game board is a Cartesian coordinateraywith an X and Y direction. There are ei
lirections you can move: up, down, left, right, éinel four diagonal directions. We will move arouhd
yoard in a direction by adding the first valuehe twc-item list to our X coordinate, and the second
/alue to our Y coordinat

Because the X coordinates increase as you go tagttie you can "move" to the right by addithgo
he X coordinate. Moving to the left is the oppesitou would subtrad (or add-1) from the X
>oordinate

We can move up, down, left, and right by addingudstracting to only one coordinate at atime. B

move diagonally, we need to add to both coordin&esexample, adding to the X coordinate to
move right and addingl to the Y coordinate to move up would result in mgwo the up-right
diagonal direction.

Here is a diagram to make it easier to remembeciwtwo-item list represents which direction:

X increases =l

(-1,-1))10,-11([1,-1]

KT 7
[=1,0] = =y [1,0]

72

(=1,1]| [0,1]] [1,1]

G SESUBJQU! ﬁ‘

59. for xdirection, ydirection in [[0, 1], [1, 1 1, [1,
O]’ [11 _1]! [01 '1]’ [_1! '1]1 ['11 O]’ ['11 1]]

60. X, Y = Xxstart, ystart

61. X += xdirection # first step in the dire ction

62. y += ydirection # first step in the dire ction

Line 60 sets an andy variable to be the same valuexatart andystart |, respectively. We wil
changex andy to "move" in the direction thaidirection andydirection dictate xstart and
ystart will stay the same so we can remember which spaceriginally intended to check.

(Remember, we need to set this place back to a&spwracter, so we shouldn't overwrite the valaoes i
them.)

We make the first step in the direction as thed pest of our algorithm.

63. if isOnBoard(x, y) and board[x][y] ==
otherTile:

64. # There is a piece belonging to the other
player next to our piece.

65. X += xdirection

66. y += ydirection

67. if not isOnBoard(X, y):

68. continue # skip to next directio n

Remember, in order for this to be a valid move fitst step in this direction must be 1) on therooa
and 2) must be occupied by the other player's@teerwise there is no chance to flip over anyhet
)pponent's tiles. In that case, if statement on line 63 is nbtue and execution goes back to foe
statement for the next directi

But if the first space does have the other playie'sthen we should keep proceeding in that dioec
antil we reach on of our own tiles. If we move offthe board, then we should continue back tcfor
statement to try the next directi

69. while board[x][y] == otherTile:

70. X += xdirection

71. y += ydirection

72. if not isOnBoard(x, y): # break out of
while loop, then continue in for loop

73. break

74. if not isOnBoard(X, y):

75. continue

Thewhile loop on line 69 ensures thatandy keep going in the current direction as long askesy
seeing a trail of the other player's tilesx andy move off of the board, we break out of fbe loop
and the flow of execution moves to line 74. Whatrealy want to do is not break out of ffor loop
ut continue in thfor loop. But if we put &ontinue statement on line 73, that would only continue
o thewhile loop on line 69.

Instead, we recheakot isOnBoard(X, y) on line 74 and then continue from there, whichsgoe
o the next direction in thfor statement. It is important to know thakak andcontinue will only

yreak or continue in the loop they are called framg not an outer loops that contain the loop #re'
>alled from

76. if board[x][y] == tile: “

77. # There are pieces to flip over. Goin
the reverse direction until we reach the original
space, noting all the tiles along the way.

78. while True:

79. X -= xdirection

80. y -= ydirection

81. if X == xstart and y == ysta rt:
82. break

83. tilesToFlip.append([x, y])

If the while loop on line 69 stopped looping because the comditasFalse , then we have founc
space on the board that holds our own tile or akbépace. Line 76 checks if this space on the
10lds one of our tiles. If it does, then we havenid a valid move. We start a nwhile loop, this time
subtractingx andy to move them in the opposite direction they watgigally going. We note each
space between our tiles on the board by appentdaggace to thtilesToFlip list.

We break out of thevhile loop oncex andy have returned to the original position (whichtifl s
stored inxstart andystart).

85. board[xstart][ystart] ="' # restore the em pty
space

86. iflen(tilesToFlip) == 0: # If no tiles were
flipped, this is not a valid move.

87. return False

88. return tilesToFlip

After moving in all eight directions, thdesToFlip list will contain the XY coordiantes all of o
ypponent's tiles that would be flipped if the plag®ved orxstart |, ystart . Remember, the
sValidMove() function is only checking to see if the originabwve was valid, it does not actually
hange the data structure of the game b

If none of the eight directions ended up flippindeast one of the opponent's tiles, then
ilesToFlip would be an empty list and this move would novakd. In that casesValidMove
) should returriFalse . Otherwise, we should retutilesToFlip

91. def isOnBoard(x, y):
92. # Returns True if the coordinates are locate don

the board.
93. returnx>=0andx<=7andy>=0andy <= 7

isOnBoard() is called fromsValidMove() , and is just shorthand for the rather complicated
Joolean expression that retuTrue if bothx andy are in betweef and?.

96. def getBoardWithValidMoves(board, tile):

97. # Returns a new board with . marking the val id
moves the given player can make.

98. dupeBoard = getBoardCopy(board)

99.
100. for x, y in getValidMoves(dupeBoard, tile):
101. dupeBoard[x][y] ="."

102. return dupeBoard

getBoardWithValidMoves() is used to return a game board data structuréntsat
sharacters for all valid moves on the board. Téigsed by the hints mode to display to the playmyaa:
vith all possible moves marked or

Notice that this function creates a duplicate géwerd data structure instead of modifying the one
yassed to it by thboard parameter.

105. def getValidMoves(board, tile):

106. # Returns a list of [x,y] lists of valid mo ves for
the given player on the given board.

107. validMoves =[]

108.

109. for x in range(8):

110. for y in range(8):

111. if isValidMove(board, tile, x, y):
112. validMoves.append([x, y])

113. return validMoves

Thefor function returns a list of two-item lists that Hahe XY coordinates for all valid moves for
ile 's player, given a particular game boleard .

This function uses two loops to check every singfecoordinate (all sixty four of them) by calling
tile on that space and checking if it retuFi@dse or a list of possible moves (in which case itis a
valid move). Each valid XY coordinate is appendethe list,validMoves

The bool() Function

Remember how you could use th§) andstr() functions to get the integer and string value of
other data types? For exam@#(42) would return the string#2' , andint('100") would
return the integet00.

There is a similar function for the boolean dafzetypool() . Most other data types have one value
that is considered thealse value for that data type, and every other valumissiderTrue . The
integer0, the floating point numbér.0 , the empty string, the empty list, and the emptyichary are
all considered to bEalse when used as the condition fori&n or loop statement. All other values are
True . Try typing the following into the interactive she

bool(0)
bool(0.0)
bool(™)
bool([])

bool({})

bool(1)

bool('Hello")

bool([1, 2, 3, 4, 5])
bool({'spam':'cheese’, 'fizz":'buzz'})

=xx hool(0)

Fal=e

Fxx bool(0.0)

Fal=e

Fxx bool('')

Fal=e

Fxx bool([])

False

x> hool({})

False

x> boolil)

True

x> bool('Hellao')

True

P bool([1, 2, 3, 4, 5]}
True

x> bool{{'spam':'cheese', 'fizz':'bu=z=z'}])
True

s |

Whenever you have a condition, imagine that theeenondition is placed inside a callhool() as
the parameter. Conditions are automatically inttgat as boolean values. This is similar to it
statements can be passed non-string values andutdlinatically interpret them as strings when they
print.

This is why the condition on line 111 works corhgcThe call to thasValidMove() function
either returns the boolean valbdalse or a non-empty list. If you imagine that the emtiondition is
placed inside a call thool() , thenFalse becomedbool(False) (which, of course, evalutes to
False). And a non-empty list placed as the parametbotd() will return True . This is why the
return value ofsValidMove() can be used as a condition.

116. def getScoreOfBoard(board):

117. # Determine the score. Returns a dictionary with
keys 'X'and 'O'.

118. xscore =0

119. oscore =0

120. for x in range(8):

121. for y in range(8):
122. if board[x][y] == X"
123. xscore +=1
124. if board[x][y] =="'O":
125. oscore +=1

126. return {'X":xscore, 'O".0score}

ThegetScoreOfBoard() function uses nestddr loops to check all 64 spaces on the board (8
rows times 8 columns per row is 64 spaces) anavhéash tile (if any) is on them. For eabk tile, the
code incrementgscore . For eachO' tile, the code incrementscore .

Notice that this function does not return a twaritkst of the scores. A two-item list might be & bi
confusing, because you may forget which item i9§@nd which item is for O. Instead the function
returns a dictionary with keyX' and'O' whose values are the scores.

129. def enterPlayerTile():

130. # Let's the player type which tile they wan tto
be.

131. # Returns a list with the player's tile as the
first item, and the computer's tile as the second.

132. tile="

133. while not (tile =="X" or tile =="0"):

134. print ‘Do you want to be X or O?'
135. tile = raw_input().upper()

This function asks the player which tile they wimbe, eithetX' or'O"' . Thefor loop will keep
ooping until the player types 'X' or'O' .

1371. # the first element in the tuple is the pl ayer's
tile, the second is the computer's tile.
Y372, if tile =="X"
4373. return ['X', 'O’]
Y374. else:
Y375. return ['O', 'X']
TheenterPlayerTile() function then returns a twitem list, where the player's tile choice is

irst item and the computer's tile is the secone. We a list here instead of a dictionary so tia
assignment statement calling this function cantligenultiple assignment trick. (See line 2

144. def whoGoesFirst():
145. # Randomly choose the player who goes first
146. if random.randint(0, 1) == 0:

147. return ‘computer
148. else:
149. return 'player’

ThewhoGoesFirst() function randomly selects who goes first, andmmedweither the string
computer' or the stringplayer'

152. def playAgain():

153. # This function returns True if the player wants to
play again, otherwise it returns False.
154. print 'Do you want to play again? (yes or n 0)'

155. return raw_input().lower().startswith('y")

We have used thglayAgain() in our previous games. If the player types in sihing that begin
with'y' , then the function returnBrue . Otherwise the function returfsilse .

158. def makeMove(board, tile, xstart, ystart):

159. # Place the tile on the board at xstart, ys tart,
and flip any of the opponent's pieces.

160. # Returns False if this is an invalid move, True
if it is valid.

161. tilesToFlip = isValidMove(board, tile, xsta rt,
ystart)

makeMove() is the function we call when we want to placdedn the board and flip the other
tiles according to the rules of Reversi. This fimtimodifies théoard data structure that is passed as
a parameter directly. Changes made tdoib@rd variable (because it is a list) will be made te th
global scope as well. Most of the work is donedalidMove() , Which returns a list of XY
coordinates (in a two-item list) of tiles that ndede flipped. (Remember, if the thetart and
ystart arguments point to an invalid move, theWalidMove() will return the boolean value
False)

163. if tilesToFlip == False:
164. return False

165.

166. board[xstart][ystart] = tile
167. for x, y in tilesToFlip:
168. board[x][y] = tile

169. return True

If the return value oisValidMove() wasFalse , thenmakeMove() will also returnFalse .

OtherwisejsValidMove() would have returned a list of spaces on the btmapait down our tile:
(the'X" or'O" string intile). Line 166 sets the space that the player has dhoreand théor
loop after that sets all the tiles that ardilesToFlip

172. def getBoardCopy(board): “

173. # Make a duplicate of the board list and re turn the
duplicate.

174. dupeBoard = getNewBoard()

175.

176. for x in range(8):

177. for y in range(8):

178. dupeBoard[x][y] = board[x][y]

179.

180. return dupeBoard

getBoardCopy() s different fromgetNewBoard() .getNewBoad() will create a new game
yoard data structure which is blaigetBoardCopy() will create a new game board data structure
hen copy all of the pieces in tboard parameter. This function is used by our Al to haygame boa
hat it can change around without changing thegaaie board. This is like how you may imac
naking moves on a copy of the board in your mind,nwt actually put pieces down on the real b

A call togetNewBoard() handles getting a fresh game board data strucktien the nestefdr
oops copies each of the 64 tiles frboard to our duplicate boardiupeBoard .

183. def isOnCorner(x, y):

184. # Returns True if the position is in one of the
four corners.
185. return(x==0andy==0)or(x==7andy ==0)

or(x==0andy==7)or(x==7andy==7)

This function is much likesOnBoard() . Because all Reversi boards are 8 x 8 in sizepnleneec

he XY coordinates to be passed to this functian,angame board data structure itself. This fum
eturnsTrue if the coordinates are on either (0,0), (7,0)7Y@r (7,7). OtherwisesOnCorner()
eturnsFalse .

188. def getPlayerMove(board, playerTile):

189. # Let the player type in their move.

190. # Returns the move as [x, y] (or returns th e
strings 'hints' or 'quit’)

191. DIGITS1TO8='123456 7 8'.split()

ThegetPlayerMove() function is called to let the player type in tleolinates of their next
move (and check if the move is valid). The playam also type ithints' to turn hints mode on (if it
is off) or off (if it is on). The player can alsgpe in'quit’ to quit the game.

TheDIGITS1TOS8 constant is the ligtl', '2', '3, '4', '5', '6', '7', '8']
We create this variable because it is easier BIG#TS1TOS8 than the entire list.

192. while True:

193. print 'Enter your move, or type quit to end
the game, or hints to turn off/on hints.'

194. move = raw_input().lower()

195. if move =="quit":

196. return 'quit’

197. if move == 'hints":

198. return 'hints'

Thewhile loop will keep looping until the player has typeda valid move. First we check if the
player wants to quit or toggle hints mode, andrretbe strindquit' or'hints' . We use the
lower() method on the string returned @&w_input() so the player can typdINTS' or
'‘Quit'" but still have the command understood by our game.

The code that callgetPlayerMove() will handle what to do if the player wants to quittoggle
hints mode.

200. if len(move) == 2 and move[0] in DIGITS 1TO8
and move[l] in DIGITS1TOS:

201. x = int(move[0]) - 1

202. y = int(move[l]) - 1

203. if isValidMove(board, playerTile, x YY) ==
False:

204. continue

205. else:

206. break

Our game is expecting that the player would hapedyin the XY coordinates of their move as two
numbers without anything in between them. ithestatement first checks that the size of the stitieg
player typed in i®. After that, thdf statement also checks that bothve[0] (the first character in

the string) andnove[l] (the second character in the string) are stringsexist inDIGITS1TOS,
which we defined at the beginning of the function.

Remember that our game board data structures hdeges fronD to 7, not1 to 8. We showl to 8
when we print the board usimljawBoard() because people are used to numbers beginnihg at
instead o0. So when we convert the stringsmove[0] andmove[l] to integers, we also subtrdct

Even if the player typed in a correct move, wd sekd to check that the move is allowed by thes
of Reversi. We do this by callingValidMove() , passing the game board data structure, the (8
tile, and the XY coordinates of the moveisi¥alidMove() returnsFalse , then we execute the
continue statement so that the flow of execution goes badke beginning of therhile loop and
asks the player for the move again.

If isValidMove() does not returfralse , then we know the player typed in a valid move waed
should break out of thehile loop.

207. else:

208. print "That is not a valid move. Ty pe the
x digit (1-8), then the y digit (1-8).

2009. print 'For example, 81 will be the top-

right corner.’
210.

If theif statement's condition on line 200 wease , then the player did not type in a valid move.
We should display a message instructing them hawpt® in moves that our Reversi program can
understand. Afterwards, the execution moves bathkdawhile statement on line 192 because line 209
is not only the last line in the else-block, bdaathe last line in the while-block.

211. return [x, Y]

Finally, getPlayerMove() returns a two-item list with the XY coordinatestioé player's valid
move.

214. def getComputerMove(board, computerTile): “

215. # Given a board and the computer's tile, de termine

where to
216. # move and return that move as a [x, y] lis t.
217. possibleMoves = getValidMoves(board, comput erTile)

getComputerMove() and is where our Reversi Al is implemented. gré&/alidMoves()
unction is very helpful for our Al. Normally we eghe results frorgetValidMoves() for hints
nove. Hints mode will prin’." period characters on the board to show the plaly#ne potential
noves they can make. But if we cgetValidMoves() with the computer Al's tile (in
somputerTile), we can get all the possible moves that the coenmman make. We will select the &

nove from this lis

The random.shuffle() Function

219. #randomize the order of the possible moves
220. random.shuffle(possibleMoves)

First, we are going to use thendom.shuffle() function to randomize the order of moves in the
yossibleMoves list. This is a function in theandom module which will reorder the list that you
o it. For example, try typing the following intbd interactive she

import random

spam =[1, 2, 3,4, 5,6, 7, 8]
Spam
random.shuffle(spam)
Spam
random.shuffle(spam)
spam
random.shuffle(spam)
Spam

e random

¥rx gpam = [1, 2, 3, 4, 5, 6, 7, 8]
x> Snam

[1, 2, 3, 4, 5, 6, 7, 8]
>»x> random.shuffle (spam)
x> Snam

[2, &, 6, 5, 1, 4, 7, 3]
>»x> random.shuffle (spam)
x> Snam

[+, 4, 2, 3, 8, 1, 5, 8]
>»x> random.shuffle (spam)
x> Snam

[+, &, 1, 4, 5, 3, 2, 8]
> |

Your results may be different, because the reshgffs random. As you can see,
random.shuffle() itself does not have a return value. It modiftess list directly, much like our
resetBoard() function does. This is why you must tygeam into the shell to see the new value it
has taken on.

Code Explanation continued...

We will explain why we want to shuffle thssibleMoves list, but first let's look at our
algorithm.

222. # always go for a corner if available.
223. for x, y in possibleMoves:

224. if isOnCorner(X, Yy):

225. return [x, y]

First, we loop through every movepossibleMoves and if any of them are on the corner, we
return that as our move. Corner moves are a gaalbeécause once a tile has been placed on the
it can never be flipped over. SinpessibleMoves s a list of two-item lists, we use the multiple
assignment trick in ouor loop to sek andy.

Because we immediately return on finding the fi@tner move inandom , if random contains
multiple corner moves we always go with the fiseoBut sincgossibleMoves was shuffled on
line 220, it is completely random which corner mavérst in the list.

227. # Go through all the possible moves and rem ember
the best scoring move

228. bestScore = -1
229. for X, y in possibleMoves:

230. dupeBoard = getBoardCopy(board)

231. makeMove(dupeBoard, computerTile, X, y)

232. score = getScoreOfBoard(dupeBoard)
[computerTile]

233. if score > bestScore:

234. bestMove =[x, y]

235. bestScore = score

236. return bestMove

If there are no corner moves, we will go through éimtire list and find out which move gives us the
lighest score. Thfor loop will setx andy to every move ipossibleMoves . bestMove will be
set to the highest scoring move we've found scafadbestScore will be set to its score. When the
>ode in the loop finds a move that scores highembestScore , we will store that move and score as
he new values cbestMove andbestScore

In order to figure out the score of the possiblezenae are currently iterating on, we first make a
luplicate game board data structure by cagetBoardCopy() . We want a copy so we can modify
vithout changing the real game board data structioned in théboard variable.

Then we calinakeMove() , passing the duplicate board instead of the reatdomakeMove() will
1andle placing the computer's tile and the flippimg player's tiles on the duplicate bo

We callgetScoreOfBoard() with the duplicate board, which returns a dictignahere the keys
re'’X' and'O' , and the values are the scogatScoreOfBoard() does not know if the compult
s'X' or'O' , which is why it returns a dictionary.

By making a duplicate board, we can simulate aréutmove and test the results of that move without
hanging the actual game board data structure.i3hesry helpful in deciding which move is the b
yossible move to mak

Pretend thagetScoreOfBoard() returns the dictionarf/X":22, 'O":8} and
somputerTile is'X' . ThengetScoreOfBoard(dupeBoard)[computerTile] would
avaluate t('X':22, 'O":8}['X'] , which would then evaluate &2. If 22 is larger than

JestScore |, bestScore is set to22 andbestMove is set to the curremt andy values we are
ooking at. By the time thifor loop is finished, we can be sure thastScore is the highest possit
score a move can make, and imove is stored ibvestMove .

You may have noticed that on line 228 we firstlgsttScore to -1. This is so that the first move
ook at in ourfor loop ovempossibleMoves will be set to the firsbestMove . This will guarantee
hatbestMove is set to one of the moves when we return it.

Say that the highest scoring movepimssibleMoves would give the computer a score4#. What

if there was more than one movepiossibleMoves that would give this score? Thar loop we
use would always go with the first move that scat2dgoints, becauseestMove andbestScore
only change if the move greater than the highest score. A tie will not chanigestMove and
bestScore

We do not always want to go with the first movehapossibleMoves list, because that would
make our Al predictable by the player. But it indam, because on line 220 we shuffled the
possibleMoves list. Even though our code always chooses thedfrthese tied moves, is random
which of the moves will be first in the list becaube order is random. This ensures that the Alnei
be predictable when there is more than one besemov

239. def showPoints(playerTile, computerTile):

240. # Prints out the current score.

241. scores = getScoreOfBoard(mainBoard)

242. print 'You have %s points. The computer has %s
points.' % (scores|playerTile], scores[computerTile D

showPoints() simply calls thegetScoreOfBoard() function and then prints out the player's
score and the computer's score. Remembeg#i&coreOfBoard() returns a dictionary with the
keys'X' and'O" and values of the scores for the X and O players.

That's all the functions we define for our Revgiame. The code starting on line 246 will implement
the actual game and make calls to these functitrenihey are needed.

246. print 'Welcome to Reversi!

247.

248. while True:

249. # Reset the board and game.

250. mainBoard = getNewBoard()

251. resetBoard(mainBoard)

252. playerTile, computerTile = enterPlayerTile()
253. showHints = False

254. turn = whoGoesFirst()

255. print "The ' + turn + " will go first.’

Thewhile loop on line 248 is the main game loop. The progvéll loop back to line 248 each tir
we want to start a new game. First we get a newedaward data structure by calliggtNewBoard

() and set the starting tiles by callirgsetBoard() . mainBoard is the main game board data
structure we will use for this program. The caletderPlayerTile() will let the player type in
whether they want to BX' or'O" , which is then stored iplayerTile andcomputerTile

showHints is a boolean value that determines if hints madmior off. We originally set it to off
by settingshowHints to False .

Theturn variable is a string will either have the strirajue'player’ or'computer’ , and will
keep track of whose turn it is. We $@tn to the return value ofhoGoesFirst() , which randoml
chooses who will go first. We then print out whaegdirst to the player on line 255.

257. while True:

258. if turn == "player":

2509. # Player's turn.

260. if showHints:

261. validMovesBoard =
getBoardWithValidMoves(mainBoard, playerTile)

262. drawBoard(validMovesBoard)

263. else:

264. drawBoard(mainBoard)

265. showPoints(playerTile, computerTile)

Thewhile loop that starts on line 257 will keep looping leéime the player or computer takes a
turn. We will break out of this loop when the cunrgame is over.

Line 258 has aif statement whose body has the code that runssiflie player's turn. (The else-
block that starts on line 282 has the code forctmaputer's turn.) The first thing we want to do is
display the board to the player. If hints modengwhich it is ifshowHints is True), then we want
to get a board data structure that hias period characters on every space the player guld

Our getBoardWithValidMoves() function does that, all we have to do is pasgtrae board
data structure and it will return a copy that aleatains." period characters. We then pass this board
to thedrawBoard() function.

If hints mode is off, then we just passinBoard to drawBoard()

After printing out the game board to the player,als® want to print out the current score by cgllin
showPoints()

266. move = getPlayerMove(mainBoard, “

H playerTile) “

Next we let the player type in their mog&tPlayerMove() handles this, and its return value is a
wo-item list of the X and Y coordinate of the plagariove getPlayerMove() makes sure that the
nove the player typed in is a valid move, so we'tdmave to worry about it he

267. if move == "quit":

268. print "Thanks for playing!

269. sys.exit() # terminate the prog ram

270. elif move == "hints":

271. showHints = not showHints

272. continue

273. else:

274. makeMove(mainBoard, playerTile, move
[0], move[l1])

If the player typed in the stridguit' for their move, thegetPlayerMove() would have
‘eturned the strin'quit’ . In that case, we should call thgs.exit() to terminate the program.

If the player typed in the strifints’ for their move, thegetPlayerMove() would have
‘eturned the strin’hints’ . In that case, we want to turn hints mode ont (ifas off) or off (if it was
)n). TheshowHints = not showHints assignment statement handles both of these daesem)s
10t False evaluates tdrue andnot True evaluates téalse . Then we run theontinue
statement to loop bacturn has not changed, so it will still be the playéuts after we loop).

Otherwise, if the player did not quit or toggle tsimode, then we will cathakeMove() to make th
Jlayer's move on the boa

276. if getValidMoves(mainBoard, compute rTile)
==

277. break

278. else:

279. turn = ‘computer’

After making the player's move, we chlllse to see if the computer could possibly make anye«

If False returns a blank list, then there are no more méfeshat the computer could make (most
likely because the board is full). In that case break out of thevhile loop and end the current game.

Otherwise, we sdurn to'computer' . The flow of execution skips the elback and reaches t
end of the while-block, so execution jumps bacth®while statement on line 257. This time,
however, it will be the computer's turn.

281. else:
282. # Computer's turn.
283. drawBoard(mainBoard)
284. showPoints(playerTile, computerTile)
285. raw_input('Press Enter to see the
computer\'s move.")
286. X, y = getComputerMove(mainBoard,
computerTile)
287. makeMove(mainBoard, computerTile, X . Y)

The first thing we do when it is the computer'sitisr calldrawBoard() to print out the board to
the player. Why do we do this now? Because eitiecomputer was selected to make the first move of
the game, in which case we should display the maigstarting picture of the board to the playeobef
the computer makes its move. Or the player has fimteand we want to show what the board looks
like after the player has moved but before the agterphas gone.

After printing out the board witbrawBoard() , we also want to print out the current score \aith
call toshowPoints()

Next we have a call taw_input() to pause the script while the player can lookattoard. Thi
is much like how we us&w_input() to pause the program in our Jokes chapter. Ingteasing a
print statement to print a string before a caltaw_input() , you can pass the string as a
parameter toaw_input() . raw_input() has an optional string parameter. The string v&s pa
this call is'Press Enter to see the computer\'s move.'

After the player has looked at the board and pteEseer (any text the player typed is ignored since
we do not assign the return valuerafv_input() to anything), we caljetComputerMove() to
get the X and Y coordinates of the computer's meoite. We store these coordinates in variablasd
y, respectively.

Finally, we pasx andy, along with the game board data structure anddhgputer's tile to the
makeMove() function to change the game board to reflect treputer's move. Our call to
getComputerMove() got the computer's move, and the caln@keMove() makes the move on
the boarc

289. if getValidMoves(mainBoard, playerT ile) ==

[]:
290. break
291. else:
292. turn = 'player’

Lines 289 to 292 are very similar to lines 276 1@ 2After the computer has made its move, we
check if there exist any possible moves the huntayep can make. ifetValidMoves() returns an

empty list, then there are no possible moves. ieEns the game is over, and we should break out of
thewhile loop that we are in.

Otherwise, there is at least one possible moveldyer should make, so we shouldtsgh to
'player’ . There is no more code in the while-block afteel292, so execution loops back to the
while statement on line 257.

294. # Display the final score.
295. drawBoard(mainBoard)
296. scores = getScoreOfBoard(mainBoard)

297. print 'X scored %s points. O scored %s poin ts.' %
(scores['X1, scores['O")

298. if scores[playerTile] > scores[computerTile I:

299. print 'You beat the computer by %s poin ts!

Congratulations!" % (scores|playerTile] - scores
[computerTile])

300. elif scores[playerTile] < scores[computerTi le]:

301. print 'You lost. The computer beat you by %s
points.' % (scores[computerTile] - scores[playerTil e])

302. else:

303. print "'The game was a tie!'

Line 294 is the first line beyond the while-blo¢lat started on line 257. This code is executed when
we have broken out of thathile loop, either on line 290 or 277. (Timhile statement's condition «
line 257 is simply the valu€rue , so we can only exit the loop througteak statements.)

At this point, the game is over. We should print thhe board and scores, and determine who won the
game.getScoreOfBoard() will return a dictionary with key®' and'O" and values of both
players' scores. By checking if the player's seoggeater than, less than, or equal to the commipi

score, we can know if the player won, if the plalpst, or if the player and computer tied.

Subtracting one score from the other is an easytwage by how much one player won over the
other. Oumprint statements on lines 29 and 301 use string intatipol to put the result of this

subtraction into the string that is printed.

305. if not playAgain():
306. break
307.

The game is now over and the winner has been @ecld#ve should call oyrlayAgain()
function, which return3rue if the player typed in that they want to play drestgame. IplayAgain
() returnsFalse (which makes thé# statement's conditiofrue), we break out of thehile loop
(the one that started on line 248), and since ther&0 more lines of code after this while-bldtie
program terminates.

Otherwise playAgain() has returnedrue (which makes thd statement's conditidralse),
and so execution loops back to thkile statement on line 248 and a new game board isectea

Tips for Inventing Your Own Games

That does it for this book as far as games go.rExe chapter expands on creating new Reversi Als,
and having Als play against each other insteadjainst a human player. Using the programming
techniques in this book, you can start buildingryown simple games. Here are a few pointers:

o Drawing out a flow chart before you start writingde might help you remember everything that
you want to happen in your game.

¢ Use the interactive shell to test out what an esgiom or function call might evaluate to. The
shell is a great way to experiment with differamdtions.

e If something strange is happening when you run yoogram, try adding sonjint
statements in the middle of the code to print batwalues of different variables. Or you can use
print statements to check if some functions are beitigccavhen you expect them too, or how
often a loop is iterated.

o If you ever find yourself writing identical code several places of the program, see if you cal
that code in a function and call that function salémes. This way, if you want to change the
code in the function, there is only one place yauehto make changes.

Things Covered In This Chapter:

e Thebool() Function

e Therandom.shuffle() Function

Chapter 11 - Al Simulation

"Computer vs. Computer” Games

The Reversi Al algorithm was very simple, but iateeme almost every time | play it. This is bece
the computer can process instructions very fasthesking each possible position on the board and
selecting the highest scoring move is easy. lbktthe time to look at every space on the board and
write down the score of each possible move, it waake a long time for me to find the best move.

Did you notice that our Reversi program in Chafitehad two functiongetPlayerMove() and
getComputerMove() , which both returned the move selected as a temo-list like[x, y] ? The
both also had the same parameters, the game bat@rdtducture and which tile they were.
getPlayerMove() decided whicHx, y] move to return by letting the player type in the
coordinatesgetComputerMove() decided whicHx, y] move to return by running the Reversi
Al algorithm.

What happens when we replace the cafjetPlayerMove() with a call togetComputerMove
() ? Then the player never types in a move, it isdtfor them! The computer is playing against
itself!

Save the old reversi.py file as AISim1.py by clizdion File and then Save As, and then entering
AISim1.py for the file name and clicking Ok. Thislivereate a copy of our Reversi source code as a
new file that we can make changes to, while leategoriginal Reversi game the same (we may want
to play it again). Change the following code in &h&.py:

266. move = getPlayerMove(mainBoard,
playerTile)

To this (the change is in bold):

266. move = getComputerMove (mainBoard,
playerTile)

And run the program. Notice that the game stillsaghu if you want to be X or O, but it will not ask

you to enter in any moves. When we replagetPlayerMove() , we no longer call any code that
takes this input from the player. We still presseemfter the original computer's moves (becausheof
raw_input('Press Enter to see the computer\'s move. ") online 285), but the

game plays itsel

Let's make some other changes. All of the functiwaslefined for Reversi can stay the same. But
change the entire main section of the program @4 and on) to look like the following:

AlSim1l.py

246. print 'Welcome to Reversi!

247.

248. while True:

249. # Reset the board and game.

250. mainBoard = getNewBoard()

251. resetBoard(mainBoard)

252. if whoGoesFirst() == 'player".

253. turn = 'X'

254. else:

255. turn = 'O

256. print "The ' + turn + " will go first.’

257.

258. while True:

259. drawBoard(mainBoard)

260. scores = getScoreOfBoard(mainBoard)

261. print 'X has %s points. O has %s points "%
(scores['X1, scores['O1)

262. raw_input('Press Enter to continue.’)

263.

264. if turn =="X"

265. # X's turn.

266. otherTile ='O’

267. X, y = getComputerMove(mainBoard, ' X"

268. makeMove(mainBoard, X', X, y)

269. else:

270. # O's turn.

271. otherTile ='X'

272. X, y = getComputerMove(mainBoard, ' o)

273. makeMove(mainBoard, 'O', X, y)

274.

275. if getValidMoves(mainBoard, otherTile) == {]:

276. break

277. else:

278. turn = otherTile

279.

280. # Display the final score.

281. drawBoard(mainBoard)

282. scores = getScoreOfBoard(mainBoard)

283. print 'X scored %s points. O scored %s poin ts.' %
(scores['X1, scores['O")

284.

285. if not playAgain():
286. sys.exit()

Code Explanation

When you run the AISim1.py program, all you canslpress Enter for each turn until the game ends.
un through a few games and watch the computeritgiely. Since both the X and O players are u:
he same algorithm, it really is just a matteruadd to see who wins. The X player will win half ttvae,
and the O player will win half the tin

But what if we created a new algorithm? Then wdaset this new Al against the one implement
jetComputerMove() , and see which oris better. Let's make some changes to our progtéiok or
-ile and then Save As, and save this file as AlISm20 that we can make changes without affec
AISim1.py

Add the following code. The additions are in badd some lines have been removed:

AISIim2.py

246. print 'Welcome to Reversi!

247.

248. xwins =0

249. owins=0

250. ties=0

251. numGames = int(raw_input('Enter number of games to run:
D).

252.

253. for game in range(humGames):

254. print ‘Game #%s:"' % (game),

255. # Reset the board and game.
256. mainBoard = getNewBoard()
257. resetBoard(mainBoard)

258. if whoGoesFirst() == 'player":

259. turn ='X'

260. else:

261. turn = 'O

262.

263. while True:

264. if turn == "X":

265. # X's turn.

266. otherTile ='O’

267. X, y = getComputerMove(mainBoard, ' X"
268. makeMove(mainBoard, X', X, y)

269. else:

270. # O's turn.

271. otherTile ='X'

272. X, y = getComputerMove(mainBoard, ' o)
273. makeMove(mainBoard, 'O, X, y)

274,

275. if getValidMoves(mainBoard, otherTile) == []:
276. break

277. else:

278. turn = otherTile

279.

280. # Display the final score.

281. scores = getScoreOfBoard(mainBoard)

282. print 'X scored %s points. O scored %s poin ts.' %
(scores['X, scores['O)

283.

284, if scores['X'] > scores['O']:
285. Xwins +=1

286. elif scores['X'] < scores['O:
287. owins +=1

288. else:

289. ties+=1

290.

291. numGames = float(humGames)

292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)
294. tiepercent = round(((ties / numGames) * 100), 2)

295. print X wins %s games (%s%%), O wins %s games (%s% %),
ties for %s games (%s%%) of %s games total.' % (xwi ns,
xpercent, owins, opercent, ties, tiepercent, numGam es)

Code Explanation

We have added the variabbesins , owins , andties to keep track of how many times X wins, O
vins, and when they tie. Lines 284 to 289 increntie@se variables at the end of each game, bef
oops back to start a brand new ge

We have removed most of theint statements from the program, and the caltrsovBoard()
Nhen you run AISim2.py, it asks you how many gaymswish to run. Now that we've taken out
sall todrawBoard() and replace thenhile True: loop with afor game in range
numGames): loop, we can run a number of games without stapfon the user to type anything. H
s a sample run where we run ten games of compat@omputer Rever:

Sample Run

Welcome to Reversi!

Enter number of games to run:
X scored 40 points.
X scored 24 points.
X scored 31 points.
X scored 41 points.
X scored 30 points.
X scored 37 points.
X scored 29 points.
X scored 31 points.
X scored 32 points.
X scored 41 points.

Game #0:
Game #1.:
Game #2:
Game #3:
Game #4.
Game #5:
Game #6:
Game #7-.
Game #8:
Game #9:

10

O scored 23 points.
O scored 39 points.
O scored 30 points.
O scored 23 points.
O scored 34 points.
O scored 27 points.
O scored 33 points.
O scored 33 points.
O scored 32 points.
O scored 22 points.

X wins 5 games (50.0%), O wins 4 games (40.0%), tie
games (10.0%) of 10.0 games total.

sforl

Because the algorithm does have a random part,ryaunight not have the exact same numbers as
above.

Printing things out to the screen slows the compadibevn, but now that we have removed that code,
the computer can run an entire game of Reverdiauiga second or two. Think about it. Each time our
program printed out one of those lines, it randigtoan entire game (which is about fifty or sixty
moves, each move carefully checked to be the aategits the most points).

Percentages

Percentages are a portion of a total amount, amgertom 0% to 100%. If you had 100% of a pie,
you would have the entire pie. If you had 0% ofe pou wouldn't have any pie at all. 50% of the pi
would be half of the pie. A pie is a common imageise for percentages. In fact, there is a kinchaft
called apie chart which shows how much of the full total a certamtn is. Here is a pie chart with
10%, 15%, 25%, and 50% portions:

13%

10%

20%

We can calculate the percentage with division. &bagpercentage, divide the part you have by the
total, and then multiply by one hundred. For examiflX won 50 out of 100 games, you wo!

calculate the expressi@® / 100.0 , which would evaluate 0.5 . We multiple this byl00 to
get a percentage (in this case, 50%).

Integer Division

Did you notice that we divided0 / 100.0 , not50/100 ? The reason behind this is that there
are two types of division in the Python languageg®ar division is done when at least one of the
numbers in the division expression is a float dgpe, that is, a number that has a decimal poidt an
then a certain fraction after it. Regular divisieitl evaluate to another float value. (For exampie /
100.0 evaluates t0.5 .)

However, if both numbers in the division expressaom integers (that is, whole numbers without a
decimal point), then Python will do integer divisidnteger division is division of two integer
numbers that evaluate to a rounded-down integer.

For example, the expressi@d / 3.0 or the expressioR0.0/3 will evaluate to
6.666666666666667 . However, the expressi@® / 3 evaluates to the integér This is because
twenty divided by three is six, with a remaindetwb. In integer division, the remainder part is
dropped.

We want to use regular division when we calculatepercentages, because otherwise instead of a
float value like0.5 , integer division for percentages will always ensé to0.

The round() Function

Theround() function will round a float number to the neanetible float number. Try typing the
following into the interactive shell:

round(10.0)
round(10.2)
round(8.7)
round(4.5)
round(3.5)
round(3.4999)
round(2.5422, 2)

x> round(10.0)
10.0

Frx round (10.2)
10.0

Frx round (5.7
9.0

Frx round (4.5
5.0

Frx round (3.5
4.0

Frx round(3.4999)
3.0

Frx round(2.5422, 21
Z2.54

=z |

As you can see, whenever the fraction part of abeins.5 or greater, the number is rounded up.
Otherwise, the number is rounded down. Thend() function also has an optional parameter, where
you can specify to what place you wish to roundrthmber to. For example, the expressionnd
(2.5422, 2) evaluates t@.54 .

Code Explanation continued...

291. numGames = float(hnumGames)
292. xpercent = round(((xwins / numGames) * 100), 2)
293. opercent = round(((owins / numGames) * 100), 2)

294. tiepercent = round(((ties / numGames) * 100), 2)

295. print "X wins %s games (%s%%), O wins %s games (%s%%),
ties for %s games (%s%%) of %s games total.' % (xwi ns,
xpercent, owins, opercent, ties, tiepercent, numGam es)

The code at the bottom of our program will showuker how many wins X and O had, how many
ties there were, and how what percentages these omlStatistically, the more games you run, the
more accurate your percentages will be. If you @atyten games, and X won three of them, then it
would seem that X's algorithm only wins 30% of tinee. However, if you run a hundred, or even a
thousand games, then you may find that X's algoritins closer to 50% (that is, half) of the games.

To find the percentages, we divide the number obvar ties by the total number of games. We
convertnumGamesto a float to ensure we do not use integer dimigoour calculation. Then we
multiple the result byt00. However, we may end up with a number le66666666666667 . So
we pass this number to theund() function with the second parameter2)f, so it will return a float
like 66.67 instead (which is much more readable).

Let's try another experiment. Run AISim2.py aghim, this time have it run a hundred gar

Sample Run

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 42 points. O scored 18 points.
Game #1: X scored 26 points. O scored 37 points.
Game #2: X scored 34 points. O scored 29 points.
Game #3: X scored 40 points. O scored 24 points.

...Skipped for brevity...

Game #96: X scored 22 points. O scored 39 points.

Game #97: X scored 38 points. O scored 26 points.

Game #98: X scored 35 points. O scored 28 points.

Game #99: X scored 24 points. O scored 40 points.

X wins 46 games (46.0%), O wins 52 games (52.0%), t ies for 2
games (2.0%) of 100.0 games total.

Depending on how fast your computer is, this rughhhave taken a about a couple minutes. We can
see that the results of all one hundred gameseseglhs out to about fiftifty, because both X and O ¢
using the same algorithm to win.

Let's add some new functions with new algorithms. fist click on File, then Save As, and save
file as AISim3.py. Before thprint 'Welcome to Reversi!' line, add these functions:

AlSim3.py

245. def getRandomMove(board, tile):

246. # Return a random move.

247. return random.choice(getValidMoves(board, tile))
248.

249.

250. def isOnSide(x, y):

251. returnx==0orx==7o0ory==00ry==

252.

253.

254. def getCornerSideBestMove(board, tile):

255. # Return a corner move, or a side move, or the
best move.

256. possibleMoves = getValidMoves(board, tile)

257.

258. #randomize the order of the possible moves
259. random.shuffle(possibleMoves)

260.

261. # always go for a corner if available.

262.
263.
264.
265.
266.
267.
268.
2609.
270.
271.
272.
273.

for x, y in possibleMoves:
if isOnCorner(X, y):
return [x, y]

if there is no corner, return a side move
for x, y in possibleMoves:
if isOnSide(x, y):
return [x, y]

return getComputerMove(board, tile)

274. def getSideBestMove(board, tile):

275.

276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
. def getWorstMove(board, tile):
290.

289

291.
292.
293.
294,
295.
296.

297.
298.
299.
300.
301.
302.
303.
304.
305.

Return a corner move, or a side move, or

move.

possibleMoves = getValidMoves(board, tile)

randomize the order of the possible moves
random.shuffle(possibleMoves)

return a side move, if available
for x, y in possibleMoves:
if isOnSide(x, y):
return [x, y]

return getComputerMove(board, tile)

Return the move that flips the least numb

tiles.

possibleMoves = getValidMoves(board, tile)

randomize the order of the possible moves
random.shuffle(possibleMoves)

Go through all the possible moves and rem

the best scoring move

worstScore = 64
for x, y in possibleMoves:
dupeBoard = getBoardCopy(board)
makeMove(dupeBoard, tile, X, y)
score = getScoreOfBoard(dupeBoard)][tile
If score < worstScore:
worstMove = [X, Y]
worstScore = score

the best

er of

ember

307.
308.

312.

315.

320.

322.
323.
324.

306. return worstMove

309. def getCornerWorstMove(board, tile):

310. # Return a corner, a space, or the move tha t flips
the least number of tiles.

311. possibleMoves = getValidMoves(board, tile)

313. #randomize the order of the possible moves
314. random.shuffle(possibleMoves)

316. # always go for a corner if available.
317. for x, y in possibleMoves:

318. if isOnCorner(X, y):

319. return [x, y]

321. return getWorstMove(board, tile)

325. print 'Welcome to Reversi!'

Code Explanation

A lot of these functions are very similar to oneter, and some of them use the ne@nSide()
unction. Here's a review of the new algorithmsweehade

getRandomMove()

getCornerSideBestMove

0

getSideBestMove()

getWorstMove()

getCornerWorstMove()

Randomly choose a valid move to make.

Take a corner move if available. If there is nonewy take a space on
the side. If no sides are available, use the regula
getComputerMove() algorithm.

Take a side space if there is one available. Ifthein use the regular
getComputerMove() algorithm (side spaces are chosen before
corner spaces).

Take the space that will result in tfesvest tiles being flipped.

Take a corner space, if available. If not, usegg®VorstMove()
algorithm.

Now the only thing to do is replace one of gegComputerMove() calls in the main part of the
yrogram with one of the new functions. Then we manseveral games and see how often one algo
vins over the other. First, let's replace O's atgor with the one irgetComputerMove() with
yetRandomMove() on line 386:

386. X, Y= getRandomMove (mainBoard, 'O’)

When we run the program with a hundred games rtaway look something like this:

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 25 points. O scored 38 points.
Game #1: X scored 32 points. O scored 32 points.
Game #2: X scored 15 points. O scored 0 points.
Game #3: X scored 50 points. O scored 14 points.

...Skipped for brevity...

Game #96: X scored 31 points. O scored 33 points.

Game #97: X scored 41 points. O scored 23 points.

Game #98: X scored 33 points. O scored 31 points.

Game #99: X scored 45 points. O scored 19 points.

X wins 84 games (84.0%), O wins 15 games (15.0%), t ies for 1
games (1.0%) of 100.0 games total.

Wow! X win far more often than O did. That meanattthe algorithm igetComputerMove()

(take any available corners, otherwise take theespaat flips the most tiles) wins more games than
algorithm ingetRandomMove() (which just makes moves randomly). This makesedrescause

making intelligent choices is usually going to letér than just choosing things at random.

What if we changed X's algorithm to also use tige@ihm ingetRandomMove() ? Let's find out
by changing X's function call frogetComputerMove() togetRandomMove() and running the

program again.

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 37 points. O scored 24 points.
Game #1: X scored 19 points. O scored 45 points.

...Skipped for brevity...

Game #98: X scored 27 points. O scored 37 points.

Game #99: X scored 38 points. O scored 22 points.

X wins 42 games (42.0%), O wins 54 games (54.0%), t ies for 4
games (4.0%) of 100.0 games total.

As you can see, when both players are making randowes, they each win about 50% of the ti

(In the above case, O just happen to get luckyasda little bit more than half of the time.)

Just like moving on the corner spaces is a goaal ideause they cannot be flipped, moving on the
side pieces may also be a good idea. On the sid¢ileé has the edge of the board and is not asout
the open as the other pieces. The corners arpr&ittrable to the side spaces, but moving onitles s
(even when there is a move that can flip more gieg®y be a good strategy.

Change X's algorithm to ugeetComputerMove() (our original algorithm) and O's algorithm to
usegetCornerSideBestMove() , and let's run a hundred games to see which ierb&ty
changing the function calls and running the progeayain.

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 52 points. O scored 12 points.
Game #1: X scored 10 points. O scored 54 points.

...Skipped for brevity...

Game #98: X scored 41 points. O scored 23 points.

Game #99: X scored 46 points. O scored 13 points.

X wins 65 games (65.0%), O wins 31 games (31.0%), t ies for 4
games (4.0%) of 100.0 games total.

Wow! That's unexpected. It seems that choosingitte spaces over a space that flips more tiles is a
bad strategy to use. The benefit of the side sigaget greater than the cost of choosing a spaate th
flips fewer of the opponent's tiles. Can we be siiftnese results? Let's run the program againtHisit
time let's have the program play one thousand gaies may take a few minutes for your compute
run (but it would take days for you to do this @anh!) Try changing the function calls and running t
program again.

Welcome to Reversi!

Enter number of games to run: 1000
Game #0: X scored 20 points. O scored 44 points.
Game #1: X scored 54 points. O scored 9 points.

...Skipped for brevity...

Game #998: X scored 38 points. O scored 23 points.

Game #999: X scored 38 points. O scored 26 points.

Xwins 611 games (61.1%), O wins 363 games (36.3%), ties for
26 games (2.6%) of 1000.0 games total.

The more accurate statistics from the thousganaies run are about the same as the statisticstifie
hundred-games run. It seems that choosing the mha¥dlips the most tiles is a better idea than
choosing a side mo\

Now set the X player's algorithm to upetComputerMove() and the O player's algorithm to
getWorstMove() , and run a hundred games. Try changing the fumctidis and running the
program again.

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 50 points. O scored 14 points.
Game #1: X scored 38 points. O scored 8 points.

...Skipped for brevity...

Game #98: X scored 36 points. O scored 16 points.

Game #99: X scored 19 points. O scored 0 points.

X wins 98 games (98.0%), O wins 2 games (2.0%), tie sforO
games (0.0%) of 100.0 games total.

Whoa! The algorithm igetWorstMove() , which always choose the move that flips féveest
tiles, will almost always lose to our regular algfum. This isn't really surprising at all. How aliavhen
we replacagetWorstMove() with getCornerWorstMove() , Which is the same algorithm exc
it takes any available corner pieces. Try changuegfunction calls and running the program again.

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 36 points. O scored 7 points.
Game #1: X scored 44 points. O scored 19 points.

...Skipped for brevity...

Game #98: X scored 47 points. O scored 17 points.

Game #99: X scored 36 points. O scored 18 points.

X wins 94 games (94.0%), O wins 6 games (6.0%), tie sforO
games (0.0%) of 100.0 games total.

ThegetCornerWorstMove() still loses most of the games, but it seems toaniew more gami
thangetWorstMove() (6% compared to 2%). Does taking the corner spabes they are available
really make a difference? We can check by settilsgalorithm tagetWorstMove() and O's
algorithm togetCornerWorstMove() , and then running the program. Try changing tmetion
calls and running the program again.

Welcome to Reversi!

Enter number of games to run: 100
Game #0: X scored 25 points. O scored 39 points.
Game #1: X scored 26 points. O scored 33 points.

...Skipped for brevity...

Game #98: X scored 36 points. O scored 25 points.

Game #99: X scored 29 points. O scored 35 points.

X wins 32 games (32.0%), O wins 67 games (67.0%), t ies for 1
games (1.0%) of 100.0 games total.

Yes, it does seem like taking the algorithm thkésathe corners when it can does translate int@ mor
wins. While we have found out that going for the#esi makes you lose more often, going for the ce
is always a good idea.

Learning New Things by Running Simulation Experimen ts

This chapter didn't really cover a game, but it led various strategies for Reversi. If we thought
that taking side moves in Reversi was a good ieayould have to spend days, even weeks, carefully
playing games of Reversi by hand and writing dolaresults. But if we know how to program a
computer to play Reversi, then we can have the ctenplay Reversi using these strategies for us. If
you think about it, you will realize that the cont@uis executing millions of lines of our Python
program in seconds! Your experiments with the satiah of Reversi can help you learn more about
playing Reversi in real life.

And it is all because you know exactly how to iastrthe computer to do it, step by step, line hg.
You can speak the computer's language, and getd targe amounts of data processing and number
crunching for you. This is a very useful skill, angope you will continue to learn more about Pytho
programming. (And there is still more to learn!)

The next step you can take is looking at the hiédgtiat comes with Python. You can access this by
clicking on the Start button in Windows' lower le@irner, then going to Programs (or All Programs),
then the Python 2.5 folder, and then clicking tRgthon Manuals" link.

e =
= & o ox &

o Lewn Warw Fwi Pwi e |
gy Py Decurmrtanon =
ETTT .

e El Python Documentation

S ¥
il Frbamary, Js

» Tuinpial o Whai's Wew ju Pribes
Tt by Tehmomr rrce B 6T Tl e
o tidwbad Plachals Inidex o Lmmgmape B elrmemre
s gk acitean o d &memtaden) ot b age kv
Libraay Kol # Fxtruding sl Fosbad oy
fhmrpbm ey v [A L] o N]
+ Aladdtadl 2Eedule Refiiomce + Prshen AF]
[L PN SIS F AP 1] ki [od a0 g

EEET

o Trost sllisng Tvelym §laddades » Disammsistitng Fothan
—— [R T

o Dirryibaciong elas Moadaler
o vl rpans mal packogme

o D et wilany oty al o Pordvmm Haw T Coldes
[p—— [——

Another way you can find out more about Pythore&srshing the Internet. Go to the website

http://google.com and search for "Python prograngor "Python tutorials” to find web sites that can
teach you more about Python programming.

Now get going and invent your own games. And gao#!|

Things Covered In This Chapter:

Simulations
Percentages

Pie Charts

Integer Division
Theround() Function

Glossary

absolute value - The positive form of a negative number. For eplanthe absolute value of -2 is
2. The absolute value of a positive number is gyntipé positive number itself.

Al - see, artificial intelligence

algorithm - A series of instructions to compute something.

applications - A program that is run by an operating systene &so, program.
arguments - The values that are passed for parametersunciion call.

artificial intelligence - Code or a program that can intelligent makesiens (for example,
decisions when playing a game) in response toactems.

ASCII art - Using text characters and spaces to draw sipiptares.

assembly language - The simplest programming language. Assemblydagg instructions are a
human-readable form that can directly translate inachine code instructions.

assignment operator - The = sign. Used to assign values to variables.

assignment statement - A line of code that assigns a value to a vaealding the assignment
operator. This defines, that is, creates the veriaben used with a new variable. For examg&m
=42

asterisk - The * symbol. The asterisk is used as a mudtgtion sign.

augmented assignment operator - The+=,-=,*=, and/= operators. The assignmestam
+=42 is equivalent tepam = spam + 42

block - A group of lines of code with the same amounndéntation. Blocks can contain other
blocks of greater indentation inside them.

boolean - A data type with only two value$rue andFalse .
boolean operator - Boolean operators included, or , andnot .

break statement - Thebreak statement immediately jumps out of the cursghtle orfor loop
to the first line after the end of the loop's block

brute force - In cryptography, to try every possible key id@rto decrypt an encrypted message.

caesar cipher - A simple substitution cipher in which each syinsaeplaced by one and only one
other symbo

cartesian coordinate system - A system of coordinates used to identify exachfsoin some are
of space (such as the monitor, or on a game bo@et)esian coordinates systems commonly have two
coordinates, one of the X-axis (that is, the hariableft-right axis) and one of the Y-axis (thatthe
vertical up-down axis).

case-sensitivity - Declaring different capitalizations of a name tean different things. Python i
case-sensitive language,ggam, Spam andSPAMare three different variables.

central processing unit - CPU, the main chip that your computer uses ¢cggs software
instructions.

cipher - In cryptography, an algorithm used to encrypt dacrypt messages with a certain key.

ciphertext - In cryptography, the encrypted form of a message

comment - Part of the source code that is ignored by tbdh interpreter. Comments are there to
remind the programmer about something about the.d@dmments begin with a # sign and go on for
the rest of the line.

commutative property - The property of addition and multiplication tltescribes how the order
of the numbers being added or multiplied does ratten. For example, 2 +4 =6, and 4 + 2 = 6. AR
5=15,and 5 3 =15.

comparison operators - The operators (“less than")<= ("less than or equal t0'%}, ("greater
than"),>= ("greater than or equal to'J= ("equal to"), and= ("not equal too").

condition - Another name for an expression, one that exsasif orwhile statement that
evaluates to a boolednue orFalse value.

constant variables - Variables whose values do not change. Constardhles are often used
because it is easier to type the name of the Varthbn the value that they store. As a convention,
constant variable names are typed in all upperetisss.

convention - A way of doing things that is not required, Butisually done to make a task easier.

conversion specifiers - The text inside a string that makes use of gtimterpolation. The most
common conversion specifierds which specifies that the variable it interpoladbsuld be converted
to a string.

cpu - see, Central Processing Unit

cryptanalysis - The science of breaking secret codes and ciphers

cryptography - The science of making secret codes and ciphers.

data types - A category of values. Some types in Python stréngs, integers, floats, boolean, lists,
and NoneTypt

decrementing - To decrease a numeric value by one.

decrypting - To convert an encrypted message to the reagtdilgext version.

def statement - A statement that defines a new function. Thestieiement begins with thkef
keyword, followed by the function name and a sqtarentheses, with any number of parameter names
delimited by commas. At the end is a : colon chi@ra¢or examplejef funcName(paraml,
paramz2):

delimit - To separate with. For example, the stfrajs,dogs,mice’ Is delimited with
commas.

dictionary - A container data type that can store other \wlMalues are accessed by a key. For
example spam['foo’] = 42 assigns the ke§oo' of thespam dictionary the valud2.

else statement - Anelse statement always follows din statement, and the code inside the else-
block is executed if th# statement's condition waslse .

empty list - The list[] , which contains no values and has a length of. &ge also, empty string.

empty string - The string’ , which contains no characters and has a lengterof See also,
empty list.

encrypting - To convert a message into a form that resengadsage data, and cannot be
understood except by someone who knows the cipghkay used to encrypt the message.

escape character - Escape characters allow the programmer to gpebdracters in Python that
are difficult or impossible to type into the sounmle. All escape characters are preceeded by a \
forward backslash character. For exampledisplays a newline character when it is printed.

evaluate - Reducing an expression down to a single valhe.8xpressiod + 3+ 1 evaluates t
the values.

execute - The Python interpreter executes lines of cogiesMaluating any expressions or
performing the task that the code does.

exit - When a program ends. "Terminate" means the saimg.

expression - Values and function calls connected by operatexpressions can be evaluated down
to a single value.

file editor - A program used to type in or change files, idaig files of Python source code. The
IDLE program has a file editor that you use to typgour programs.

floating point numbers - Numbers with fractions or decimal points are integers. The numbers
3.5 and42.1 and5.0 are floating point numbers.

flow chart - A chart that informally shows the flow of exeicut for a program, and the main events
that occur in the program and in what order.

flow control statements - Statements that cause the flow of executiorhtmge, often depending
on conditions. For example, a function call seimdsexecution to the beginning of a function. Also,
loop causes the execution to iterate over a seofionde several times.

flow of execution - The order that Python instructions are executsdially the Python interpreter
will start at the top of a program and go down exi&g one line at a time. Flow control statemerats ¢
move the flow of execution to different parts otledn the program.

function - A collection of instructions to be executed whie@ function is called. Functions also
have a return value, which is the value that ationaall evaluates to.

function call - A command to pass execution to the code cordamsde a function, also passing
arguments to the function. Function calls evaltatde return value of the function.

garbage data - Random data or values that have no meaning.

global scope - The scope of variables outside of all functidigthon code in the global scope
cannot see variables inside any function's loaahesc

hard-coding - Using a value in a program, instead of usinguaable. While a variable could allow
the program to change, by hard-coding a valuegrogram, the value stays permanently fixed unless
the source code is changed.

hardware - The parts of a computer that you can touch, sscine keyboard, monitor, case, or
mouse. See also, software.

higher-level programming languages - Programming languages that humans can understand
such as Python. An interpreter can translate aghniiglvel language into machine code, which is the
language computers can understand.

IDLE - Interactive DeveLopment Environment. IDLE isragram that helps you type in your
programs and games.

I/O - Input/Output. This is a term used in referentthe data that is sent into a program (input) and
that is produced by the program (output).

immutable sequence - A container data type that cannot have valudedar deleted from it. In
Python, the two immutable sequence data typediangsand tuples.

import statement - A line of code with themport keyword followed by the name of a module.
This allows you to call any functions that are eaméd in the module.

incrementing - To increase the value of a numeric variable by

indentation - The indentation of a line of code is the numiiespaces before the start of the actual
code. Indentation in Python is used to mark wheghd begin and end. Indentation is usually done in
multiples of four spaces.

index - An integer between square brackets that is dlatéhe end of an ordered container variable
(most often a list) to evaluate to a specific it@nthat container. The first index starts at 0, hoEor
example, ifspam refers to the lisfa', 'b’, 'c’, 'd'] , thenspam[2] evaluates t&c'

index error - An index error occurs when you attempt to aceessmdex that does not exist. This is
much like using a variable that does not exist.&s@mple, ifspam refers to the lisfa’, ‘b,
'c’, 'd , thenspam[10] would cause an index error.

input - The text or data that the user or player entgosa program, mostly from the keyboard.

integer division - Division that ignores any remainder and rourtdsdvaluated number down.
Integer division occurs when both numbers in thés@in expression are integers. For example/
7 evaluates to the integér even though the answer is 6.666 or 6 remainder 2.

integers - Integers are whole numbers liteand99 andO. The number8.5 and42.1 and5.0
are not integers.

interactive shell - A part of IDLE that lets you execute Python code line at a time. It allows
you to immediately see what value the expressiantype in evaluates to.

interpreter - A program that translates instructions writteraihigher-level programming language
(such as Python) to machine code that the compateunderstand and execute.

iteration - A single run through of the code in a loop'sckld=or example, if the code in a while-
block is executed ten times before execution letdwesoop, we say that there were ten iteratiorth®f
while-block’s code.

key-value pairs - In dictionary data types, keys are values thatuged to access the values in a
dictionary, much like a list's index is used toesscthe values in a list. Unlike lists, diction&eys can
be of any data type, not just integers.

keys - In dictionaries, keys are the indexes used to

keys - In cryptography, a specific value (usuaully anfner) that determines how a cipher encrypts a
message. To decrypt the message, you must knowthlmthpher and the key value that was used.

list - The main container data type, lists can contanerse other values, including other lists. Val
in lists are accessed by an integer index betwgears brackets. For examplesfam is assigned the
list ['a’, 'b, 'c'] , thenspam[2] would evaluate t&'

list concatenation - Combining the contents of one list to the endmdther with the + operator.
For example[l, 2, 3] + [a, 'b', 'c] evaluates t¢l, 2, 3, 'a’, b, 'c]

local scope - The scope of variables inside a single functiétyshon code inside a function can
read the value of variables in the global scopeahy changes or new variables made will only exist
while execution is inside that function call.

loop - A block of code inside a loop (aftef@ orwhile statement) will repeatedly execute until
some condition is met.

loop unrolling - Replacing code inside a loop with multiple ceped that code. For example,
instead offor i in range(10): print 'Hello’ , you could unroll that loop by having ten
lines ofprint 'Hello'

machine code - The language that the computer's CPU understduishine code instructions are
series of ones and zeros, and is generally unr&abghumans. Interpreters (such as the Python
interpreter) translate a higher-level language méxhine code.

methods - Functions that are associated with values afta type. For example, the string method
upper() would be invoked on a string like thiktello'.upper()

module - A separate Python program that can be includg@ur programs so that you can make
use of the functions in the module.

modulus operator - The "remainder" operator that is representet wito percent sign. For
example, while 20/ 7 is 6 with a remainder 022,% 7 would evaluate t@.

mutable sequence - A container data type that is ordered and cae alues added or removed
from it. Lists are a mutable sequence data tyggython.

negative numbers - All numbers less than 0. Negative numbers hawvenais sign in front of them
to differentiate them from positive numbers, foaewle, -42 or -10.

nested loops - Loops that exist inside other loops.

None - The only value in the NoneType data type. "Noseajften used to represent the lack of a
value.

operating system - A large program that runs other software progrdcalled applications) the
same way on different hardware. Windows, Mac O§,lanux are examples of operating systems.

operators - Operators connect values in expressions. Opsratdudet, - , *,/ , and, andor

ordinal - In ASCII, the number that is represented by &CH character. For example, the ASCII
charactefA' has the ordinal 65.

origin - In cartesian coordinate systems, the pointeattordinates 0, 0.

OS - see, operating systt

output - The text that a program produces for the usarekampleprint statements produce
output.

overwrite - To replace a value stored in a variable witlew nalue.
parameter - A variable that is specified to have a valuespdsn a function call. For example, the

statementef spam(eggs, cheese) defines a function with two parameters naragds and
cheese .

pie chart - A circular chart that shows percentage portasmportions of the entire circle.
plaintext - The decrypted, human-readable form of a message.

player - A person who plays the computer game.

positive numbers - All numbers equal to or greater than 0.

pound sign - The # sign. Pound signs are used to begin cortsmen

print statement - Theprint keyword followed by a value that is to be displhya the screen.

program - A collection of instructions that can procegsunhand produce output when run by
computer.

programmer - A person who writes computer programs.

reference - Rather than containing the values themselvetsyéiriables actually contain references
to lists. For examplegpam =[1, 2, 3] assignspam a reference to the listheese = spam
would copy the reference to the Iggtam refers to. Any changes made to theese or spam variable
would be reflected in the other variable.

return statement - Thereturn followed by a single value, which is what the ¢althe function
the return statement is in will evaluate to.

return value - The value that a call to the function will evaile to. You can specify what the return

value is with theeturn keyword followed by the value. Functions with mbdurn statement will
return the valu&one.

scope - See, local scope and global scope.

sequence - A sequence data type is an ordered containartgpé, and have a "first" or "last" item.
The sequence data types in Python are lists, tughesstrings. Dictionaries are not sequences, dhey
unordered. See also, unordered.

shell - see, interactive sh

simple substitution ciphers -

slice - A subset of values in a list. These are accegsig the : colon character in between the
square brackets. For examplesfiam has the valuga’, 'b', 'c’, 'd’, 'e’, 'f'] , then
the slicespam[2:4] has the valugc', 'd'] . Similar to a substring.

software - see, program

source code - The text that you type in to write a program.

statement - A command or line of Python code that does natuate to a value.

string concatenation - Combining two strings together with the + operdab form a new string.
For exampleHello ' + "World!' evaluates to the stririgello World!'

string formatting - Another term for string interpolation.

string interpolation - Using conversion specifiers in a string as plaaielers for other values.
Using string interpolation is a more conveniengative to string concatenation. For example,
'Hello, %s. Are you going to %s on %s?' % (name, ac tivity, day) evaluate!
to the stringHello, Albert. Are you going to program on Thursda y?' ,ifthe
variables have those corresponding values.

string - A value made up of text. Strings are typed ithvai single quote ' or double " on either side.
For example;Hello'

substring - A subset of a string value. For examplespém is the stringHello' |, then the
substringspam[1:4] is'ell’ . Similar to a list slice.

symbols - In cryptography, the individual characters this encrypted.

syntax error - An error that occurs when the Python interprdtees not understand the source
code.

terminate - When a program ends. "Exit" means the same thing

tracing - To follow through the lines of code in a programthe order that they would execute.

truth tables - Tables showing every possible combination of

tuple - A container data type similar to a list. Tupége immutable sequence data types, meaning
that they cannot have values added or removed thhem. For exampldl, 2, ‘cats’,

'hello’) is a tuple of four values.

type - see, data typ

unordered - In container data types, unordered data typasotibave a "first” or "last" value
contained inside them, they simply contain valimstionaries are the only unordered data type in
Python. Lists, tuples, and strings are ordered typies. See also, sequence.

user - The person using the program.

value - A specific instance of a data tyge is a value of the integer typétello’ is a value of
the string type.

variables - A container that can store a value. List vagahtontain references to lists.

while loop statement - Thewhile keyword, followed by a condition, ending with eclon
character. Thavhile statement marks the beginning ofhile loop.

x-axis - In cartesian coordinate systems, the horizqteétright) coordinate axis.

y-axis - In cartesian coordinate systems, the vertice-down) coordinate axi

About the Author

= oy caim U g e BN,
b Sarirm marshed Bo the beaach e arm and vell for heig
o #re out of (he curment.

Albert Sweigart (but you can call him Al), is a seére developer in San Francisco, California who
enjoys bicycling, reading, volunteering, networkgdty, haunting coffee shops, and making useful
software.

He is originally from Houston, Texas. He finallytgus University of Texas at Austin computer
science degree in a frame. He is a friendly intrp\gecat person, and fears that he is losing hraliis
over time. He laughs out loud when watching parkrsels, and people think he’s a simpleton.

His web site and blog are located at http://coffexsy.ne

