oue
Special Edition Using Visual C++ 6

(= MNextChapter

Table of Contents:

« Introduction

Part | - Getting Started with Visual C++

o Chapter 1 - Building Y our First Windows Application

o Chapter 2 - Dialogs and Controls

o Chapter 3 - Messages and Commands

Part Il - Getting Information from Your Applications

o« Chapter 4 - Documents and Views

o Chapter 5 - Drawing on the Screen

e Chapter 6 - Printing and Print Preview
o Chapter 7 - Persistence and File 1/O
o Chapter 8 - Building a Complete Application: ShowString

Part Ill - Improving Your User Interface

o« Chapter 9 - Status Bars and Toolbars

e Chapter 10 - Common Controls
o Chapter 11 - Help
o Chapter 12 - Property Pages and Sheets

http://adforce.imgis.com/?adlink|2.0|34|9019|1|1|SITE=ic9;loc=300;

Part IV - ActiveX Applications and ActiveX Controls

« Chapter 13 - ActiveX Concepts

o Chapter 14 - Building an ActivexX Container Application
e Chapter 15 - Building an ActiveX Server Application
o Chapter 16 - Building an Automation Server

e Chapter 17 - Building an ActivexX Control

Part V - Internet Programming

Chapter 18 - Sockets, MAPI, and the I nternet

Chapter 19 - Internet Programming with the Winlnet Classes
Chapter 20 - Building an Internet ActiveX Control

Chapter 21 - The Active Template Library

Part VI - Advanced Programming Techniques

o Chapter 22 - Database Access
e Chapter 23 - SOL and the Enterprise Edition
o Chapter 24 - Improving Y our Application's Performance

o Chapter 25 - Achieving Reuse with the Gallery and Y our Own AppWizards

o Chapter 26 - Exceptions and Templates
o Chapter 27 - Multitasking with Windows Threads
o Chapter 28 - Future Explorations

Part VII - Appendixes

« Appendix A - C++ Review and Object-Oriented Concepts

o Appendix B - Windows Programming Review and a L ook Inside CWnd

o Appendix C - The Developer Studio User Interface, Menus, and Toolbars

o Appendix D - Debugging
o Appendix E - MFC Macros and Globals
e Appendix F - Useful Classes

(= NextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

Special Edition Using Visual C++ 6 -- Introduction

oue

5 o Chaper

Introduction

« About the Author
« Dedication
« Acknowledgments
o Who Should Read This Book?
« Before You Start Reading
o What This Book Covers
o Diaogs and Controls

o Messages and Commands

0 The View/Document Paradigm

o Drawing Onscreen

o Printing on Paper

o Persistence and File 1/O

o ActiveX Programming

o Thelnternet

o Database Access

o Advanced Material
« Conventions Used in This Book
o Timeto Get Started

About the Author

Kate Gregory isafounding partner of Gregory Consulting Limited (www.gr egcons.com), which has
been providing consulting and devel opment services throughout North America since 1986. Her
experience with C++ stretches back to before Visual C++ existed--she enthusiastically converted upon
seeing the first release. Gregory Consulting develops software and Web sites and speciaizesin

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (1 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

combining software development with Web site development to create active sites. They build quality
custom and off-the-shelf software components for Web pages and other applications.

Dedication

To my children, Beth and Kevin, who keep me connected to the world away from the keyboard, and
remind me every day how good it feels to learn new things.

Acknowledgments

Writng a book is hard, hard work. What makesit possible is the support | get from those around me.
First, as aways, my family, Brian, Beth, and Kevin, who know it's only temporary. Brian does double
duty as both supportive husband and world's best technical editor. Thistime around | was lucky enough
to have Bryan Oliver helping, shooting figures, testing code, finding bugs, and generaly pitching in.
Thanks, Bryan.

There'san army of editors, proofers, indexers, illustrators, and general saints who turn my Word
documents into the book you hold in your hand. Many of the team members this time have been involved
in other Que projects with me, and | know that | landed the "good ones’ for this book. Special mention
has to go to Olaf Meding, who provided aterrific tech edit based on a fast-changing product. Joe
Massoni and Mike Blaszczak at Microsoft have also earned my gratitude during this release cycle.

While | cheerfully share the credit for the accurate and educational aspects of this book, the mistakes and
omissions | have to claim as mine alone. Please bring them to my attention so that they can be corrected
In subsequent printings and editions. | am as grateful as ever to readers who have done so in the past, and
improved this book in the process.

I ntroduction

Visual C++ isapowerful and complex tool for building 32-bit applications for Window 95 and Windows
NT. These applications are much larger and more complex than their predecessors for 16-bit Windows or
older programs that didn't use a graphical user interface. Y et, as program size and complexity has
increased, programmer effort has decreased, at least for programmers who are using the right tools.

Visual C++ isone of the right tools. With its code-generating wizards, it can produce the shell of a
working Windows application in seconds. The class library included with Visual C++, the Microsoft
Foundation Classes (MFC), has become the industry standard for Windows software development in a
variety of C++ compilers. The visua editing tools make layout of menus and dialogs a snap. The time
you invest in learning to use this product will pay for itself on your first Windows programming project.

Who Should Read This Book?

This book teaches you how to use Visual C++ to build 32-bit Windows applications, including database
applications, Internet applications, and applications that tap the power of the ActiveX technology. That's
atall order, and to fit al that in less than a thousand pages, some things have to go. This book does not
teach you the following:

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (2 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

o The C++ programming language: Y ou should already be familiar with C++. Appendix A, "C++
Review and Object-Oriented Concepts,” is areview for those whose C++ skills need a boost.

« How to use Windows applications: Y ou should be a proficient Windows user, able to resize and
move windows, double-click, and recognize familiar toolbar buttons, for example.

o Howtouse Visual C++ asa C compiler: If you aready work in C, you can use Visual C++ as
your compiler, but new developers should take the plunge into C++.

« Windows programming without MFC: This, too, is okay for those who know it, but not something
to learn now that MFC exists.

« Theinternals of ActiveX programming: Thisisreferred to in the ActiveX chapters, which tell you
only what you need to know to make it work.

Y ou should read this book if you fit one of these categories:

« You know some C++ and some Windows programming techniques and are new to Visua C++.
Y ou will learn the product much more quickly than you would if you just tried writing programs.

« You've been working with previous versions of Visual C++. Many times users learn one way to do
things and end up overlooking some of the newer productivity features.

« You've been working with Visual C++ 6 for awhile and are beginning to suspect you're doing
things the hard way. Maybe you are.

e Youwork inVisual C++ 6 regularly, and you need to add a feature to your product. For taskslike
Help, printing, and threading, you'll find a"hand up" to get started.

Before You Start Reading

Y ou need a copy of Visual C++ 6 and must have it installed. The installation process is simple and easy
to follow, so it's not covered in this book.

Before you buy Visual C++ 6, you need a 32-bit Windows operating system: Windows 95, Windows 98,
or Windows NT Server or Workstation. That means your machine must be reasonably powerful and
modern--say, a 486 or better for your processor, at least 16MB of RAM and 500MB of disk space, and a
screen that can do 800 * 600 pixel displays or even finer resolutions. Theillustrations in this book were
all prepared at aresolution of 800 * 600 and, as you will see, at times things become a little crowded.
The sample code is all available on the Web, so following along will be smpler if you also have a
modem and access to the Web.

Finally, you need to make a promise to yourself--that you will follow along in Visual C++ asyou read
this book, clicking and typing and trying things out. Y ou don't need to type all the code if you don't want
to: It'sall on the Web site for you to look at. However, you should be ready to open the files and ook at
the code as you go.

What This Book Covers

A topic such as Windows programming in Visual C++ coversalot of ground. This book contains 28
chapters and 6 reference appendixes (A to F). Be sure to look over the titles of the appendixes now and

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (3 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

turn to them whenever you are unsure how to do something. They provide valuable references for the
following:

o Appendix A, "C++ Review and Object-Oriented Concepts," reminds you of the basics of the C++
language and the principles and benefits of object-oriented programming.

o Appendix B, "Windows Programming Review and aLook Inside CWnd," covers the specifics of
Windows programming that are now hidden from you by MFC classes such as CWnd.

o Appendix C, "The Visual Studio User Interface, Menus, and Toolbars," explains all the menus,
toolbars, editing areas on the screens, shortcuts, and so on, that make up the highly complicated
and richly powerful interface between you and Visual Studio.

« Appendix D, "Debugging,” explains the extra menus, windows, toolbars, and commands involved
in debugging arunning application.

« Appendix E, "MFC Macros and Globals," summarizes the many preprocessor macros and global
variables and functions sprinkled throughout code generated by the Devel oper Studio wizards.

o Appendix F, "Useful Classes," describes the classes used throughout the book to manipulate dates,
strings, and collections of objects.

Depending on your background and willingness to poke around in menus and the online help, you might
just skim these appendixes once and never return, or you might fill them full of bookmarks and yellow
stickies. Although they don't lead you through the sample applications, they will teach you alot.

The mainstream of the book isin Chapters 1 through 28. Each chapter teaches you an important
programming task or sometimes two closely related tasks, such as building a taskbar or adding Help to an
application. Detailed instructions show you how to build aworking application, or several working
applications, in each chapter.

Thefirst nine chapters cover concepts found in almost every Windows application; after that, the tasks
become less general. Here's abrief overview of some of the work that is covered.

Dialogs and Controls

What Windows program doesn't have a dialog box? an edit box? a button? Dialog boxes and controls are
vital to Windows user interfaces, and all of them, even the ssmple button or piece of static text, are
windows. The common controls enable you to take advantage of the learning time users have devoted to
other programs and the programming time developers have put in on the operating system in order to use
the same File Open dialog box as everybody else, the same hierarchical tree control, and so on. Learn
more about all these controlsin Chapters 2, "Diaogs and Controls,” and 10, "Windows 95 Common
Controls."

Messages and Commands

Messages form the heart of Windows programming. Whenever anything happens on a Windows
machine, such as a user clicking the mouse or pressing akey, amessage is triggered and sent to one or
more windows, which do something about it. Visual C++ makesit easy for you to write code that catches
these messages and acts on them. Chapter 3, "Messages and Commands,” explains the concept of
messages and how MFC and other aspects of Visual C++ enable you to deal with them.

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (4 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

The View/Document Paradigm

A paradigmisamodel, away of looking at things. The designers of MFC chose to design the framework
based on the assumption that every program has something it wants to save in afile. That collection of
information is referred to as the document. A view is one way of looking at a document. There are many
advantages to separating the view and the document, explained further in Chapter 4, "Documents and
Views." MFC provides classes from which to inherit your document class and your view class, so that
common programming tasks such as implementing scrollbars are no longer your problem.

Drawing Onscreen

No matter how smart your Windows program is, if you can't tell the user what's going on by putting
some words or pictures onscreen, no one will know what the program has done. A remarkable amount of
the work is automatically done by your view classes (one of the advantages of adopting the
document/view paradigm), but at times you have to do the drawing yourself. Y ou learn about device
contexts, scrolling, and more in Chapter 5, "Drawing on the Screen."

Printing on Paper

Adding printing capabilities to your program is sometimes the simplest thing in the world because the
code you use to draw onscreen can be reused to draw on paper. If more than one page of information is
involved, though, things become tricky. Chapter 6, "Printing and Print Preview," explains all this, aswell
as mapping modes, headers and footers, and more.

Persistence and File I/O

Some good things are meant to be only temporary, such as the display of a calculator or an online chat
window. However, most programs can save their documents to a file and open and load that file to
re-create a document that has been stored. MFC simplifies this by using archives and extending the use
of the stream 1/O operators >> and <<. You learn al about reading and writing to filesin Chapter 7,
"Persistence and File 1/0."

ActiveX Programming

ActiveX isthe successor to OLE, and it's the technology that facilitates communication between
applications at the object level, enabling you to embed a Word document in an Excel spreadsheet or to
embed any of hundreds of kinds of objectsin any ActiveX application. ActiveX chaptersinclude
Chapters 13, "ActiveX Concepts," 14, "Building an ActiveX Container Application," 15, "Building an
ActiveX Server Application," 16, "Building an Automation Server," and 17, "Building an ActiveX
Control."

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (5 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

The Internet

Microsoft recognizes that distributed computing, in which work is shared between two or more
computers, is becoming more and more common. Programs need to talk to each other, people need to
send messages across aLAN or around the world, and MFC has classes that support these kinds of
communication. The four Internet chaptersin this book are Chapter 18, " Sockets, MAPI, and the
Internet,” Chapter 19, "Internet Programming with the Winlnet Classes," Chapter 20, "Building an
Internet ActiveX Control," and Chapter 21, "The Active Template Library."

Database Access

Database programming keeps getting easier. ODBC, Microsoft's Open DataBase Connectivity package,
enables your code to call API functions that access a huge variety of database files--Oracle, DBase, an
Excel spreadsheet, a plain text file, old legacy mainframe systems using SQL, whatever! You call a
standard name function, and the API provided by the database vendor or athird party handles the
trandation. The details are in Chapters 22, "Database Access," and 23, "SQL and the Enterprise Edition."

Advanced Material

For developers who have mastered the basics, this book features some advanced chapters to move your
programming skills forward. Y ou will learn how to prevent memory leaks, find bottlenecks, and locate
bugsin your code with the techniques discussed in Chapter 24, "Improving Y our Application's
Performance."

Reuse is a hugely popular concept in software development at the moment, especially with managers
who see a chance to lower their development budget. If you'd like to write reusable code and
components, Chapter 25, "Achieving Reuse with the Gallery and Y our Own AppWizards," will take you
there.

Often C++ programmers are so busy learning the basics of how to make programs work that they miss
the features that make C++ truly powerful. Y ou will learn in Chapter 26, "Exceptions and Templates,"
how to catch errors efficiently and how to use one set of code in many different situations.

As user demands for high-performance software continue to multiply, developers must learn entirely new
techniques to produce powerful applications that provide fast response times. For many developers,
writing multithreaded applications is a vital technique. Learn about threading in Chapter 27,
"Multitasking with Windows Threads."

Chapter 28, "Future Explorations," introduces you to topics that are definitely not for beginners. Learn
how to create console applications, use and build your own DLLSs, and work with Unicode.

Conventions Used in This Book

One thing this book has plenty of is code. Sometimes you need to see only aline or two, so the codeis
mixed in with the text, like this:

I nt SomeFunction(int x, int y);

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (6 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Introduction

{
}

Y ou can tell the difference between code and regular text by the fonts used for each. Sometimes, you'll
see a piece of code that's too large to mix in with the text: You will find an examplein Listing 0.1.

return x+y;

Listing 0.1
CHost Di al og di al og(m pMai nWhd) ;
i f (dial og. DoModal () == | DOK)
{
AppSocket = new CSocket () ;
I f (AppSocket - >Connect (di al og. m host nane, 119))
{
whi |l e (AppSocket->Cet Status() == CONNECTI NG
{
Yi el dControl ();
}
I f (AppSocket ->CGet St at us() == CONNECTED)
{
CString response = AppSocket ->GetLine();
Socket Avai | abl e = TRUE;
}
}
}
I f (! Socket Avai | abl e)
{

Af xMessageBox("Can't connect to server. Please
- quit.", MB_OK| MB_I| CONSTOPR) ;

}

The character on the next-to-last line (=) is called the code continuation character. It indicates a place
where aline of code had to be broken to fit it on the page, but in reality the line doesn't break there. If
you're typing code from the book, don't break the line there--keep going. If you're reading along in code
that was generated for you by Visual C++, don't be confused when the line doesn't break there.

Remember, the code is in the book so that you can understand what's going on, not for you to typeit. All
the code is on the companion Web site as well. Sometimes you will work your way through the
development of an application and see several versions of ablock of code as you go--the final versionis
on the Web site. You'll find the site by going to www.mcp.com/info or www.gr egcons.com/uvc6.htm.

TIP: ThisisaTip: ashortcut or an interesting feature you might want to know about.

NOTE: ThisisaNote: It explains a subtle but important point. Don't skip Notes, even if
you're the kind who skips Tips. n

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (7 of 8) [7/29/1999 3:44:25 PM]

http://www.mcp.com/info
http://www.gregcons.com/uvc6.htm

Special Edition Using Visual C++ 6 -- Introduction

CAUTION: ThisisaCaution, and it's serious. It warns you of the horrible consequences if
you make afalse step, so be sureto read all of these that you come across.

When aword is being defined or emphasized, it'sin italic. The names of variables, functions, and C++
classes are all in monospaced font. Internet URL S and things you should type are in bold. Remember, an
URL never ends with punctuation, so ignore any comma or period after the URL.

Time to Get Started

That about wraps up things for the introduction. Y ou've learned what you need to get started, including
some advanced warning about the notations used throughout the book. Jump right in, learn all about
writing Windows applications with MFC, and then get started on some development of your own! Good
luck and have fun.

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/fm/fm.htm (8 of 8) [7/29/1999 3:44:25 PM]

Special Edition Using Visual C++ 6 -- Ch 1 -- Building Your First Windows Application

ouie
Special Edition Using Visual C++ 6

(& Previous Chapter JEK.—* Mext Chapter

-1 -
Building Your First Windows Application

o Creating a Windows Application

o Deciding How Many Documents the Application Supports
o Databases
0 Compound Document Support

o Appearance and Other Options

o Other Options

o Filenames and Classnames

o Creating the Application

o Try It Yourself
« Creating a Dialog-Based Application
e Creating DLLSs, Console Applications, and More

o ATL COM AppWizard

o Custom AppWizard

o Database Project

o DevStudio Add-In Wizard

o ISAPI Extension Wizard

o Makefile

o MFEC ActiveX ControlWizard

o MFC AppWizard (DLL)

o Win32 Application

o Win32 Console Application

http://www.pbs.mcp.com/ebooks/0789715392/ch01/ch01.htm (1 of 4) [7/29/1999 3:44:34 PM]

Special Edition Using Visual C++ 6 -- Ch 1 -- Building Your First Windows Application

o Win32 Dynamic Link Library
o Win32 Static Library
« Changing Your AppWizard Decisions
« Understanding AppWizard's Code
o A Single Document Interface Application
o Other Files
« Understanding a Multiple Document Interface Application
« Understanding the Components of a Dialog-Based Application
« Reviewing AppWizard Decisions and This Chapter

Creating a Windows Application

Visual C++ doesn't just compile code; it generates code. Y ou can create a Windows application in
minutes with atool called AppWizard. In this chapter you'll learn how to tell AppWizard to make you a
starter app with all the Windows boilerplate code you want. AppWizard is avery effective tool. It copies
into your application the code that almost all Windows applications require. After al, you aren't the first
programmer to need an application with resizable edges, minimize and maximize buttons, a File menu
with Open, Close, Print Setup, Print, and Exit options, are you?

AppWizard can make many kinds of applications, but what most people want, at least at first, isan
executable (.exe) program. Most people also want AppWizard to produce boilerplate code--the classes,
objects, and functions that have to be in every program. To create a program like this, Choose File, New
and click the Projects tab in the New dialog box, as shown in Figure 1.1.

FIG. 1.1 The Projects tab of the New dialog box is where you choose the kind of application you want to
build.

Choose MFC AppWizard (EXE) from the list box on the l€ft, fill in a project name, and click OK.
AppWizard will work through a number of steps. At each step, you make a decision about what kind of
application you want and then click Next. At any time, you can click Back to return to a previous
decision, Cancel to abandon the whole process, Help for more details, or Finish to skip to the end and
create the application without answering any more questions (not recommended before the last step). The
following sections explain each step.

NOTE: An MFC application uses MFC, the Microsoft Foundation Classes. You will learn
more about MFC throughout this book.

http://www.pbs.mcp.com/ebooks/0789715392/ch01/ch01.htm (2 of 4) [7/29/1999 3:44:34 PM]

javascript:popUp('01uvc01.gif')

Special Edition Using Visual C++ 6 -- Ch 1 -- Building Your First Windows Application

Deciding How Many Documents the Application Supports

Thefirst decision to communicate to AppWizard, as shown in Figure 1.2, is whether your application
should be MDI, SDI, or dialog based. AppWizard generates different code and classes for each of these
application types.

FIG. 1.2 Thefirst step in building a typical application with AppWizard is choosing the interface.

The three application types to choose from are as follows:

« A single document interface (SDI) application, such as Notepad, has only one document open at a
time. When you choose File, Open, the currently open file is closed before the new one is opened.

« A multiple document interface (MDI) application, such as Excel or Word, can open many
documents (typically files) at once. There is a Window menu and a Close item on the File menu.
It'saquirk of MFC that if you like multiple views on a single document, you must build an MDI
application.

« A dialog-based application, such as the Character Map utility that comes with Windows and is
shown in Figure 1.3, does not have a document at all. There are no menus. (If you'd like to see
Character Map in action, it's usually in the Accessories folder, reached by clicking Start. Y ou may
need to install it by using Add/Remove programs under Control Panel.)

FIG. 1.3 Character Map is a dialog-based application.

As you change the radio button selection, the picture on the left of the screen changes to demonstrate
how the application appears if you choose this type of application.

NOTE:: Dialog-based applications are quite different from MDI or SDI applications. The
AppWizard dialogs are different when you're creating a dialog-based application. They are
presented later in the section "Creating a Dialog-Based Application.”

Beneath these choicesis a checkbox for you to indicate whether you want support for the
Document/View architecture. This framework for your applications is explained in Chapter 4,
"Documents and Views." Experienced Visual C++ developers, especially those who are porting an
application from another development system, might choose to turn off this support. Y ou should leave
the option selected.

Lower on the screen is a drop-down box to select the language for your resources. If you have set your
system language to anything other than the default, English[United States], make sure you set your
resources to that language, too. If you don't, you will encounter unexpected behavior from ClassWizard
later. (Of course, if your application is for users who will have their language set to U.S. English, you
might not have a choice. In that case, change your system language under Control Panel.) Click Next
after you make your choices.

http://www.pbs.mcp.com/ebooks/0789715392/ch01/ch01.htm (3 of 4) [7/29/1999 3:44:34 PM]

javascript:popUp('01uvc02.gif')
javascript:popUp('01uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 1 -- Building Your First Windows Application

Databases

The second step in creating an executable Windows program with AppWizard is to choose the level of
database support, as shown in Figure 1.4.

FIG. 1.4 The second step to building a typical application with AppWizard is to set the database options
you will use.

There are four choices for database support:
« If you aren't writing a database application, choose None.

« If you want to have access to a database but don't want to derive your view from CFormView or
have a Record menu, choose Header Files Only.

« If you want to derive your view from CFormView and have a Record menu but don't need to
serialize a document, choose Database View Without File Support. Y ou can update database
records with CRecordset, an MFC class discussed in more detail in Chapter 22, "Database
Access."

« If you want to support databases as in the previous option but also need to save a document on disk
(perhaps some user options), choose Database View With File Support.

Chapter 22 clarifies these choices and demonstrates database programming with MFC. If you choose to
have a database view, you must specify a data source now. Click the Data Source button to set this up.

Asyou select different radio buttons, the picture on the left changes to show you the results of your
choice. Click Next to move to the next step.

Compound Document Support

The third step in running AppWizard to create an executable Windows program is to decide on the
amount of compound document support you want to include, as shown in Figure 1.5. OLE (object

linking and embedding) has been officially renamed ActiveX to clarify the recent technology shifts, most
of which are hidden from you by MFC. ActiveX and OLE technology arejointly referred to as compound
document technology. Chapter 13, "ActiveX Concepts," covers this technology in detail.

FIG. 1.5 The third step of building a typical application with AppWizard is to set the compound
document support you will need.

There are five choices for compound document support:
« If you are not writing an ActiveX application, choose None.

« If you want your application to contain embedded or linked ActiveX objects, such as Word
documents or Excel worksheets, choose Container. Y ou learn to build an ActiveX container in
Chapter 14, "Building an ActiveX Container Application.”

« If you want your application to serve objects that can be embedded in other applications, but it n

http://www.pbs.mcp.com/ebooks/0789715392/ch01/ch01.htm (4 of 4) [7/29/1999 3:44:34 PM]

javascript:popUp('01uvc04.gif')
javascript:popUp('01uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

ouie
Special Edition Using Visual C++ 6

(< Previous Chapter JR> Next Chapter

-2

Dialogs and Controls

Understanding Dialog Boxes
Creating a Dialog Box Resource
o Defining Dialog Box and Control 1Ds
o Creating the Sample Dialog Box
Writing a Dialog Box Class
Using the Dialog Box Class
o Arranging to Display the Dialog Box
o Behind the Scenes
o Using aList Box Control
o Using Radio Buttons

Understanding Dialog Boxes

Windows programs have a graphical user interface. In the days of DOS, the program could simply print a
prompt onscreen and direct the user to enter whatever value the program needed. With Windows,
however, getting data from the user is not as simple, and most user input is obtained from dialog boxes.
For example, a user can give the application details about a request by typing in edit boxes, choosing
from list boxes, selecting radio buttons, checking or unchecking check boxes, and more. These
components of adialog box are called controls.

Chances are that your Windows application will have several dialog boxes, each designed to retrieve a
specific type of information from your user. For each dialog box that appears onscreen, there are two
entities you need to develop: adialog box resource and adialog box class.

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (1 of 8) [7/29/1999 3:45:00 PM]

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

The dialog box resource is used to draw the dialog box and its controls onscreen. The class holds the
values of the dialog box, and it is a member function of the class that causes the dialog box to be drawn
onscreen. They work together to achieve the overall effect: making communication with the program
easier for your user.

Y ou build adialog box resource with the resource editor, adding controlsto it and arranging them to
make the control easy to use. Class Wizard then helps you to create a dialog box class, typically derived
from the MFC class CDialog, and to connect the resource to the class. Usually, each control on the dialog
box resource corresponds to one member variable in the class. To display the dialog box, you call a
member function of the class. To set the control values to defaults before displaying the dialog box, or to
determine the values of the controls after the user is finished with the box, you use the member variables
of the class.

Creating a Dialog Box Resource

Thefirst step in adding a dialog box to your MFC application is creating the dialog box resource, which
acts as a sort of template for Windows. When Windows sees the dialog box resource in your program, it
uses the commands in the resource to construct the dialog box for you.

In this chapter you learn to work with dialog boxes by adding one to a simple application. Create an SDI
application just as you did in Chapter 1, "Building Y our First Windows Application,” calling it ssimply
SDI. You will create adialog box resource and adialog box class for the application, write code to
display the dialog box, and write code to use the values entered by the user.

To create adialog box resource, first open the application. Choose Insert, Resource from Developer
Studio's menu bar. The Insert Resource dialog box, shown in Figure 2.1, appears. Double-click Dialog in
the Resource Type box. The dialog box editor appears, as shown in Figure 2.2.

Bring up the Properties dialog box for the new dialog box by choosing View, Properties. Change the
caption to Sample Dialog, as shown in Figure 2.3. You'll be using the Properties dialog box quite alot as
you work on this dialog box resource, so pin it to the screen by clicking the pushpin in the upper-left
corner.

FIG. 2.1 Double-click Dialog on the Insert Resource dial og box.

FIG. 2.2 A brand new dialog box resource has a title, an OK button, and a Cancel button.

FIG. 2.3 Use the Dialog Properties dialog box to change the title of the new dialog box.

The control palette shown at the far right of Figure 2.2 is used to add controls to the dialog box resource.
Diaog boxes are built and changed with a very visual WY SIWY G interface. If you need a button on
your dialog box, you grab one from the control palette, drop it where you want it, and change the caption
from Buttonl to Lookup, or Connect, or whatever you want the button to read. All the familiar Windows
controls are available for your dialog boxes:

« Satictext. Not realy acontrol, thisis used to label other controls such as edit boxes.

« Edit box. Single line or multiline, thisis a place for users to type strings or numbers as input to the
program. Read-only edit boxes are used to display text.

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (2 of 8) [7/29/1999 3:45:00 PM]

javascript:popUp('02uvc01.gif')
javascript:popUp('02uvc02.gif')
javascript:popUp('02uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

« Button. Every dialog box starts with OK and Cancel buttons, but you can add as many of your own
as you want.

« Check box. You use this control to set options on or off; each option can be selected or desel ected
independently.

« Radio button. Y ou use this to select only one of a number of related options. Selecting one button
deselects the rest.

« List box. You use this box type to select one item from alist hardcoded into the dialog box or filled
in by the program as the dialog box is created. The user cannot type in the selection area.

« Combo box. A combination of an edit box and alist box, this control enables usersto select from a
list or type their responsg, if the one they want isn't on thelist.

The sample application in this chapter is going to have a dialog box with a selection of controls on it, to
demonstrate the way they are used.

Defining Dialog Box and Control IDs

Because dialog boxes are often unique to an application (with the exception of the common dialog
boxes), you almost always create your own IDs for both the dialog box and the controlsit contains. Y ou
can, if you want, accept the default I1Ds that the dialog box editor creates for you. However, these IDs are
generic (for example, IDD_DIALOGL, IDC_EDIT1, IDC_RADIQO1, and so on), so you'll probably want
to change them to something more specific. In any case, as you can tell from the default IDs, adiaog
box's ID usually begins with the prefix IDD, and control 1Ds usually begin with the prefix IDC. You
change these IDs in the Properties dialog box: Click the control (or the dialog box background to select
the entire background), and choose View, Properties unless the Properties dialog box is already pinned in
place; then change the resource ID to a descriptive name that starts with IDD for adialog and IDC for a
control.

Creating the Sample Dialog Box

Click the Edit box button on the control palette, and then click in the upper-left corner of the dialog box
to place the edit box. If necessary, grab a moving handle and move it until it isin approximately the same
place as the edit box in Figure 2.4. Normally, you would change the ID from Edit1, but for this sample
leave it unchanged.

FIG. 2.4 You can build a ssmple dialog box quickly in the resource editor.

TIP: If you aren't sure which control palette button inserts an edit box (or any other type of
control), just hold the pointer still over one of the buttons for a short time. A Tool Tip will
appear, reminding you of the name of the control associated with the button. Move the
pointer from button to button until you find the one for the edit box.

Add a check box and three radio buttons to the dialog box so that it resembles Figure 2.4. Change the
captions on the radio buttonsto One, Two, and Three. To align all these controls, click one, and then
while holding down the Ctrl key, click each of the rest of them. Choose Layout, Align, Left, and if
necessary drag the stack of controls over with the mouse while they are all selected. Then choose Layout,

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (3 of 8) [7/29/1999 3:45:00 PM]

javascript:popUp('02uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls
Space Evenly, Down, to adjust the vertical spacing.

TIP: The commands on the Layout menu are also on the Dialog toolbar, which appears at
the bottom of your screen while you are using the resource editor. The toolbar symbols are
repeated on the menu to help you learn which button is associated with each menu item.

Click the One radio button again and bring up the Properties dialog box. Select the Group check box.
Thisindicates that thisis the first of agroup of buttons. When you select aradio button, all the other
buttons in the group are desel ected.

Add alist box to the dialog box, to the right of the radio buttons, and resize it to match Figure 2.4. With
the list box highlighted, choose View, Properties to bring up the Properties dialog box if it is not still
pinned in place. Select the Styles tab and make sure that the Sort box is not selected. When thisbox is
selected, the stringsin your list box are automatically presented in alphabetical order. For this
application, they should be presented in the order that they are added.

Writing a Dialog Box Class

When the resource is complete, bring up ClassWizard by choosing View, ClassWizard. ClassWizard
recognizes that this new dialog box resource does not have a class associated with it and offers to build
one for you, as shown in Figure 2.5. Leave the Create a New Class radio button selected, and click OK.
The New Class dialog box appears, as shown in Figure 2.6. Fill in the classname as CSdiDialog and
click OK. ClassWizard creates a new class, prepares the source file (SdiDialog.cpp) and header file
(SdiDialog.h), and adds them to your project.

FIG. 2.5 ClassWizard makes sure you don't forget to create a class to go with your new dialog box
resour ce.

Y ou connect the dialog box resources to your code with the Member Variables tab of ClassWizard,
shown in Figure 2.7. Click IDC_CHECK1 and then click the Add Variable button. This brings up the
Add Member Variable dialog box, shown in Figure 2.8.

FIG. 2.6 Creating a dialog box classis simple with ClassWizard.

FIG. 2.7 The Member Variables tab of ClassWizard connects dialog box controls to dialog box class
member variables.

A member variable in the new dialog box class can be connected to a control's value or to the control.
This sample demonstrates both kinds of connection. For IDC_CHECKZ1, fill in the variable name as
m_check, and make sure that the Category drop-down box has Value selected. If you open the Variable
Type drop-down box, you will see that the only possible choice is BOOL. Because a check box can be
either selected or not selected, it can be connected only to a BOOL variable, which holds the value
TRUE or FALSE. Click OK to complete the connection.

FIG. 2.8 You choose the name for the member variable associated with each control.

Here are the data types that go with each control type:

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (4 of 8) [7/29/1999 3:45:00 PM]

javascript:popUp('02uvc05.gif')
javascript:popUp('02uvc06.gif')
javascript:popUp('02uvc07.gif')
javascript:popUp('02uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls
« Edit box. Usually astring but also can be other data types, including int, float, and long
o Check box. int
« Radio button. int
o List box. String
« Combo box. String
o Scrollbar. int

Connect IDC_EDIT1 in the same way, to amember variable called m_edit of type CString asaValue.
Connect IDC_LIST1 as a Control to amember variable called m_listbox of type CListBox. Connect
IDC_RADIQ_1, thefirst of the group of radio buttons, as a Value to an int member variable called
m_radio.

After you click OK to add the variable, ClassWizard offers, for some kinds of variables, the capability to
validate the user's data entry. For example, when an edit control is selected, afield under the variables
list allows you to set the maximum number of characters the user can enter into the edit box (see Figure
2.9). Set it to 10 for m_edit. If the edit box is connected to a number (int or float), this area of
ClassWizard is used to specify minimum or maximum values for the number entered by the user. The
error messages asking the user to try again are generated automatically by MFC with no work on your
part.

FIG. 2.9 Enter a number in the Maximum Characters field to limit the length of a user's entry.

Using the Dialog Box Class

Now that you have your dialog box resource built and your dialog box class written, you can create
objects of that class within your program and display the associated dialog box element. Thefirst step is
to decide what will cause the dialog box to display. Typicaly, it isamenu choice, but because adding
menu items and connecting them to code are not covered until Chapter 8, "Building a Complete
Application: ShowString," you can simply have the dialog box display when the application starts
running. To display the dialog box, you call the DoModal() member function of the dialog box class.

M odeless Dialog Boxes

Most of the dialog boxes you will code will be modal dialog boxes. A modal dialog box is
on top of al the other windows in the application: The user must deal with the dialog box
and then close it before going on to other work. An example of thisis the dialog box that
comes up when the user chooses File, Open in any Windows application.

A modeless dialog box enables the user to click the underlying application and do some
other work and then return to the dialog box. An example of thisis the dialog box that
comes up when the user chooses Edit, Find in many Windows applications.

Displaying a modeless dialog box is more difficult than displaying amodal one. The dialog
box object, the instance of the dialog box class, must be managed carefully. Typically, itis
created with new and destroyed with delete when the user closes the dialog box with Cancel
or OK. You have to override a number of functions within the dialog box class. In short, you

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (5 of 8) [7/29/1999 3:45:00 PM]

javascript:popUp('02uvc09.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

should be familiar and comfortable with modal dialog boxes before you attempt to use a
modeless dialog box. When you're ready, look at the Visual C++ sample called
MODELESS that comes with Developer Studio. The fastest way to open this sample is by
searching for MODELESS in InfoViewer. Searching in InfoViewer is covered in Appendix
C, "The Visua Studio User Interface, Menus, and Toolbars."

Arranging to Display the Dialog Box

Select the ClassView in the project workspace pane, expand the SDI Classes item, and then expand
CSdiApp. Double-click the Initlnstance() member function. This function is called whenever the
application starts. Scroll to the top of the file, and after the other #include statements, add this directive:

#i ncl ude "sdi di al og. h"
This ensures that the compiler knows what a CSdiDialog class is when it compiles thisfile,

Double-click Initinstance() in the ClassView again to bring the cursor to the beginning of the function.
Scroll down to the end of the function, and just before the return at the end of the function, add the lines
in Listing 2.1.

Listing 2.1 SDI.CPP--Lines to Add at the End of CSdiApp::Initinstance()

CSdi Di al og dl g;
dl g. m check = TRUE;

dlg.medit = "hi there";
CString nsg;
i f (dl g. DoMbdal () == | DOK)
{

msg = "You clicked OK. ";
}
el se
{

msg = "You cancelled. ";
}

msg += "Edit box is: ";
nsg += dlg.medit;
Af xMessageBox (nsgQ);

Entering Code

Asyou enter code into thisfile, you may want to take advantage of a feature that makes its
debut in thisversion of Visual C++: Autocompletion. Covered in more detail in Appendix
C, Autocompletion saves you the trouble of remembering all the member variables and
functions of aclass. If you type dlg. and then pause, awindow will appear, listing all the
member variables and functions of the class CSdiDialog, including those it inherited from
its base class. If you start to type the variable you want--for example, typing m_--thelist
will scroll to variables starting with m_. Use the arrow keysto select the one you want, and

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (6 of 8) [7/29/1999 3:45:00 PM]

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

press Space to select it and continue typing code. Y ou are sure to find this feature a great
time saver. If the occasional pause as you type bothers you, Autocompletion can be turned
off by choosing Tools, Options and clicking the Editor tab. Deselect the parts of
Autocompletion you no longer want.

This code first creates an instance of the dialog box class. It sets the check box and edit box to smple
default values. (The list box and radio buttons are alittle more complex and are added later in this
chapter, in "Using a List Box Control" and "Using Radio Buttons.") The dialog box displays onscreen by
calling its DoModal () function, which returns a number represented by IDOK if the user clicks OK and
IDCANCEL if the user clicks Cancel. The code then builds a message and displays it with the
AfxMessageBox function.

NOTE: The CString class has a number of useful member functions and operator overloads.
Asyou see here, the += operator tacks characters onto the end of a string. For more about
the CString class, consult Appendix F, "Useful Classes."

Build the project by choosing Build, Build or by clicking the Build button on the Build toolbar. Run the
application by choosing Build, Execute or by clicking the Execute Program button on the Build toolbar.
Y ou will seethat the dialog box displays with the default values you just coded, as shown in Figure 2.10.
Change them, and click OK. Y ou should get a message box telling you what you did, such asthe onein
Figure 2.11. Now the program sits there, ready to go, but because there is no more for it to do, you can
closeit by choosing File, Exit or by clicking the - in the top-right corner.

FIG. 2.10 Your application displays the dialog box when it first runs.
FIG. 2.11 After you click OK, the application echoes the contents of the edit control.

Run it again, change the contents of the edit box, and thistime click Cancel on the dialog box. Notice in
Figure 2.12 that the edit box is reported as still hi there. Thisis because MFC does not copy the control
values into the member variables when the user clicks Cancel. Again, just close the application after the
dialog box is gone.

FIG. 2.12 When you click Cancel, the application ignores any changes you made.

Be sureto try entering more characters into the edit box than the 10 you specified with ClassWizard. Y ou
will find you cannot type more than 10 characters--the system just beeps at you. If you try to pastein
something longer than 10 characters, only the first 10 characters appear in the edit box.

Behind the Scenes

Y ou may be wondering what's going on here. When you click OK on the dialog box, MFC arranges for a
function called OnOK () to be called. This function isinherited from CDialog, the base class for
CSdiDialog. Among other things, it calls afunction called DoDataExchange(), which ClassWizard wrote
for you. Here's how it looks at the moment:

voi d CSdi Di al og: : DoDat aExchange(CDat aExchange* pDX)

{

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (7 of 8) [7/29/1999 3:45:00 PM]

javascript:popUp('02uvc10.gif')
javascript:popUp('02uvc11.gif')
javascript:popUp('02uvc12.gif')

Special Edition Using Visual C++ 6 -- Ch 2 -- Dialogs and Controls

CDi al og: : DoDat aExchange(pDX) ;
I 1 {{ AFX_DATA MAP(CSdi Di al og)
DDX Control (pDX, 1DC LIST1, mlistbox);
DDX_ Check(pDX, | DC _CHECK1l, m check);
DDX Text (pDX, IDC EDIT1, medit);
DDV_MaxChars(pDX, medit, 10);
DDX Radi o(pDX, | DC_RADI Ol, mradio0);
/'1}} AFX_DATA NAP

}

The functions with names that start with DDX all perform data exchange: Their second parameter is the
resource ID of acontrol, and the third parameter is a member variable in this class. Thisisthe way that
ClassWizard connected the controls to member variables--by generating this code for you. Remember
that ClassWizard also added these variables to the dialog box class by generating code in the header file
that declares them.

There are 34 functions whose names begin with DDX: one for each type of data that might be exchanged
between a dialog box and a class. Each has the typein its name. For example, DDX_Check is used to
connect a check box to aBOOL member variable. DDX_Text is used to connect an edit box to a CString
member variable. ClassWizard chooses the right function name when you make the connection.

NOTE: Some DDX functions are not generated by ClassWizard. For example, when you
connect alist box as aValue, your only choice for type is CString. Choosing that causes
ClassWizard to generate acall to DDX_LBString(), which connects the selected string in
the list box to a CString member variable. There are cases when the integer index into the
list box might be more useful, and thereisa DDX_LBlIndex() function that performs that
exchange. Y ou can add code to DoDataExchange(), outside the special ClassWizard
comments, to make this connection. If you do so, remember to add the member variable to
the class yourself. Y ou can find the full list of DDX functionsin the online
documentation. n

Functions with names that start with DDV perform data validation. ClassWizard adds a call to
DDV_MaxChars right after the call to DDX_Text that filled m_edit with the contents of IDC_EDIT1.
The second parameter of the call is the member variable name, and the third is the limit: how many
characters can be in the string. If a user ever managed to get extra characters into alength-validated
string, the DDV _MaxChars() function contains code that puts up awarning box and gets the user to try
again. You can just set the limit and count on its being enforced.

Using a List Box Control

Dealing with the list box is more difficult because only whi

http://www.pbs.mcp.com/ebooks/0789715392/ch02/ch02.htm (8 of 8) [7/29/1999 3:45:00 PM]

Special Edition Using Visual C++ 6 -- Ch 4 -- Documents and Views

oue
Special Edition Using Visual C++ 6

_4 -

Documents and Views

« Understanding the Document Class

« Understanding the View Class

 Creating the Rectangles Application

o Other View Classes

o Document Templates, Views, and Frame Windows

Understanding the Document Class

When you generate your source code with AppWizard, you get an application featuring all the bells and
whistles of acommercia 32-bit Windows application, including atoolbar, a status bar, Tool Tips, menus,
and even an About dialog box. However, in spite of all those features, the application really doesn't do
anything useful. In order to create an application that does more than look pretty on your desktop, you
need to modify the code that AppWizard generates. Thistask can be easy or complex, depending on how
you want your application t

http://www.pbs.mcp.com/ebooks/0789715392/ch04/ch04.htm [7/29/1999 3:45:20 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

ouie
Special Edition Using Visual C++ 6

(< Previous Chapter JR> Next Chapter

_ 5.

Drawing on the Screen

« Understanding Device Contexts

o Introducing the Paint1 Application

« Building the Paintl Application
o Painting in an MFC Program
Switching the Display
o Using Fonts
o Sizing and Positioning the Window

o Using Pens
o Using Brushes

O

« Scrolling Windows

« Building the Scroll Application
o Adding Codeto Increase Lines
o Adding Code to Decrease Lines

Understanding Device Contexts

Most applications need to display some type of datain their windows. Y ou'd think that, because
Windows is a device-independent operating system, creating window displays would be easier than
luring a kitten with a saucer of milk. However, it's exactly Windows' device independence that places a
little extra burden on a programmer's shoulders. Because you can never know in advance exactly what
type of devices may be connected to a user's system, you can't make many assumptions about display
capabilities. Functions that draw to the screen must do so indirectly through something called a device

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (1 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

context (DC).

Although device independence forces you, the programmer, to deal with data displays indirectly, it helps
you by ensuring that your programs run on all popular devices. In most cases, Windows handles devices
for you through the device drivers that users have installed on the system. These device drivers intercept
the data that the application needs to display and then translates the data appropriately for the device on
which it will appear, whether that's a screen, a printer, or some other output device.

To understand how all this device independence works, imagine an art teacher trying to design a course
of study appropriate for all types of artists. The teacher creates a course outline that stipulates the subject
of aproject, the suggested colors to be used, the dimensions of the finished project, and so on. What the
teacher doesn't stipulate is the surface on which the project will be painted or the materials needed to
paint on that surface. In other words, the teacher stipulates only general characteristics. The details of
how these characteristics are applied to the finished project are left to each specific artist.

For example, an artist using oil paints will choose canvas as his drawing surface and oil paints, in the
colors suggested by the instructor, as the paint. On the other hand, an artist using watercolors will select
watercolor paper and will, of course, use watercolorsinstead of oils for paint. Finally, the charcoal artist
will select the appropriate drawing surface for charcoal and will use asingle color.

The instructor in this scenario is much like a Windows programmer. The programmer has no idea who
may eventually use the program and what kind of system that user may have. The programmer can
recommend the colors in which data should be displayed and the coordinates at which the data should
appear, for example, but it's the device driver--the Windows artist--who ultimately decides how the data

appears.

A system with a VGA monitor may display data with fewer colors than a system with a Super VGA
monitor. Likewise, a system with a monochrome monitor displays the datain only asingle color.
High-resolution monitors can display more data than lower-resolution monitors. The device drivers,
much like the artists in the imaginary art school, must take the display requirements and fine-tune them
to the device on which the data will actually appear. And it's a data structure known as a device context
that links the application to the device's driver.

A device context (DC) is little more than a data structure that keeps track of the attributes of awindow's
drawing surface. These attributes include the currently selected pen, brush, and font that will be used to
draw onscreen. Unlike an artist, who can have many brushes and pens with which to work, a DC can use
only asingle pen, brush, or font at atime. If you want to use a pen that draws wider lines, for example,
you need to create the new pen and then replace the DC's old pen with the new one. Similarly, if you
want to fill shapes with ared brush, you must create the brush and select it into the DC, which is how
Windows programmers describe replacing atool inaDC.

A window's client areais a versatile surface that can display anything a Windows program can draw. The
client area can display any type of data because everything displayed in a window--whether it be text,
spreadsheet data, a bitmap, or any other type of data--is displayed graphically. MFC helps you display
data by encapsulating Windows' GDI functions and objects into its DC classes.

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (2 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

Introducing the Paintl Application

In this chapter, you will build the Paint1 application, which demonstrates fonts, pens, and brushes. Paint1
will use the document/view paradigm discussed in Chapter 4, "Documents and Views," and the view will
handle displaying the data. When run, the application will display text in severa different fonts. When
users click the application, it displays lines drawn with several different pens. After another click, it
displays boxes filled with avariety of brushes.

Thefirst step in creating Paint1 isto build an empty shell with AppWizard, asfirst discussed in Chapter
1, "Building Your First Windows Application." Choose File, New, and select the Projects tab. As shown
in Figure 5.1, fill in the project name as Paint1 and fill in an appropriate directory for the project files.
Make sure that MFC AppWizard (exe) is selected. Click OK.

FIG. 5.1 Sart an AppWizard project workspace called Paintl.

Move through the AppWizard dialog boxes, change the settings to match those in the list that follows,
and then click Next to move to the next step.

Step 1: Select Single Document.
Step 2: Use default settings.
Step 3: Use default settings.
Step 4: Deselect all check boxes.
Step 5: Use default settings.
Step 6: Use default settings.

After you click Finish on the last step, the New Project Information box should resemble Figure 5.2.
Click OK to create the project.

FIG. 5.2 The starter application for Paintl isvery simple.

Now that you have a starter application, it's time to add code to make it demonstrate some ways an MFC
program can display data onscreen. By the time you get to the end of this chapter, the words display
context won't make you scratch your head in perplexity.

NOTE: Your starter application has menus, but you will ignore them completely. It would
be quite abit of work to remove them; just pretend they aren't there. n

Building the Paintl Application

To build the Paint1 application, you first need to understand how painting and drawing work in an MFC
program. Then you can set up the skeleton code to handle user clicks and the three different kinds of
display. Finally, you'll fill in the code for each kind of display in turn.

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (3 of 10) [7/29/1999 3:45:37 PM]

javascript:popUp('05uvc01.gif')
javascript:popUp('05uvc02.gif')

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

Painting in an MFC Program

In Chapter 3, "Messages and Commands,” you |learned about message maps and how you can tell MFC
which functions to call when it receives messages from Windows. One important message that every
Windows program with awindow must handleisWM_PAINT. Windows sendsthe WM_PAINT
message to an application's window when the window needs to be redrawn. Several events cause
Windows to send aWM_PAINT message:

« When users ssmply run the program: In a properly written Windows application, the application's
window receivesa WM _PAINT message amost immediately after being run, to ensure that the
appropriate datais displayed from the very start.

« When the window has been resized or has recently been uncovered (fully or partialy) by another
window: Part of the window that wasn't visible before is now onscreen and must be updated.

« When aprogram indirectly sendsitself aWM_PAINT message by invalidating its client area: This
capability ensures that an application can change its window's contents almost any time it wants.
For example, aword processor might invalidate its window after users paste some text from the
Clipboard.

When you studied message maps, you learned to convert a message name to a message-map macro and
function name. Y ou now know, for example, that the message-map macro for aWM_PAINT messageis
ON_WM_PAINT(). You also know that the matching message-map function should be called OnPaint().
Thisis another case where MFC has aready done most of the work of matching a Windows message
with its message-response function. (If all this message-map stuff sounds unfamiliar, you might want to
review Chapter 3.)

Y ou might guess that your next step is to catch the WM _PAINT message or to override the OnPaint()
function that your view class inherited from CView, but you won't do that. Listing 5.1 shows the code for
CView::OnPaint(). Asyou can see, WM_PAINT isaready caught and handled for you.

Listing 5.1 CView::OnPaint()

void CVi ew. : OnPai nt ()

{
/'l standard paint routine
CPai nt DC dc(t hi s);
OnPr epar eDC(&dc) ;
OnDr awm &dc) ;
}

CPaintDC is a special class for managing paint DCs--device contexts used only when responding to
WM_PAINT messages. An object of the CPaintDC class does more than just create aDC; it dso calls
the BeginPaint() Windows API function in the class's constructor and calls EndPaint() in its destructor.
When a program respondsto WM_PAINT messages, calls to BeginPaint() and EndPaint() are required.
The CPaintDC class handles this requirement without your having to get involved in all the messy
details. Asyou can see, the CPaintDC constructor takes a single argument, which is a pointer to the
window for which you're creating the DC. The this pointer points to the current view, so it's passed to the
constructor to make a DC for the current view.

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (4 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

OnPrepareDC() isa CView function that prepares a DC for use. You'll learn more about it in Chapter 6,
"Printing and Print Preview."

OnDraw() does the actual work of visually representing the document. In most cases you will write the
OnDraw() code for your application and never touch OnPaint().

Switching the Display

The design for Paintl states that when you click the application’'s window, the window's display changes.
This seemingly magical feat is actually easy to accomplish. Y ou add a member variable to the view to
store what kind of display is being done and then change it when users click the window. In other words,
the program routes WM_LBUTTONDOWN messages to the OnL ButtonDown() message-response
function, which sets the m_display flag as appropriate.

First, add the member variable. Y ou must add it by hand rather than through the shortcut menu because
the type includes an enum declaration. Open Paint1View.h from the FileView and add these lines after
the //Attributes comment:

pr ot ect ed:
enum { Fonts, Pens, Brushes} m Di spl ay;

TIP: Thisisan anonymous or unnamed enum. Y ou can learn more about enum typesin
Appendix A, " C++ Review and Object-Oriented Concepts."

Choose ClassView in the Project Workspace pane, expand the classes, expand CPaint1View, and then
double-click the constructor CPaint1View(). Add thisline of code in place of the TODO comment:

m Di spl ay = Fonts;

Thisinitializes the display selector to the font demonstration. Y ou use the display selector in the
OnDraw() function called by CView::OnPaint(). AppWizard has created CPaint1View::OnDraw(), but it
doesn't do anything at the moment. Double-click the function name in ClassView and add the codein
Listing 5.2 to the function, removing the TODO comment left by AppWizard.

Listing 5.2 CPaintlView::OnDraw()

voi d CPai nt 1Vi ew. : OnDr awm(CDC* pDC)
{
CPai nt 1Doc* pDoc = Get Docunent ();
ASSERT VALI X pDoc) ;
swtch (mD splay)
{
case Fonts:
ShowFont s(pDC) ;
br eak;
case Pens:
ShowPens(pDC) ;
br eak;

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (5 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

case Brushes:
ShowBr ushes(pDC) ;
br eak;

}

Y ou will write the three functions ShowFonts(), ShowPens(), and ShowBrushes() in upcoming sections
of this chapter. Each function uses the same DC pointer that was passed to OnDraw() by OnPaint(). Add
them to the class now by following these steps:

1. Right-click the CPaint1View classin ClassView and select Add Member Function.
2. Enter void for the Function Type.

3. Enter ShowFonts(CDC* pDC) for the Function Declaration.

4. Change the access to protected. Click OK.

5. Repeat steps 1 through 4 for ShowPens(CDC* pDC) and ShowBrushes(CDC* pDC).

The last step in arranging for the display to switch isto catch left mouse clicks and write code in the
message handler to change m_display.

Right-click CPaint1View in the ClassView and select Add Windows Message Handler from the shortcut
menu that appears. Double-click WM_LBUTTONDOWN in the New Windows Messages/Events list
box. ClassWizard adds a function called OnL ButtonDown() to the view and adds entries to the message
map so that this function will be called whenever users click the left mouse button over this view.

Click Edit Existing to edit the OnLButtonDown() you just created, and add the code shown in Listing
5.3.

Listing 5.3 CPaintlView::OnLButtonDown()

voi d CPai nt 1Vi ew. : OnLBut t onDown(Ul NT nFl ags, CPoi nt point)
{
If (mD splay == Fonts)
m Di spl ay = Pens;
else if (mDi splay == Pens)
m Di spl ay = Brushes;
el se
m D splay = Fonts
| nval i dat e();
CVi ew. : OnLBut t onDown(nFl ags, point);

}

Asyou can see, depending on its current value, m_display is set to the next display type in the series. Of
course, just changing the value of m_display doesn't accomplish much; the program still needs to redraw
the contents of its window. The call to Invalidate() tells Windows that all of the window needsto be
repainted. This causes Windows to generate aWM_PAINT message for the window, which means that
eventually OnDraw() will be called and the view will be redrawn as afont, pen, or brush demonstration.

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (6 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

Using Fonts

Changing the font used in aview is atechnique you'll want to use in various situations. It's not as smple
as you might think because you can never be sure that any given font is actually installed on the user's
machine. Y ou set up a structure that holds information about the font you want, attempt to create it, and
then work with the font you actually have, which might not be the font you asked for.

described in the LOGFONT structure outlined in Table 5.1. The LOGFONT structure
d a complete description of the font. Many fields can be set to 0 or the default values,

A Windowsfontis
uses 14 fields to hol

depending on the program's needs.

Table 5.1 LOGFONT Fields and Their Descriptions

Field Description

IfHeight Font height in logical units

IfWidth Font width in logical units

|f Escapement Angle at which to draw the text

IfOrientation Character tilt in tenths of adegree

IfWeight Font weight

Ifltalic A nonzero value indicates italics
IfUnderline A nonzero value indicates an underlined font
IfStrikeOut A nonzero value indicates a strikethrough font
If Char Set Font character set

IfOutPrecision [How to match requested font to actual font
IfClipPrecison |How to clip characters that run over clip area
IfQuality Print quality of the font

IfPitchAndFamily |Pitch and font family

IfFaceName Typeface name

Sometermsin Tabl

logical unit isequal

e 5.1 need alittle explanation. Thefirst islogical units. How highisafont with a
height of 8 logical units, for example? The meaning of alogical unit depends on the mapping mode
you're using, as shown in Table 5.2. The default mapping modeis MM _TEXT, which means that one
to 1 pixel. Mapping modes are discussed in more detail in Chapter 6.

Table 5.2 Mapping Modes

Mode

Unit

MM_HIENGLISH

0.001 inch

MM_HIMETRIC

0.01 millimeter

MM_ISOTROPIC

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (7 of 10) [7/29/1999 3:45:37 PM]

Arbitrary

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

MM _LOENGLISH |0.01 inch
MM_LOMETRIC |0.1 millimeter
MM_TEXT Device pixel
MM_TWIPS 1/1440 inch

Escapement refers to writing text along an angled line. Orientation refers to writing angled text along a
flat line. The font weight refers to the thickness of the letters. A number of constants have been defined
for useinthisfield: FW_DONTCARE, FW_THIN, FW_EXTRALIGHT, FW_ULTRALIGHT,
FW_LIGHT, FW_NORMAL, FW_REGULAR, FW_MEDIUM, FW_SEMIBOLD, FW_DEMIBOLD,
FW_BOLD, FW_EXTRABOLD, FW_ULTRABOLD, FW_BLACK, and FW_HEAVY. Not all fonts
are available in al weights. Four character sets are available (ANSI_CHARSET, OEM_CHARSET,
SYMBOL_CHARSET, and UNICODE CHARSET), but for writing English text you'll almost always
use ANSI_CHARSET. (Unicode is discussed in Chapter 28, "Future Explorations.") The last field in the
LOGFONT structure is the face name, such as Courier or Helvetica.

Listing 5.4 shows the code you need to add to the empty ShowFonts() function you created earlier.
Listing 5.4 CPaintlView::ShowFonts()

voi d CPai nt 1Vi ew. : ShowFont s(CDC * pDC)
{
/1l Initialize a LOGFONT structure for the fonts.
LOG-FONT | ogFont ;
| ogFont . | f Hei ght = 8;
| ogFont. I fWdth = 0;
| ogFont . | f Escapenent = O;
| ogFont . I fOrientation = O;
| ogFont . | f Wei ght = FW NORVAL;
| ogFont.Ifltalic = O;
| ogFont . | f Underl i ne
| ogFont . I f Stri keCQut ;
| ogFont . | f Char Set = | CHARSET;
| ogFont . | f Qut Preci sion = OUT_DEFAULT_PRECI S;
| ogFont . I fd i pPreci sion = CLI P_DEFAULT PRECI S;
| ogFont . I fQuality = PROOF_QUALI TY;
| ogFont . | f Pi tchAndFam |y = VARI ABLE PI TCH | FF_ROVAN;
strcpy(l ogFont. | fFaceNane, "Tinmes New Ronman");
/'l Initialize the position of text in the w ndow.
U NT position = O;
/'l Create and display eight exanple fonts.
for (U NT x=0; x<8; ++Xx)
{

0;
0;
ANS

/1 Set the new font's height.
| ogFont . I fHeight = 16 + (x * 8);
/] Create a new font and select it into the DC

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (8 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

CFont font;

font. Creat eFont | ndirect (& ogFont);

CFont * ol dFont = pDC->Sel ect Obj ect (&f ont) ;

/1l Print text wwth the new font.

position += | ogFont. | fHei ght;

pDC- >Text Qut (20, position, "A sanple font.");
/'l Restore the old font to the DC.

pDC- >Sel ect Obj ect (ol dFont) ;

}

ShowFonts()starts by setting up a Times Roman font 8 pixels high, with a width that best matches the
height and all other attributes set to normal defaults.

To show the many fonts displayed in its window, the Paint1 application creates its fonts in afor loop,
modifying the value of the LOGFONT structure's [fHeight member each time through the loop, using the
loop variable x to calculate the new font height:

| ogFont .| fHeight = 16 + (x * 8);

Because x starts at 0, the first font created in the loop will be 16 pixels high. Each time through the loop,
the new font will be 8 pixels higher than the previous one.

After setting the font's height, the program creates a CFont object and calls its CreateFontlndirect()
function, which attempts to create a CFont object corresponding to the LOGFONT you created. It will
change the LOGFONT to describe the CFont that was actually created, given the fonts installed on the
user's machine.

After ShowFonts() calls CreateFontlndirect(), the CFont object is associated with a Windows font. Now
you can select it into the DC. Selecting objects into device contextsisacrucial concept in Windows
output programming. Y ou can't use any graphical object, such as afont, directly; instead, you select it
into the DC and then use the DC. Y ou always save a pointer to the old object that was in the DC (the
pointer is returned from the SelectObject() call) and use it to restore the device context by selecting the
old object again when you're finished. The same function, SelectObject(), is used to select various objects
into a device context: the font you're using in this section, a pen, a brush, or anumber of other drawing
objects.

After selecting the new font into the DC, you can use the font to draw text onscreen. The local variable
position holds the vertical position in the window at which the next line of text should be printed. This
position depends on the height of the current font. After all, if there's not enough space between the lines,
the larger fonts will overlap the smaller ones. When Windows created the new font, it stored the font's
height (most likely the height that you requested, but maybe not) in the LOGFONT structure's IfHeight
member. By adding the value stored in IfHeight, the program can determine the next position at which to
display the line of text. To make the text appear onscreen, ShowFonts() calls TextOut().

TextOut()'s first two arguments are the X and Y coordinates at which to print the text. The third
argument is the text to print. Having printed the text, you restore the old font to the DC in case thisis the
last time through the loop.

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (9 of 10) [7/29/1999 3:45:37 PM]

Special Edition Using Visual C++ 6 -- Ch 5 -- Drawing on the Screen

Build the application and run it. It should resemble Figure 5.3. If you click the window, it will go blank
because the ShowPens() routine doesn't draw anything. Click again and it's still blank, this time because
the ShowBrushes() routine doesn't draw anything. Click athird time and you are back to the fonts screen.

FIG. 5.3 The font display shows different types of text outpuit.

Sizing and Positioning the Window

Asyou can seein Figure 5.3, Paintl doesn't display eight different fonts at 800* 600 screen settings--only
seven can fit in the window. To correct this, you need to set the size of the window alittle larger than the
Windows default. In an MFC program, you do this in the mainframe class PreCreateéWindow() function.
Thisiscalled for you just before the mainframe window is created. The mainframe window surrounds
the entire application and governs the size of the view.

PreCreateWindow() takes one parameter, areference to a CREATESTRUCT structure. The
CREATESTRUCT structure contains essential information about the window that's about to be created,
asshown in Listing 5.5.

Listing 5.5 The CREATESTRUCT Structure

t ypedef struct tagCREATESTRUCT {

LPVA D | pCr eat ePar ans;
HANDLE hl nst ance;
HVENU hMenu;

HWAD hwndPar ent ;
I nt cy;

I nt CX;

I nt Y;

I nt X;

LONG styl e;
LPCSTR | pszNane;
LPCSTR | pszd ass;
DWORD dwexSt yl e;

} CREATESTRUCT;

If you've programmed Windows without application frameworks such as MFC, you'll recognize the
information stored in the CREATESTRUCT structure. Y ou used to supply much of thisinformation
when calling the Windows API function Create\WWindow() to create your application's window. Of special
interest to MFC programmers are the cx, cy, X, and y members of this structure. By changing cx and cy,
you can set the window width and height, respectively. Similarly, modifying x and y changes the
window's position. By overriding PreCreateWindow(), you have a chance to fiddle with the
CREATESTRUCT structure before Windows uses it to create the window.

AppWizard created a CMainFrame::PreCreateWindow() function. Expand CMainFrame in ClassView,
double-click PreCreateWindow() to edit it, and add lines to obtain the code shown in Listing 5.6. This
sets the application's height and width. It also prevents

http://www.pbs.mcp.com/ebooks/0789715392/ch05/ch05.htm (10 of 10) [7/29/1999 3:45:37 PM]

javascript:popUp('05uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/0

ouie
Special Edition Using Visual C++ 6

(& Previous Chapter JEK.—* Mext Chapter

_7 -

Persistence and File I/O

« Understanding Objects and Persistence

o Examining the File Demo Application

o A Review of Document Classes

o Building the File Demo Application

o Creating a Persistent Class
o The File Demo 2 Application
0 Looking at the CMessages Class

o Using the CMessages Class in the Program
« Reading and Writing Files Directly

o The CFile Class
e Creating Your Own CArchive Objects
» Using the Reqgistry

o How the Reqistry Is Set Up

o The Predefined Keys

o Using the Registry in an MFC Application
The Sample Applications Revisited

O

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (1 of 6) [7/29/1999 3:46:15 PM]

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/0

Understanding Objects and Persistence

One of the most important things a program must do is save users data after that data is changed in some
way. Without the capability to save edited data, the work a user performs with an application exists only

aslong as the application is running, vanishing the instant the user exits the application. Not a good way

to get work done! In many cases, especially when using AppWizard to create an application, Visual C++
provides much of the code necessary to save and load data. However, in some cases--most notably when

you create your own object types--you have to do alittle extra work to keep your users files up to date.

When you're writing an application, you deal with alot of different object types. Some data objects might
be ssimple types, such asintegers and characters. Other objects might be instances of classes, such as
strings from the CString class or even objects created from your own custom classes. When using objects
in applications that must create, save, and load documents, you need away to save and load the state of
those objects so that you can re-create them exactly as users left them at the end of the last session.

An object's capability to save and load its state is called persistence. Almost all MFC classes are
persistent because they're derived directly or indirectly from MFC's CObject class, which provides the
basic functionality for saving and loading an object's state. The following section reviews how MFC
makes a document object persistent.

Examining the File Demo Application

When you use Visual C++'s AppWizard to create a program, you get an application that uses document
and view classes to organize, edit, and display its data. As discussed in Chapter 4, "Documents and
Views," the document object, derived from the CDocument class, is responsible for holding the
application's data during a session and for saving and loading the data so that the document persists from
one session to another.

In this chapter, you'll build the File Demo application, which demonstrates the basic techniques behind
saving and loading data of an object derived from CDocument. File Demo's document isa single string
containing a short message, which the view displays.

Three menu items are relevant in the File Demo application. When the program first begins, the message
Isautomatically set to the string Default Message. Users will change this message by choosing Edit,
Change Message. The File, Save menu option saves the document, as you'd expect, and File, Open
reloads it from disk.

A Review of Document Classes

Anyone who's written a program has experienced saving and opening files--object persistence from the
user's point of view. In this chapter you'll learn how persistence works. Although you had some
experience with document classes in Chapter 4, you'll now review the basic concepts with an eye toward
extending those concepts to your own custom classes.

When working with an application created by AppWizard, you must complete several stepsto enable
your document to save and load its state. Those steps are discussed in this section. The steps are as

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (2 of 6) [7/29/1999 3:46:15 PM]

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/0
follows:
1. Define the member variables that will hold the document's data.
2. Initialize the member variables in the document class's OnNewDocument() member function.
3. Display the current document in the view class's OnDraw() member function.
4. Provide member functionsin the view class that enable usersto edit the document.

5. Add to the document class's Serialize() member function the code needed to save and load the
data that comprises the document.

When your application can handle multiple documents, you need to do alittle extrawork to be sure that
you use, change, or save the correct document. Luckily, most of that work is taken care of by MFC and
AppWizard.

Building the File Demo Application

To build the File Demo application, start by using AppWizard to create an SDI application. All the other
AppWizard choices should be | eft at their default values, so you can speed things up by clicking Finish
on Step 1 after selecting SDI and making sure that Document/View support is selected.

Double-click CfileDemoDoc in ClassView to edit the header file for the document class. In the Attributes
section add a CString member variable called m_message, so that the Attributes section looks like this:

/1 Attributes
publ i c:
CString m nessage,

In this case, the document's storage is nothing more than a single string object. Usually, your document's
storage needs are much more complex. This single string, however, is enough to demonstrate the basics
of apersistent document. It's very common for MFC programmers to use public variablesin their
documents, rather than a private variable with public access functions. It makes it alittle smpler to write
the code in the view class that will access the document variables. It will, however, make future
enhancements a little more work. These tradeoffs are discussed in more detail in Appendix A, "C++
Review and Object-Oriented Concepts."

This string, like all the document's data, must be initialized. The OnNewDocument() member function is
the place to do it. Expand CFileDemoDoc in ClassView and double-click OnNewDocument() to edit it.
Add aline of codetoinitialize the string so that the function looks like Listing 7.1. Y ou should remove
the TODO comments because you've done what they were reminding you to do.

Listing 7.1 Initializing the Document's Data

BOOL CFi | eDenoDoc: : OnNewDocumnent ()

{
I f (! CDocunent:: OnNewDocunent ())
return FALSE;
m nmessage = "Default Message";
return TRUE;
}

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (3 of 6) [7/29/1999 3:46:15 PM]

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/0

With the document class's m_message data member initialized, the application can display the datain the
view window. Y ou just need to edit the view class's OnDraw() function (see Listing 7.2). Expand
CFileDemoView in ClassView and double-click OnDraw() to edit it. Again, you're just adding one line
of code and removing the TODO comment.

Listing 7.2 Displaying the Document's Data

voi d CFi | eDenoVi ew. : OnDr aw(CDC* pDC)

{

CFi | eDoc* pDoc = Get Docunent ();

ASSERT _VALI D(pDoc) ;

pDC- >Text Qut (20, 20, pDoc->m nessage);
}

Getting information onscreen, using device contexts, and the TextOut() function are all discussed in
Chapter 5, "Drawing on the Screen."

Build File Demo now, to make sure there are no typos, and run it. Y ou should see Default Message
appear onscreen.

Now, you need to allow users to edit the application's document by changing the string. In theory, the
application should display adialog box to let the user enter any desired string at all. For our purposes,
you're just going to have the Edit, Change Message menu option assign the string a different, hard-coded
value. ShowString, the subject of Chapter 8, "Building a Complete Application: ShowString," shows
how to create a dialog box such as the one File Demo might use.

Click the Resource tab to switch to ResourceView, expand the resources, expand Menus, and
double-click IDR_MAINFRAME to edit it. Click once on the Edit item in the menu you are editing to
drop it down. Click the blank item at the end of the list and type Change & M essage. Thiswill add
another item to the menu.

Choose View, ClassWizard to make the connection between this menu item and your code. Y ou should
seeID _EDIT_CHANGEMESSAGE highlighted already; if not, click it in the box on the left to highlight
it. Choose CFileDemoView from the drop-down box on the upper right. Click COMMAND in the
lower-right box and then click the Add Function button. Accept the suggested name,
OnEditChangemessage(), by clicking OK on the dialog that appears. Click Edit Code to open the new
function in the editor and edit it to match Listing 7.3.

Listing 7.3 Changing the Document's Data

voi d CFi | eDenpVi ew. : OnEdi t Changenessage()
{
CTime now = CTine:: GetCurrentTinme();
CString changetime = now. For mat (" Changed at %8B % % %vt %&5") ;
Get Docunent () - >m nmessage = changeti ne;
Get Docunent () - >Set Modi fi edFl ag() ;
| nval i dat e();

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (4 of 6) [7/29/1999 3:46:15 PM]

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/0

}

This function, which responds to the application's Edit, Change M essage command, builds a string from
the current date and time and transfers it to the document's data member. (The CTime class and its
Format() function are discussed in Appendix F, "Useful Classes.") The call to the document class's
SetModifiedFlag() function notifies the object that its contents have been changed. The application will
warn about exiting with unsaved changes as long as you remember to call SetModifiedFl ag() everywhere
there might be a change to the data. Finally, this code forces aredraw of the screen by calling
Invalidate(), as discussed in Chapter 4.

TIP: If m_message was a private member variable of the document class, you could have a
public SetMessage() function that called SetM odifiedFlag() and be guaranteed no
programmer would ever forget to call it. That's one of the advantages of writing truly
object-oriented programs.

The document class's Serialize() function handles the saving and loading of the document's data. Listing
7.4 shows the empty shell of Serialize() generated by AppWizard.

Listing 7.4 FILEVIEW.CPP--The Document Class Serialize() Function

void CFil eDoc:: Serialize(CArchive& ar)

{
i f (ar.l1sStoring())
{
// TODO add storing code here
}
el se
{
/1 TODO. add | oadi ng code here
}
}

Because the CString class (of which m_message is an object) defines the >> and << operators for
transferring strings to and from an archive, it's asimple task to save and load the document class's data.
Simply add this line where the comment reminds you to add storing code:

ar << m.nessage;

Add this similar line where the loading code belongs:

ar >> m nessage;

The << operator sends the CString m_message to the archive; the >> operator fills m_message from the
archive. Aslong as all the document's member variables are simple data types such as integers or

characters, or MFC classes such as CString with these operators already defined, it's easy to save and
load the data. The operators are defined for these simple data types:

« BYTE
« WORD

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (5 of 6) [7/29/1999 3:46:15 PM]

Special Edition Using Visual C++ 6 -- Ch 7 -- Persistence and File 1/O

e int

« LONG

« DWORD

o float

« double
Build File Demo and run it. Choose Edit, Change Message, and you should see the new string onscreen,
asshown in Figure 7.1. Choose File, Save and enter afilename you can remember. Now change the
message again. Choose File, New and you'll be warned about saving your current changesfirst, asin

Figure 7.2. Choose File, Open and browse to your file, or just find your filename towards the bottom of
the File menu to re-open it, and you'll see that File Demo can indeed save and reload a string.

FIG. 7.1 File Demo changes the string on command.

FIG.7.2Y0

http://www.pbs.mcp.com/ebooks/0789715392/ch07/ch07.htm (6 of 6) [7/29/1999 3:46:15 PM]

javascript:popUp('07uvc01.gif')
javascript:popUp('07uvc02.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

oue
Special Edition Using Visual C++ 6

(4 Previous Chapter JM(-> Next Chapter _

-8 -
Building a Complete Application: ShowString

» Building an Application That Displays a String
o Creating an Empty Shell with AppWizard
o Displaying a String
« Building the ShowString Menus
« Building the ShowString Dialog Boxes
o ShowString's About Dialog Box
o ShowString's Options Dialog Box
« Making the Menu Work
o The Diaog Box Class
o Catching the Message
« Making the Dialog Box Work
« Adding Appearance Options to the Options Dialog Box
o Changing the Options Dialog Box
o Adding Member Variables to the Dialog Box Class
o Adding Member Variables to the Document
o Changing OnToolsOptions()
o Changing OnDraw()

Building an Application That Displays a String

In this chapter you pull together the concepts demonstrated in previous chapters to create an application that really
does something. Y ou add a menu, amenu item, adialog box, and persistence to an application that draws output
based on user settings. In subsequent chapters this application serves as a base for more advanced work.

The sample application you will build is very much like the traditional "Hello, world!" of C programming. It

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (1 of 16) [7/29/1999 3:46:45 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

simply displays atext string in the main window. The document (what you save in afile) contains the string and a
few settings. Thereis a new menu item to bring up a dialog box to change the string and the settings, which control
the string's appearance. Thisis a deliberately simple application so that the concepts of adding menu items and
adding dialogs are not obscured by trying to understand the actual brains of the application. So, bring up Devel oper
Studio and follow along.

Creating an Empty Shell with AppWizard

First, use AppWizard to create the starter application. (Chapter 1, "Building Y our First Windows Application,"
covers AppWizard and creating starter applications.) Choose File, New and the Project tab. Select an MFC
AppWizard (exe) application, name the project ShowString so that your classnames will match those shown
throughout this chapter, and click OK.

In Step 1 of AppWizard, it doesn't matter much whether you choose SDI or MDI, but MDI will enable you to see
for yourself how little effort is required to have multiple documents open at once. So, choose MDI. Choose U.S.
English, and then click Next.

The ShowString application needs no database support and no compound document support, so click Next on Step
2 and Step 3 without changing anything. In AppWizard's Step 4 dialog box, select a docking toolbar, initial status
bar, printing and print preview, context-sensitive help, and 3D controls, and then click Next. Choose source file
comments and shared DLL, and then click Next. The classnames and filenames are all fine, so click Finish. Figure
8.1 shows the final confirmation dialog box. Click OK.

FIG. 8.1 AppWizard summarizes the design choices for ShowString.
Displaying a String

The ShowString application displays a string that will be kept in the document. Y ou need to add a member variable
to the document class, CShowStringDoc, and add |oading and saving code to the Serialize() function. You can
initialize the string by adding code to OnNewDocument() for the document and, in order to actually display it,
override OnDraw() for the view. Documents and views are introduced in Chapter 4, "Documents and Views."

Member Variableand Serialization Add a private variable to the document and a public function to get the
value by adding these lines to ShowStringDoc.h:

private:
CString string;
publ i c:

CString GetString() {return string;}

The inline function gives other parts of your application a copy of the string to use whenever necessary but makes
it impossible for other parts to change the string.

Next, change the skeleton CShowStringDoc:: Serialize() function provided by AppWizard to look like Listing 8.1.
(Expand CShowsStringDoc in ClassView and double-click Serialize() to edit the code.) Because you used the MFC
CString class, the archive has operators << and >> aready defined, so thisis asimple function to write. It fills the
archive from the string when you are saving the document and fills the string from the archive when you are
loading the document from afile. Chapter 7, "Persistence and File I/O," introduces serialization.

Listing 8.1 SHOWSTRINGDOC.CPP--CShowStringDoc::Serialize()

voi d CShowStri ngDoc: : Serialize(CArchive& ar)
{

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (2 of 16) [7/29/1999 3:46:45 PM]

javascript:popUp('08uvc01.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString
if (ar.lsStoring())

{

ar << string;
}
el se
{ |

ar >> string;
}

}

Initializing the String Whenever a new document is created, you want your application to initialize string to
"Hello, world!". A new document is created when the user chooses File, New. This message is caught by
CShowStringApp (the message map is shown in Listing 8.2, you can seeit yourself by scrolling toward the top of
ShowsString.cpp) and handled by CWinA pp::OnFileNew(). (Message maps and message handlers are discussed in
Chapter 3, "Messages and Commands.") Starter applications generated by AppWizard call OnFileNew() to create a
blank document when they run. OnFileNew() calls the document's OnNewDocument(), which actually initializes
the member variables of the document.

Listing 8.2 SHOWSTRING.CPP--Message Map

BEG N_MESSAGE MAP(CShowSt ri ngApp, CW nApp)

I {{ AFX_NMSG_MAP(CShowSt ri ngApp)

ON_COMVAND(| D_APP_ABQUT, OnAppAbout)
/'l NOTE - The CassWzard will add and renove mappi ng nmacros here.
/] DO NOT EDI T what you see in these bl ocks of generated code!

/'1}} ARX_NMSG_NVAP

/1 Standard fil e-based docunent conmmands

ON_COMVAND(| D_FI LE_NEW CW nApp: : OnFi | eNew)

ON_COWAND(| D_FI LE_OPEN, CW nApp: : OnFi | eOpen)

/'l Standard print setup command

ON_COMVAND(| D_FI LE_PRI NT_SETUP, CW nApp: : OnFi | ePri nt Set up)

END_MESSAGE. MAP()

AppWizard gives you the ssmple OnNewDocument() shown in Listing 8.3. To see yoursin the editor, double-click
OnNewDocument() in ClassView--you may have to expand CshowStringDoc first.

Listing 8.3 SHOWSTRINGDOC.CPP--CShowStringDoc::OnNewDocument()

BOOL CShowSt ri ngDoc: : OnNewDocunent ()

{
i f (!CDocunent:: OnNewDocunent ())
return FALSE;
/1 TODO add reinitialization code here
/1 (SDI documents will reuse this docunent)
return TRUE;
}
Take away the comments and add thislinein their place:
string = "Hello, world!";

(What else could it say, after all?) Leave the call to CDocument::OnNewDocument() because that will handle all

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (3 of 16) [7/29/1999 3:46:45 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString
other work involved in making a new document.

Getting the String Onscreen Asyou learned in Chapter 5, "Drawing on the Screen,” aview's OnDraw() function
Is called whenever that view needs to be drawn, such as when your application isfirst started, resized, or restored
or when awindow that had been covering it is taken away. AppWizard has provided a skeleton, shown in Listing
8.4. To edit this function, expand CShowStringView in ClassView and then double-click OnDraw().

Listing 8.4 SHOWSTRINGVIEW.CPP--CShowStringView::OnDraw()

voi d CShowSt ri ngVi ew. : OnDr aw(CDC* pDC)

{
CShowsSt ri ngDoc* pDoc = CGet Docunent () ;
ASSERT VALI X pDoc) ;
[/ TODO add draw code for native data here
}

OnDraw() takes a pointer to a device context, as discussed in Chapter 5. The device context class, CDC, hasa
member function called DrawText() that draws text onscreen. It is declared like this:

I nt DrawText(const CString& str, LPRECT |pRect, U NT nFormat)

See "Understanding Device Contexts,” ch. 5

The CString to be passed to this function is going to be the string from the document class, which can be accessed
as pDoc->GetString(). The IpRect isthe client rectangle of the view, returned by GetClientRect(). Finaly, nFormat
is the way the string should display; for example, DT_CENTER means that the text should be centered from left to
right within the view. DT_VCENTER means that the text should be centered up and down, but this works only for
single lines of text that are identified with DT_SINGLELINE. Multiple format flags can be combined with |, so
DT_CENTER|DT_VCENTER|DT_SINGLELINE isthe nFormat that you want. The drawing code to be added to
CShowsStringView::OnDraw() looks like this:

CRect rect;
GetCl i ent Rect (&rect);
pDC- >Dr awText (pDoc->Cet String(), & ect, DT_CENTER| DT_VCENTER| DT_SI NGLELI NE) ;

This sets up a CRect and passes its address to GetClientRect(), which sets the CRect to the client area of the view.
DrawText() draws the document's string in the rectangle, centered vertically and horizontally.

At this point, the application should display the string properly. Build and execute it, and you will see something
like Figure 8.2. You have alot of functionality--menus, toolbars, status bar, and so on--but nothing that any other
Windows application doesn't have, yet. Starting with the next section, that changes.

FIG. 8.2 ShowSring starts simply, with the usual greeting.

Building the ShowString Menus

AppWizard creates two menus for you, shown in the ResourceView window in Figure 8.3. IDR_MAINFRAME is
the menu shown when no fileis open; IDR_SHOWSTTY PE is the menu shown when a ShowString document is
open. Noticethat IDR_MAINFRAME has no Window menus and that the File menu is much shorter than the one
on the IDR_SHOWSTTY PE menu, with only New, Open, Print Setup, recent files, and Exit items.

FIG. 8.3 AppWizard creates two menus for ShowString.

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (4 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc02.gif')
javascript:popUp('08uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

Y ou are going to add a menu item to ShowString, so the first decision is where to add it. The user will be able to
edit the string that displays and to set the string's format. Y ou could add a Vaue item to the Edit menu that brings
up asmall dialog box for only the string and then create a Format menu with one item, Appearance, that brings up
the dialog box to set the appearance. The choice you are going to see here, though, isto combine everything into
one dialog box and then put it on a new Tools menu, under the Options item.

NOTE: You may have noticed already that more and more Windows applications are standardizing
Tools, Options as the place for miscellaneous settings.

Do you need to add the item to both menus? No. When there is no document open, there is nowhere to save the
changes made with this dialog box. So only IDR_SHOWSTTY PE needs to have a menu added. Open the menu by
double-clicking it in the ResourceView window. At the far right of the menu, after Help, is an empty menu. Click
it and type & Tools. The Properties dialog box appears; pin it to the background by clicking the pushpin. The
Caption box contains & Tools. The menu at the end becomes the Tools menu, with an empty item underneath it;
another empty menu then appears to the right of the Tools menu, as shown in Figure 8.4.

FIG. 8.4 Adding the Tools menu is easy in the ResourceView window.

Click the new Tools menu and drag it between the View and Window menus, corresponding to the position of
Toolsin products like Developer Studio and Microsoft Word. Next, click the empty sub-item. The Properties
dialog box changes to show the blank properties of thisitem; change the caption to & Options and enter a sensible
prompt, as shown in Figure 8.5. The prompt will be shown on the status bar when the user pauses the mouse over
the menu item or moves the highlight over it with the cursor.

TIP: The & in the Caption edit box precedes the |etter that serves as the mnemonic key for selecting
that menu with the keyboard (for example, Alt+T in the case of Tools). This letter appears underlined
in the menu. There is no further work required on your part. Y ou can opt to select a different
mnemonic key by moving the & so that it precedes a different letter in the menu or menu item name
(for example, T& ools changes the key from T to 0). Y ou should not use the same mnemonic letter for
two menus or for two items on the same menu.

All menu items have aresource ID, and this resource ID is the way the menu items are connected to your code.
Developer Studio will choose a good one for you, but it doesn't appear right away in the Properties dialog box.
Click some other menu item, and then click Options again; you see that the resource ID isID_TOOLS OPTIONS.
Alternatively, press Enter when you are finished, and the highlight moves down to the empty menu item below
Options. Press the up-arrow cursor key to return the highlight to the Options item.

If you'd like to provide an accelerator, like the Ctrl+C for Edit, Copy that the system provides, thisis agood time
to do it. Click the + next to Accelerator in the ResourceView window and then double-click IDR_MAINFRAME,
the only Accelerator table in this application. At aglance, you can see what key combinations are already in use.
Ctrl+O is aready taken, but Ctrl+T isavailable. To connect Ctrl+T to Tools, Options, follow these steps:

FI G. 8.5 The menu command Tools, Options controls everything that Show3tring does.

1. Click the empty line at the bottom of the Accelerator table. If you have closed the Properties dialog box,
bring it back by choosing View, Properties and then pin it in place. (Alternatively, double-click the empty
line to bring up the Properties dialog box.)

2. Click the drop-down list box labeled ID and choose ID_TOOLS OPTIONS from the list, which isin
alphabetical order. (There arealot of entries before ID_TOOLS _OPTIONS; drag the elevator down to
almost the bottom of the list or start typing the resource 1D--by the time you type ID_TO, the highlight will
bein theright place.)

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (5 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc04.gif')
javascript:popUp('08uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

3. Type T in the Key box; then make sure that the Ctrl check box is selected and that the Alt and Shift boxes
are deselected. Alternatively, click the Next Key Typed button and then type Ctrl+T, and the dialog box
will befilled in properly.

4. Click another line in the Accelerator table to commit the changes.
Figure 8.6 shows the Properties dialog box for this accelerator after again clicking the newly entered line.

What happens when the user chooses this new menu item, Tools, Options? A dialog box displays. So, tempting as
it may be to start connecting this menu to code, it makes more sense to build the dialog box first.

Building the ShowString Dialog Boxes

Chapter 2, "Dialogs and Controls," introduces dialog boxes. This section builds on that background. ShowString is
going to have two custom dialog boxes: one brought up by Tools, Options and aso an About dialog box. An About
dialog box has been provided by AppWizard, but it needs to be changed alittle; you build the Options dialog box
from scratch.

FIG. 8.6 Keyboard accelerators are connected to resource IDs.

ShowString's About Dialog Box

Figure 8.7 shows the About dialog box that AppWizard makes for you; it contains the application name and the
current year. To view the About dialog box for ShowString, click the ResourceView tab in the project workspace
window, expand the Dialogs list by clicking the + icon next to the word Dialogs, and then double-click
IDD_ABOUTBOX to bring up the About dialog box resource.

FIG. 8.7 AppWizard makes an About dialog box for you.

Y ou might want to add a company name to your About dialog box. Here's how to add Que Books, as an example.
Click the line of text that reads Copyright© 1998, and it will be surrounded by a selection box. Bring up the
Properties dialog box, if it isn't up. Edit the caption to add Que Books at the end; the changes are reflected
immediately in the dialog box.

TIP: If therulersyou seein Figure 8.7 don't appear when you open IDD_ABOUTBOX in Developer
Studio, you can turn them on by choosing Layout, Guide Settings and then selecting the Rulers and
Guides radio button in the top half of the Guide Settings dialog box.

| decided to add atext string to remind users what book this application is from. Here's how to do that:

1. Sizethe dialog box alittle taller by clicking the whole dialog box to select it, clicking the sizing squarein
the middle of the bottom border, and dragging the bottom border down alittle. (Thisvisua editing is what
gave Visual C++ its name when it first came out.)

2. Inthe floating toolbar called Controls, click the button labeled Aa to get a static control, which means a
piece of text that the user cannot change, perfect for labels like this. Click within the dialog box under the
other text to insert the static text there.

3. In the Properties dialog box, change the caption from Static to Using Visual C++ 6. The box
automatically resizesto fit the text.

4. Hold down the Ctrl key and click the other two static text lines in the dialog box. Choose Layout, Align
Controls, Left, which aligns the edges of the three selected controls. The one you select last stays still, and
the others moveto align with it.

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (6 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc06.gif')
javascript:popUp('08uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

5. Choose Layout, Space Evenly, Down. These menu options can save you a great deal of dragging,
squinting at the screen, and then dragging again.

The About dialog box will resemble Figure 8.8.

FIG. 8.8 In a matter of minutes, you can customize your About dialog box.

TIP: All the Layout menu items are on the Dialog toolbar.

ShowString's Options Dialog Box

The Options dialog box is simple to build. First, make a new dialog box by choosing Insert, Resource and then
double-clicking Dialog. An empty dialog box called Dialogl appears, with an OK button and a Cancel button, as
shown in Figure 8.9.

FIG. 8.9 A new dialog box always has OK and Cancel buttons.

Next, follow these steps to convert the empty dialog box into the Options dialog box:
1. ChangetheID to IDD_OPTIONS and the caption to Options.

2. Inthe floating toolbar called Controls, click the button labeled ab| to get an edit box in which the user can
enter the new value for the string. Click inside the dialog box to place the control and then change the ID to
IDC_OPTIONS STRING. (Control IDs should all start with IDC and then mention the name of their
dialog box and an identifier that is unique to that dialog box.)

3. Drag the sizing squares to resize the edit box as wide as possible.
4. Add a static label above the edit box and change that caption to String:.

Y ou will revisit this dialog box |ater, when adding the appearance capabilities, but for now it's ready to be
connected. It will look like Figure 8.10.

FIG. 8.10 The Options dialog box is the place to change the string.

Making the Menu Work

When the user chooses Tools, Options, the Options dialog box should display. Y ou use ClassWizard to arrange for
one of your functionsto be called when the item is chosen, and then you write the function, which creates an object
of your dialog box class and then displaysiit.

The Dialog Box Class

ClassWizard makes the dialog box class for you. While the window displaying the IDD_OPTIONS dialog box has
focus, choose View, ClassWizard. ClassWizard realizes there is not yet a class that corresponds to this dialog box
and offers to create one, as shown in Figure 8.11.

FIG. 8.11 Create a C++ classto go with the new dialog box.

Leave Create a New Class selected and then click OK. The New Class dialog box, shown in Figure 8.12, appears.
FIG. 8.12 The dialog box class inherits from CDial og.

Fill in the dialog box as follows:

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (7 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc08.gif')
javascript:popUp('08uvc09.gif')
javascript:popUp('08uvc10.gif')
javascript:popUp('08uvc11.gif')
javascript:popUp('08uvc12.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString
1. Choose a sensible name for the class, one that starts with C and contains the word Dialog; this example
uses COptionsDial og.
2. The base class defaults to CDialog, which is perfect for this case.
3. Click OK to create the class.

The ClassWizard dialog box has been waiting behind these other dialog boxes, and now you useit. Click the
Member Variables tab and connect IDC_OPTIONS_STRING to a CString called m_string, just as you connected
controls to member variables of the dialog box class in Chapter 2. Click OK to close ClassWizard.

Perhaps you're curious about what code was created for you when ClassWizard made the class. The header fileis
shown in Listing 8.5.

Listing 8.5 OPTIONSDIALOG.H--Header File for COptionsDialog

/1 OptionsDialog.h : header file

Il

FHEETEEEEE i rirrrrir
/1 COptionsDi al og dial og

cl ass COptionsDi al og : public CD al og

{
/] Construction
publ i c:

COpti onsDi al og(CwWwhd* pParent = NULL); /'l standard constructor
/1 Dialog Data
I 1 {{ AFX_DATA(COpt i onsDi al og)
enum{ DD = | DD _OPTI ONS };
CString m string;
/1}}AFX_DATA
/1 Overrides
/1 CassWzard generated virtual function overrides
I 1 {{ AFX_VI RTUAL(COpt i onsDi al oQ)
prot ect ed:
virtual void DoDat aExchange(CDat aExchange* pDX); /| DDX/ DDV support
/1}}AFX_VI RTUAL
/1 1 nplenentation
pr ot ect ed:
/'l Cenerated nessage map functions
I {{ AFX_M5E COpti onsDi al 0g)
/1 NOTE: The C assWzard wll add nenber functions here
/1}} ARX_NVBG
DECLARE MESSAGE MAP()

b

There are an awful lot of comments here to help ClassWizard find its way around in the file when the time comes
to add more functionality, but there is only one member variable, m_string; one constructor; and one member
function, DoDataExchange(), which gets the control value into the member variable, or vice versa. The sourcefile
isn't much longer; it's shown in Listing 8.6.

Listing 8.6 OPTIONSDIALOG.CPP--Implementation File for COptionsDialog

/1 OptionsDi alog.cpp : inplenentation file

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (8 of 16) [7/29/1999 3:46:46 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

I

#i ncl ude "stdaf x. h"

#i ncl ude "ShowsString. h"

#i ncl ude "OptionsDi al og. h"

#i fdef _DEBUG

#defi ne new DEBUG_NEW

#undef THI S_FI LE

static char THHS FILE[] = __FILE ;

#endi f

FOLEEEEEEE i i bbb rrrrir g

/1 COptionsDi al og dial og

COpti onsDi al og: : COpti onsDi al og(CWhd* pParent /*=NULL*/)
CDi al og(COpti onsDi al og: : | DD, pParent)

/1 {{ AFX_DATA | NI T(COpt i onsDi al og)
mstring = _T("");
/1}}AFX_ DATA INIT

}
voi d COpti onsDi al og: : DoDat aExchange(CDat aExchange* pDX)
{
CDi al og: : DobDat aExchange(pDX) ;
/1 {{ AFX_DATA MAP(COpti onsDi al og)
DDX Text (pDX, | DC_OPTI ONS_STRING mstring);
/1}} AFX_DATA NAP
}

BEG N_MESSAGE _MAP(COpt i onsDi al og, CDi al og)
/1 {{ AFX_NMSG MAP(COpt i onsDi al og)
/1 NOTE: The C assWzard wll add nessage nmap macros here
/1}} AFX_NMSG_NVAP

END_MESSAGE_MAP()

The constructor sets the string to an empty string; this code is surrounded by specia ClassWizard comments that
enable it to add other variables later. The DoDataExchange() function calls DDX_Text() to transfer data from the
control with the resource ID IDC_OPTIONS_STRING to the member variable m_string, or vice versa. This code,
too, is surrounded by ClassWizard comments. Finally, there is an empty message map because COptionsDialog
doesn't catch any messages.

Catching the Message

The next step in building ShowString is to catch the command message sent when the user chooses Tools, Options.
There are seven classes in ShowString: CAboutDlg, CChildFrame, CMainFrame, COptionsDialog,
CShowsStringApp, CShowStringDoc, and CShowStringView. Which one should catch the command? The string
and the options will be saved in the document and displayed in the view, so one of those two classes should handle
the changing of the string. The document owns the private variable and will not let the view change the string
unless you implement a public function to set the string. So, it makes the most sense to have the document catch

the message.

NOTE: Often the hardest part of catching these messages is deciding which class should catch them.
The decision between View and Document is frequently a very difficult one. If the message handler
will need accessto a private member of either class, that's the class to catch the message.

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (9 of 16) [7/29/1999 3:46:46 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

To catch the message, follow these steps:
1. Open ClassWizard (if it isn't already open).
2. Click the Message Maps tab.
3. Select CShowsStringDoc from the Class Name drop-down list box.

4. Select ID_TOOLS OPTIONS from the Object IDs list box on the left, and select COMMAND from the
Messages list box on the right.

5. Click Add Function to add a function to handle this command.
6. The Add Member Function dialog box, shown in Figure 8.13, appears, giving you an op-portunity to
change the function name from the usual one. Do not changeit; just click OK.

FIG. 8.13 ClassWizard suggests a good name for the message-catching function.

TIP: You should almost never change the names that ClassWizard suggests for message catchers. If
you find that you have to (perhaps because the suggested name is too long or conflicts with another
function name in the same object), be sure to choose a name that starts with On. Otherwise the next
developer to work on your project is going to have a very hard time finding the message handlers.

Click Edit Code to close ClassWizard and edit the newly added function. What happened to CShowStringDoc
when you arranged for the ID_TOOLS OPTIONS message to be caught? The new message map in the header file
isshownin Listing 8.7.

Listing 8.7 SHOWSTRINGDOC.H--Message Map for CShowStringDoc

/'l Generated nessage map functions
pr ot ect ed:
/1 {{ AFX_MSGE CShowst ri ngDoc)
af x_nmsg void OnTool sOptions();
/1}} AFX_MSG

DECLARE MESSAGE MAP()
Thisisjust declaring the function. In the source file, ClassWizard changed the message maps shown in Listing 8.8.

Listing 8.8 SHOWSTRINGDOC.CPP--Message Map for CShowStringDoc

BEG N_MESSAGE MAP(CShowSt ri ngDoc, CDocunent)
/1 {{ AFX_NMSG_MAP(CShowsSt ri ngDoc)
ON_COMVAND(| D_TOOLS _OPTI ONS, OnTool sOpti ons)
/1}} AFX_NMSG_NAP

END_MESSAGE_MAP()
This arranges for OnToolsOptions() to be called when the command ID_TOOLS_OPTIONS is sent. ClassWizard
also added a skeleton for OnT ool sOptions():

voi d CShowSt ri ngDoc: : OnTool sOpti ons()

{
/1 TODO. Add your command handl er code here

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (10 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc13.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString
Making the Dialog Box Work

OnToolsOptions() should initialize and display the dialog box and then do something with the value that the user
provided. (This process was first discussed in Chapter 2. Y ou have already connected the edit box to a member
variable, m_string, of the dialog box class. Y ou initialize this member variable before displaying the dialog box
and use it afterwards.

OnToolsOptions(), shown in Listing 8.9, displays the dialog box. Add this code to the empty function Classwizard
generated for you when you arranged to catch the message.

Listing 8.9 SHOWSTRINGDOC.CPP--OnToolsOptions()

voi d CShowSt ri ngDoc: : OnTool sOpti ons()

{
COpti onsDi al og dl g;
dlg.mstring = string;
if (dl g. DoModal () == | DOK)
{
string = dlg. mstring;
Set Modi fi edFl ag();
Updat eAl | Vi ews(NULL) ;
}
}

This code fills the member variable of the dialog box with the document's member variable (ClassWizard added
m_string as a public member variable of COptionsDialog, so the document can change it) and then brings up the
dialog box by calling DoModal(). If the user clicks OK, the member variable of the document changes, the
modified flag is set (so that the user is prompted to save the document on exit), and the view is asked to redraw
itself with acall to UpdateAllViews(). For thisto compile, of course, the compiler must know what a
COptionsDialog is, so add this line at the beginning of ShowStringDoc.cpp:

#i ncl ude "OptionsDi al og. h"

At this point, you can build the application and run it. Choose Tools, Options and change the string. Click OK and
you see the new string in the view. Exit the application; you are asked whether to save thefile. Save it, restart the
application, and open the file again. The default "Hello, world!" document remains open, and the changed

document is open with a different string. The application works, as you can see in Figure 8.14 (the windows are
resized to let them both fit in the figure).

FIG. 8.14 ShowString can change the string, saveit to afile, and reload it.

Adding Appearance Options to the Options Dialog Box

ShowString doesn't have much to do, just demonstrate menus and dialog boxes. However, the only dialog box
control that ShowString usesis an edit box. In this section, you add a set of radio buttons and check boxes to
change the way the string is drawn in the view.

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (11 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc14.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

Changing the Options Dialog Box

It is quite simple to incorporate a full-fledged Font dialog box into an application, but the examplein this section is

going to do something much simpler. A group of radio buttons will give the user a choice of severa colors. One

check box will enable the user to specify that the text should be centered horizontally, and another that the text be

centered vertically. Because these are check boxes, the text can be either, neither, or both.

Open the IDD_OPTIONS dialog box by double-clicking it in the ResourceView window, and then add the radio
buttons by following these steps:

1. Stretch the dialog box taller to make room for the new controls.

2. Click the radio button in the Controls floating toolbar, and then click the Options dialog box to drop the
control.

3. Choose View, Properties and then pin the Properties dialog box in place.

4. Change the resource ID of thefirst radio buttonto IDC_OPTIONS BLACK, and change the caption to

& Black.
5. Select the Group box to indicate that thisis the first of agroup of radio buttons.

6. Add another radio button with resource ID IDC_OPTIONS_RED and & Red as the caption. Do not
select the Group box because the Red radio button doesn't start a new group but is part of the group that
started with the Black radio button.

7. Add athird radio button with resource ID IDC_OPTIONS GREEN and & Green as the caption. Again,

do not select Group.

8. Drag the three radio buttons into a horizontal arrangement, and select all three by clicking on one and then

holding Ctrl while clicking the other two.
9. Choose Layout, Align Controls, Bottom (to even them up).
10. Choose Layout, Space Evenly, Across to space the controls across the dialog box.

Next, add the check boxes by following these steps:

1. Click the check box in the Controls floating toolbar and then click the Options dialog box, dropping a
check box onto it.

2. Change the resource ID of this check box to IDC_OPTIONS HORIZCENTER and the caption to
Center & Horizontally.

3. Select the Group box to indicate the start of a new group after the radio buttons.

4. Drop another check box onto the dialog box asin step 1 and give it the resource ID
IDC_OPTIONS _VERTCENTER and the caption Center & Vertically.

5. Arrange the check boxes under the radio buttons.

6. Click the Group box on the Controls floating toolbar, and then click and drag a group box around the
radio buttons. Change the caption to Text Color.

7. Move the OK and Cancel buttons down to the bottom of the dialog box.

8. Select each horizontal group of controls and use Layout, Center in Dialog, Horizontal to make things
neater.

9. Choose Edit, Select All, and then drag all the controls up toward the top of the dialog box. Shrink the
dialog box to fit around the new controls. It should now resemble Figure 8.15.

FI G. 8.15 The Options dialog box for ShowString has been expanded.

TIP: If you don't recognize the icons on the Controls toolbar, use the Tool Tips. If you hold the cursor

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (12 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc15.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

over any of the toolbar buttons, atip pops up after afew seconds, telling you what control the button
represents.

Finally, set the tab order by choosing Layout, Tab Order and then clicking the controls, in this order:
1. IDC_OPTIONS_STRING

. IDC_OPTIONS BLACK

. IDC_OPTIONS RED

. IDC_OPTIONS_GREEN

. IDC_OPTIONS HORIZCENTER

. IDC_OPTIONS_VERTCENTER

. IDOK

8. IDCANCEL

N O 0o B WDN

Then click away from the dialog box to leave the two static text controls as positions 9 and 10.

Adding Member Variables to the Dialog Box Class

Having added controls to the dialog box, you need to add corresponding member variables to the COptionsDialog
class. Bring up ClassWizard, select the Member Variable tab, and add member variables for each control. Figure
8.16 shows the summary of the member variables created. The check boxes are connected to BOOL variables,
these member variables are TRUE if the box is selected and FALSE if it isn't. The radio buttons are handled
differently. Only the first--the one with the Group box selected in its Properties dialog box--is connected to a
member variable. That integer is a zero-based index that indicates which button is selected. In other words, when
the Black button is selected, m_color is 0; when Red is selected, m color is 1; and when Green is selected, m_color
is2.

FIG. 8.16 Member variablesin the dialog box class are connected to individual controls or the group of radio
buttons.

Adding Member Variables to the Document

The variables to be added to the document are the same ones that were added to the dialog box. Y ou add them to
the CShowsStringDoc class definition in the header file, to OnNewDocument(), and to Serialize(). Add thelinesin
Listing 8.10 at the top of the CShowStringDoc definition in ShowStringDoc.h, replacing the previous definition of
string and GetString(). Make sure that the variables are private and the functions are public.

Listing 8.10 SHOWSTRINGDOC.H--CShowStringDoc Member Variables

private:
CString string;
i nt col or;

BOOL hori zcenter;
BOOL vertcenter;

publ i c:
CString GetString() {return string;}
i nt GetColor() {return color;}

BOOL CetHorizcenter() {return horizcenter;}
BOOL GetVertcenter() {return vertcenter;}

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (13 of 16) [7/29/1999 3:46:46 PM]

javascript:popUp('08uvc16.gif')

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

Aswith string, these are private variables with public get functions but no set functions. All these options should
be serialized; the new Serialize() is shown in Listing 8.11. Change your copy by double-clicking the function name
in ClassView and adding the new code.

Listing 8.11 SHOWSTRINGDOC.CPP--Serialize()

voi d CShowStri ngDoc: : Serialize(CArchive& ar)

{
if (ar.lsStoring())
{ |
ar << string;
ar << color;
ar << horizcenter;
ar << vertcenter;
}
el se
{ |
ar >> string;
ar >> color;
ar >> horizcenter;
ar >> vertcenter;
}
}

Finally, you need to initialize these variables in OnNewDocument(). What are good defaults for these new member
variables? Black text, centered in both directions, was the old behavior, and it makes sense to use it as the defaullt.
The new OnNewDocument() is shown in Listing 8.12.

Listing 8.12 SHOWSTRINGDOC.CPP--OnNewDocument()

BOOL CShowSt ri ngDoc: : OnNewDocunent ()
{

if (!CDocunent:: OnNewDocunent ())

return FALSE;

string = "Hello, world!";

color = 0O; /1 bl ack

hori zcenter = TRUE;

vertcenter = TRUE;

return TRUE;

}

Of course, at the moment, users cannot change these member variables from the defaults. To allow the user to
change the variables, you have to change the function that handles the dialog box.

Changing OnToolsOptions()

The OnToolsOptions() function sets the values of the dialog box member variables from the document member
variables and then displays the dialog box. If the user clicks OK, the document member variables are set from the
dialog box member variables and the view is redrawn. Having just added three member variables to the dialog box
and the document, you have three lines to add before the dialog box displays and then three more to add in the

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (14 of 16) [7/29/1999 3:46:46 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString
block that's called after OK is clicked. The new OnToolsOptions() is shown in Listing 8.13.

Listing 8.13 SHOWSTRINGDOC.CPP--OnToolsOptions()

voi d CShowSt ri ngDoc: : OnTool sOpti ons()
{
COpti onsDi al og dl g;
dlg.mstring = string;
dl g. m col or = col or;
dl g. m hori zcenter = horizcenter;
dl g. mvertcenter = vertcenter;

i f (dl g. DoModal () == | DOK)

{
string = dlg. mstring;
color = dlg. mcol or;
hori zcenter = dlg. mhori zcenter;
vertcenter = dlg. mvertcenter;
Set Modi fi edFl ag() ;
Updat eAl | Vi ews(NULL) ;

}

What happens when the user opens the dialog box and changes the value of a control, say, by deselecting Center
Horizontally? The framework--through Dialog Data Exchange (DDX), as set up by ClassWizard--changes the
value of COptionsDiaog::m_horizcenter to FALSE. This code in OnToolsOptions() changes the value of
CShowsStringDoc::horizcenter to FAL SE. When the user saves the document, Serialize() saves horizcenter. Thisis
all good, but none of this code actually changes the way the view is drawn. That involves OnDraw().

Changing OnDraw()

The single call to DrawText() in OnDraw() becomes a little more complex now. The document member variables
are used to set the view's appearance. Edit OnDraw() by expanding CShowStringView in the ClassView and
double-clicking OnDraw().

The color is set with CDC::SetTextColor() before the call to DrawText(). Y ou should always save the old text
color and restore it when you are finished. The parameter to SetTextColor() isa COLORREF, and you can directly
specify combinations of red, green, and blue as hex numbersin the form 0x00bbggrr, so that, for example,
Ox000000FF is bright red. Most people prefer to use the RGB macro, which takes hex numbers from 0x0 to OxFF,
specifying the amount of each color; bright red is RGB(FF,0,0), for instance. Add the lines shown in Listing 8.14
before the call to DrawText() to set up everything.

Listing 8.14 SHOWSTRINGDOC.CPP--OnDraw() Additions Before DrawText() Call

COLORREF ol dcol or;

switch (pDoc->Cet Col or())

{

case O:
ol dcol or = pDC->Set Text Col or (RGB(0,0,0)); //black
br eak;

case 1:

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (15 of 16) [7/29/1999 3:46:46 PM]

Special Edition Using Visual C++ 6 -- Ch 8 -- Building a Complete Application: ShowString

ol dcol or = pDC- >Set Text Col or (RGB(0xFF, 0,0)); //red
br eak;

case 2:
ol dcol or = pDC- >Set Text Col or (RGB(0, 0xFF, 0)); //green
br eak;

}

Add thisline after the call to DrawText():

pDC- >Set Text Col or (ol dcol or);

There are two approaches to setting the centering flags. The brute-force way isto list the four possibilities (neither,
horizontal, vertical, and both) and have a different DrawText() statement for each. If you were to add other

settings, this would quickly become unworkable. It's better to set up an integer to hold the DrawText() flags and
OR in each flag, if appropriate. Add the lines shown in Listing 8.15 before the call to DrawText().

Listing 8.15 SHOWSTRINGDOC.CPP--OnDraw() Additions After DrawText() Call

int DIflags = O;
if (pDoc->CetHorizcenter())

{
DTfl ags | = DT_CENTER,
}
i f (pDoc->CetVertcenter())
{
DTfl ags | = (DT_VCENTER| DT_SI NGLELI NE) ;
}

The call to DrawText() now uses the DTflags variable:
pDC- >Dr awText (pDoc->Get String(), & ect, DTflags);

Now the settings from the dialog box have made their way to the dialog box class, to the document, and finally to
the view, to actually affect the appearance of the text string. Build and execute ShowString and then try it. Any
surprises? Be sure to change the text, experiment with various combinations of the centering options, and try all
three colors. |

(¢ Previous Chapter R -+ Mext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch08/ch08.htm (16 of 16) [7/29/1999 3:46:46 PM]

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

oue
Special Edition Using Visual C++ 6

(e Previons Chapisr JRC> Next Chaptar

_ Q-

Status Bars and Toolbars

o Working with Toolbars
o Deeting Toolbar Buttons
o Adding Buttons to a Toolbar

o The CToolBar Classs Member Functions
« Working with Status Bars
o Creating aNew Command ID
Creating the Default String
o Adding the ID to the Indicators Array
o Creating the Pane's Command-Update Handler
0 Setting the Status Bar's Appearance
« Working with Rebars

O

Building agood user interface is half the battle of programming a Windows application. Luckily, Visual C++ and its
AppWizard supply an amazing amount of help in creating an application that supports all the expected user-interface
elements, including menus, dialog boxes, toolbars, and status bars. The subjects of menus and dialog boxes are
covered in Chapters 2, "Diaogs and Controls,” and 8, "Building a Complete Application: ShowString." In this
chapter, you learn how to get the most out of toolbars and status bars.

Working with Toolbars

The buttons on atoolbar correspond to commands, just as the items on a menu do. Although you can add a toolbar
to your application with AppWizard, you still need to use alittle programming polish to make things just right. This
is because every application is different and AppWizard can create only the most generally useful toolbar for most
applications. When you create your own toolbars, you will probably want to add or delete buttons to support your
application's unique command set.

For example, when you create a standard AppWizard application with atoolbar, AppWizard creates the tool bar
shown in Figure 9.1. This toolbar provides buttons for the commonly used commands in the File and Edit menus, as

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (1 of 12) [7/29/1999 3:47:01 PM]

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

well as a button for displaying the About dialog box. What if your application doesn't support these commands? It's
up to you to modify the default toolbar to fit your application.

FIG. 9.1 The default toolbar provides buttons for commonly used commands.

Deleting Toolbar Buttons

Create a multiple document interface application with atoolbar by choosing File, New; selecting the Project tab;
highlighting MFC AppWizard (exe); naming the application Tool; and accepting the defaultsin every dialog box. If
you like, you can click the Finish button in step 1 to speed up the process. AppWizard provides a docking toolbar by
default. Build and run the application, and you should see atoolbar of your own, just like Figure 9.1.

Before moving on, play with thistoolbar alittle. On the View menu, you can toggle whether the toolbar is
displayed. Turn it off and then on again. Now click and hold on the toolbar between buttons and pull it down into
the working area of your application. Let it go, and it's afloating palette. Drag it around and drop it at the bottom of
the application or one of the sides--it will dock against any side of the main window. Watch the tracking rectangle
change shape to show you it will dock if you drop it. Drag it back off again so that it's floating and close it by
clicking the small x in the upper-right corner. Bring it back with the View menu and notice that it comes back right
where you left it. All thisfunctionality is yours free from AppWizard and MFC.

The first step in modifying the toolbar is to delete buttons you no longer need. To do this, first select the
ResourceView tab to display your application's resources by clicking on the + next to Tool Resources. Click the +
next to Toolbar and double-click the IDR_MAINFRAME toolbar resource to edit it, as shown in Figure 9.2. (The
Graphics and Colors palettes, shown floating in Figure 9.2, are docked by default. Y ou can move them around by
grabbing the wrinkles at the top.)

FIG. 9.2 Usethe toolbar editor to customize your application's toolbar.

After you have the toolbar editor on the screen, deleting buttonsis as easy as dragging the unwanted buttons from
the toolbar. Place your mouse pointer on the button, hold down the left mouse button, and drag the unwanted button
away from the toolbar. When you release the mouse button, the toolbar button disappears. In the Tool application,
delete all the buttons except the Help button with ayellow question mark. Figure 9.3 shows the edited toolbar with
only the Help button remaining. The single blank button template is only a starting point for the next button you
want to create. If you leave it blank, it doesn't appear in the final toolbar.

FIG. 9.3 This edited toolbar has only a single button left (not counting the blank button template).

Adding Buttons to a Toolbar

Adding buttons to atoolbar is atwo-step process: First you draw the button'sicon, and then you match the button
with its command. To draw a new button, first click the blank button template in the toolbar. The blank button
appears enlarged in the edit window, as shown in Figure 9.4.

FIG. 9.4 Click the button template to open it in the button editor.

Suppose you want to create atoolbar button that draws ared circle in the application's window. Draw ared circle on
the blank button with the Ellipse tool, and you've created the button's icon. Open the properties box and give the
button an appropriate ID, such asID_CIRCLE in this case.

Now you need to define the button's description and Tool Tip. The description appears in the application's status bar.
In this case, a description of "Draws ared circle in the window" might be good. The Tool Tip appears whenever the
user leaves the mouse pointer over the button for a second or two, acting as areminder of the button's purpose. A
Tool Tip of Circlewould be appropriate for the circle button. Type these two text strings into the Prompt box. The

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (2 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc01.gif')
javascript:popUp('09uvc02.gif')
javascript:popUp('09uvc03.gif')
javascript:popUp('09uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars
description comes first, followed by the newline character (\n) and the Tool Tip, as shown in Figure 9.5.

FIG. 9.5 After drawing the button, specify its properties.

Y ou've now defined a command ID for your new toolbar button. Usually, you use the command ID of an existing
menu item already connected to some code. In these cases, simply choose the existing command ID from the
drop-down box, and your work is done. The prompt is taken from the properties of the menu item, and the message
handler has already been arranged for the menu item. Y ou will already be handling the menu item, and that code
will handle the toolbar click, too. In this application, the toolbar button doesn't mirror a menu item, so you will
associate the ID with a message-handler function that MFC automatically calls when the user clicks the button.

To do this, follow these steps:

1. Make sure the button for which you want to create a message handler is selected in the custom toolbar, and
then open ClassWizard.

2. The MFC ClassWizard property sheet appears, with the button's ID already selected (see Figure 9.6). To
add the message-response function, select in the Class Name box the class to which you want to add the
function (the sample application uses the view class).

3. Double-click the COMMAND selection in the M essages box.

4. Accept the function name that MFC suggests in the next message box, and you're all set. Click OK to
finalize your changes.

NOTE: If you haven't defined a message-response function for atoolbar button, or if thereisno
instance of the class that catches the message, MFC disables the button when you run the application.
For example, if the message is caught by the document or view in an MDI application and thereis no
open document, the button is disabled. The sameis true for menu commands--in fact, for all intents and
purposes, toolbar buttons are menu commands.

FIG. 9.6 You can use ClassWizard to catch messages from your toolbar buttons.

NOTE: Ordinarily, toolbar buttons duplicate menu commands, providing a quicker way for the user to
select commonly used commands in the menus. In that case, the menu item and the toolbar button both
represent the exact same command, and you give both the same ID. Then the same message-response
function is called, whether the user selects the command from the menu bar or the toolbar.

If you compile and run the application now, you will see the window shown in Figure 9.7. In the figure, you can see
the new toolbar button, aswell asits Tool Tip and description line. The toolbar looks sparse in this example, but you
can add as many buttons as you like.

Y ou can create as many buttons as you need; just follow the same procedure for each. After you have created the
buttons, you're through with the toolbar resources and ready to write the code that responds to the buttons. For
example, in the previous example, a circle button was added to the toolbar, and a message-response function, called
OnCircle(), was added to the program. MFC calls that message-response function whenever the user clicks the
associated button. However, right now, that function doesn't do anything, as shown in Listing 9.1.

FIG. 9.7 The new toolbar button shows its Tool Tip and description.

Listing 9.1 An Empty Message-Response Function

voi d CTool View.: OnCircl e()

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (3 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc05.gif')
javascript:popUp('09uvc06.gif')
javascript:popUp('09uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

{
/1 TODO Add your command handl er code here

}

Although the circle button is supposed to draw ared circle in the window, you can see that the OnCircle() function
isgoing to need alittle help accomplishing that task. Add the lines shown in Listing 9.2 to the function so that the
circle button will do what it's supposed to do, as shown in Figure 9.8. This drawing code makes a brush, selects it
into the DC, draws an €llipse with it, and then restores the old brush. The details of drawing are discussed in Chapter
5, "Drawing on the Screen."

Listing 9.2 CToolView::OnCircle()

voi d CTool View.: OnCircl e()

{
ClientDC clientDC(this);
CBrush newBr ush(RGB(255, 0,0));
CBrush* ol dBrush = client DC. Sel ect Obj ect (&newBr ush) ;
clientDC. Ellipse(20, 20, 200, 200);
cl i ent DC. Sel ect Obj ect (ol dBrush);
}

The CToolBar Class's Member Functions

In most cases, after you have created your toolbar resource and associated its buttons with the appropriate command
IDs, you don't need to bother any more with the toolbar. The code generated by AppWizard creates the toolbar for
you, and MFC takes care of calling the buttons' response functions for you. However, at times you might want to
change the toolbar's default behavior or appearance in some way. In those cases, you can call on the CToolBar
class's member functions, which are listed in Table 9.1 along with their descriptions. The toolbar is accessible from
the CMainFrame class as the m_wndToolBar member variable. Usually, you change the toolbar behavior in
CMainFrame::OnCreate().

FI G. 9.8 After adding code to OnCircle(), the new toolbar button actually does something.

Table 9.1 Member Functions of the CToolBar Class

]Function ’De@cription
]CommandToI ndex() ’Obtaj ns the index of a button, givenitsID
]Create() ’Creaies the tool bar

]GetButtonI nfo() ’Obtai ns information about a button
]GetButtonStyI &) ’Obtai ns a button's style
]GetButtonText() ’Obtai ns a button's text |abel

]Getl temlD() ’Obtai nsthe ID of abutton, given itsindex

]Getl temRect() ’Obtai ns an item's display rectangle, given its index

]GetTooI BarCitrl() ’Obtai ns areference to the CTool BarCtrl object represented by the CToolBar object
]LoadBitmap() ’ L oads the toolbar's button images

|LoadToolBar()] L oads a toolbar resource

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (4 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

]SetBitmap() ’Sets anew toolbar button bitmap
]SetButtonI nfo() ’Sets abutton's ID, style, and image number
|SetButtons() ’Sets the IDs for the toolbar buttons

]SetButtonStyI &) ’Sets abutton's style
]SetButtonText() ’Sets abutton's text label
]SetHei ght() ’Sets the toolbar's height
]SetSi zes() ’Sets the button sizes

Normally, you don't need to call the toolbar's methods, but you can achieve some unusual results when you do, such
as the extra high toolbar shown in Figure 9.9. (The buttons are the same size, but the toolbar window is bigger.) This
toolbar resulted from a call to the toolbar object's SetHeight() member function. The CToolBar class's member
functions enable you to perform this sort of toolbar trickery, but use them with great caution.

FI G. 9.9 You can use a toolbar object's member functions to change how the toolbar ooks and acts.

Working with Status Bars

Status bars are mostly benign objects that sit at the bottom of your application’'s window, doing whatever MFC
instructs them to do. This consists of displaying command descriptions and the status of various keys on the
keyboard, including the Caps Lock and Scroll Lock keys. In fact, status bars are so mundane from the programmer's
point of view (at least they are in an AppWizard application) that they aren't even represented by a resource that you
can edit like atoolbar. When you tell AppWizard to incorporate a status bar into your application, there's not much
left for you to do.

Or isthere? A status bar, just like atoolbar, must reflect the interface needs of your specific application. For that
reason, the CStatusBar class features a set of methods with which you can customize the status bar's appearance and
operation. Table 9.2 lists the methods along with brief descriptions.

Table 9.2 Methods of the CStatusBar Class

]M ethod Description

]CommandToI ndex() |Obtains an indicator'sindex, given its ID

]Create() ’Creates the status bar

]GetltemID()]Obtai ns an indicator's | D, given its index

]Getl temRect() ’Obtai ns an item's display rectangle, given its index
]GetPaneI nfo() ’Obtaj ns information about an indicator
]GetPaneStyI &) ’Obtai ns an indicator's style

]GetPaneText() ’Obtai ns an indicator's text

]GetStatusBarCtrI 0 ’Obtai ns areference to the CStatusBarCtrl object represented by the CStatusBar object
]Setl ndicators() ’Sets the indicators 1Ds

]SetPaneI nfo() ’Sets the indicators 1Ds, widths, and styles
]SetPaneStyI &)]Sets an indicator's style
]SetPaneText() ’Sets an indicator's text

When you create a status bar as part of an AppWizard application, you see awindow similar to that shown in Figure

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (5 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc09.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

9.10. (To make your own, create a project called Status and accept al the defaults, as you did for the Tool
application.) The status bar has several parts, called panes, that display certain information about the status of the
application and the system. These panes, which are marked in Figure 9.10, include indicators for the Caps L ock,
Num Lock, and Scroll Lock keys, as well as a message area for showing status text and command descriptions. To
see a command description, place your mouse pointer over a button on the toolbar (see Figure 9.11).

The most common way to customize a status bar is to add new panes. To add a pane to a status bar, complete these
steps:

1. Create acommand ID for the new pane.

2. Create a default string for the pane.

3. Add the pane's command ID to the status bar's indicators array.

4. Create a command-update handler for the pane.

FIG. 9.10 The default MFC status bar contains a number of informative panes.

The following sections cover these stepsin detall.

FIG. 9.11 The message area is mainly used for command descriptions.

Creating a New Command ID

This step is easy, thanks to Visual C++'s symbol browser. To add the command ID, start by choosing View,
Resource Symbols. When you do, you see the Resource Symbols dialog box (see Figure 9.12), which displays the
currently defined symbols for your application's resources. Click the New button, and the New Symbol dialog box
appears. Typethenew ID, ID_MYNEWPANE, into the Name box (see Figure 9.13). Usually, you can accept the
value that MFC suggestsfor the ID.

FI G. 9.12 Use the Resource Symbols dialog box to add new command IDs to your application.
FIG. 9.13 Type the new ID's nhame and value into the New Symbol dialog box.

Click the OK and Close buttons to finalize your selections, and your new command ID is defined.

Creating the Default String

Y ou have now defined aresource ID, but it isn't being used. To represent a status bar pane, the ID must have a
default string defined for it. To define the string, first go to the ResourceView window (by clicking the
ResourceView tab in the workspace pane) and double-click the String Table resource to open it in the string table
editor, as shown in Figure 9.14.

Now, choose Insert, New String to open the String Properties dialog box. Type the new pane's command ID
ID_MYNEWPANE into the ID box (or choose it from the drop-down list) and the default string (Default stringin
this case) into the Caption box (see Figure 9.15).

Adding the ID to the Indicators Array

When MFC constructs your status bar, it uses an array of IDs to determine which panesto display and where to
display them. This array of IDsis passed as an argument to the status bar's Setlndicators() member function, which
iscaled in the CMainFrame class's OnCreate() function. You find this array of IDs, shown in Listing 9.3, near the
top of the MainFrm.cpp file. One way to reach these lines in the source code editor isto switch to ClassView,
expand CMainFrame, double-click OnCreate(), and scroll up one page. Alternatively, you could use FileView to
open MainFrm.cpp and scroll down to this code.

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (6 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc10.gif')
javascript:popUp('09uvc11.gif')
javascript:popUp('09uvc12.gif')
javascript:popUp('09uvc13.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

FIG. 9.14 Define the new pane's default string in the string table.
FIG. 9.15 Use the String Properties dialog box to define the new pane's default string.
Listing 9.3 MainFrm.cpp--The Indicator Array

static U NT indicators[] =

{
| D_SEPARATOR, /| status line indicator
| D_| NDI CATOR_CAPS,
| D_I NDI CATOR_NUM
| D_I NDI CATOR_SCRL,
}

To add your new pane to the array, type the pane's ID into the array at the position in which you want it to appear in
the status bar, followed by acomma. (Thefirst pane, ID_SEPARATOR, should always remain in the first position.)
Listing 9.4 shows the indicator array with the new pane added.

Listing 9.4 MainFrm.cpp--The Expanded Indicator Array

static U NT indicators[] =

{
| D SEPARATCR, /1l status line indicator
| D_MYNEWPANE,
| D_I NDI CATOR_CAPS,
| D_| NDI CATOR_NUM
| D_I NDI CATOR_SCRL,
}

Creating the Pane's Command-Update Handler

MFC doesn't automatically enable new panes when it creates the status bar. Instead, you must create a
command-update handler for the new pane and enable the pane yourself. (Y ou first learned about command-update
handlers in Chapter 4, "Messages and Commands.") Also, for most applications, the string displayed in the paneis
calculated on-the-fly--the default string you defined in an earlier step is only a placeholder.

Normally, you use ClassWizard to arrange for messages to be caught, but ClassWizard doesn't help you catch status
bar messages. Y ou must add the handler entries to the message map yourself and then add the code for the handler.
Y ou add entries to the message map in the header file and the map in the source file, and you add them outside the
gpecial AFX_MSG_MAP comments used by ClassWizard.

Double-click CMainFrame in ClassView to open the header file, and scroll to the bottom. Edit the message map so
that it resembles Listing 9.5. When you write your own applications, you will use avariety of function namesto
update status bar panes, but the rest of the declaration will always be the same.

Listing 9.5 MainFrm.h--Message Map

/'l CGenerated nessage map functions
pr ot ect ed:
I 1 {{ AFX_MSGE CMai nFr ane)
af x_nmsg int OnCreat e(LPCREATESTRUCT | pCreateStruct);

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (7 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc14.gif')
javascript:popUp('09uvc15.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

/!l NOTE - the CassWzard wll add and renpbve nenber functions here.
/1 DO NOT EDI T what you see in these bl ocks of generated code!
/1}} AFX_MSG

af x_nmsg voi d OnUpdat eMyNewPane(CCndUl *pCndUl) ;
DECLARE_MESSAGE MAP()

Next, you add the handler to the source message map to associate the command ID with the handler. Open any
CMainFrame function and scroll upwards until you find the message map; then edit it so that it looks like Listing
9.6.

Listing 9.6 MainFrm.cpp--Message Map

BEG N_MESSAGE_MAP(CMvai nFranme, CFraneWid)
/1 {{ AFX_MSG_MAP(CMai nFr ane)
/'l NOTE - the ClassWzard will add and renove mappi ng nacros here.
/1 DO NOT EDI T what you see in these bl ocks of generated code !
ON_WWM _CREATE()
/1}}AFX_NMSG_ VAP
ON_UPDATE_COWAND_UI (| D_MYNEWPANE, OnUpdat eMyNewPane)

END_MESSAGE_MAP()

Y ou have now arranged for the CMainFrame member function OnUpdateMyNewPane() to be called whenever the
status bar pane ID_MY NEWPANE needs to be updated.

Now you're ready to write the new command-update handler. In the handler, you will enable the new pane and set its
contents. Listing 9.7 shows the command-update handler for the new pane; add this code to mainfrm.cpp. Asyou
can see, it uses amember variable called m_paneString. Update handlers should be very quick--the job of making
sure that m_paneString holds the right string should be tackled in afunction that is called less often.

TIP: Command update handlers are discussed in Chapter 3, "Messages and Commands,” in the
"Understanding Command Updates" section. They have to be quick because the system calls them
whenever it refreshes the display.

Listing 9.7 CMainFrame::OnUpdateMyNewPane()

voi d CMai nFrane: : OnUpdat eMyNewPane(CCrdUl *pCndUl)

{
pCndUl - >Enabl e() ;

pCndUl - >Set Text (m _paneStri ng);
}

Setting the Status Bar's Appearance

To add the last touch to your status bar demonstration application, you will want away to set m_paneString. To
initialize it, double-click on the CMainFrame constructor to edit it, and add this line:

m paneString = "Default string”;

The value you entered in the string table is only to assure Visual Studio that the resource ID you created isin use.
Right-click CMainFrame in ClassView and choose Add Member Variable to add m_paneString as a private member
variable. The type should be CString.

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (8 of 12) [7/29/1999 3:47:01 PM]

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

To set up the status bar for the first time, add these lines to CMainFrame::OnCreate(), just before the return
Statement:

Cd ientDC dc(this);

SI ZE size = dc. Get Text Ext ent (m _paneString);

I nt index = mwndSt at usBar. CommandTol ndex (| D_MYNEWPANE) ;

m wndSt at usBar . Set Panel nf o(i ndex, | D_MYNEWPANE, SBPS POPQUT, si ze.cX);

These lines set the text string and the size of the pane. Y ou set the size of the pane with a call to SetPanelnfo(),
which needs the index of the pane and the new size. CommandTolndex() obtains the index of the pane, and
GetTextExtent() obtains the size. As a nice touch, the call to SetPanelnfo() uses the SBPS_POPOUT style to create
a pane that seemsto stick out from the status bar, rather than be indented.

The user will change the string by making a menu selection. Open the IDR_STATUSTY PE menu in the resource
editor and add a Change String item to the File menu. (Working with menus is discussed for the first time in Chapter
8.) Let Developer Studio assign it theresource ID ID_FILE CHANGESTRING.

Open ClassWizard and add a handler for this command,; it should be caught by CMainFrame because that's where
the m_paneString variable is kept. ClassWizard offersto call the handler OnFileChangestring(), and you should
accept this name. Click OK twice to close ClassWizard.

Insert a new dialog box into the application and call it IDD_PANEDL G. The title should be Change Pane String.
Add asingle edit box, stretched the full width of the dialog box, and leave the ID as IDC_EDIT1. Add a static text
item just above the edit box with the caption New String:. With the dialog box open in the resource editor, open
ClassWizard. Create anew class for the dialog box called CPaneDlg, and associate the edit control, IDC_EDIT1,
with a CString member variable of the dialog class called m_paneString.

TIP: Adding dialog boxes to applications and associating them with classes are discussed in more
depth in several earlier chapters, including Chapters 2 and 8.

Switch to ClassView, expand CMainFrame, and double-click OnFileChangeString() to edit it. Add the code shown
in Listing 9.8.

Listing 9.8 CMainFrame::OnFileChangestring()

voi d CMai nFrane: : OnFi | eChangestring()
{
CPaneDl g di al og(this);
di al og. m paneString = m paneString;
int result = dial og. DoModal () ;
i f (result == | DOK)
{
m paneString = di al og. m paneStri ng;
Cd ientDC dc(this);
SI ZE size = dc. Get Text Extent (m _paneStri ng);
I nt index = mwndSt at usBar. CommandTol ndex(| D_MYNEWPANE) ;
m wndSt at usBar . Set Panel nf o(i ndex,
| D MYNEWPANE, SBPS_ POPQUT, size. cX);

}

This code displays the dialog box, and, if the user exits the dialog box by clicking OK, changes the text string and
resets the size of the pane. The code is very similar to the lines you added to OnCreate(). Scroll up to the top of

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (9 of 12) [7/29/1999 3:47:01 PM]

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars
MainFrm.cpp and add thisline:
#i ncl ude "panedl g. h"

Thistells the compiler what the CPaneDIg classis. Build and run the Status application, and you should see the
window shown in Figure 9.16. Asyou can see, the status bar contains an extra panel displaying the text Default
string. If you choose File, Change String, a dialog box appears into which you can type a new string for the panel.
When you exit the dialog box viathe OK button, the text appears in the new panel, and the panel resizesitself to
accommodate the new string (see Figure 9.17).

FIG. 9.16 The Status Bar Demo application shows how to add and manage a status bar panel.

Working with Rebars

Rebars are toolbars that contain controls other than toolbar buttons. It was possible to add other controls to normal
toolbars in the past, but difficult. With rebars, it's simple.

Start by using AppWizard to make a project call ReBar. Accept all the defaults on each step, or click Finish on step
1 to speed the process a little. When the project is generated, double-click CMainFrame in ClassView to edit the
header file. This frame holds the open documents and is where a classic toolbar goes. The rebar for this sample will
go here, too. Add the rebar as a public member variable:

CReBar m rebar;

FIG. 9.17 The panel resizesitself to fit the new string.

In this sample application, you will add a check box to the bar--you can add any kind of control at all. A check box,
aradio button, and a command button (like the OK or Cancel button on adialog) are all represented by the CButton
class, with dlightly different styles. Add the check box to the header file right after the rebar, like this:

CButt on m check;

Y ou saw in the previous section that an application's toolbar is created and initialized in the OnCreate() function of
the mainframe class. The sameistrue for rebars. Expand CMainFrame in ClassView, and double-click OnCreate()
to edit it. Add these lines just before the final return statement:

if (!mrebar.Create(this))

{
TRACEO("Failed to create rebar\n");

return -1; /] fail to create

}

The check box control will need aresource ID. When you create a control with the dialog editor, the name you give
the control is automatically associated with a number. This control will be created in code, so you will haveto
specify the resource ID yourself, as you did for the new pane in the status bar earlier in this chapter. Choose View,
Resource Symbols and click the New button. Type the name IDC_CHECK and accept the number suggested. This
adds aline to resource.h, defining IDC_CHECK, and assures you that other controls will not reuse this resource ID.

Back in CMainFrame::OnCreate(), add these lines to create the check box (note the styles carefully):

if (!'mcheck. Create("Check Here",
W5 _CHI LD| W5_VI SI BLE| BS_AUTOCHECKBOX,
CRect (0, 0, 20, 20), this, I DC CHECK))

TRACEO("Fail ed to create checkbox\n");
return -1; /]l fail to create

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (10 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc16.gif')
javascript:popUp('09uvc17.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

}

Finally, add thisline to add a band containing the check box control to the rebar:

m r ebar . AddBar (&m check, "On The Bar", NULL,
RBBS BREAK | RBBS_GRI PPERALWAYS) ;

AddBar() takes four parameters: a pointer to the control that will be added, some text to put next to it, a pointer to a
bitmap to use for the background image on the rebar, and arebar style, made by combining any of these style flags:

« RBBS BREAK putsthe band on anew line, even if there'sroom for it at the end of an existing line.
« RBBS _CHILDEDGE puts the band against a child window of the frame.

« RBBS FIXEDBMP prevents moving the bitmap if the band is resized by the user.

« RBBS FIXEDSIZE prevents the user from resizing the band.

« RBBS GRIPPERALWAY S guarantees sizing wrinkles are present.

« RBBS HIDDEN hides the band.

« RBBS NOGRIPPER suppresses sizing wrinkles.

« RBBS NOVERT hides the band when the rebar is vertical.

« RBBS VARIABLEHEIGHT enables the band to be resized by the rebar.

At this point, you can build the project and run it. Y ou should see your rebar, as in Figure 9.18. The check box
works in that you can select and deselect it, but nothing happens when you do.

F1G. 9.18 Therebar contains a check box.

To react when the user clicks the button, you need to catch the message and do something based on the message.
The simplest thing to do is change what is drawn in the view's OnDraw(), so the view should catch the message.
Double click CRebarView in ClassView to edit the header file, and scroll to the message map. Between the closing
AFX_MSG and the DECLARE_MESSAGE_MAP, add thisline:

af x_nsg void Ondick();
Expand CRebarView in ClassView and double-click OnDraw(), which you will edit in amoment. After it, add this
function:

voi d CRebarView. : Ond i ck()
{

}

This causes the view to redraw whenever the user selects or deselects the check box. Scroll up in the file until you
find the message map, and add (after the three entries related to printing) this line:

ON_ BN _CLI CKED(| DC_CHECK, Ondl i ck)

At the top of thefile, after the other include statements, add this one:
#i ncl ude "mai nFrm h"

| nval i dat e();

Now add these lines to OnDraw() in place of the TODO comment:

CString nmessage,;
if (((Cvai nFrane*) (Af xGet App() - >m pMai nWhd)) - >m check. Get Check())

nessage = "The box is checked";
el se
nmessage = "The box is not checked";

pDC- >Text Qut (20, 20, nessage) ;

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (11 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc18.gif')

Special Edition Using Visual C++ 6 -- Ch 9 -- Status Bars and Toolbars

Theif statement obtains a pointer to the main window, casts it to a CMainFrame*, and asks the check box whether it
is selected. Then the message is set appropriately.

Build the project and run it. Asyou select and deselect the check box, you should see the message change, asin
Figure 9.19.

FIG. 9.19 Clicking the check box changes the view.

| ¢ Previous ['.haptf:r-' (5 Next Chapter)

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch09/ch09.htm (12 of 12) [7/29/1999 3:47:01 PM]

javascript:popUp('09uvc19.gif')

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

oue
Special Edition Using Visual C++ 6

{¢ Previous Chapter JER(-> Next Chapter

- 10 -

Common Controls

o The Progress Bar Control

o Creating the Progress Bar

o Initializing the Progress Bar

o Manipulating the Progress Bar
o The Slider Control

o Creating the Trackbar

o Initializing the Trackbar

o Manipulating the Slider

e The Up-Down Control

o Creating the Up-Down Control

« Thelmage List Control
o Creating the Image List
o Initializing the Image List
o Thelist View Control
o Creating the List View
0 Creating the List View's Columns
0 Creating the List View's Items
o Manipulating the List View

e TheTreeView Control
o Creating the Tree View
o Creating the Tree View's ltems

0 Manipulating the Tree View
« TheRich Edit Control
0 Creating the Rich Edit Control
o Initializing the Rich Edit Control

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (1 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls
o Manipulating the Rich Edit Control
« |P Address Control
« The Date Picker Control
« Month Calendar Control
« Scrolling the View

AsaWindows user, you're accustomed to seeing controls such as buttons, list boxes, menus, and edit boxes. As
Windows devel oped, however, Microsoft noticed that developers routinely create other types of controlsin their
programs: toolbars, status bars, progress bars, tree views, and others. To make life easier for Windows programmers,
Microsoft included these popular controls as part of the operating environment of Windows 95 (as well as later versions
of Windows NT and then Windows 98). Now Windows programmers no longer need to create from scratch their own
versions of these controls. This chapter introduces you to many of the 32-bit Windows common controls. The tool bar
and status bar controls are covered in Chapter 9, "Status Bars and Toolbars," and property sheets are covered in Chapter
12, "Property Pages and Sheets."

This chapter's sample program is called Common. It demonstrates nine of the Windows 95 common controls:. the
progress bar, slider, up-down, list view, tree view, rich edit, | P address, date picker, and month calendar controls, all of
which are shown in Figure 10.1. In the following sections, you learn the basics of creating and using these controlsin
your own applications.

FIG. 10.1 The Common sample application demonstrates nine Windows 95 common controls.

To make Common, create a new project with AppWizard and name it Common. Choose a single-document interface
(SDI) application in Step 1 and accept all the defaults until Step 6. Drop down the Base Class box and choose
CscrollView from the list. This ensures that users can see al the controlsin the view, even if they have to scroll to do
so. Click Finish and then OK to complete the process.

The controls themselves are declared as data members of the view class. Double-click CCommonView in ClassView to
edit the header file and add the linesin Listing 10.1 in the Attributes section. As you can see, the progress bar is an
object of the CProgressCirl class. It's discussed in the next section, and the other controls are discussed in later sections
of this chapter.

Listing 10.1 CommonView.h--Declaring the Controls

pr ot ect ed:

/| Progress Bar
CProgressCirl m progressBar;

/'l Trackbar or Slider
CSliderCrl mtrackbar;
BOOL mti ner;

/'l Up-Down or Spinner
CSpi nButtonCtrl m upDown;
CEdit m buddyEdit;

/1l List View
CListCrl mlistView,
Cl mageLi st m snal | | magelLi st ;
Cl mageLi st m_| ar gel magelLi st ;
CButton m smal | Butt on;
CButton m_| argeButton;
CButton m|listButton;
CButton m reportButton;

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (2 of 26) [7/29/1999 3:47:58 PM]

javascript:popUp('10uvc01.gif')

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

/] Tree View
CTreeCtrl mtreeView,
Cl mageLi st m treel magelLi st;
/1 R ch Edit
CRichEditCrl mrichEdit;
CButt on m bol dButt on;
CButton m| eftButton;
CButton m cent erButton;
CButton mright Button;
[/ 1P Address
Cl PAddressCtrl m_i paddress;
/| Date Picker
CDat eTi meCtrl m dat e;
/1 NMbonth Cal endar

Cvont hCal Ctrl m nont h;

Expand the CCommonView class. Double-click CCommonView::OnDraw() in ClassView and replace the TODO
comment with these lines:

pDC- >Text Qut (20, 22, "Progress Bar Control");
pDC- >Text Qut (270, 22, "Trackbar Control:");

pDC- >Text Qut (20, 102, "Up-Down Control");

pDC- >Text Qut (160, 102, "List View Control");

pDC- >Text Qut (20, 240, "Tree View Control ");

pDC- >Text Qut (180, 240, "Rich Edit Control");

pDC- >Text Qut (470, 22, "IP Address Control");

pDC- >Text Qut (470, 102, "Date Picker Control");
pDC- >Text Qut (470, 240, "Month Cal endar Control");

These label the controls that you will add to CCommonView in this chapter.

The Progress Bar Control

The common control that's probably easiest to use is the progress bar, which is nothing more than a rectangle that
slowly fillsin with colored blocks. The more colored blocks that are filled in, the closer the task isto being complete.
When the progress bar is completely filled in, the task associated with the progress bar is also complete. Y ou might use
aprogress bar to show the status of a sorting operation or to give the user visual feedback about alarge file that's being
loaded.

Creating the Progress Bar

Before you can use a progress bar, you must create it. Often in an MFC program, the controls are created as part of a
dialog box. However, Common displays its controls in the application's main window, the view of this single-document
interface (SDI) application. Documents and views are introduced in Chapter 4, "Documents and Views." All the
controls are created in the view class OnCreate() function, which responds to the WM_CREATE Windows message.
To set up this function, right-click CCommonView in ClassView and choose Add Windows Message Handler. Choose
WM_CREATE from the list on the left and click Add and Edit. Add thislinein place of the TODO comment:

Cr eat eProgressBar () ;

Right-click CCommonView in ClassView again and this time choose Add Member Function. Enter void for the
Function Type and enter CreateProgressBar () for the Function Declaration. L eave the access as Public. Click OK to
add the function; then add the code in Listing 10.2.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (3 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

Listing 10.2 CommonView.cpp--CCommonView::CreateProgressBar()

voi d CCommonVi ew. : Cr eat eProgressBar ()

{
m _progressBar. Create(Ws_CH LD | W5 VI SI BLE | W5_BORDER,
CRect (20, 40, 250, 80), this, |DC _PROGRESSBAR);
m _pr ogr essBar . Set Range(1, 100);
m _pr ogr essBar . Set St ep(10) ;
m _pr ogr essBar . Set Pos(50) ;
mtimer = FALSE;
}

CreateProgressBar() first creates the progress bar control by calling the control's Create() function. This function's four
arguments are the control's style flags, the control's size (as a CRect object), a pointer to the control's parent window,
and the control's ID. Theresource ID, IDC_PROGRESSBAR, is added by hand. To add resource symbols to your own
applications, choose View, Resource Symbols and click the New button. Type in aresource ID Name, such as
IDC_PROGRESSBAR, and accept the default Value Visual Studio provides.

The style constants are the same constants that you use for creating any type of window (a control is nothing more than
aspecial kind of window, after al). In this case, you need at |east the following:

e WS CHILD Indicatesthat the control is a child window
« WS VISIBLE Ensuresthat the user can see the control

The WS _BORDER is a nice addition because it adds a dark border around the control, setting it off from the rest of the
window.

Initializing the Progress Bar

To initialize the control, CCommonView::CreateProgressBar() calls SetRange(), SetStep(), and SetPos(). Because the
range and the step rate are related, a control with arange of 1-10 and a step rate of 1 works amost identically to a
control with arange of 1-100 and a step rate of 10.

When this sample application starts, the progress bar is already half filled with colored blocks. (Thisis purely for
aesthetic reasons. Usually aprogress bar beginsitslife empty.) It's half full because CreateProgressBar() calls SetPos()
with the value of 50, which is the midpoint of the control's range.

Manipulating the Progress Bar

Normally you update a progress bar as along task moves toward completion. In this sample, you will fake it by using a
timer. When the user clicksin the background of the view, start atimer that generates WM_TIMER messages
periodically. Catch these messages and advance the progress bar. Here's what to do:

1. Open ClassWizard. Make sure that CCommonView is selected in the upper-right drop- down box.

2. Scroll most of the way through the list box on the right until you find WM_LBUTTONDOWN, the message
generated when the user clicks on the view. Select it.

3. Click Add Function; then click Edit Code.
4. Edit OnLButtonDown() so that it looks like this:

voi d CComonVi ew. : OnLBut t onDown(Ul NT nFl ags, CPoi nt point)
{

if (mtimer)

{
KillTimer(1);

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (4 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls
mtimer = FALSE;

}

el se

{
Set Ti mer (1, 500, NULL);
mtinmer = TRUE

}

CVi ew. : OnLBut t onDown(nFl ags, point);
}

This code enables users to turn the timer on or off with a click. The parameter of 500 in the SetTimer call isthe number
of milliseconds between WM_TIMER messages: Thistimer will send a message twice a second.

5. In case atimer is still going when the view closes, you should override OnDestroy() to kill the timer.
Right-click CCommonView in ClassView yet again and choose Add Windows Message Handler. Select
WM_DESTROY and click Add and Edit. Replace the TODO comment with thisline:

KillTimer(1);
6. Now, catch the timer messages. Open ClassWizard and, as before, scroll through the list of messagesin the far
right list box. WM_TIMER is the second-to-last message in the alphabetic list, so drag the elevator all the way to
the bottom and select WM_TIMER. Click Add Function and then click Edit Code. Replace the TODO comment
with thisline:

m progressBar. Steplt();
The Steplt() function increments the progress bar control's value by the step rate, causing new blocks to be displayed in

the control as the control's value setting counts upward. When the control reaches its maximum, it automatically starts
over.

NOT E:otice that no CProgressCtrl member functions control the size or number of blocks that will fit into
the control. These attributes are indirectly controlled by the size of the control.

Build Common and execute it to see the progress bar in action. Be sure to try stopping the timer as well as starting it.

The Slider Control

Many timesin a program you might need the user to enter a value within a specific range. For this sort of task, you use
MFC's CSliderCitrl classto create aslider (also called trackbar) control. For example, suppose you need the user to
enter a percentage. In this case, you want the user to enter values only in the range of 0-100. Other values would be
invalid and could cause problemsin your program.

By using the slider control, you can force the user to enter avalue in the specified range. Although the user can
accidentally enter awrong value (a value that doesn't accomplish what the user wants to do), thereis no way to enter an
invalid value (one that brings your program crashing down like a stone wall in an earthquake).

For a percentage, you create a slider control with a minimum value of 0 and a maximum value of 100. Moreover, to
make the control easier to position, you might want to place tick marks at each setting that's a multiple of 10, providing
11 tick marksin all (including the one at 0). Common creates exactly this type of dlider.

To use adlider, the user clicks the slider's slot. This moves the slider forward or backward, and often the selected value
appears near the control. When a dlider has the focus, the user can also control it with the Up and Down arrow keys and
the Page Up and Page Down keys.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (5 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

Creating the Trackbar

Y ou are going to need a resource symbol for the trackbar control, so just as you did for the progress bar, choose View,
Resource Symbols and click New. Enter IDC_TRACKBAR for the resource ID Name and accept the suggested Value.
In CCommonView::OnCreate(), add a call to CreateTrackbar(). Then add the new member function as you added
CreateProgressBar() and typein the codein Listing 10.3.

Listing 10.3 CommonView.cpp--CCommonView::CreateTrackBar()

voi d CCommonVi ew. : Cr eat eTr ackbar ()

{
m trackbar. Create(Ws_CH LD | W5_VI SIBLE | W5_BORDER |
TBS_AUTOTI CKS | TBS BOTH | TBS_ HORZ,
CRect (270, 40, 450, 80), this, |DC TRACKBAR);
m trackbar. Set Range(0, 100, TRUE);
m trackbar. Set Ti cFreq(10);
m trackbar. Set Li neSi ze(1);
m t r ackbar . Set PageSi ze(10) ;
}

Aswith the progress bar, the first step is to create the slider control by calling its Create() member function. This
function's four arguments are the control's style flags, the control's size (as a CRect object), a pointer to the control's
parent window, and the control's ID. The style constants include the same constants that you would use for creating any
type of window, with the addition of special styles used with sliders. Table 10.1 lists these special styles.

Table 10.1 Slider Styles

|Sty|e ’Description

|TBS_AUTOTI CKS ’Enablesthe dider to automatically draw its tick marks
|TBS_BOTH ’Draws tick marks on both sides of the slider
|TBS_BOTTOM ’Dravvs tick marks on the bottom of a horizontal slider
|TBS_ENABLESELRANGE ’Enableﬁ adlider to display a subrange of values
|TBS_HORZ ’Draws the slider horizontally

|TBS_L EFT Draws tick marks on the left side of avertical slider
|TBS_NOTICKS Draws a dlider with no tick marks

|TBS_RI GHT ’Dravvs tick marks on the right side of avertical slider
|TBS_TOP ’Draws tick marks on the top of a horizontal slider
|TBS_VERT ’Draws avertical dider

Initializing the Trackbar

Usually, when you create a slider control, you want to set the control's range and tick frequency. If the user is going to
use the control from the keyboard, you also need to set the control's line and page size. In Common, the program
initializes the trackbar with calls to SetRange(), SetTicFreq(), SetLineSize(), and SetPageSize(), asyou saw in Listing
10.3. The call to SetRange() sets the trackbar's minimum and maximum values to 0 and 100. The arguments are the
minimum value, the maximum value, and a Boolean value indicating whether the slider should redraw itself after
setting the range. Notice that the tick frequency and page size are then set to be the same. Thisisn't absolutely required,
but it's a very good idea. Most people assume that the tick marks indicate the size of a page, and you will confuse your

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (6 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

usersif the tick marks are more or less than a page apart.

A number of other functions can change the size of your dlider, the size of the thumb, the current selection, and more.
Y ou can find al the details in the online documentation.

Manipulating the Slider

A dlider isreally just a specia scrollbar control. When the user moves the slider, the control generates WM_HSCROLL
messages, which you will arrange to catch. Open ClassWizard, select the Message Maps tab, make sure
CCommonView is selected in the upper-right box, and find WM_HSCROLL in thelist on the right. Select it, click Add
Function, and then click Edit Code. Typein the codein Listing 10.4.

Listing 10.4 CommonView.cpp--CCommonView::OnHScroll()

voi d CConmonVi ew. : OnHScr ol | (Ul NT nSBCode, Ul NT nPos, CScroll Bar* pScroll Bar)
{

CSliderCrl* slider = (CSliderCrl*)pScroll Bar;

int position = slider->CGetPos();

char s[10];

wsprintf(s, "%l ", position);

ClientDC clientDC(this);

client DC. Text Qut (390, 22, s);

CScrol I Vi ew. : OnHScr ol | (nSBCode, nPos, pScroll Bar);

}
Looking at this code, you see that the control itself doesn't display the current position as a number nearby; it's the
OnHScroll() function that displays the number. Here's how it works:

1. OnHScroll()'s fourth parameter is a pointer to the scroll object that generated the WM _HSCROL L message.

2. The function first casts this pointer to a CSliderCtrl pointer; then it gets the current position of the trackbar's
slider by calling the CSliderCtrl member function GetPos().

3. After the program has the dlider's position, it converts the integer to a string and displays that string in the
window with TextOut().

To learn how to make text appear onscreen, refer to Chapter 5, "Drawing on the Screen.” Before moving on to the next
control, build Common and test it. Click around on the slider and watch the number change.

TIP: If you have Windows set to Large Fonts (perhaps because you have a high screen resolution), the
current slider value might not be displayed in quite the right place because the string "Trackbar Control"
takes up more space on the screen with large fonts. If this happens, simply change the TextOut call to
write the current dlider value allittle farther to the right.

The Up-Down Control

The trackbar control isn't the only way you can get avalue in a predetermined range from the user. If you don't need the
trackbar for visual feedback, you can use an up-down control, which is little more than a couple of arrows that the user
clicksto increase or decrease the control's setting. Typically, an edit control next to the up-down control, called a buddy
edit control or just a buddy control, displays the value to the user.

In the Common application, you can change the setting of the up-down control by clicking either of its arrows. When
you do, the value in the attached edit box changes, indicating the up-down control's current setting. After the control
has the focus, you can aso change its value by pressing your keyboard's Up and Down arrow keys.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (7 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls
Creating the Up-Down Control

Add another call to CCommonView::OnCreate(), thistime calling it CreateUpDownCtrl(). Add the member function
and the code in Listing 10.5. Also add resource symbolsfor IDC_BUDDYEDIT and IDC_UPDOWN.

Listing 10.5 CommonView.cpp--CCommonView::CreateUpDownCitrl()

voi d CCommonVi ew. : Cr eat eUpDownCtrl ()

{
m buddyEdit. Create(Ws CHILD | W5 _VISIBLE | W5 BORDER,
CRect (50, 120, 110, 160), this, |1 DC BUDDYED T);
m _upDown. Create(Ws_CH LD | W5 VI SIBLE | W5_BORDER |
UDS_ALI GNRI GHT | UDS_SETBUDDYI NT | UDS_ARRONKEYS,
CRect (0, 0, 0, 0), this, |1DC _UPDOM) :;
m_upDown. Set Buddy(&m buddyEdi t);
m upDown. Set Range(1, 100);
m_upDown. Set Pos(50) ;
}

The program creates the up-down control by first creating the associated buddy control to which the up-down control
communicates its current value. In most cases, including this one, the buddy control is an edit box, created by calling
the CEdit class's Create() member function. This function's four arguments are the control's style flags, the control's
size, apointer to the control's parent window, and the control's ID. If you recall the control declarations, m_buddyEdit
isan object of the CEdit class.

Now that the program has created the buddy control, it can create the up-down control in much the same way, by
calling the object's Create() member function. As you can probably guess by now, this function's four arguments are the
control's style flags, the control's size, a pointer to the control's parent window, and the control’'s ID. Aswith most
controls, the style constants include the same constants that you use for creating any type of window. The
CSpinButtonCitrl class, of which m_upDown is an object, however, defines special stylesto be used with up-down
controls. Table 10.2 lists these special styles.

Table 10.2 Up-Down Control Styles

|Styles ’D&ecription

|UDS_AL IGNLEFT]Places the up-down control on the |eft edge of the buddy control

|UDS_AL IGNRIGHT ’Place; the up-down control on the right edge of the buddy control

|UDS_A RROWKEYS |Enablesthe user to change the control's values by using the keyboard's Up and Down arrow

keys
|UDS_A UTOBUDDY]M akes the previous window the buddy control
|UDS_HORZ ’Creates ahorizonta up-down control

|UDS_NOTHOUSANDS]EI iminates separators between each set of three digits
|U DS SETBUDDYINT ’Di splays the control's value in the buddy control
|UDS_WRAP Causes the control's value to wrap around to its minimum when the maximum is reached,

and vice versa

This chapter's sample application establishes the up-down control with calls to SetBuddy(), SetRange(), and SetPos().
Thanksto the UDS_SETBUDDY INT flag passed to Create() and the call to the control's SetBuddy() member function,
Common doesn't need to do anything else for the control's value to appear on the screen. The control automatically

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (8 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

handlesits buddy. Try building and testing now.

Y ou might want up-down controls that move faster or slower than in this sample or that use hex numbers rather than
base-10 numbers. Look at the member functions of this control in the online documentation, and you will see how to do
that.

The Image List Control

Often you need to use images that are related in some way. For example, your application might have a toolbar with
many command buttons, each of which uses a bitmap for itsicon. In a case like this, it would be great to have some sort
of program object that could not only hold the bitmaps but also organize them so that they can be accessed easily.
That's exactly what an image list control does for you--it stores alist of related images. Y ou can use the images any
way that you seefit in your program. Several common controls rely on image lists. These controls include the
following:

o Listview controls

« Treeview controls

« Property pages

e Toolbars

Y ou will undoubtedly come up with many other uses for image lists. Y ou might, for example, have an animation
sequence that you'd like to display in awindow. Animage list is the perfect storage place for the frames that make up
an animation, because you can easily access any frame just by using an index.

If the word index makes you think of arrays, you're beginning to understand how an image list stores images. An image
list isvery similar to an array that holds pictures rather than integers or floating-point numbers. Just as with an array,
you initialize each "element" of an image list and thereafter can access any part of the "array” by using an index.

Y ou won't, however, see an image list control in your running application in the same way that you can see a status bar
or aprogress bar control. Thisis because (again, similar to an array) an image list is only a storage structure for
pictures. Y ou can display the images stored in an image list, but you can't display the image list itself. Figure 10.2
shows how an image list is organized.

FIG. 10.2 Animage list is much like an array of pictures.

Creating the Image List

In the Common Controls App application, image lists are used with the list view and tree view controls, so the image
lists for the controls are created in the CreatelistView() and CreateTreeView() local member functions and are called
from CCommonView::OnCreate(). Just as with the other controls, add calls to these functions to OnCreate() and then
add the functionsto the class. Y ou will see the full code for those functions shortly, but because they are long, this
section presents the parts that are relevant to the image list.

A list view uses two image lists: one for small images and the other for large ones. The member variables for these lists
have already been added to the class, so start coding CreateListView() with acall to each list's Create() member
function, likethis:

m snmal | | magelLi st. Create(16, 16, FALSE, 1, 0);
m | ar gel magelLi st. Create(32, 32, FALSE, 1, 0);
The Create() function's five arguments are

« Thewidth of the picturesin the control

« The height of the pictures

« A Boolean value indicating whether the images contain a mask

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (9 of 26) [7/29/1999 3:47:58 PM]

javascript:popUp('03fig02.gif')

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

o Thenumber of images initialy in the list
« The number of images by which the list can dynamically grow

Thislast valueis 0 to indicate that the list isn't allowed to grow during runtime. The Create() function is overloaded in
the Clmagel.ist class so that you can create image listsin various ways. Y ou can find the other versions of Create() in
your Visua C++ online documentation.

Initializing the Image List

After you create an image list, you will want to add imagesto it. After all, an empty image list isn't of much use. The
easiest way to add the images is to include the images as part of your application's resource file and |load them from
there. Add these four linesto CreateListView() to fill each list with images:

HI CON hlcon = ::Loadlcon (AfxCGetResourceHandl e(),
MAKEI NTRESOURCE(1 DI _I CON1)) ;
m smal | | magelLi st. Add(hl con);
hl con = ::Loadl con (AfxCet ResourceHandl e(),
MAKEI NTRESOURCE(| DI _I| CON2)) ;
m | ar gel magelLi st. Add(hl con) ;

Here the program first gets a handle to the icon. Then it adds the icon to the image list by calling the image list's Add()
member function. (In this case, the list includes only one icon. In other applications, you might have alist of large icons
for folders, text files, and so on, as well as another list of small icons for the same purposes.) To create the first icon,
choose Insert, Resource and double-click Icon. Then edit the new blank icon in the Resource Editor. (It will
automatically be called IDI_CON1.) Click the New Device Image toolbar button next to the drop-down box that says
Standard (32* 32) and choose Small (16* 16) on the dialog that appears; click OK. Y ou can spend along time making a
beautiful icon or just quickly fill in the whole grid with black and then put awhite circle on it with the Ellipse tool. Add
another icon, IDI_ICONZ2, and leave it as 32* 32. Draw a similar symbol on thisicon.

Y ou can use many member functions to manipulate an object of the ClmageL.ist class, adjusting colors, removing
images, and much more. The online documentation provides more details on these member functions.

Y ou can write the first few lines of CreateTreeView() now. It uses one image list that starts with three images. Here's
the code to add:

m treel mageLi st. Create(13, 13, FALSE, 3, 0);

HI CON hl con = ::Loadl con(Af xGet Resour ceHandl e(),
MAKEI NTRESOURCE(| DI _| CON3)) ;

m t r eel magelLi st . Add(hl con);

hl con = :: Loadl con(Af xGet Resour ceHandl e(),
MAKEI NTRESOURCE(|1 DI _| CON4)) ;

m t r eel magelLi st . Add(hl con);

hl con = :: Loadl con(Af xGet Resour ceHandl e(),
MAKEI NTRESOURCE(| DI _| CON5)) ;

m t r eel magelLi st . Add(hl con);

Create IDI_ICON3, IDI_ICON4, and IDI_ICONS5 the same way you did the first two icons. All three are 32* 32. Draw
circles as before. If you leave the background the same murky green you started with, rather than fill it with black, the
circleswill appear on atransparent background--a nice effect.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (10 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

The List View Control

A list view control simplifies the job of building an application that works with lists of objects and organizes those
objects in such away that the program’s user can easily determine each object’s attributes. For example, consider a
group of fileson adisk. Each file is a separate object associated with a number of attributes, including the file's name,
size, and the most recent modification date. When you explore afolder, you see files either asiconsin awindow or asa
table of entries, each entry showing the attributes associated with the files. Y ou have full control over the way that the
file objects are displayed, including which attributes are shown and which are unlisted. The common controls include
something called alist view control, so you can organize lists in exactly the same way. If you'd like to see an example
of afull-fledged list view control, open the Windows Explorer (see Figure 10.3). The right side of the window shows
how the list view control can organize objectsin awindow. (The left side of the window contains a tree view control,
which you will learn about later in this chapter in the section titled "The Tree View Control.") In the figure, the list
view is currently set to the report view, in which each object in the list receives its own line, showing not only the
object's name but a so the attributes associated with that object.

FI G. 10.3 Windows Explorer uses a list view control to organize file information.

The user can change the way objects are organized in alist view control. Figure 10.4, for example, shows the list view
portion of the Explorer set to the large-icon setting, and Figure 10.5 shows the small-icon setting, which enables the
user to see more objects (in this case, files) in the window. With alist view control, the user can edit the names of
objectsin thelist and in the report view can sort objects, based on data displayed in a particular column.

FIG. 10.4 Here's Explorer'slist view control set to large icons.
FIG. 10.5 Here's Explorer'slist view control set to small icons.

Common will also sport alist view control, although not as fancy as Explorer's. You will add alist view and some
buttons to switch between the small-icon, large-icon, list, and report views.

Creating the List View

How does all this happen? Well, it does require more work than the progress bar, trackbar, or up-down controls (it
could hardly take less). Y ou will write the rest of CreateListView(), which performs the following tasks:

1. Creates and fillstheimage list controls

2. Createsthe list view control itself

3. Associates the image lists with the list view
4. Creates the columns

5. Sets up the columns

6. Creates the items

7. Sets up the items

8. Creates the buttons

After creating the image lists, CreatelListView() goes on to create the list view control by calling the class's Create()
member function, as usual. Add these linesto CreateListView():

/] Create the List View control.
m|istView Create(Ws_ VISIBLE | W5 _CHI LD | WS_BORDER |
LVS REPORT | LVS NOSORTHEADER | LVS EDI TLABELS,
CRect (160, 120, 394, 220), this, IDC LISTVIEW;

The CListCtrl class, of which m_listView is an object, defines special stylesto be used with list view controls. Table
10.3 lists these specia styles and their descriptions.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (11 of 26) [7/29/1999 3:47:58 PM]

javascript:popUp('10uvc03.gif')
javascript:popUp('10uvc04.gif')
javascript:popUp('10uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

Table 10.3 List View Styles

|Sty|e |Description

|LVS_ALIGNLEFT |Left-a|igns items in the large-icon and small-icon views
|LVS_ALIGNTOP |Top-a|igns items in the large-icon and small-icon views
|LVS_AUTOARRANGE |Automatical|y arranges itemsin the large-icon and small-icon views
|LVS_EDITLABELS |Enab|esthe user to edit item labels

|LVS_I CON |Sets the control to the large-icon view

|LVS_LIST |Sets the control to the list view

|LVS_NOCOLUM NHEADER |Shows no column headersin report view

|LVS_NOI TEMDATA |Store£ only the state of each item
|LVS_NOLABELWRAP |Disa||ows multiple-line item labels

|LVS_NOSCROLL |Turns off scrolling

|LVS_NOSORTH EADER |Turns off the button appearance of column headers

|LVS_OWN ERDRAWFIXED |Enables owner-drawn itemsin report view

|LVS_REPORT Sets the control to the report view

LVS SHAREIMAGELISTS |Prevents the control from destroying itsimage lists when the control no longer needs
them

|LVS_SINGLESEL |Di§allows multiple selection of items

|LVS_SMALL ICON |Sets the control to the small-icon view

|LVS_SORTASCENDI NG |Sorts items in ascending order
|LVS_SORTDESCENDI NG |Sorts items in descending order

The third task in CreateListView() isto associate the control with itsimage lists with two calls to Setimagel.ist(). Add
these linesto CreateListView():

m | istView Setl mageLi st (&m snall |l nmageLi st, LVSIL SMVALL);
m | istView Setl mageLi st (&m | argel nagelLi st, LVSIL_NORMNAL);

This function takes two parameters. a pointer to the image list and a flag indicating how the list isto be used. Three
constants are defined for thisflag: LVSIL_SMALL (which indicates that the list contains small icons),
LVSIL_NORMAL (largeicons), and LVSIL_STATE (state images). The SetlmageList() function returns a pointer to
the previously set image list, if any.

Creating the List View's Columns

The fourth task isto create the columns for the control's report view. Y ou need one main column for the item itself and
one column for each sub-item associated with an item. For example, in Explorer'slist view, the main column holdsfile
and folder names. Each additional column holds the sub-items for each item, such as the file's size, type, and
modification date. To create a column, you must first declareaLV_COLUMN structure. Y ou use this structure to pass
information to and from the system. After you add the column to the control with InsertColumn(), you can use the
structure to create and insert another column. Listing 10.6 showsthe LV_COLUMN structure.

Listing 10.6 The LV_COLUMN Structure, Defined by MFC

typedef struct _LV_COLUWN
{

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (12 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

U NT mask; /'l Flags indicating valid fields
int fnt; [l Col um al i gnnent
i nt cx; [l Col um wi dth

LPSTR pszText; /1 Address of string buffer
int cchTextMax; [/ Size of the buffer
int i Subltem [/ Subitemindex for this columm

} LV_COLUWN;
The mask member of the structure tells the system which members of the structure to use and which to ignore. The
flags you can use are

e« LVCF FMT fmtisvalid.

« LVCF_SUBITEM iSubltemisvalid.

e LVCF TEXT pszTextisvalid.

« LVCF_WIDTH cxisvalid.

The fmt member denotes the column's alignment and can be LVCFMT_CENTER, LVCFMT_LEFT, or
LVCFMT_RIGHT. The alignment determines how the column's label and items are positioned in the column.

NOTE: Thefirst column, which contains the main items, is always aligned to the left. The other columns
in the report view can be aligned however you like.

The cx field specifies the width of each column, whereas pszText is the address of a string buffer. When you're using
the structure to create a column (you also can use this structure to obtain information about a column), this string buffer
contains the column's label. The cchTextMax member denotes the size of the string buffer and is valid only when
retrieving information about a column.

CreateListView() creates atemporary LV_COLUMN structure, sets the elements, and then insertsit into the list view
as column O, the main column. This processis repeated for the other two columns. Add these linesto CreateListView():

[/ Create the colums.
LV_COLUW | vCol umm;
| vCol um. mask = LVCF_FMTI | LVCF_ WDTH | LVCF_TEXT | LVCF_SUBI TEM
| vCol um. fnt = LVCFMI_CENTER,
| vCol um. cx = 75;
| vCol um. i Subltem = O0;
| vCol um. pszText = "Colum 0";
mlistView InsertColum(0, & vColum);
| vCol um. i Subltem = 1;
| vCol um. pszText = "Colum 1";
mlistView InsertColum(1, & vColum);
| vCol um. i Subltem = 2;
| vCol um. pszText = "Colum 2";
mlistView InsertColum(1l, & vColum);

Creating the List View's Items

The fifth task in CreateListView() isto create the items that will be listed in the columns when the control isin its
report view. Creating items is not unlike creating columns. As with columns, Visual C++ defines a structure that you
must initialize and pass to the function that creates the items. This structureiscalled LV_ITEM and is defined as
shown in Listing 10.7.

Listing 10.7 The LV_ITEM Structure, Defined by MFC

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (13 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

t ypedef struct LV ITEM

{
Ul NT mask; /'l Flags indicating valid fields
i nt iltem [/ 1temi ndex
i nt i Subl tem [/ Sub-itemindex
Ul NT st ate; [/ ltems current state
Ul NT st at eMask; [/ Valid item states.
LPSTR pszText; /'l Address of string buffer
i nt cchText Max; /1l Size of string buffer
I nt I | mage; /1l 1mage index for this item
LPARAM | Par am [/ Additional information as a 32-bit val ue
} LV_I TEM

Inthe LV_ITEM structure, the mask member specifies the other members of the structure that are valid. The flags you
can use are

o LVIF_IMAGE ilmageisvalid.
o LVIF_PARAM |Paramisvalid.
o LVIF STATE stateisvalid.

e LVIF_TEXT pszTextisvalid.

The iltem member is the index of the item, which you can think of as the row number in report view (although the
items' position can change when they're sorted). Each item has a unique index. The iSubltem member is the index of
the sub-item, if this structure is defining a sub-item. Y ou can think of this value as the number of the column in which
the item will appear. For example, if you're defining the main item (the first column), this value should be O.

The state and stateM ask members hold the item's current state and its valid states, which can be one or more of the
following:

o LVIS CUT Theitem isselected for cut and paste.

o LVIS DROPHILITED Theitem isahighlighted drop target.
e LVIS FOCUSED Theitem hasthe focus.

e LVIS SELECTED Theitem s selected.

The pszText member is the address of a string buffer. When you usethe LV_ITEM structure to create an item, the
string buffer contains the item's text. When you are obtaining information about the item, pszText is the buffer where
the information will be stored, and cchTextMax is the size of the buffer. If pszText is set to
LPSTR_TEXTCALLBACK, the item uses the callback mechanism. Finaly, the ilmage member is the index of the
item'sicon in the small-icon and large-icon image lists. If set to |_IMAGECALLBACK, the ilmage member indicates
that the item uses the callback mechanism.

CreatelistView() creates atemporary LV_ITEM structure, sets the elements, and then insertsit into the list view as
item 0. Two callsto SetltemText() add sub-itemsto thisitem so that each column has sometext in it, and the whole
process is repeated for two other items. Add these lines:

/[l Create the itens.
LV ITEM | vitem
Ivitemmask = LVIF_TEXT | LVIF_I MAGE | LVI F_STATE;
lvitemstate = O;
| vitem st at eMask = O;
Ivitemilmge = 0;
[vitemiltem = O;
[vitemi Subltem = 0;
vitem pszText = "lItem 0";

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (14 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

mlistView Insertltem(& vitem;

mlistView SetltenText(0, 1, "Sub Item0.1");
mlistView SetltenText(0, 2, "Sub Item0.2");
[vitemiltem= 1;

[vitemi Subltem = 0;

vitem pszText = "ltem 1";

mlistView Insertltem(& vitem;

mlistView SetltenText(1, 1, "Sub Item1.1");
mlistView SetltenText(1l, 2, "Sub Item1.2");
[vitemiltem = 2;

[vitemi Subltem = 0;

vitem pszText = "ltem 2";

mlistView Insertlitem(& vitem;

mlistView SetltenText(2, 1, "Sub Item2.1");
mlistView SetltenText(2, 2, "Sub Item 2.2");

Now you have created alist view with three columns and three items. Normally the values wouldn't be hard-coded, as
thiswas, but instead would be filled in with values calculated by the program.

Manipulating the List View

You can set alist view control to four different types of views. small icon, largeicon, list, and report. In Explorer, for
example, the toolbar features buttons that you can click to change the view, or you can select the view from the View
menu. Although Common doesn't have a snazzy toolbar like Explorer, it will include four buttons (labeled Small,
Large, List, and Report) that you can click to change the view. Those buttons are created as the sixth step in
CreateListView(). Add these lines to complete the function:

/'l Create the viewcontrol buttons.
m smal | Button. Create("Smal 1", W5 VISIBLE | W5_CHI LD | W5_BORDER,
CRect (400, 120, 450, 140), this, 1DC_LISTVI EW SNVALL);

m | argeButton. Create("Large", W5 VISIBLE | W5 CH LD | W5 BORDER,
CRect (400, 145, 450, 165), this, IDC LI STVI EW LARCGE);
mlistButton. Create("List", W5 VISIBLE | W6 CHI LD | W5 BORDER,

CRect (400, 170, 450, 190), this, IDC _LISTVIEW.LI ST);
m reportButton. Create("Report", W5 VISIBLE | W5 CHI LD | W5 _BORDER,
CRect (400, 195, 450, 215), this, 1DC_LI STVI EW REPORT);

TIP: If you're using large fonts, these buttons will need to be more than 50 pixels wide. This code creates
each button from position 400 to 450--make the second number larger to widen the buttons.

Edit the message map in CommonView.h to declare the handlers for each of these buttons so that it looks like this:

/'l CGenerated nessage nmap functions

pr ot ect ed:
[{{ AFX_NMSGE CCommonVi ew)
af x_nmsg int OnCreat e(LPCREATESTRUCT | pCreateStruct);
af x_msg void OnLButtonDown(U NT nFl ags, CPoint point);
af x_nmsg void OnDestroy();
af x_msg void OnTi mer (U NT nl DEvent);
af x_nmsg void OnHScrol | (U NT nSBCode, U NT nPos, CScrollBar* pScrollBar);
/1}} ARFX_MBG
af x_msg void OnSmal | () ;
af x_msg void OnLarge();

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (15 of 26) [7/29/1999 3:47:58 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

af x_msg void OnList();
af x_msg void OnReport();
DECLARE _MESSAGE_MAP()

}
Edit the message map in CommonView.cpp to associate the messages with the functions:

BEG N_MESSAGE MAP(CCommonVi ew, CScrol | Vi ew)

[{{ AFX_NM5G_MAP(CConmonVi ew)

ON_WM_CREATE()

ON_WM_LBUTTONDOMN()

ON_WM_DESTROY()

ON_WM TI MER()

ON_WM HSCROLL()

/1}} AFX_NMSG VAP

ON_COVMAND(| DC_LI STVI EW SVALL, OnSmal |)

ON_COVMAND(| DC_LI STVI EW LARGE, OnlLar ge)

ON_COVMAND(| DC LI STVI EW LI ST, OnLi st)

ON_COVMAND(| DC_LI STVI EW REPORT, OnReport)

/1l Standard printing commands

ON_COVMAND(I D FI LE PRI NT, CScroll View :OnFilePrint)

ON_COVMAND(I D_FI LE PRI NT_DI RECT, CScrollView :OnFilePrint)

ON_COMWWAND(| D _FI LE PRI NT_PREVI EW CScrol | View. : OnFi |l ePrint Previ ew)
END MESSAGE NMAP()

Choose View, Resource Symbols and click New to add new IDs for each constant referred to in this new code:
« IDC_LISTVIEW
« IDC LISTVIEW_SMALL
« IDC _LISTVIEW_LARGE
« IDC_LISTVIEW_LIST
e IDC _LISTVIEW_REPORT

The four handlers will each call SetWindowLong(), which sets a window's attribute. Its arguments are the window's
handle, aflag that specifies the value to be changed, and the new value. For example, passing GWL_STYLE asthe
second value means that the window's style should be changed to the style given in the third argument. Changing the
list view control's style (for example, to LVS SMALLICON) changes the type of view that it displays. With that in
mind, add the four handler functions to the bottom of CommonView.cpp:

voi d CConmonVi ew. : OnSnal | ()

{
Set W ndowLong(m | i st Vi ew. m hwhd, GAL_STYLE,
W5 VISIBLE | W6 CHI LD | W5 BORDER |
LVS SMALLI CON | LVS EDI TLABELS) ;
}
voi d CConmonVi ew. : OnLar ge()
{
Set W ndowLong(m | i st Vi ew. m hwid, GAL_STYLE,
W5 VISIBLE | W5 CHI LD | W5 BORDER |
LVS I CON | LVS EDI TLABELS);
}
voi d CCommonVi ew. : OnLi st ()
{

Set W ndowLong(m | i st View. m hwid, GAL_STYLE,

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (16 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

WS VI SIBLE | WS _CHI LD | W5 _BORDER |
LVS LI ST | LVS_EDI TLABELS);

}
voi d CCommonVi ew. : OnReport ()
{
Set W ndowLong(m | i st Vi ew. m hwid, GAL_STYLE,
W5 VISIBLE | W5 CHI LD | W5 BORDER |
LVS REPORT | LVS EDI TLABELS);
}

In addition to changing the view, you can program a number of other features for your list view controls. When the user
does something with the control, Windows sendsaWM_NOTIFY message to the parent window. The most common
notifications sent by alist view control are the following:

e LVN_COLUMNCLICK Indicates that the user clicked a column header
« LVN BEGINLABELEDIT Indicates that the user is about to edit an item's |abel
« LVN_ENDLABELEDIT Indicates that the user is ending the label-editing process

Why not have Common allow editing of the first column in thislist view? Y ou start by overriding the virtual function
OnNotify() that was inherited by CCommonView from CScrollView. Right-click CCommonView in ClassView and
choose Add Virtual Function. Select OnNotify() from the list on the left and click Add and Edit; then add these lines of
code at the beginning of the function, replacing the TODO comment:

LV_DI SPI NFO* | v_displnfo = (LV_DI SPI NFO*) | Param
if (1v_displnfo->hdr.code == LVN BEG NLABELEDI T)

{
CEdit* pEdit = mlistView GetEditControl();
/1 Manipulate edit control here.
}
else if (Ilv_displnfo->hdr.code == LVN_ENDLABELEDI T)
if ((lv_displnfo->itempszText !'= NULL) &&
(lv_displnfo->itemiltem!= -1))
{
mlistView Setltemlext(lv_displnfo->temiltem
0, Iv_displnfo->item pszText);
}

}

The three parameters received by OnNotify() are the message's WPARAM and LPARAM values and a pointer to a
result code. In the case of aWM_NOTIFY message coming from alist view control, the WPARAM isthelist view
control's ID. If the WM_NOTIFY messageisthe LVN_BEGINLABELEDIT or LVN_ENDLABELEDIT notification,
the LPARAM isapointer to an LV_DISPINFO structure, which itself contains NMHDR and LV_ITEM structures.

Y ou use the information in these structures to manipulate the item that the user is trying to edit.

If the notificationisLVN_BEGINLABELEDIT, your program can do whatever pre-editing initialization it needs to do,
usually by calling GetEditControl() and then working with the pointer returned to you. This sample application shows
you only how to get that pointer.

When handling label editing, the other notification to watch out for isLVN_ENDLABELEDIT, which means that the
user has finished editing the label, by either typing the new label or canceling the editing process. If the user has
canceled the process, the LV_DISPINFO structure's item.pszText member will be NULL, or the item.iltem member
will be-1. In this case, you need do nothing more than ignore the notification. If, however, the user completed the
editing process, the program must copy the new label to the item'’s text, which OnNotify() does with acall to
SetltemText(). The CListCtrl object's SetltemText() member function requires three arguments:. the item index, the

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (17 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

sub-item index, and the new text.

At this point you can build Common again and test it. Click each of the four buttons to change the view style. Also, try
editing one of the labelsin the first column of thelist view.

Figure 10.1 already showed you the report view for thislist view. Figure 10.6 shows the application's list view control
displaying small icons, and Figure 10.7 shows the large icons. (Some controls in these figures have yet to be covered in
this chapter.)

Y ou can do alot of other thingswith alist view control. A little time invested in exploring and experimenting can save
you alot of time writing your user interface.

FIG. 10.6 Here's the sample application's list view control set to small icons.

FIG. 10.7 Here's the sample application's list view control set to large icons.

The Tree View Control

In the preceding section, you learned how to use the list view control to organize the display of many itemsin a
window. Thelist view control enables you to display items both as objects in awindow and objects in a report
organized into columns. Often, however, the data you'd like to organize for your application's user is best placed in a
hierarchical view. That is, elements of the data are shown as they relate to one other. A good example of a hierarchical
display isthe directory tree used by Windows to display directories and the files that they contain.

MFC provides this functionality in the CTreeCtrl class. This versatile control displays datain various ways, all the
while retaining the hierarchical relationship between the data objects in the view.

If you'd like to see an example of atree view control, revisit Windows Explorer (see Figure 10.8). The left side of the
window shows how the tree view control organizes objectsin awindow. (The right side of the window containsalist
view control, which you learned about in the preceding section). In the figure, the tree view displays not only the
storage devices on the computer but also the directories and files stored on those devices. The tree clearly shows the
hierarchical relationship between the devices, directories, and files, and it enables the user to open and close branches
on the tree to explore different levels.

FIG. 10.8 A tree view control displays a hierarchical relationship between items.

Creating the Tree View

Treeviews are alittle simpler than list views. Y ou will write the rest of CreateTreeView(), which performsthe
following tasks:

1. Creates an image list

2. Creates the tree view itself

3. Associates the image list with the list view
4. Creates the root item

5. Creates child items

Creating the image list, creating the tree control, and associating the control with the image list are very similar to the
steps completed for theimage list. Y ou've aready written the code to create the image list, so add these linesto
CreateTreeView():

/! Create the Tree View control.
mtreeView Create(Ws VISIBLE | W6 CH LD | W5 BORDER |
TVS HASLI NES | TVS LI NESATROOT | TVS HASBUTTONS |

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (18 of 26) [7/29/1999 3:47:59 PM]

javascript:popUp('10uvc06.gif')
javascript:popUp('10uvc07.gif')
javascript:popUp('10uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

TVS_EDI TLABELS, CRect (20, 260, 160, 360), this,
| DC_TREEVI EW ;
m treeVi ew. Set | mageLi st (&m treel mageLi st, TVSI L_NORMAL) ;

(Remember to add aresource ID for IDC_TREEVIEW.) The CTreeCitrl class, of which m_treeView is an object,
defines special styles to be used with tree view controls. Table 10.4 lists these special styles.

Table 10.4 Tree View Control Styles

|Sty|e ’Description

|TVS_DI SABLEDRAGDROP’DisabI es drag-and-drop operations

|TVS_EDITLABELS]Enabl%the user to edit labels

|TVS_HASBUTTONS]Giv&s each parent item a button

|TVS_HASLI NES ’Adds lines between items in the tree

|TVS_LI NESATROOT ’Adds aline between the root and child items

|TVS_SHOWSELA LWAYS]Forc& aselected item to stay selected when losing focus

|TVS_NOTOOLTI PS]Supprem Tool Tips for the tree items

|TVS_SI NGLEEXPAND]Expands or collapses tree items with asingle click rather than a double click

Creating the Tree View's Items

Creating items for atree view control is much like creating items for alist view control. Aswith the list view, Visual
C++ defines a structure that you must initialize and pass to the function that creates the items. This structureis called
TVITEM and isdefined in Listing 10.8.

Listing 10.8 The TVITEM Structure, Defined by MFC

t ypedef struct _TVITEM

{
Ul NT mask;
HTREEI TEM hltem
Ul NT st at e;
Ul NT st at eMask;
LPSTR pszText;
i nt cchText Max;
i nt I | mage;
i nt I Sel ect edl mage;
i nt cChil dren;
LPARAM | Par am

} TV_ITEM

Inthe TVITEM structure, the mask member specifies the other structure members that are valid. The flags you can use
areasfollows:

o TVIF_CHILDREN cChildrenisvalid.

« TVIF_ HANDLE hltemisvalid.

o TVIF IMAGE ilmageisvalid.

e TVIF_ PARAM |Paramisvalid.

o TVIF_SELECTEDIMAGE iSelectedimageisvalid.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (19 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls
o TVIF STATE state and stateMask are valid.
e TVIF TEXT pszText and cchTextMax are valid.

The hitem member is the handle of the item, whereas the state and stateMask members hold the item's current state and
its valid states, which can be one or more of TVIS BOLD, TVIS CUT, TVIS DROPHILITED, TVIS EXPANDED,
TVIS EXPANDEDONCE, TVIS FOCUSED, TVIS OVERLAYMASK, TVIS SELECTED,

TVIS STATEIMAGEMASK, and TVIS USERMASK.

The pszText member is the address of a string buffer. When using the TVITEM structure to create an item, the string
buffer contains the item's text. When obtaining information about the item, pszText is the buffer where the information
will be stored, and cchTextMax isthe size of the buffer. If pszText isset to LPSTR_TEXTCALLBACK, the item uses
the callback mechanism. Finally, the ilmage member is the index of the item'sicon in theimagelist. If set to

| IMAGECALLBACK, the ilmage member indicates that the item uses the callback mechanism.

The iSelectedlmage member is the index of the icon in the image list that represents the item when the item is sel ected.
Aswith ilmage, if thismember isset tol IMAGECALLBACK, the i Selectedlmage member indicates that the item
uses the callback mechanism. Finally, cChildren specifies whether there are child items associated with the item.

In addition to the TVITEM structure, you must initializea TVINSERTSTRUCT structure that holds information about
how to insert the new structure into the tree view control. That structure is declared in Listing 10.9.

Listing 10.9 The TVINSERTSTRUCT Structure, Defined by MFC

t ypedef struct tagTVI NSERTSTRUCT {
HTREEI TEM hPar ent ;
HTREEI TEM hl nsert Aft er;

#if (_WN32 | E >= 0x0400)
uni on
{

TVI TEMEX it enex;
TVITEM i tem
} DUMWYUNI ONNANE;

#el se
TVITEM item

#endi f

} TVI NSERTSTRUCT, FAR *LPTVI NSERTSTRUCT;,

In this structure, hParent is the handle to the parent tree-view item. A value of NULL or TVI_ROOQOT specifies that the
item should be placed at the root of the tree. The hinsertAfter member specifies the handle of the item after which this
new item should be inserted. It can also be one of the flags TVI_FIRST (beginning of thelist), TVI_LAST (end of the
list), or TVI_SORT (aphabetical order). Finaly, the item member isthe TVITEM structure containing information
about the item to be inserted into the tree.

Common first initializes the TVITEM structure for the root item (the first item in the tree). Add these lines:

/] Create the root item
TVITEM tvltem
tvlitem nask =
TVIF_TEXT | TVIF_I MAGE | TVI F_SELECTEDI MAGE;
tvitem pszText = "Root";
tvitem cchText Max = 4;
tvitemil mage = O;
tvitemi Sel ect edl mage = O;
TVI NSERTSTRUCT tvlnsert;

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (20 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

tvinsert. hParent = TVI _ROOT;

tvinsert. hlnsertAfter = TVI _Fl RST,;

tvinsert.item= tvltem

HTREEI TEM hRoot = mtreeView Insertltenm & vlnsert);

The CTreeCtrl member function Insertltem() inserts the item into the tree view control. Its single argument is the
address of the TVINSERTSTRUCT structure.

CreateTreeView() then inserts the remaining items into the tree view control. Add these lines to insert some hard-coded
sample items into the tree view:

I/l Create the first child item
tvitempszText = "Child Item 1";
tvitem cchText Max = 12;
tvitemil mage = 1;
tvitemi Sel ect edl mrage = 1;
tvinsert. hParent = hRoot;
tvinsert.hlnsertAfter = TVI _Fl RST,;
tvinsert.item= tvlitem
HTREEI TEM hChildltem = mtreeView. I nsertlten(& vlnsert);
/! Create a child of the first child item
tvitem pszText = "Child Item 2";
tvlitem cchText Max = 12;
tvitemilmage = 2;
tvitemi Sel ect edl mage = 2;
tvinsert.hParent = hChildltem
tvinsert.hlnsertAfter = TVI FI RST;
tvinsert.item= tvltem
mtreeView Insertltem & vlnsert);
/| Create another child of the root item
tvitempszText = "Child Item 3";
tvitem cchText Max = 12;
tvitemil mage = 1;
tvitemi Sel ect edl mage = 1;
tvinsert. hParent = hRoot;
tvinsert.hlnsertAfter = TVI LAST;
tvinsert.item= tvltem
mtreeView Insertltem & vlnsert);

Manipulating the Tree View

Just as with the list view control, you can edit the labels of the itemsin Common's tree view. Also, like the list view
control, this process works because the tree view sends WM_NOTIFY messages that trigger a call to the program's
OnNotify() function.

OnNotify() handles the tree-view notifications in almost exactly the same way as the list-view notifications. The only
differenceisin the names of the structures used. Add these linesto OnNotify() before the return statement:
TV_DI SPI NFO* tv_displnfo = (TV_DI SPI NFO*) | Param

i f (tv_displnfo->hdr.code == TVN_BEG NLABELEDI T)

{
CEdit* pEdit = mtreeView CGetEditControl();

/1 Manipul ate edit control here.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (21 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

else if (tv_displnfo->hdr.code == TVN_ENDLABELEDI T)
{
If (tv_displnfo->tempszText != NULL)
{
mtreeView SetltenText (tv_displnfo->temhltem
tv_displnfo->tempszText);

}

The tree view control sends a number of other notification messages, including TVN_BEGINDRAG,
TVN_BEGINLABELEDIT, TVN_BEGINRDRAG, TVN_DELETEITEM, TVN_ENDLABELEDIT,
TVN_GETDISPINFO, TVN_GETINFOTIP, TVN_ITEMEXPANDED, TVN_ITEMEXPANDING,
TVN_KEYDOWN, TVN_SELCHANGED, TVN_SELCHANGING, TVN_SETDISPINFO, and
TVN_SINGLEEXPAND. Check your Visua C++ online documentation for more information about handling these
notification messages.

Now isagood time to again build and test Common. Be sure to try expanding and collapsing the levels of the tree and
editing alabel. If you can't see all the control, maximize the application and adjust your screen resolution if you can.
The application will eventually scroll but not just yet.

The Rich Edit Control

If you took all the energy expended on writing text-editing software and you concentrated that energy on other, less
mundane programming problems, computer science would probably be a decade ahead of where it is now. Although
that might be an exaggeration, it is true that when it comes to text editors, a huge amount of effort has been dedicated to
reinventing the wheel. Wouldn't it be great to have one piece of text-editing code that all programmers could use as the
starting point for their own custom text editors?

With Visual C++'s CRichEditCtrl control, you get a huge jump on any text-editing functionality that you need to install
in your applications. The rich edit control is capable of handling fonts, paragraph styles, text color, and other types of
tasks that are traditionally found in text editors. In fact, arich edit control (named for the fact that it handles text in
Rich Text Format) provides a solid starting point for any text-editing tasks that your application must handle. Y our
users can

o Typetext.

« Edit text, using cut-and-paste and sophisticated drag-and-drop operations.

« Set text attributes such as font, point size, and color.

« Apply underline, bold, italic, strikethrough, superscript, and subscript properties to text.
« Format text, using various alignments and bulleted lists.

o Lock text from further editing.

« Saveand load files.

Asyou can see, arich edit control is powerful. It is, in fact, almost a complete word-processor-in-a-box that you can
plug into your program and use immediately. Of course, because arich edit control offers so many features, there'salot
to learn. This section gives you a quick introduction to creating and manipulating arich edit control.

Creating the Rich Edit Control
Add acall to CreateRichEdit() to the view class's OnCreate() function and then add the function to the class. Listing

10.10 shows the code you should add to the function. Add resource IDsfor IDC_RICHEDIT,
IDC_RICHEDIT_ULINE, IDC_RICHEDIT_LEFT, IDC_RICHEDIT_CENTER, and IDC_RICHEDIT_RIGHT.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (22 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

Listing 10.10 CommonView.cpp--CCommonView::CreateRichEdit()

voi d CConmonVi ew. : Creat eRi chEdi t ()

{
mrichEdit.Ceate(Ws CH LD | W5 VI SIBLE | W5 _BORDER |
ES AUTOVSCROLL | ES_MULTI LI NE,
CRect (180, 260, 393, 360), this, IDC_RICHED T);
m bol dButton. Create("ULine", W56 VISIBLE | W6 CH LD | W5 BORDER,
CRect (400, 260, 450, 280), this, IDC_RICHED T_ULI NE);
mleftButton. Create("Left", W5 VISIBLE | W56 _ CH LD | W5_BORDER,
CRect (400, 285, 450, 305), this, IDC_RI CHED T_LEFT);
m centerButton. Create("Center”, W5 VISIBLE | W56 CH LD | W5 BORDER,
CRect (400, 310, 450, 330), this, IDC_RICHED T_CENTER);
mrightButton. Create("Right", W VISIBLE | W5_CH LD | W5_BORDER,
CRect (400, 335, 450, 355), this, IDC_RI CHEDI T_RI GHT);
}

Asusual, things start with a call to the control's Create() member function. The style constants include the same
constants that you would use for creating any type of window, with the addition of specia styles used with rich edit
controls. Table 10.5 lists these special styles.

Table 10.5 Rich Edit Styles

|Sty|e ’Description

|ES_A UTOHSCROLL ’A utomatically scrolls horizontally

|ES_A UTOVSCROLL ’A utomatically scrolls vertically

|ES_CENTER Centers text

|ES_L EFT L eft-aligns text

|ES_L OWERCASE ’Lowercases all text

|ES_MULTILINE ’Enabl&multiplelin&e

|ES_N OHIDESEL ’Doesn't hide selected text when losing the focus
|ES_OEM CONVERT |Convertsfrom ANSI charactersto OEM characters and back to ANSI
|ES_PA SSWORD Displays characters as asterisks

|ES_REA DONLY ’Di sables editing in the control

|ES_RI GHT ’Right-al igns text

|ES_U PPERCASE ’Uppercas& all text

|ES_WA NTRETURN ’I nserts return characters into text when Enter is pressed

Initializing the Rich Edit Control

Therich edit control is perfectly usable as soon as it is created. Member functions manipulate the control extensively,
formatting and selecting text, enabling and disabling many control features, and more. As always, check your online
documentation for al the details on these member functions.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (23 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

Manipulating the Rich Edit Control

This sample application shows you the basics of using the rich edit control by setting character attributes and paragraph
formats. When you include arich edit control in an application, you will probably want to give the user some control
over its contents. For this reason, you usually create menu and toolbar commands for selecting the various options that
you want to support in the application. In Common, the user can click four buttons to control the rich edit control.

Y ou've aready added the code to create these buttons. Add lines to the message map in the header file to declare the

handlers:;

af x_msg void OnULI ne();
af x_nmsg void OnLeft();
af x_nmsg void OnCenter();
af x_nmsg void OnRight();

Similarly, add these lines to the message map in the source file:

ON_COVMAND(| DC_RI CHEDI T_ULI NE, OnULi ne)
ON_COWMAND(| DC_RI CHEDI T_LEFT, OnLeft)
ON_COVMAND(| DC_RI CHEDI T_CENTER, OnCent er)
ON_COVMAND(| DC_RI CHEDI T_RI GHT, OnRi ght)

Each of these functionsis simple. Add them each to CommonView.cpp. OnULing() looks like this:

voi d CConmonVi ew. : OnULI ne()
{
CHARFORVAT char For mat ;
char For mat . cbSi ze = si zeof (CHARFORVAT) ;
char For mat . dwivask = CFM _UNDERLI NE;
m ri chEdi t. Get Sel ecti onChar For mat (char For mat) ;
i f (charFormat.dwkffects & CFM _UNDERLI NE)
char For mat . dwkf fects = O;
el se
char For mat . dwkf f ect s = CFE_UNDERLI NE;
m ri chEdi t. Set Sel ecti onChar For mat (char For mat) ;
m ri chEdi t. Set Focus() ;

}

OnULIing() creates and initializesa CHARFORMAT structure, which holds information about character formatting and

isdeclared in Listing 10.11.
Listing 10.11 The CHARFORMAT Structure, Defined by MFC

t ypedef struct _charformat
{

Ul NT chSi ze;

_WPAD _wPadl,

DWORD dwivask;

DWORD dwEf f ect s;

LONG yHei ght ;

LONG yOf fset;

COLORREF cr Text Col or;

BYTE bChar Set ;

BYTE bPi t chAndFami | y;

TCHAR szFaceNane[LF_FACESI ZE] ;
_WPAD _wPad2;

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (24 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls
} CHARFORMAT;

Ina CHARFORMAT structure, chSize isthe size of the structure. dwMask indicates which members of the structure
arevalid (can be acombination of CFM_BOLD, CFM_CHARSET, CFM_COLOR, CFM_FACE, CFM_ITALIC,
CFM_OFFSET, CFM_PROTECTED, CFM_SIZE, CFM_STRIKEOUT, and CFM_UNDERLINE). dwEffectsisthe
character effects (can be a combination of CFE_ AUTOCOLOR, CFE_BOLD, CFE_ITALIC, CFE_STRIKEOUT,
CFE_UNDERLINE, and CFE_PROTECTED). yHeight is the character height, and yOffset is the character baseline
offset (for super- and subscript characters). crTextColor isthe text color. bCharSet is the character set value (see the
ifCharSet member of the LOGFONT structure). bPitchAndFamily isthe font pitch and family, and szFaceName is the
font name.

After initializing the CHARFORMAT structure, as needed, to toggle underlining, OnULing() calls the control's
GetSelectionCharFormat() member function. This function, whose single argument is a reference to the
CHARFORMAT structure, fills the character format structure. OnULine() checks the dwEffects member of the
structure to determine whether to turn underlining on or off. The bitwise and operator, &, is used to test asingle bit of
the variable.

Finally, after setting the character format, OnULine() returns the focus to the rich edit control. By clicking a button, the
user has removed the focus from the rich edit control. Y ou don't want to force the user to keep switching back manually
to the control after every button click, so you do it by calling the control's SetFocus() member function.

Common also enables the user to switch between the three types of paragraph alignment. This is accomplished
similarly to toggling character formats. Listing 10.12 shows the three functions--OnL eft(), OnRight(), and
OnCenter()--that handle the alignment commands. Add the code for these functions to CommonView.cpp. Asyou can
see, the main difference is the use of the PARAFORMAT structure instead of CHARFORMAT and the call to
SetParaFormat() instead of SetSelectionCharFormat().

Listing 10.12 CommonView.cpp--Changing Paragraph Formats

voi d CConmonVi ew. : OnLeft ()

{
PARAFORMAT par aFor mat ;
par aFor mat . cbSi ze = si zeof (PARAFORVAT) ;
par aFor mat . dwvask = PFM_AL| GNIVENT;
par aFor mat . wAl i gnnent = PFA LEFT,
m ri chEdi t. Set Par aFor mat (par aFor mat) ;
m ri chEdi t. Set Focus() ;
}
voi d CCommonVi ew. : OnCent er ()
{
PARAFORMAT par aFor mat ;
par aFor mat . cbSi ze = si zeof (PARAFORVAT) ;
par aFor mat . dwMask = PFM ALl GNMVENT;
par aFor mat . wAl i gnnent = PFA CENTER
m ri chEdi t. Set Par aFor mat (par aFor mat) ;
m ri chEdi t. Set Focus() ;
}
voi d CConmonVi ew. : OnRi ght ()
{

PARAFORMAT par aFor mat ;

par aFor mat . cbSi ze = si zeof (PARAFCRVAT) ;
par aFor mat . dwivask = PFM ALI GNMVENT;

par aFor mat . wAl i gnnent = PFA_RI GHT;

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (25 of 26) [7/29/1999 3:47:59 PM]

Special Edition Using Visual C++ 6 -- Ch 10 -- Common Controls

m ri chEdi t. Set Par aFor mat (par aFor mat) ;
m ri chEdi t. Set Focus() ;

}

After adding all that code, it's time to build and test again. First, click in the text box to give it the focus. Then, start
typing. Want to try out character attributes? Click the ULine button to add underlining to either selected text or the next
text you type. To try out paragraph formatting, click the Left, Center, or Right button to specify paragraph alignment.

(Agan, if you're using large text, adjust the button size if the labels don't fit.) Figure 10.9 shows the rich edit control
with some different character and paragraph styles used.

FIG. 10.9 Arich edit control is almost a complete word processor.

http://www.pbs.mcp.com/ebooks/0789715392/ch10/ch10.htm (26 of 26) [7/29/1999 3:47:59 PM]

javascript:popUp('10uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

ouie
Special Edition Using Visual C++ 6

(< Previous Chapter JR> Next Chapter

- 11 -
Help

« Different Kinds of Help
o Getting Help
o Presenting Help
o Using Help
o Programming Help

o Components of the Help System

o Hep Support from AppWizard

o Planning Y our Help Approach

e Programming for Command Help

e Programming for Context Help
e Writing Help Text
o Changing Placeholder Strings

o Adding Topics

o Changing the How to Modify Text Topic

o Adjustments to the Contents

Too many programmers entirely neglect online Help. Even those who add Help to an application tend to
leave it to the end of a project, and when the inevitabl e time squeeze comes, guess what? There's no time
to write the Help text or make the software adjustments that arrange for that text to display when the user
requests Help. One reason people do thisis because they believe implementing Help isreally hard. With
Visual C++, though, it'salot easier than you might anticipate. Visual C++ even writes some of your
Help text for you! This chapter is going to add Help, after the fact, to the ShowString application built in

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (1 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

Chapter 8, "Building a Complete Application: ShowString."

Different Kinds of Help

Y ou can characterize Help in avariety of ways. This section presents four different questions you might
ask about Help:

« How doesthe user invokeit?

« How doesit look onscreen?

« What sort of answers does the user want?

« How does the developer implement it in code?

None of these questions has a single answer. There are at least nine different ways for a user to invoke
Help, three standard Help appearances, and three different programming tasks you must implement in
order to display Help. These different ways of looking at Help can help you understand why the
implementation involves a number of different techniques, which can be confusing at first.

Getting Help

Thefirst way of characterizing Help isto ask "How does the user open it up?' There are a number of
ways to open Help:
« By choosing an item from the Help menu, such as Help, Contents (choosing What's This? or
About doesn't open Help immediately)

o By pressing the F1 key
« By clicking the Help button on a dialog box
« By clicking aWhat's This? button on atoolbar and then clicking something else

« By choosing What's This? from the Help menu (the System menu for dialog box-based
applications) and then clicking something

« By clicking a Question button on adialog box and then clicking part of the dialog box
« By right-clicking something and choosing What's This? from the pop-up menu

« Insome older applications, by pressing Shift+F1 and then clicking something

« Outside the application completely, by double-clicking the HLP file

For the first three actionsin this list, the user does one thing (chooses a menu item, presses F1, or clicks a
button), and Help appears immediately. For the next five actions, there are two steps: typically, one click
to go into Help mode (more formally called What's This? mode) and another to indicate which Help is
required. Users generally divide Help into single-step Help and two-step Help, accordingly.

NOTE: You will become confused if you try to use Visual Studio to understand Help, in
genera. Much of the information is presented as HTML Help in a separate product,
typically MSDN, though there are some circumstances under which more traditional Help
appears. Use simple utilities and accessories that come with your operating system or use
your operating system itself to follow along.

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (2 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

HTML Help

Until fairly recently, all Help files were built from RTF files, as described in this chapter,
and displayed with the Microsoft Help engine. Microsoft has now started to use HTML files
for its Help, and has released a number of toolsto simplify the job of creating and
maintaining HTML Help.

There are a number of advantagesto an HTML Help system: Y our Help files can contain
links to Internet resources, for example. Y ou can incorporate any active content that your
browser understands, including ActiveX controls, Java applets, and scripting. Many
developers find attractive Help systems quicker to build in HTML.

Unfortunately, there are also disadvantages. The interface is not as rich as the traditional
Help interface, for example. Many developers take one look at the HTML Help provided
with Visua Studio and vow never to produce HTML Help files for their own products.

If you would like to use HTML Help rather than the traditional Help files discussed in this
chapter, start by visiting http://www.micr osoft.com/wor kshop/author/htmlhelp to get a

copy of the HTML Help Workshop and plenty of documentation and examples.

Most of the work involved in creating HTML Help isthe same as the traditional Help
techniques presented here, but involves, for example, calling HTMLHelp() instead of
:WinHelp(). Instead of editing RTF files with Word, you edit HTML fileswith the HTML
Help Workshop editor.

Presenting Help

The second way of characterizing Help isto ask, "How does it look?" Y ou can display Help in several
ways:
« Help Topicsdialog box. Asshown in Figure 11.1, this dialog box enables usersto scroll through
an index, look at atable of contents, or find a word within the Help text. (To open thisdialog on
Windows, choose Start, Help.)

o Ordinary Help window. As shown in Figure 11.2, this window has buttons such as Help Topics,
Back, and Options. It can be resized, minimized, maximized, or closed and in many casesis
aways on top, like the system clock and other popular utilities. (To see this one, open the
calculator, usually by choosing Start, Programs, Accessories, Calculator; then press F1. Expand a
closed book by double-clicking it; then double-click atopic from the list that appears. Finding Out
What a Calculator Button Does appears under Tipsand Tricks.)

o Pop-up windows. As shown in Figure 11.3, pop-up windows are relatively small and don't have
buttons or menus. They disappear when you click outside them, cannot be resized or moved, and
are perfect for adefinition or quick explanation. To re-create Figure 11.3, right-click the MC
button and choose What's This?

FIG. 11.1 The Help Topics dialog box enables users to go through the contents or index or search the
Help text with Find.

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (3 of 9) [7/29/1999 3:48:27 PM]

http://www.microsoft.com/workshop/author/htmlhelp
javascript:popUp('11fig01.gif')

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

FIG. 11.2 An ordinary Help window has buttons and sometimes menus. It can be treated like any other
window.

FIG. 11.3 A pop-up Help topic window gives the user far less control and should be used only for short
explanations.

Using Help

A third way of characterizing Help is according to the user's reasons for invoking it. In the book The
Windows Interface Guidelines for Software Design, Microsoft categorizes Help in thisway and lists
these kinds of Help:

« Contextual user assistance answers questions such as What does this button do? or What does this
setting mean?

« Task-oriented Help explains how to accomplish a certain task, such as printing a document. (It
often contains numbered steps.)

« Reference Help looks up function parameters, font names, or other material that expert users need
to refer to from time to time.

« Wizardswalk auser through a complicated task, just as AppWizard walks you through creating an
application.

These describe the content of the material presented to the user. Although these content descriptions are
important to a Help designer and writer, they're not very useful from a programming point of view.

TIP: The book mentioned previoudly is provided with the MSDN CDs included with Visual
Studio. In Visua Studio, press F1 to bring up MSDN. On the Contents tab of MSDN,
expand the Books item, then expand the interface guidelines book. Chapter 12, "User
Assistance,”" gives Help guidelines.

Programming Help

The final way of characterizing Help, and perhaps the most important to a devel oper, is by examining the
code behind the scenes. Three Windows messages are sent when the user invokes Help:

« WM_COMMAND
« WM_HELP
« WM_CONTEXTMENU

NOTE: Windows messages are discussed in Chapter 3, "Messages and Commands.”

When the user chooses a Help item from amenu or clicks the Help button on a dialog box, the system
sendsaWM_COMMAND message, as always. To display the associated Help, you catch these
messages and call the WinHelp system.

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (4 of 9) [7/29/1999 3:48:27 PM]

javascript:popUp('11fig02.gif')
javascript:popUp('11fig03.gif')

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

When the user right-clicks an element of your application,aWM_CONTEXTMENU message is sent.
Y ou catch the message and build a shortcut menu on the spot. Because in most cases you will want a
shortcut menu with only one item on it, What's This?, you can use a prebuilt menu with only that item
and delegate the display of that menu to the Help system--more on this later in the "Programming for
Context Help" section.

When the user opens Help in any other way, the framework handles most of it. Y ou don't catch the
message that puts the application into What's This? mode, you don't change the cursor, and you don't deal
with clicks while in that mode. Y ou catch aWM _HEL P message that identifies the control, dialog box,
or menu for which Help isrequired, and you provide that Help. Whether the user pressed F1 or went into
What's This? mode and clicked the item doesn't matter. In fact, you can't tell from within your
application.

The WM_HELP and WM_CONTEXTMENU messages are handled ailmost identically, so from the point
of view of the developer, there are two kinds of help. Well call these command help and context help.
Each is discussed later in this chapter in the "Programming for Command Help" and "Programming for
Context Help" sections, but keep in mind that there's no relationship between this split (between
command and context help) and the split between one-step and two-step Help that users think of.

Components of the Help System

Asyou might expect, alarge number of filesinteract to make online Help work. The final product, which
you deliver to your user, isthe Help file, with the .hlp extension. It is built from component files. In the
list that follows, appname refers to the name of your application's .exe file. If no name appears, there
might be more than one file with a variety of names. The component files produced by AppWizard are as
follows:

h These Header files define resource |Ds and Help topic IDs for use within your C++ code.

.hm These Help Mapping files define Help topic IDs. appname.nm is generated every time
you build your application--don't change it yourself.

1tf These Rich Text Format files contain the Help text for each Help topic.

appname.cnt |Y ou use this table of contentsfile to create the Contents tab of the Help Topics dialog
box. (Y ou should distribute this contents file with your application in addition to the Help
file)

appname.hpj | This Help ProJect file pulls together .nm and .rtf files to produce, when compiled, a.hlp
file.

While being used, the Help system generates other files. When you uninstall your application from the
user's hard disk, be sure to look for and remove the following files, in addition to the .hlp and .cnt files:

« appname.gid isaconfiguration file, typically hidden.
« appname.ftsisafull text search file, generated when your user does a Find through your Help text.
« appname.ftg isafull text search group list, aso generated when your user does a Find.

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (5 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

Help topic I Ds are the connection between your Help text and the Help system. Y our program eventually
directs the Help system to display a Help topic, using aname such asHID_FILE _OPEN, and the system
looks for this Help topic ID in the Help file, compiled from the .rtf files, mcludlng the .rtf file that
contains your Help text for that Help topic ID. (This processisillustrated in Figure 11.4.) These topic

I Ds have to be defined twice--once for use by the Help system and once for use by your program. When
the Help system is displaying atopic or the Help Topics dialog box, it takes over displaying other Help
topics as the user requests them, with no work on your part.

FIG. 11.4 Your program, the Help system, and your Help files all work together to display a topic.

Help Support from AppWizard

When you build an MDI application (no database or OLE support) with AppWizard and choose the
Context-Sensitive Help option (in Step 4), here's what you find:

« Message map entries are added to catch the commands ID_ HELP FINDER, ID HELP,
ID_CONTEXT_HELP, and ID_DEFAULT_HELP. No code is added to handle these; they are
passed to CM DIFrameWnd member functions.

o« A What's This? button is added to the toolbar.

« A Help Topicsitem is added to the Help menu for both menus provided by AppWizard: the one
used when afileis open and the smaller one used when no files are open.

o Acceleratorsfor F1 (ID_HELP) and Shift+F1 (ID_CONTEXT_HELP) are added.

« The default message in the status bar is changed from Ready to For Help, press F1.

« A status bar prompt is added, to be displayed while in What's This? mode: Select an object on
which to get Help.

« Status bar prompts are added for the Help menu and its items.

« afxcorertf, aHelp text file for standard menu items such as File, Open, is copied into the project.

« afxprint.rtf, aHelp text file for printing and print previewing, is copied into the project. (These
files are added separately because not all projects include printing and print previewing. If this
project has database- or OLE-related features, more help is provided.)

o Twenty-two .bmp files, included asillustrations in Help for topics such as File, Open, are copied
into the project.

With this solid foundation, the task of implementing Help for this application breaks down into three
steps:
1. You must plan your Help. Do you intend to provide reference material only, task-oriented
instructions only, or both? To what extent will you supplement these with context pop-ups?
2. You must provide the programming hooks that will result in the display of the Help topics you
have designed. Thisis done differently for command and context Help, as you will seein the
sections that follow.
3. You must build the .rtf files with the Help topic IDs and text to explain your application. If you
have designed the Help system well and truly understand your application, this should be ssimple,
though time-consuming.

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (6 of 9) [7/29/1999 3:48:27 PM]

javascript:popUp('11fig04.gif')

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

NOTE: On large projects, often atechnical writer rather than a programmer writes the Help
text. Thisrequires careful coordination: For example, you have to provide topic IDs to the
Help writer, and you might have to explain some functions so that they can be described in
the Help. Y ou have to work closely together throughout a project like this and respect each
other's area of expertise.

Planning Your Help Approach

Developing Help is like developing your software. Y ou shouldn't do it without a plan. Strictly speaking,
you shouldn't do it last. A famous experiment decades ago split a programming class into two groups.
One group was required to hand in a completed user manual for a program before writing the program,
the other to finish the program before writing the manual. The group who wrote the manual first
produced better programs. They noticed design errors early, before the errors were carved in code, and
they found writing programs much easier as well.

If your application is of any size, the work involved in developing a Help system for it would fill abook.
If you need further information on how to do this, consider the book Designing Windows 95 Help: A
Guide to Creating Online Documents, written by Mary Deaton and Cheryl Lockett Zubak, published by
Que. In this section, there isroom for only afew basic guidelines.

The result of this planning processisalist of Help topics and the primary way they will be reached. The
topics you plan are likely to include the following:

« A page or so of Help on each menu item, reached by getting into What's This? mode and clicking
theitem (or by pressing F1 on a highlighted menu item).

« A page, reachable from the Contents, that lists all the menus and their menu items, with links to
the pages for those items.

« A page, reachable from the Contents, for each mgjor task that a user might perform with the
application. This includes examples or tutorials.

« Context Help for the controls on all dialog boxes.

Although that might seem like alot of work, remember that all the boilerplate resources have been
documented already in the material provided by AppWizard. Thisincludes menu items, common dialog
boxes, and more.

After you have a complete list of material and the primary way each page is reached, think about links
between pages (for example, the AppWizard-supplied Help for File, Open mentions using File, New and
vice versa) and pop-up definitions for jargon and keywords.

In this section, you plan Help for ShowString, the application introduced in Chapter 8. Thissimple
application displays a string that the user can set. The string can be centered vertically or horizontally,
and it can be black, green, or red. A new menu (Tools) with one item (Options) opens a dialog box on
which the user can set all these options at once. The Help tasks you need to tackle include the following:

« Changing AppWizard's placeholder strings to ShowString or other strings specific to this
application

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (7 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 11 -- Help
« Adding atopic about the Tools menu and the Options item
« Adding atopic about each control on the Options dialog box
« Adding a Question button to the Options dialog box

» Changing the text supplied by AppWizard and displayed when the user requests context Help
about the view

« Adding an Understanding Centering topic to the Help menu and writing it
« Adjusting the Contents to point to the new pages

The remainder of this chapter tackles thislist of tasks.

Programming for Command Help

Command Help is ssimple from a developer's point of view. (Of course, you probably still have to write
the explanations, so don't relax too much.) As you've seen, AppWizard added the Help Topics menu item
and the message map entries to catch it, and the MFC class CM DI ChildFrame has the member function
to processit, so you have no work to do for that. However, if you choose to add another menu item to
your Help menu, you do so just like any other menu, using the ResourceView. Then, have your
application class, CShowStringApp, catch the message.

Say, for example, that ShowString deserves an item named Understanding Centering on the Help menu.
Here's how to make that happen:

1. Open ShowsString, either your own copy from working along with Chapter 8 or a copy you have
downloaded from the book's Web site, in Visua Studio. Y ou may want to make a copy of the old
project before you start, because ShowString is the foundation for many of the projectsin this
book.

TIP: If you aren't familiar with editing menus and dialogs or catching messages, you should
read Chapter 9 before this one.

2. Open the IDR_MAINFRAME menu by switching to ResourceView, expanding Menus, and
double-clicking IDR_MAINFRAME. Add the Understanding Centering item to the Help menu
(just below Help Topics) and let Developer Studio assign it the resource ID
ID_HELP_UNDERSTANDINGCENTERING. Thisis one occasion when a slightly shorter
resource 1D wouldn't hurt, but this chapter presentsit with the longer ID.

3. Add the item to the other menu, IDR_SHOWSTTY PE, as well. Use the same resource ID.

4. Use ClassWizard to arrange for CShowStringApp to catch this message, as discussed in Chapter
8. Add the code for the new function, which looks like this:

voi d CShowSt ri ngApp: : OnHel pUnder st andi ngcent eri ng()
{

}

This code fires up the Help system, passing it the Help topic ID HID_CENTERING. For thisto compile,
that Help topic ID has to be known to the compiler, so in ShowString.h add thisline:

W nHel p(Hl D_CENTERI NG) ;

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (8 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 11 -- Help

#def i ne H D_CENTERI NG 0x01

The Help topic IDs in the range 0x0000 to OXFFFF are reserved for user-defined Help topics, so OxOlisa
fine choice. Now the C++ compiler is happy, but when this runs, the call to WinHelp() isn't going to find
the topic that explains centering. Y ou need to add a help mapping entry. This should be donein anew
file named ShowStringx.hm. (The x is for extra, because extra Help mapping entries are added here.)
Choose File, New; select the Files tab; highlight Text File; fill in the filename as ShowStringx.hm; and
click OK. In the new

http://www.pbs.mcp.com/ebooks/0789715392/ch11/ch11.htm (9 of 9) [7/29/1999 3:48:27 PM]

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

oue
Special Edition Using Visual C++ 6

- 12 -
Property Pages and Sheets

« Introducing Property Sheets

 Creating the Property Sheet Demo Application
o Creating the Basic Files
o Editing the Resources

Adding New Resources

O

o Associating Y our Resources with Classes
o Creating a Property Sheet Class
« Running the Property Sheet Demo Application
« Adding Property Sheetsto Y our Applications
« Changing Property Sheets to Wizards
o Running the Wizard Demo Application
o Creating Wizard Pages
o Displaying aWizard
o Setting the Wizard's Buttons
o Responding to the Wizard's Buttons

Introducing Property Sheets

One of the newest types of graphical objectsis the tabbed dialog box, also known as a property sheet. A
property sheet is adialog box with two or more pages. Windows and NT are loaded with property sheets,
which organize the many options that users can modify. Y ou flip the pages by clicking labeled tabs at the

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (1 of 13) [7/29/1999 3:49:16 PM]

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

top of the dialog box. Using such dialog boxes to organize complex groups of options enables users to
more easily find the information and settings they need. As you've probably guessed, Visual C++ 6
supports property sheets, with the classes CProperty Sheet and CPropertyPage.

Similar to property sheets are wizards, which use buttons instead of tabs to move from one page to
another. You've seen alot of wizards, too. These special types of dialog boxes guide users step by step
through complicated processes. For example, when you use AppWizard to generate source code for a
new project, the wizard guides you through the entire process. To control the wizard, you click buttons
labeled Back, Next, and Finish.

Finding a sample property sheet is as easy as finding sand at the beach. Just click virtually any Properties
command or bring up an Options dialog in most applications. For example, Figure 12.1 shows the dialog
box that you see when you choose Tools, Options from within Visual C++. This property sheet contains
12 pagesin all, each covering a different set of options.

FIG. 12.1 The Options properties sheet contains many tabbed pages.

NOTE: Many people forget the difference between a property sheet and a property page. A
property sheet is awindow that contains property pages. Property pages are windows that
hold controls. They appear on the property shest.

Asyou can see, property sheets are a great way to organize many types of related options. Gone are the
days of dialog boxes so jam-packed with options that you needed a college-level course just to figure
them out. In the following sections, you'll learn to program your own tabbed property sheets by using
MFC's CPropertySheet and CPropertyPage classes.

Creating the Property Sheet Demo Application

Now that you've had an introduction to property sheets, it's time to learn how to build an application that
uses these handy specialized dialog boxes. Y ou're about to build the Property Sheet Demo application,
which demonstrates the creation and manipulation of property sheets. Follow the stepsin the following
sections to create the basic application and modify its resources.

Creating the Basic Files

First, use AppWizard to create the basic files for the Property Sheet Demo program, selecting the options
listed in the following table. When you're done, the New Project Information dialog box appears; it will
look like Figure 12.2. Click OK to create the project files.

Dialog Box Name|Optionsto Select

New, Project tab |Name the project Propsheet and then set the project path to the directory in which
you want to store the project'sfiles. Make sure that MFC AppWizard (exe) is
highlighted. L eave the other options set to their defaults.

Step 1 Select Single Document.
Step 2 of 6 L eave set to defaults.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (2 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc01.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

Step 30f 6 L eave set to defaults.
Step 4 of 6 Turn off all application features.
Step 50f 6 L eave set to defaults.
Step 6 of 6 L eave set to defaults.

FIG. 12.2 Your New Project Information dialog box looks like this.

Editing the Resources

Now you'll edit the resources in the application generated for you by AppWizard, removing unwanted
menus and accelerators, editing the About box, and most importantly, adding a menu item that will bring
up aproperty sheet. Follow these steps:
1. Select the ResourceView tab in the project workspace window. Developer Studio displays the
ResourceView window (see Figure 12.3).

FIG. 12.3 The ResourceView tab displays the ResourceView window.

2. In the ResourceView window, click the plus sign next to Propsheet Resources to display the
application's resources. Click the plus sign next to Menu and then double-click the
IDR_MAINFRAME menu ID. Visual C++'s menu editor appears, displaying the
IDR_MAINFRAME menu generated by AppWizard.

3. Click the Property Sheet Demo application's Edit menu (not Visual C++'s Edit menu) and then
press Delete to delete the Edit menu. A dialog box asks for verification of the Delete command,;
click OK.

4. Double-click the About Propsheet... item in the Help menu to bring up its properties dialog box.
Change the caption to & About Property Sheet Demo. Pin the properties dialog box in place by
clicking the pushpin in the upper-left corner.

5. On the application's File menu, delete all menu items except Exit.

6. Select the blank menu item at the end of the File menu, and change the caption to & Property
Sheet... and the command ID to ID_PROPSHEET (see Figure 12.4). Then use your mouse to
drag the new command above the Exit command so that it's the first command in the File menu.

FIG. 12.4 Add a Property Sheet command to the File menu.

7. Click the + next to Accelerator in the ResourceView window and highlight the
IDR_MAINFRAME accelerator ID. Press Delete to delete all accelerators from the application.

8. Click the + next to Dialog in the ResourceView window. Double-click the IDD_ABOUTBOX
dialog box 1D to bring up the dialog box editor.

9. Modify the dialog box by clicking the title so that the properties box refers to the whole dialog
box. Change the caption to About Property Sheet Demo.

10. Click the first static text string and change the caption to Property Sheet Demo, Version 1.0.
Click the second and add Que Books to the end of the copyright string.

11. Add athird static string with the text Special Edition Using Visual C++ 6 so that your About
box resembles the onein Figure 12.5. Close the dialog box editor.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (3 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc02.gif')
javascript:popUp('12uvc03.gif')
javascript:popUp('12uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

12. Click the + next to String Table in the ResourceView window. Double-click the String Table
ID to bring up the string table editor.

13. Double-click the IDR_MAINFRAME string and then change the first segment of the string to
Property Sheet Demo (see Figure 12.6). The meanings of these strings are discussed in Chapter
15, "Building an ActiveX Server Application,” in the " Shortcomings of This Server" section. The
one you just changed is the Window Title, used in the title bar of the application.

FIG. 12.5 The About box looks like this.
FIG. 12.6 Thefirst ssgment of the IDR_MAINFRAME string appears in your main window's title bar.

Adding New Resources

Now that you have the application’s basic resources the way you want them, it's time to add the resources
that define the application's property sheet. This means creating dialog box resources for each page in the
property sheet. Follow these steps:

1. Click the New Dialog button on the Resource toolbar, or press Ctrl+1, to create a new dialog
box resource. The new dialog box, IDD_DIALOGI, appearsin the dialog box editor. This dialog
box, when set up properly, will represent the first page of the property sheet.

2. Delete the OK and Cancel buttons by selecting each with your mouse and then pressing Delete.

3. If the Properties box isn't still up, bring it up by choosing View, Properties. Change the ID of the
dialog box to IDD_PAGE1DL G and the caption to Page 1 (see Figure 12.7).

FIG. 12.7 Change the caption and resource ID of the new dialog box.

4. Click the Stylestab of the dialog box's property sheet. In the Style drop-down box select Child,
and in the Border drop-down box select Thin. Turn off the System Menu check box. Y our
properties dialog box will resemble Figure 12.8.

The Child style is necessary because the property page will be a child window of the property
sheet. The property sheet itself will provide the container for the property pages.

FIG. 12.8 A property page uses styles different from those used in regular dialog boxes.

5. Add an edit box to the property page, as shown in Figure 12.9. In most applications you would
change the resource ID from IDC_EDIT1, but for this demonstration application, leave it
unchanged.

6. Create a second property page by following steps 1 through 5 again. For this property page, use
the ID IDD_PAGE2DL G, a caption of Page 2, and add a check box rather than an edit control (see
Figure 12.10).

FIG. 12.9 A property page can hold whatever controls you like.

FIG. 12.10 The second property page looks like this.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (4 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc05.gif')
javascript:popUp('12uvc06.gif')
javascript:popUp('12uvc07.gif')
javascript:popUp('12uvc08.gif')
javascript:popUp('12uvc09.gif')
javascript:popUp('12uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

Associating Your Resources with Classes

Y ou now have al your resources created. Next, associate your two new property-page resources with
C++ classes so that you can control them in your program. Y ou also need a class for your property sheet,
which will hold the property pages that you've created. Follow these steps to create the new classes:

1. Make sure that the Page 1 property page isvisible in the dialog box edit area and then
double-click it. If you prefer, choose View, ClassWizard from the menu bar. The MFC
ClassWizard property sheet appears, displaying the Adding a Class dialog box first discussed in
Chapter 2, "Diaogs and Controls."

2. Select the Create New Class option and then click OK. The New Class dialog box appears.

3. In the Name box, type CPagel. In the Base Class box, select CPropertyPage. (Don't
accidentally select CPropertySheet.) Then click OK to create the class.

Y ou've now associated the property page with an object of the CPropertyPage class, which means
that you can use the object to manipulate the property page as needed. The CPropertyPage class
will be especially important when you learn about wizards.

4. Select the Member Variables tab of the MFC ClassWizard property sheet. With IDC_EDIT1
highlighted, click the Add Variable button. The Add Member Variable dialog box appears.

5. Name the new member variable m_edit, as shown in Figure 12.11, and then click OK.
ClassWizard adds the member variable, which will hold the value of the property page's control, to
the new CPagel class.

FIG 12.11 ClassWizard makes it easy to connect controls on a dialog box to member variables of the
class representing the dialog box.
6. Click OK on the MFC ClassWizard properties sheet to finalize the creation of the CPagel class.

7. Follow steps 1 through 6 for the second property sheet. Name the class CPage2 and add a
Boolean member variable called m_check for the IDC_CHECK1 control, as shown in Figure
12.12.

FIG. 12.12 The second property page needs a Boolean member variable called m_checkbox.

Creating a Property Sheet Class

At this point, you've done all the resource editing and don't need to have so many windows open. Choose
Window, Close All from the menu bar and close the properties box. Y ou'll now create a property sheet
class that displays the property pages aready created. Follow these steps:

1. Bring up ClassWizard and click the Add Class button. A tiny menu appears below the button;
choose New. The New Class dialog box appears.

2. In the Name box, type CPropSheet, select CPropertySheet in the Base Class box, and then click
OK.

3. ClassWizard creates the CPropSheet class. Click the MFC ClassWizard Properties sheet's OK
button to finalize the class.

Mow you have three new classes--CPagel, CPage2, and CPropSheet--in your program. The first two
classes are derived from MFC's CPropertyPage class, and the third is derived from CProperty Sheet.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (5 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc11.gif')
javascript:popUp('12uvc12.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

Although ClassWizard has created the basic source-code files for these new classes, you still have to add
code to the classes to make them work the way you want. Follow these steps to complete the Property
Sheet Demo application:

1. Click the ClassView tab to display the ClassView window. Expand the Propsheet classes, as
shown Figure 12.13.

2. Double-click CPropSheet to open the header file for your property sheet class. Because the
name of this class (CPropSheet) is so close to the name of the application as a whole (PropSheet),
you'll find CPropSheet in PropSheetl.h, generated by ClasswWizard when you created the new
class.

3. Add the following lines near the middle of the file, right before the CPropSheet class
declaration:

#i ncl ude "pagel. h"
#i ncl ude "page2. h"

These lines give the CPropSheet class access to the CPagel and CPage?2 classes so that the
property sheet can declare member variables of these property page classes.

FIG. 12.13 The ClassView window lists the classes that make up your project.
4. Add the following lines to the CPropSheet class's //Attributes section, right after the public
keyword:
CPagel m pagel,;
CPage2 m pageZz;
These lines declare the class's data members, which are the property pages that will be displayed in
the property sheet.

5. Expand the CPropSheet class in the ClassView pane, and double-click the first constructor,
CPropSheet. Add these linesto it:

AddPage(&m pagel);

AddPage(&m page?);

Thiswill add the two property pages to the property sheet whenever the sheet is constructed.
6. The second constructor isright below the first; add the same lines there.

7. Double-click CPropsheetView in ClassView to edit the header file, and add the following lines
to the //Attributes section, right after the line CPropsheetDoc* GetDocument();:

pr ot ect ed:
CString medit;
BOOL m check;

These lines declare two data members of the view class to hold the selections made in the property
sheet by users.

8. Add the following lines to the CPropsheetView constructor:

medit = "Default";
m check = FALSE;

These linesinitialize the class's data members so that when the property sheet appears, these
default values can be copied into the property sheet's controls. After users change the contents of

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (6 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc13.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

the property sheet, these data members will always hold the last values from the property sheet, so
those values can be restored to the sheet when needed.

9. Edit CPropsheetView::OnDraw() so that it resembles Listing 12.1. The new code displays the
current selections from the property sheet. At the start of the program, the default values are

displayed.
Listing 12.1 CPropsheetView::OnDraw()

voi d CPropsheet Vi ew. : OnDr aw(CDC* pDC)

{
CPr opsheet Doc* pDoc = Get Docunent () ;
ASSERT_VALI D(pDoc) ;
pDC- >Text Qut (20, 20, medit);
I f (m_check)
pDC- >Text Qut (20, 50, "TRUE");
el se
pDC- >Text Qut (20, 50, "FALSE");
}

10. At the top of PropsheetView.cpp, after the #include of propsheet.h, add another include
Sstatement:

#i ncl ude "propsheet 1. h"

11. Bring up ClassWizard, click the Message M aps tab, and make sure that CPropsheetView is
selected in the Class Name box. In the Object IDs box, select ID_PROPSHEET, which isthe ID of
the new item you added to the File menu. In the Messages box, select COMMAND. Click Add
Function to add a function that will handle the command message generated when users choose
this menu item. Name the function OnPropsheet(), as shown in Figure 12.14.

FIG. 12.14 Use ClassWizard to add the OnPropsheet() member function.

The OnPropsheet() function is now associated with the Property Sheet command that you
previously added to the File menu. That is, when users select the Property Sheet command, MFC
calls OnPropsheet(), where you can respond to the command.

12. Click the Edit Code button to jump to the OnPropsheet() function, and add the lines shown in
Listing 12.2.

Listing 12.2 CPropsheetView::OnPropsheet()

voi d CPropsheet Vi ew. : OnPropsheet ()
{
CPr opSheet propSheet ("Property Sheet", this, 0);
propSheet. m pagel. medit = medit;
propSheet . m page2. m checkbox = m check;
int result = propSheet. DoModal ();
I f (result == | DOK)
{
medit = propSheet. m pagel. medit;

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (7 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc14.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

m check = propSheet. m page2. m checkbox;
| nval i date();

The code segment in Listing 12.2, discussed in more detail later in this chapter, creates an instance
of the CPropSheet class and sets the member variables of each of its pages. It displays the sheet by
using the familiar DoModal function first discussed in Chapter 2, "Dialogs and Controls." If users
click OK, it updates the view member variables to reflect the changes made on each page and
forces aredraw with acall to Invalidate().

Running the Property Sheet Demo Application

Y ou've finished the complete application. Click the Build button on the Build minibar (or choose Build,
Build) to compile and link the application. Run it by choosing Build, Execute or by clicking the Execute
button on the Build minibar. When you do, you see the window shown in Figure 12.15.

Asyou can see, the window displays two values--the default values for the controls in the application's
property sheet. Y ou can change these values by using the property sheet. Choose File, Property Sheet;
the property sheet appears (see Figure 12.16). The property sheet contains two pages, each of which
holds a single control. When you change the settings of these controls and click the property sheet's OK
button, the application's window displays the new values. Try it!

FIG. 12.15 When it first starts, the Property Sheet Demo application displays default values for the
property sheet's contrals.

FIG. 12.16 The application's property sheet contains two pages.

Adding Property Sheets to Your Applications

To add a property sheet to one of your own applications, you follow steps very similar to those you
followed in the previous section to create the demo application:

1. Create a dialog box resource for each page in the property sheet. These resources should have
the Child and Thin styles and should have no system menu.

2. Associate each property page resource with an object of the CPropertyPage class. Y ou can do
this easily with ClassWizard. Connect controls on the property page to members of the class you
create.

3. Create a class for the property sheet, deriving the class from MFC's CPropertySheet class. Y ou
can generate this class by using Classwizard.

4. In the property sheet class, add member variables for each page you'll be adding to the property
sheet. These member variables must be instances of the property page classes that you created in
step 2.

5. In the property sheet's constructor, call AddPage() for each page in the property sheet.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (8 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc15.gif')
javascript:popUp('12uvc16.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

6. To display the property sheet, call the property sheet's constructor and then call the property
sheet's DoModal () member function, just as you would with a dialog box.

After you write your application and define the resources and classes that represent the property sheet (or
sheets--you can have more than one), you need away to enable usersto display the property sheet when
it's needed. In Property Sheet Demo, thisis done by associating a menu item with a message-response
function. However you handle the command to display the property sheet, the process of creating the
property sheet is the same. First, you must call the property sheet class's constructor, which Property
Sheet Demo does like this:

CPropSheet propSheet ("Property Sheet", this, 0);

Here, the program creates an instance of the CPropSheet class. Thisinstance (or object) is called
propSheet. The three arguments are the property sheet's title string, a pointer to the parent window
(which, in this case, is the view window), and the zero-based index of the first page to display. Because
the property pages are created in the property sheet's constructor, creating the property sheet also creates
the property pages.

After you create the property sheet object, you can initialize the data members that hold the values of the
property page's controls, which Property Sheet Demo does like this:

propSheet. m pagel. medit = medit;

propSheet . m page2. m checkbox = m check;

Now it'stime to display the property sheet, which you do just as though it were a dialog box, by calling
the property sheet's DoModal () member function:

int result = propSheet. DoModal ();

DoModal () doesn't take any arguments, but it does return a value indicating which button users clicked to
exit the property sheet. In a property sheet or dialog box, you'll usually want to process the information
entered into the controls only if users clicked OK, which isindicated by areturn value of IDOK. If users
exit the property sheet by clicking the Cancel button, the changes are ignored and the view or document
member variables aren't updated.

Changing Property Sheets to Wizards

Here's a piece of information that surprises most people: A wizard isjust a special property sheet. Instead
of tabbed pages on each sheet that alow usersto fill in the information in any order or to skip certain
pages entirely, awizard has Back, Next, and Finish buttons to move users through a processin a certain
order. This forced sequence makes wizards terrific for guiding your application's users through the steps
needed to complete a complex task. You've already seen how AppWizard in Visual C++ makesiit easy to
start a new project. Y ou can create your own wizards suited to whatever application you want to build. In
the following sections, you'll see how easy it isto convert a property sheet to awizard.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (9 of 13) [7/29/1999 3:49:16 PM]

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

Running the Wizard Demo Application

To understand Wizards, this section will show you the Wizard Demo application, which isbuilt in much
the same way as the Property Sheet Demo application that you created earlier in this chapter. This
chapter won't present step-by-step instructions to build Wizard Demo. Y ou will be able to build it
yourself if you want, using the general steps presented earlier and the code snippets shown here.

When you run the Wizard Demo application, the main window appears, looking very much like the
Property Sheet Demo main window. The File menu now includes a Wizard item; choosing File Wizard
brings up the wizard shown in Figure 12.17.

FIG. 12.17 The Wizard Demo application displays a wizard rather than a property sheet.

The wizard isn't too fancy, but it does demonstrate what you need to know to program more complex
wizards. Asyou can see, this wizard has three pages. On the first page is an edit control and three
buttons: Back, Next, and Cancel. The Back button is disabled because there's no previous page to go
back to. The Cancel button enables users to dismiss the wizard at any time, canceling whatever process
the wizard was guiding users through. The Next button causes the next page in the wizard to appear.

Y ou can change whatever is displayed in the edit control if you like. However, the magic really starts
when you click the Next button, which displays Page 2 of the wizard (see Figure 12.18). Page 2 contains
acheck box and the Back, Next, and Cancel buttons. Now the Back button is enabled, so you can return
to Page 1 if you want to. Go ahead and click the Back button. The wizard tells you that the check box
must be checked (see Figure 12.19). Asyou'll soon seg, this feature of awizard enables you to verify the
contents of a specific page before allowing users to advance to another step.

FIG. 12.18 In Page 2 of the wizard, the Back button is enabled.

After checking the check box, you can click the Back button to move back to Page 1 or click Next to
advance to Page 3. Assuming that you advance to Page 3, you see the display shown in Figure 12.20.
Here, the Next button has changed to the Finish button because you are on the wizard's last page. If you
click the Finish button, the wizard disappears.

FIG. 12.19 You must select the check box before the wizard will let you leave Page 2.
FIG. 12.20 Thisisthe last page of the Wizard Demo Application’'s wizard.

Creating Wizard Pages

Asfar asyour application's resources go, you create wizard pages exactly as you create property sheet
pages--by creating dialog boxes and changing the dialog box styles. The dialog titles--Page 1 of 3, Page 2
of 3, and Page 3 of 3--are hardcoded onto each dialog box. Y ou associate each dialog box resource with
an object of the CPropertyPage class. Then, to take control of the pagesin your wizard and keep track of
what users are doing with the wizard, you override the OnSetActive(), OnWizardBack(),
OnWizardNext(), and OnWizardFinish() functions of your property page classes. Read on to see how to
do this.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (10 of 13) [7/29/1999 3:49:16 PM]

javascript:popUp('12uvc17.gif')
javascript:popUp('12uvc18.gif')
javascript:popUp('12uvc19.gif')
javascript:popUp('12uvc20.gif')

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

Displaying a Wizard

The File, Wizard command is caught by CWizView's OnFileWizard() function. It's very similar to the
OnPropSheet() function in the Property Sheet demo, as you can see from Listing 12.3. The first
difference isthe call to SetWizardMode() before the call to DoModal(). This function call tells MFC that
it should display the property sheet as awizard rather than as a conventional property sheet. The only
other differenceisthat users arrange for property sheet changes to be accepted by clicking Finish, not
OK, so this code checksfor ID_WIZFINISH rather than IDOK as a return from DoModal().

Listing 12.3 CWizView::OnFileWizard()

void CWzView : OnFil eW zard()
{
CW zSheet w zSheet (" Sanple Wzard", this, 0);
W zSheet. mpagel. medit = medit;
W zSheet . m page2. m check = m check;
W zSheet . Set W zar dvbde() ;
int result = w zSheet. DoMbdal ();
if (result == D WZFI N SH)
{
medit = w zSheet. m pagel. medit;
m check = w zSheet. m page2. m check;
| nval i dat e();

}
Setting the Wizard's Buttons

MFC automatically calls the OnSetActive() member function immediately upon displaying a specific
page of the wizard. So, when the program displays Page 1 of the wizard, the CPagel class's
OnSetActive() function is called. You add code to this function that makes the wizard behave as you
want. CPagel::OnSetActive() looks like Listing 12.4.

Listing 12.4 CPagel::OnSetActive()

BOOL CPagel:: OnSet Active()

{
CPropertySheet* parent = (CPropertySheet*) Get Parent();
par ent - >Set W zar dBut t ons(PSW ZB_NEXT) ;
return CPropertyPage:: OnSet Acti ve();

}

OnSetActive() first gets a pointer to the wizard's property sheet window, which is the page's parent
window. Then the program calls the wizard's SetWizardButtons() function, which determines the state of
the wizard's buttons. SetWizardButtons() takes a single argument, which is a set of flags indicating how
the page should display its buttons. These flags are PSWI1ZB_BACK, PSWIZB_NEXT,

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (11 of 13) [7/29/1999 3:49:16 PM]

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets

PSWIZB_FINISH, and PSWIZB_DISABLEDFINISH. Because the call to SetWizardButtons() in
Listing 12.4 includes only the PSWIZB_NEXT flag, only the Next button in the page will be enabled.

Because the CPage2 class represents Page 2 of the wizard, its call to SetWizardButtons() enables the
Back and Next buttons by combining the appropriate flags with the bitwise OR operator (|), like this:

par ent - >Set W zar dBut t ons(PSW ZB_BACK | PSW ZB_NEXT) ;

Because Page 3 of the wizard is the last page, the CPage3 class calls SetWizardButtons() like this:
par ent - >Set W zar dBut t ons(PSW ZB_BACK | PSW ZB_FI NI SH) ;

This set of flags enables the Back button and provides a Finish button instead of a Next button.

Responding to the Wizard's Buttons

In the simplest case, MFC takes care of everything that needs to be done in order to flip from one wizard
page to the next. That is, when users click a button, MFC springs into action and performs the Back,
Next, Finish, or Cancel command. However, you'll often want to perform some action of your own when
users click a button. For example, you may want to verify that the information that users entered into the
currently displayed page is correct. If there's a problem with the data, you can force usersto fix it before
moving on.

To respond to the wizard's buttons, you override the OnWizardBack(), OnWizardNext(), and
OnWizardFinish() member functions. Use the Message Maps tab of Classwizard to do this; you'll find
the names of these functions in the Messages window when a property page classis selected in the Class
Name box. When users click awizard button, MFC calls the matching function which does whatever is
needed to process that page. An example is the way the wizard in the Wizard Demo application won't | et
you leave Page 2 until you've checked the check box. Thisis accomplished by overriding the functions
shownin Listing 12.5.

Listing 12.5 Responding to Wizard Buttons

LRESULT CPage?2:: OnW zar dBack()

{
CButton *checkBox = (CButton*)GetD glten(l DC _CHECK1);
i f (!checkBox->Get Check())
{
MessageBox("You nust check the box.");
return -1;
}
return CPropertyPage:: OnW zar dBack() ;
}
LRESULT CPage2:: OnW zar dNext ()
{
Updat eDat a() ;
I f (! m_check)
{

MessageBox(" You nust check the box.");

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (12 of 13) [7/29/1999 3:49:16 PM]

Special Edition Using Visual C++ 6 -- Ch 12 -- Property Pages and Sheets
return -1;

}
return CPropertyPage:: OnW zar dNext () ;

}

These functions demonstrate two ways to examine the check box on Page 2. OnWizardBack() gets a
pointer to the page's check box by calling the GetDlgltem() function. With the pointer in hand, the
program can call the check box class's GetCheck() function, which returnsa 1 if the check box is
checked. OnWizardNext() calls UpdateData() to fill al the CPage2 member variables with values from
the dialog box controls and then looks at m_check. In both functions, if the box isn't checked, the
program displays a message box and returns -1 from the function. Returning -1 tells MFC to ignore the
button click and not change pages. Asyou can see, it issimple to arrange for different conditions to leave
the page in the Back or Next direction.

{4 Previous Chapter JERL—> WNext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch12/ch12.htm (13 of 13) [7/29/1999 3:49:16 PM]

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

oue
Special Edition Using Visual C++ 6

[€ Previous Chapter JN.-» MNext Chapter

- 13 -

ActiveX Concepts

o The Purpose of ActiveX
e Object Linking

o Object Embedding

o Containers and Servers

o Toward aMore Intuitive User Interface
o The Component Object Model
o Automation

o ActiveX Controls

The Purpose of ActiveX

This chapter covers the theory and concepts of ActiveX, which is built on the Component Object Model
(COM). Until recently, the technology built on COM was called OLE, and OLE still exists, but the emphasis
now ison ActiveX. Most new programmers have found OLE intimidating, and the switch to ActiveX is
unlikely to lessen that. However, if you think of ActiveX technology as away to use code already written and
tested by someone else, and as away to save yourself the trouble of reinventing the wheel, you'll see why it's
worth learning. Developer Studio and MFC make ActiveX much easier to understand and implement by doing
much of the groundwork for you. There are four chaptersin Part V, "Internet Programming,” and together they
demonstrate what ActiveX has become. In addition, ActiveX controls, which to many developers represent the
way of the future, are discussed in Chapter 20, "Building an Internet ActiveX Control," and Chapter 21, "The
Active Template Library." These are best read after Chapters 18 and 19.

Windows has always been an operating system that allows severa applications running at once, and right from
the beginning, programmers wanted to have away for those applications to exchange information while
running. The Clipboard was a marvelous innovation, though, of course, the user had to do alot of the work.
DDE (Dynamic Data Exchange) allowed applications to "talk" to each other but had some major limitations.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (1 of 9) [7/29/1999 3:49:39 PM]

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

Then came OLE 1 (Object Linking and Embedding). Later there was OLE 2, and then Microsoft just called it
OLE, until it moved so far beyond its original roots that it was renamed ActiveX.

NOTE: Experienced Windows users will probably be familiar with the examples presented in the
early part of this chapter. If you know what ActiveX can do for users and are interested in why it
works jump ahead to the "Component Object Model" section, which looks under the hood a

little. n

ActiveX lets users and applications be document-centered, and thisis probably the most important thing about
it. If auser wants to create an annual report, by choosing ActiveX-enabled applications, the user stays focused
on that annual report. Perhaps parts of it are being done with Word and parts with Excel, but, to the user, these
applications are not really the point. This shift in focus is happening on many fronts and corresponds to a more
object-oriented way of thinking among many programmers. It seems more natural now to share work among
severa different applications and arrange for them to communicate than to write one huge application that can
do everything.

Here's asimple test to see whether you are document centered or application centered: How isyour hard drive
organized?

The directory structure in Figure 13.1 is application centered: The directories are named for the applications
that were used to create the documents they hold. All Word documents are together, even though they might
be for very different clients or projects.

FIG. 13.1 An application-centered directory structure arranges documents by type.

The directory structure in Figure 13.2 is document centered: The directories are named for the client or project
involved. All the sales files are together, even though they can be accessed with a variety of different
applications.

FIG. 13.2 A document-centered directory structure arranges documents by meaning or content.

If you've been using desktop computers long enough, you remember when using a program involved a
program disk and a data disk. Perhaps you remember installing software that demanded to know the data
directory where you would keep all the files created with that product. That was application-centered thinking,
and it's fast being supplanted by document- centered thinking.

Why? What's wrong with application-centered thinking? Well, where do you put the documents that are used
with two applications equally often? There was a time when each product could read its own file formats and
no others. But these days, the lines between applications are blurring; a document created in one word
processor can easily be read into another, a spreadsheet file can be used as a database, and so on. If aclient
sends you a WordPerfect document and you don't have WordPerfect, do you make a
\WORDPERFECT\DOCS directory to put it in, or add it to your \M SOFFICE\WORD\DOCS directory? If
you have your hard drive arranged in a more document-centered manner, you can just put it in the directory
for that client.

The Windows 95 interface, now incorporated into Windows NT as well, encourages document-centered
thinking by having users double-click documents to automatically launch the applications that created them.
Thiswasn't new--File Manager had that capability for years--but it feels very different to double-click anicon
that's just sitting on the desktop than it does to start an application and then double-click an entry in alist box.
More and more it doesn't matter what application or applications were involved in creating this document; you

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (2 of 9) [7/29/1999 3:49:39 PM]

javascript:popUp('13uvc01.gif')
javascript:popUp('13uvc02.gif')

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts
just want to see and change your data, and you want to do that quickly and simply.

After you become document-centered, you see the appeal of compound documents--files created with more
than one application. If your report needs an illustration, you create it in some graphic program and then stick
it in with your text when it's done. If your annual report needs atable, and you already have the numbersin a
spreadsheet, you don't retype them into the table feature of your word processor or even import them; you
incorporate them as a spreadsheet excerpt, right in the middle of your text. Thisisn't earth-shatteringly new, of
course. Early desktop publishing programs such as Ventura pulled together text and graphics from avariety of
sources into one complex compound document. What's exciting is being able to do it simply, intuitively, and
with so many different applications.

Object Linking

Figure 13.3 shows a Word document with an Excel spreadsheet linked into it.

Follow these steps to create a similar document yourself:
1. Start Word and enter your text.
2. Click where you want the table to go.
3. Choose Insert, Object.
4. Select the Create from File tab.
5. Enter or select the filename as though this were a File Open dialog box.
6. Be sure to check the Link to File box.
7. Click OK.

The entire file appears in your document. If you make a change in the file on disk, the changeisreflected in
your document. Y ou can edit the file in its own application by double-clicking it within Word. The other
application is launched to edit it, as shown in Figure 13.4. If you delete the file from disk, your Word
document still displays what the file last looked like, but you aren't able to edit it.

FIG. 13.3 A Microsoft Word document can contain a link to an Excel file.
FIG. 13.4 Double-clicking a linked object launches the application that created it.

You link filesinto your documents if you plan to use the same file in many documents and contexts, because
your changes to that file are automatically reflected everywhere that you have linked it. Linking doesn't
increase the size of your document files dramatically because only the location of the file and alittle bit of
presentation information needs to be kept in your document.

Object Embedding

Embedding is similar to linking, but a copy of the object is made and placed into your document. If you
change the original, the changes aren't reflected in your document. Y ou can't tell by looking whether the Excel
chart you see in your Word document is linked or embedded. Figure 13.5 shows a spreadsheet embedded
within aWord document.

FIG. 13.5 A file embedded within another file looks just like a linked file.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (3 of 9) [7/29/1999 3:49:39 PM]

javascript:popUp('13uvc03.gif')
javascript:popUp('13uvc04.gif')
javascript:popUp('13uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

Follow these steps to create a similar document yourself:
1. Start Word and enter your text.
2. Click where you want the table to go.
3. Choose Insert, Object.
4. Select the Create from File tab.
5. Enter or select the filename as though this were a File Open dialog box.
6. Do not check the Link to File box.
7. Click OK.

What's the difference? Y ou'll see when you double-click the object to edit it. The Word menus and toolbars
disappear and are replaced with their Excel equivalents, as shown in Figure 13.6. Changes you make here
aren't made in the file you originally embedded. They are made in the copy of that file that has become part of
your Word document.

FIG. 13.6 Editing in place is the magic of OLE embedding.

Y ou embed files into your documents if you plan to build a compound document and then use it as a
self-contained whole, without using the individual parts again. Changes you make don't affect any other files
on your disk, not even the one you copied from in the first place. Embedding makes your document much
larger than it was, but you can delete the original if spaceis aproblem.

Containers and Servers

To embed or link one object into another, you need a container and a server. The container is the application
into which the object islinked or embedded--Word in these examples. The server is the application that made
them, and that can be launched (perhaps in place) when the object is double-clicked--Excel in these examples.

Why would you develop a container application? To save yourself work. Imagine you have a product already
developed and in the hands of your users. It does a specific task like organize a sales team, schedule gamesin
aleague sport, or calculate life insurance rates. Then your userstell you that they wish it had a spreadsheet
capability so they could do small calculations on-the-fly. How long will it take you to add that functionality?
Do you really have timeto learn how spreadsheet programs parse the functions that users type?

If your application is acontainer app, it doesn't take any time at all. Tell your usersto link or embed in an
Excel sheet and let Excel do the work. If they don't own a copy of Excel, they need some spreadsheet
application that can be an ActiveX server. Y ou get to piggyback on the effort of other devel opers.

It's not just spreadsheets, either. What if users want a scratch pad, a place to scribble afew notes? Let them
embed a Word document. (What about bitmaps and other illustrations? Microsoft Paint, or a more powerful
graphics package if they have one, and it can act as an ActiveX server.) Y ou don't have to concern yourself
with adding functionality like thisto your programs because you can just make your application a container
and your users can embed whatever they want without any more work on your part.

Why would you develop a server application, then? Look back over the reasons for writing a container
application. A lot of users are going to contact developers asking for afeature to be added, and be told they
can have that feature immediately--they just need an application that does spreadsheets, text, pictures, or
whatever, and can act as an ActiveX server. If your application is an ActiveX server, people will buy it so that
they can add its functionality to their container apps.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (4 of 9) [7/29/1999 3:49:39 PM]

javascript:popUp('13uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

Together, container and server apps enable users to build the documents they want. They represent a move
toward building-block software and a document-centered approach to work. If you want your application to
carry the Windows 95 logo, it must be a server, a container, or both. But there is much more to ActiveX than
linking and embedding.

Toward a More Intuitive User Interface

What if the object you want to embed is not in afile but is part of adocument you have open at the moment?
Y ou may have already discovered that you can use the Clipboard to transfer ActiveX objects. For example, to
embed part of an Excel spreadsheet into a Word document, you can follow these steps:

1. Open the spreadsheet in Excel.

2. Open the document in Word.

3. In Excel, select the portion you want to copy.

4. Choose Edit, Copy to copy the block onto the Clipboard.

5. Switch to Word and choose Edit, Paste Special.

6. Select the Paste radio button.

7. Select Microsoft Excel Worksheet Object from the list box.
8. Make sure that Display as Icon is not selected.

9. The dialog box should look like Figure 13.7. Click OK.

A copy of the block is now embedded into the document. If you choose Paste Link, changes in the spreadsheet
are reflected immediately in the Word document, not just when you save them. (Y ou might have to click the
selection in Word to update it.) Thisistrue even if the spreadsheet has no name and has never been saved. Try
it yourself! Thisis certainly better than saving dummy files just to embed them into compound documents and
then deleting them, isn't it?

FIG. 13.7 The Paste Special dialog box isused to link or embed selected portions of a document.

Another way to embed part of a document into another is drag and drop. Thisis a user- interface paradigm that
worksin avariety of contexts. Y ou click something (an icon, a highlighted block of text, aselectionin alist
box) and hold the mouse button down while moving it. The item you clicked moves with the mouse, and when
you let go of the mouse button, it drops to the new location. That's very intuitive for moving or resizing
windows, but now you can use it to do much, much more. For example, here's how that Excel-in-Word
example would be done with drag and drop:

1. Open Word and size it to less than full screen.

2. Open Excel and size it to less than full screen. If you can arrange the Word and Excel windows so
they don't overlap, that's great.

3. In Excel, select the portion you want to copy by highlighting it with the mouse or cursor keys.
4. Click the border of the selected area (the thick black line) and hold.
5. Drag the block into the Word window and let go.

The selected block is embedded into the Word document. If you double-click it, you are editing in place with
Excel. Drag and drop also works within a document to move or copy a selection.

TIP: The block ismoved by default, which meansit is deleted from the Excel sheet. If you want

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (5 of 9) [7/29/1999 3:49:39 PM]

javascript:popUp('13uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

acopy, hold down the Ctrl key while dragging, and rel ease the mouse button before the Cirl key.

Y ou can also use drag and drop with icons. On your desktop, if you drag afileto afolder, it is moved there.
(Hold down Ctrl while dragging to copy it.) If you drag it to a program icon, it is opened with that program.
Thisisvery useful when you have a document you use with two applications. For example, pages on the
World Wide Web are HTML documents, often created with an HTML editor but viewed with aWorld Wide
Web browser such as Netscape Navigator or Microsoft Internet Explorer. If you double-click an HTML
document icon, your browser is launched to view it. If you drag that icon onto the icon for your HTML editor,
the editor is launched and opens the file you dragged. After you realize you can do this, you will find your
work speeds up dramatically.

All of thisis ActiveX, and al of thisrequires alittle bit of work from programmers to make it happen. So
what's going on?

The Component Object Model

The heart of ActiveX isthe Component Object Model (COM). Thisis an incredibly complex topic that
deserves a book of its own. Luckily, the Microsoft Foundation Classes and the Visual C++ AppWizard do
much of the behind-the-scenes work for you. The discussion in these chaptersis just what you need to know to
use COM as adeveloper.

COM isabinary standard for Windows objects. That means that the executable code (inaDLL or EXE) that
describes an object can be executed by other objects. Even if two objects were written in different languages,
they are able to interact using the COM standard.

NOTE: Because the codein a DLL executes in the same process as the calling code, it's the
fastest way for applications to communicate. When two separate applications communicate
through COM, function calls from one application to another must be marshaled: COM gathers
up all the parameters and invokes the function itself. A standalone server (EXE) istherefore
slower than an in-process server (DLL).

How do they interact? Through an interface. An ActiveX interface is a collection of functions, or really just
function names. It's a C++ class with no data, only pure virtual functions. Y our objects inherit from this class
and provide code for the functions. (Remember, as discussed in Appendix A, "C++ Review and
Object-Oriented Concepts," a class that inherits a pure virtual function doesn't inherit code for that function.)
Other programs get to your code by calling these functions. All ActiveX objects must have an interface named
lUnknown (and most have many more, al with names that start with |, the prefix for interfaces).

The IlUnknown interface has only one purpose: finding other interfaces. It has a function called
Querylnterface() that takes an interface ID and returns a pointer to that interface for this object. All the other
interfaces inherit from IUnknown, so they have a Querylnterface() too, and you have to write the code--or you
would if there was no MFC. MFC implements a number of macros that simplify the job of writing interfaces
and their functions, as you will shortly see. The full declaration of IUnknown isin Listing 13.1. The macros
take care of some of the work of declaring an interface and won't be discussed here. There are three functions
declared: QuerylInterface(), AddRef(), and Release(). These latter two functions are used to keep track of
which applications are using an interface. All three functions are inherited by all interfaces and must be
implemented by the developer of the interface.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (6 of 9) [7/29/1999 3:49:39 PM]

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

Listing 13.1 IUnknown, Defined in \Program Files\Microsoft Visual
Studio\VC98\Include\unknwn.h

M DL_| NTERFACE(" 00000000- 0000- 0000- CO00- 000000000046")

| Unknown
{
public:

BEG N_I NTERFACE
virtual HRESULT STDMVETHODCALLTYPE Queryl nterface(
[* [in] */ REFIIDTriid,
[* [iid_is][out] */ void _ RPC FAR * RPC FAR *ppv(bject) = O;
virtual ULONG STDMETHODCALLTYPE AddRef (void) = O;
virtual ULONG STDMETHODCALLTYPE Rel ease(void) = 0;
#if (_MSC_VER >= 1200) /1 VC6 or greater
tenpl ate <class @
HRESULT STDMETHODCALLTYPE Querylnterface(Q* pp)

{

}
#endi f

return Querylnterface(__uuidof(Q, (void**)pp);

END | NTERFACE
b

Automation

An Automation server lets other applications tell it what to do. It exposes functions and data, called methods
and properties. For example, Microsoft Excel is an Automation server, and programs written in Visual C++ or
Visual Basic can call Excel functions and set properties like column widths. That means you don't need to
write a scripting language for your application any more. If you expose all the functions and properties of your
application, any programming language that can control an Automation server can be a scripting language for
your application. Y our users may already know your scripting language. They essentialy will have no
learning curve for writing macros to automate your application (although they will need to learn the names of
the methods and properties you expose).

The important thing to know about interacting with automation is that one program is always in control,
calling the methods or changing the properties of the other running application. The application in control is
called an Automation controller. The application that exposes methods and functionsis called an Automation
server. Excel, Word, and other members of the Microsoft Office suite are Automation servers, and your
programs can use the functions of these applications to really save you coding time.

For example, imagine being able to use the function called by the Word menu item Format, Change Case to
convert the blocks of text your application usesto all uppercase, al lowercase, sentence case (the first letter of
the first word in each sentence is uppercase, the rest are not), or title case (the first letter of every word is
uppercase; the rest are not).

The description of how automation really worksis far longer and more complex than the interface summary of
the previous section. It involves a special interface called I Dispatch, a simplified interface that works from a
number of different languages, including those like Visual Basic that can't use pointers. The declaration of

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (7 of 9) [7/29/1999 3:49:39 PM]

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts
IDispatch is shown in Listing 13.2.

Listing 13.2 IDispatch, Defined in \Program Files\Microsoft Visual
Studio\VC98\Include\oaidl.h

M DL_| NTERFACE(" 00020400- 0000- 0000- CO00- 000000000046")
| D spatch : public | Unknown

{
public:
vi rtual HRESULT STDVMETHODCALLTYPE Get Typel nf oCount (
[* [out] */ UNT __ RPC FAR *pctinfo) = O;
virtual HRESULT STDMETHODCALLTYPE Get Typel nf o
[* [in] */ UNT iTInfo,
/[* [in] */ LADIcid,
/* [out] */ ITypelnfo RPC FAR * RPC FAR *ppTlInfo) = O;
virtual HRESULT STDMETHODCALLTYPE Get | DsOF Nanes(
/[* [in] */ REFIIDTriid,
/* [size_is][in] */ LPOLESTR __ RPC FAR *rgszNanes,
[* [in] */ U NT cNanes,
/* [in] */ LCIDIlcid,
[* [size_is][out] */ DISPID __RPC FAR *rgDhi spld) = 0O;
virtual /* [local] */ HRESULT STDMETHODCALLTYPE I nvoke(
/[* [in] */ DI SPID displdMvenber,
/[* [in] */ REFIIDTriid,
/[* [in] */ LCIDIlcid,
[* [in] */ WORD wFl ags,
[* [out][in] */ DI SPPARAMS _ RPC FAR *pDi spPar ans,
/[* [out] */ VARIANT __ RPC FAR *pVarResult,
/* [out] */ EXCEPINFO __ RPC FAR *pExcepl nf o,
/* [out] */ UNI __ RPC FAR *puArgErr) = 0;
1

Although I Dispatch seems more complex than [Unknown, it declares only afew more functions:
GetTypelnfoCount(), GetTypelnfo(), GetlDsOfNames(), and Invoke(). Because it inherits from lUnknown, it
has also inherited Querylnterface(), AddRef(), and Release(). They are all pure virtual functions, so any COM
class that inherits from I Dispatch must implement these functions. The most important of these is Invoke(),
used to call functions of the Automation server and to access its properties.

ActiveX Controls

ActiveX controls aretiny little Automation servers that load in process. This means they are remarkably fast.
They were originally called OLE Custom Controls and were designed to replace VBX controls, 16-bit controls
written for usein Visua Basic and Visual C++. (There are anumber of good technical reasons why the VBX
technology could not be extended to the 32-bit world.) Because OLE Custom Controls were traditionally kept
in files with the extension .OCX, many people referred to an OLE Custom Control as an OCX control or just
an OCX. Although the OLE has been supplanted by ActiveX, ActiveX controls produced by Visual C++ 6.0
are still kept in fileswith the .OCX extension.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (8 of 9) [7/29/1999 3:49:39 PM]

Special Edition Using Visual C++ 6 -- Ch 13 -- ActiveX Concepts

The original purpose of VBX controls was to allow programmers to provide unusual interface controls to their
users. Controls that looked like gas gauges or volume knobs became easy to develop. But amost immediately,
VBX programmers moved beyond simple controls to modules that involved significant amounts of calculation
and processing. In the same way, many ActiveX controls are far more than just controls; they are components

that can be used to build powerful applications quickly and easily.

NOTE: If you have built an OCX in earlier versions of Visual C++, you might think itisa
difficult thing to do. The Control Developer Kit, now integrated into Visual C++, takes care of
the ActiveX aspects of the job and allows you to concentrate on the calculations, display, or
whatever elseit isthat makes your control worth using. The ActiveX Control Wizard makes
getting started with an empty ActiveX control simple.

Because controls are little Automation servers, they need to be used by an Automation controller, but the
terminology istoo confusing if there are controls and controllers, so we say that ActiveX controls are used by
container applications. Visual C++ and Visual Basic are both container applications, as are many members of
the Office suite and many non-Microsoft products.

In addition to properties and methods, ActiveX controls have events. To be specific, acontrol issaid to fire an
event, and it does so when there is something that the container needs to be aware of. For example, when the
user clicks a portion of the control, the control deals with it, perhaps changing its appearance or making a
calculation, but it may also need to pass on word of that click to the container application so that afile can be
opened or some other container action can be performed.

This chapter has given you a brief tour through the concepts and terminology used in ActiveX technology, and
a glimpse of the power you can add to your applications by incorporating ActiveX into them. The remainder
of the chaptersin this part lead you through the creation of ActiveX applications, using MFC and the wizards
inVisua C++,

(e Provious Chaptsr JRC> NextChapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch13/ch13.htm (9 of 9) [7/29/1999 3:49:39 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

oue
Special Edition Using Visual C++ 6

(e Previons Chapisr JRC> Next Chaptar

- 14 -

Building an ActiveX Container Application

Changing ShowString
o AppWizard-Generated ActiveX Container Code
0 Returning the ShowString Functionality

Moving, Resizing, and Tracking

Handling Multiple Objects and Object Selection
o Hit Testing
o Drawing Multiple Items

o Handling Single Clicks

o Handling Double-Clicks

| mplementing Drag and Drop

o Implementing a Drag Source

o Implementing a Drop Target

0 Registering the View as aDrop Target
o Setting Up Function Skeletons and Adding Member Variables
o OnDragEnter()
o OnDragOver()
o OnDraglLeave()
o OnDragDrop()
o Testing the Drag Target
» Deleting an Object

Y ou can obtain arudimentary ActiveX container by asking AppWizard to make you one, but it will have alot of
shortcomings. A far more difficult task isto understand how an ActiveX container works and what you have to do to
really useit. In this chapter, by turning the ShowString application of earlier chaptersinto an ActiveX container and
then making it atruly functional container, you get a backstage view of ActiveX in action. Adding drag-and-drop

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (1 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

support brings your application into the modern age of intuitive, document-centered user interface design. If you
have not yet read Chapter 13, "ActiveX Concepts,” it would be agood ideato read it before this one. Aswell, this
chapter will not repeat al the instructions of Chapter 8, "Building a Complete Application: ShowString," so you
should have read that chapter or be prepared to refer to it as you progress through this one.

Changing ShowString

ShowsString was built originally in Chapter 8, "Building a Complete Application: ShowString," and has no ActiveX
support. Y ou could make the changes by hand to implement ActiveX container support, but there would be more
than 30 changes. It's quicker to build a new ShowString application--this time asking for ActiveX container
support--and then make changes to that code to get the ShowString functionality again.

AppWizard-Generated ActiveX Container Code

Build the new ShowString in adifferent directory, making almost exactly the same AppWizard choices you used
when you built it in the " Creating an Empty Shell with AppWizard" section of Chapter 8. Name the project
ShowsString, choose an MDI Application, No Database Support, compound document support: Container, a Docking
Toolbar, Initial Status Bar, Printing and Print Preview, Context Sensitive Help, and 3D Controls. Finally, select
Source File Comments and a Shared DLL. Finish AppWizard and, if you want, build the project.tm1713714470

NOTE: Even though the technology is now called ActiveX, the AppWizard dialog boxes refer to
compound document support. Also, many of the classnames that are used throughout this chapter have
Olein their names, and comments refer to OLE. Although Microsoft has changed the name of the
technology, it has not propagated that change throughout Visual C++ yet. Y ou have to live with these
contradictions for awhile.

There are many differences between the application you just built and a do-nothing application without ActiveX
container support. The remainder of this section explains these differences and their effects.

Menus There's another menu, called IDR_SHOWSTTYPE_CNTR_IP, shown in Figure 14.1. The name refersto a
container whose contained object is being edited in place. During in-place editing, the menu bar is built from the
container's in-place menu and the server's in-place menu. The pair of vertical barsin the middle of
IDR_SHOWSTTYPE_CNTR_IP are separators; the server menu items will be put between them. Thisis discussed
in more detail in Chapter 15, "Building an ActiveX Server Application.”

FIG. 14.1 AppWizard adds another menu for editing in place.

The IDR_SHOWSTTY PE Edit menu, shown in Figure 14.2, has four new items:

FIG. 14.2 AppWizard adds items to the Edit menu of the IDR_SHOWSTTYPE resource.

« Paste Special. The user chooses thisitem to insert an item into the container from the Clipboard.

« Insert New Object. Choosing this item opens the Insert Object dialog box, shown in Figures 14.3 and 14.4,
so the user can insert an item into the container.

FIG. 14.3 The Insert Object dialog box can be used to embed new objects.

FIG. 14.4 The Insert Object dialog box can be used to embed or link objectsthat arein afile.

« Links. When an object has been linked into the container, choosing this item opens the Links dialog box,
shown in Figure 14.5, to allow control of how the copy of the object is updated after a change is saved to the
file.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (2 of 28) [7/29/1999 3:50:21 PM]

javascript:popUp('14uvc01.gif')
javascript:popUp('14uvc02.gif')
javascript:popUp('14uvc03.gif')
javascript:popUp('14uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

« <<OLE VERBS GO HERE>>. Each kind of item has different verbs associated with it, like Edit, Open, or
Play. When a contained item has focus, this spot on the menu is replaced by an object type like those in the
Insert Object dialog box, with a menu cascading from it that lists the verbs for thistype, like the one shown in
Figure 14.6.

CShowstringApp CShowStringApp::Initinstance() has several changes from the Initlnstance() method provided by
AppWizard for applications that aren't ActiveX containers. Thelinesin Listing 14.1 initialize the ActiveX (OLE)
libraries.

Listing 14.1 Excerpt from ShowString.cpp--Library Initialization

/[l Initialize OLE |ibraries

if ('AfxAelnit())

{
Af xMessageBox(| DP_OLE I NI T_FAI LED) ;
return FALSE;

}
FIG. 14.5 The Links dialog box controls the way linked objects are updated.

FIG. 14.6 Each object type adds a cascading menu item to the Edit menu when it has focus.

Still in CShowsStringApp::Initlnstance(), after the MultiDocTemplate isinitialized but before the call to
AddDocTemplate(), thisline is added to register the menu used for in-place editing:

pDocTenpl at e- >Set Cont ai ner | nf o(| DR_SHOANSTTYPE_CNTR | P) ;

CShowStringDoc The document class, CShowStringDoc, now inherits from COleDocument rather than
CDocument. Thislineis aso added at the top of ShowStringDoc.cpp:

#include "Cntrltem h"

Cntrltem.h describes the container item class, CShowStringCntrltem, discussed later in this chapter. Still in
ShowsStringDoc.cpp, the macros in Listing 14.2 have been added to the message map.

Listing 14.2 Excerpt from ShowString.cpp--Message Map Additions

ON_UPDATE_COMVAND Ul (1 D_EDI T_PASTE,

-Cd eDocunent : : OnUpdat ePast eMenu)
ON_UPDATE_COMVAND_Ul (1 D_EDI T_PASTE_LI NK,

-COd eDocunent : : OnUpdat ePast eLi nkMenu)
ON_UPDATE_COMIVAND Ul (I D_OLE_EDI T_CONVERT,

-CAd eDocunent : : OnUpdat eoj ect Ver bMenu)
ON_COMVAND(| D_COLE_EDI T_CONVERT,

-CAd eDocunent : : OnEdi t Convert)
ON_UPDATE_COWVWAND_Ul (I D_OLE_EDI T_LI NKS,

-CA eDocunent : : OnUpdat eEdi t Li nksMenu)
ON_COMVAND(| D_OLE_EDI T_LI NKS,

-CA eDocunent : : OnEdi t Li nks)
ON_UPDATE_COMVAND Ul (I D_OLE_VERB FIRST, | D OLE VERB LAST,

-CA eDocunent : : OnUpdat eObj ect Ver bMenu)

These commands enable and disable the following menu items:
« Edit, Paste

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (3 of 28) [7/29/1999 3:50:21 PM]

javascript:popUp('14uvc05.gif')
javascript:popUp('14uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application
o Edit, Paste Link
o Edit, Links
« The OLE verbs section, including the Convert verb

The new macros aso handle Convert and Edit, Links. Notice that the messages are handled by functions of
COleDocument and don't have to be written by you.

The constructor, CShowStringDoc::CShowStringDoc(), has a line added:
Enabl eConpoundFi | e() ;

This turns on the use of compound files. CShowStringDoc::Serialize() has a line added as well:
CA eDocunent:: Serialize(ar);

This call to the base class Serialize() takes care of serializing all the contained objects, with no further work for you.

CShowstringView The view class, CShowStringView, includes Cntrltem.h just as the document does. The view
class has these new entries in the message map:

ON_ W _SETFOCUS()

ON WM S| ZE()

ON_COVMVAND(| D_OLE | NSERT_NEW Onl nsert Obj ect)
ON_COMMAND(| D_CANCEL_EDI T_CNTR, OnCancel Edi t Cnt r)

These are in addition to the messages caught by the view before it was a container. These catch WM_SETFOCUS,
WM _SIZE, the menu item Edit, Insert New Object, and the cancellation of editing in place. An accelerator has
already been added to connect this message to the Esc key.

In ShowStringView.h, a new member variable has been added, as shown in Listing 14.3.
Listing 14.3 Excerpt from ShowStringView.h--m_pSelection

/1 mpSel ection holds the selection to the current

/1 CShowStringCntritem For many applications, such

/1 a menber variable isn't adequate to represent a

/'l selection, such as a nultiple selection or a selection

/| of objects that are not CShowStringCntrltem objects.

/1 This selection nechanismis provided just to help you

/1l get started.

/1 TODO replace this selection nechanismw th one appropriate
/1l to your app.

CShowStringCntrltent m pSel ection;

This new member variable shows up again in the view constructor, Listing 14.4, and the revised OnDraw(), Listing
14.5.

Listing 14.4 ShowsStringView.cpp--Constructor

CShowSt ri ngVi ew. : CShowSt ri ngVi ew()

{
m pSel ecti on = NULL;

// TODO add construction code here

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (4 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application
Listing 14.5 ShowStringView.cpp--CShowStringView::OnDraw()

voi d CShowsSt ri ngVi ew. : OnDr aw(CDC* pDC)
{
CShowsSt ri ngDoc* pDoc = Get Docunent () ;
ASSERT _VALI D pDoc) ;
/1 TODO add draw code for native data here
/[l TODO also draw all CLE itens in the docunent
/!l Draw the selection at an arbitrary position. This code should be
/'l renoved once your real drawing code is inplenmented. This position
/'l corresponds exactly to the rectangle returned by CShowStri ngCntrltem
/Il to give the effect of in-place editing.
/1 TODO renove this code when final draw code is conplete.
I f (m_pSel ection == NULL)
{
POSI TI ON pos
m pSel ecti on

pDoc->Get Start Position();
(CShowstringCntrltent)pDoc->CGet Nextdientlten(pos);

if (mpSelection !'= NULL)
m pSel ecti on->Drawm pDC, CRect (10, 10, 210, 210));

}

The code supplied for OnDraw() draws only a single contained item. It doesn't draw any native data--in other words,
elements of ShowString that are not contained items. At the moment there is no native data, but after the string is
added to the application, OnDraw() is going to have to draw it. What's more, this code only draws one contained
item, and it does so in an arbitrary rectangle. OnDraw() is going to see alot of changes as you work through this
chapter.

The view class has gained alot of new functions. They are as follows:
o OnlinitialUpdate()
o IsSelected()
o OnlnsertObject()
o OnSetFocus()
« OnSize()
« OnCancelEditCntr()

Each of these new functions is discussed in the subsections that follow.

OnlnitialUpdate() OnlnitialUpdate()is called just before the very first time the view is to be displayed. The
boilerplate code (see Listing 14.6) is pretty dull.

Listing 14.6 ShowStringView.cpp--CShowStringView::OnlnitialUpdate()
voi d CShowsStringView : Onlnitial Updat e()

{
CView :Onlnitial Updat e();
/1l TODO renpove this code when final selection
/'l nodel code is witten
m pSel ecti on = NULL; /1l initialize selection
}

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (5 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

The base class OnlnitialUpdate() calls the base class OnUpdate(), which calls Invalidate(), requiring afull repaint of
the client area.

| sSelected() 1sSelected() currently isn't working because the selection mechanism is so rudimentary. Listing 14.7
shows the code that was generated for you. Later, when you have implemented a proper selection method, you will
improve how this code works.

Listing 14.7 ShowStringView.cpp--CShowStringView::IsSelected()

BOOL CShowStringVi ew. :1sSel ected(const CCbject* pDoclten) const

{
/1 The inplenentation below is adequate if your selection consists of
/1 only CShowStringCntrltem objects. To handle different selection
/'l mechani snms, the inplenentation here should be repl aced.
/1l TODO inplenment this function that tests for a selected OLE
/1l client item
return pDocltem == m pSel ecti on;

}

This function is passed a pointer to a container item. If that pointer is the same as the current selection, it returns
TRUE.

OnlnsertObject() OnlnsertObject()is called when the user chooses Edit, Insert New Object. It's quite along
function, so it is presented in parts. The overall structure is presented in Listing 14.8.

Listing 14.8 ShowStringView.cpp--CShowStringView::OnlnsertObject()

voi d CShowsStri ngVi ew. : Onl nsert Qoj ect ()

{
/1 Display the Insert Object dialog box.
CShowsStringCntriltent pltem = NULL;
TRY
{
/]l Create a new itemconnected to this docunent.
[/ Initialize the item
/] Set selection and update all views.
}
CATCH(CException, e)
{
/] Handl e failed create.
}
END CATCH
/1 Tidy up.
}

Each comment here is replaced with a small block of code, discussed in the remainder of this section. The TRY and
CATCH statements, by the way, are on old-fashioned form of exception handling, discussed in Chapter 26,
"Exceptions and Templates."

Firgt, this function displays the Insert Object dialog box, as shown in Listing 14.9.

Listing 14.9 ShowsStringView.cpp--Display the Insert Object Dialog Box

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (6 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

/'l 1 nvoke the standard Insert Cbject dialog box to obtain information
/1 for new CShowStringCntrltem object.
Cd el nsertDi al og dl g;
if (dl g.DoModal () != | DOK)
return;

Begi nWi t Cursor () ;

If the user clicks Cancel, this function returns and nothing is inserted. If the user clicks OK, the cursor is set to an
hourglass while the rest of the processing occurs.

To create anew item, the code in Listing 14.10 is inserted.
Listing 14.10 ShowStringView.cpp--Create a New Item

/'l Create new item connected to this docunent.
CShowsSt ri ngDoc* pDoc = Get Docunent () ;

ASSERT _VALI D(pDoc) ;

pltem = new CShowStri ngCntrlten(pDoc);

ASSERT_VALI D(pltem;

This code makes sure there is a document, even though the menu item is enabled only if there is one, and then
creates a new container item, passing it the pointer to the document. Asyou see in the CShowsStringCntritem
section, container items hold a pointer to the document that contains them.

The code in Listing 14.11 initializes that item.
Listing 14.11 ShowsStringView.cpp--Initializing the Inserted Item

/[l Initialize the itemfromthe dialog data.
if ('dlg.Createlten(pltem)
Af xThr omvenor yException(); // any exception will do
ASSERT _VALI D(pltem;
/Il 1f itemcreated fromclass list (not fromfile) then | aunch
/'l the server to edit the item
if (dlg.CGetSel ectionType() == CO elnsertDial og::createNew tem
pl t em >DoVer b(OLEI VERB_SHOW t hi s);

ASSERT_VALI D(pl tem;

The code in Listing 14.11 calls the Createltem() function of the dialog class, COlelnsertDialog. That might seem
like a strange place to keep such afunction, but the function needs to know all the answers that were given on the
dialog box. If it was a member of another class, it would have to interrogate the dialog for the type and filename,
find out whether it was linked or embedded, and so on. It calls member functions of the container item like
CreateLinkFromFile(), CreateFromFile(), CreateNewltem(), and so on. So it's not that the code has to actually fill
the object from the file that is in the dialog box, but rather that the work is partitioned between the objects instead of
passing information back and forth between them.

Then, one question is asked of the dialog box: Was this a new item? If so, the server is called to edit it. Objects
created from afile can just be displayed.

Finally, the selection is updated and so are the views, as shown in Listing 14.12.

Listing 14.12 ShowsStringView.cpp--Update Selection and Views

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (7 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

/1 As an arbitrary user interface design, this sets the selection
/[l to the last iteminserted.

[l TODO reinplenent selection as appropriate for your application
m pSel ection = pltem /] set selection to last inserted item

pDoc- >Updat eAl | Vi ews(NULL) ;
If the creation of the object failed, execution ends up in the CATCH block, shown in Listing 14.13.

Listing 14.13 ShowsStringView.cpp--CATCH Block
CATCH(CException, e)

{ i f (pltem!= NULL)
{ ASSERT _VALI D(pltem;
pltem >Del et e();
,}Af xMessageBox (| DP_FAI LED TO CREATE);
}IfEND_CATCH

This deletes the item that was created and gives the user a message box.

Finally, that hourglass cursor can go away:
EndWai t Cur sor ();

OnSetFocus() OnSetFocus(), shown in Listing 14.14, is called whenever this view gets focus.
Listing 14.14 ShowStringView.cpp--CShowStringView::OnSetFocus()

voi d CShowSt ri ngVi ew. : OnSet Focus(CWhd* pA dWhd)

{
CheCientltenr pActiveltem = Get Docunent ()->CetlnPlaceActiveltenm(this);
I f (pActiveltem!= NULL &&
pActiveltem >CetltentState() == COeCientltem:activeU State)
{
/'l need to set focus to this itemif it is in the sanme view
CWwhd* pwhd = pActiveltem >Get | nPl aceW ndow() ;
if (pwWid != NULL)
{
pWhd- >Set Focus() ; // don't call the base class
return;
}
}
CVi ew. : OnSet Focus(pd dwhd) ;
}

If thereis an active item and its server isloaded, that active item gets focus. If not, focus remains with the old
window, and it appears to the user that the click was ignored.

OnSize() OnSize(), shown in Listing 14.15, is called when the application is resized by the user.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (8 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application
Listing 14.15 ShowsStringView.cpp--CShowStringView::0OnSize()

voi d CShowStringVi ew. : OnSi ze(U NT nType, int cx, int cy)

{
CVi ew. : OnSi ze(nType, CcX, cy);
Cdedientltenr pActiveltem = Get Docunent ()->Cetl nPl aceActivelten(this);
I f (pActiveltem!= NULL)
pActi veltem >Set | tenRects();
}

This resizes the view using the base class function, and then, if there is an active item, tellsit to adjust to the resized
view.

OnCance EditCntr() OnCancel EditCntr() is called when a user who has been editing in place presses Esc. The
server must be closed, and the object stops being active. The code is shown in Listing 14.16.

Listing 14.16 ShowStringView.cpp--CShowStringView::OnCancelEditCntr()
voi d CShowStri ngVi ew. : OnCancel Edit Cntr ()

{
/1l Close any in-place active itemon this view.
CdeCientltenr pActiveltem =
Get Docunent () - >Cet | nPl aceActivelten(this);
I f (pActiveltem!= NULL)
{
pActi vel tem >Cl ose();
}
ASSERT(Get Docunent () - >Get | nPl aceActivelten(this) == NULL);
}

CShowsStringCntrltem The container item class is a completely new addition to ShowString. It describes an item
that is contained in the document. As you've already seen, the document and the view use this object quite alot,
primarily through the m_pSelection member variable of CShowStringView. It has no member variables other than
those inherited from the base class, COleClientltem. It has overrides for alot of functions, though. They are as
follows:

« A constructor

A destructor

o GetDocument()

o GetActiveView()

« OnChange()

« OnActivate()

« OnGetltemPosition()
o OnDeactivateUl()

« OnChangeltemPosition()
o AssertValid()

e Dump()

o Seridize()

The constructor simply passes the document pointer along to the base class. The destructor does nothing.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (9 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

GetDocument() and GetActiveView() are inline functions that return member variables inherited from the base class
by calling the base class function with the same name and casting the result.

OnChange() isthe first of these functions that has more than one line of code (see Listing 14.17).
Listing 14.17 Cntritem.cpp--CShowStringCntritem::OnChange()

voi d CShowStringCntrltem : OnChange(OLE_NOTI FI CATI ON nCode,
DWORD dwPar am

{
ASSERT_VALI D(t hi s);
Cd edientltem: OnChange(nCode, dwParan;
/1 When an itemis being edited (either in-place or fully open)
/Il it sends OnChange notifications for changes in the state of the
/1l itemor visual appearance of its content.
/1 TODO invalidate the itemby calling UpdateAllViews
/1 (with hints appropriate to your application)
Get Docunent () - >Updat eAl | Vi ews(NULL) ;
[l for now just update ALL views/no hints
}

Actualy, there are only three lines of code. The comments are actually more useful than the code. When the user
changes the contained item, the server notifies the container. Calling UpdateAllViews() is arather drastic way of
refreshing the screen, but it gets the job done.

OnActivate() (shown in Listing 14.18) is called when a user double-clicks an item to activate it and edit it in place.
ActiveX objects are usually outside-in, which meansthat a single click of the item selectsit but doesn't activate it.
Activating an outside-in object requires a double-click, or asingle click followed by choosing the appropriate OLE
verb from the Edit menu.

Listing 14.18 Cntritem.cpp--CShowStringCntritem::OnActivate()

void CShowsStringCntrltem : OnActi vat e()

{
/1 Allow only one in-place activate item per frane
CShowSt ri ngVi ewr pView = CGet ActiveView);
ASSERT_VALI D(pVi ew) ;
CheCientltent pltem = GetDocunent()->CGetlnPl aceActiveltenmpView);
if (pltem!= NULL & pltem!= this)
pltem >Cl ose();
CheCientltem:OnActivate();
}

This code makes sure that the current view isvalid, closes the active items, if any, and then activates this item.

OnGetltemPosition() (shown in Listing 14.19) is called as part of the in-place activation process.
Listing 14.19 Cntritem.cpp--CShowStringCntritem::OnGetltemPosition()

voi d CShowStringCntrlitem : OnGetltenPosition(CRect& rPosition)

{
ASSERT_VALI D(t hi s) ;

/1 During in-place activation,

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (10 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

/1 CShowStringCntrlitem : OnGetltenPosition

/Il wll be called to determne the location of this item

/1 The default inplenentation created from AppW zard sinply
/'l returns a hard-coded rectangle. Usually, this rectangle
/1 would reflect the current position of the itemrelative

/'l to the view used for activation. You can obtain the view
/1 by calling CShowStringCntrlitem: Get ActiveVi ew.

/1l TODO return correct rectangle (in pixels) in rPosition

rPosi tion. Set Rect (10, 10, 210, 210);

}

Like OnChange(), the comments are more useful than the actual code. At the moment, the View's OnDraw()
function draws the contained object in a hard-coded rectangle, so this function returns that same rectangle. You are
instructed to write code that asks the active view where the object is.

OnDeactivateUl() (see Listing 14.20) is called when the object goes from being active to inactive.
Listing 14.20 Cntritem.cpp--CShowStringCntritem::OnDeactivateUl()

voi d CShowStringCntrltem : OnDeacti vat eU (BOOL bUndoabl e)
{
Cd eCientltem: OnDeacti vat eU (bUndoabl e);

/1l H de the object if it is not an outside-in object

DWORD dwM sc = O;

m | pQbj ect - >Get M scSt at us(Get DrawAspect (), &JIwM sc);

if (dwM sc & OLEM SC_| NSI DEQUT)

DoVer b(OLEI VERB_HI DE, NULL) ;

}

Although the default behavior for contained objects is outside-in, as discussed earlier, you can write inside-out
objects. These are activated simply by moving the mouse pointer over them; clicking the object has the same effect
that clicking that region has while editing the object. For example, if the contained item is a spreadsheet, clicking
might select the cell that was clicked. This can be really nice for the user, who can completely ignore the borders
between the container and the contained item, but it is harder to write.

OnChangeltemPosition() is called when the item is moved during in-place editing. It, too, contains mostly
comments, as shown in Listing 14.21.

Listing 14.21 Cntritem.cpp--CShowStringCntritem::OnChangeltemPosition()

BOOL CShowStringCntrltem : OnChangel t enPositi on(const CRect & rect Pos)
{
ASSERT_VALI D(t hi s);
/1l During in-place activation
[l CShowStringCntrltem : OnChangel t enPosition
/'l is called by the server to change the position
/1 of the in-place window. Usually, this is a result
/'l of the data in the server docunment changi ng such that
/'l the extent has changed or as a result of in-place resizing.
I
/[l The default here is to call the base class, which will call
/[l COeCientltem:SetltenRects to nove the item

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (11 of 28) [7/29/1999 3:50:21 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

/[l to the new position.
If (!CAedientltem:OnChangeltenPosition(rectPos))
return FALSE;
/1l TODO update any cache you may have of the itenls rectangl e/ extent
return TRUE;

}

This code is supposed to handle moving the object, but it doesn't really. That's because OnDraw() always draws the
contained item in the same place.

AssertValid() isadebug function that confirms this object isvalid; if it's not, an ASSERT will fail. ASSERT
statements are discussed in Chapter 24, "Improving Y our Application's Performance.” The last functionin
CShowsStringCntritem is Serialize(), which is called by COleDocument::Serialize(), which inturnis called by the
document's Serialize(), asyou've already seen. It isshown in Listing 14.22.

Listing 14.22 Cntritem.cpp--CShowStringCntritem::Serialize()

void CShowstringCntritem: Serialize(CArchive& ar)
{

ASSERT _VALI D(t hi s);

/1l Call base class first to read in COeCientltem data.

/| Because this sets up the m pDocunent pointer returned from
/1 CShowStringCntrltem: Get Docunent, it is a good idea to call

Il the base class Serialize first.

CheCientltem: Serialize(ar);

/'l now store/retrieve data specific to CShowStringCntrltem

i f (ar.IsStoring())

{

[/ TODO add storing code here
}
el se
{

/1 TODO add | oadi ng code here
}

}

All this code does at the moment is call the base class function. COleDocument::Serialize() stores or loads a number
of counters and numbers to keep track of severa different contained items, and then calls hel per functions such as
Writeltem() or Readltem() to actually deal with the item. These functions and the helper functions they call are a bit
too "behind-the-scenes' for most people, but if you'd like to take alook at them, they are in the MFC source folder
(C:\Program Files\Microsoft Visual Studio\VC98\MFC\SRC on many installations) in the file oleclil.cpp. They do
their job, which isto serialize the contained item for you.

Shortcomings of This Container This container application isn't ShowString yet, of course, but it has more
important things wrong with it. It isn't avery good container, and that's a direct result of all those TODO tasks that
haven't been accomplished. Still, the fact that it is afunctioning container is a good measure of the power of the
MFC classes COleDocument and COleClientltem. So why not build the application now and run it? After it's
running, choose Edit, Insert New Object and insert a bitmap image. Now that you've seen the code, it shouldn't be a
surprise that Paint isimmediately launched to edit the item in place, asyou seein Figure 14.7.

FIG. 14.7 The boilerplate container can contain items and activate them for in-place editing, like this bitmap image
being edited in Paint.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (12 of 28) [7/29/1999 3:50:21 PM]

javascript:popUp('14uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

Click outside the bitmap to deselect the item and return control to the container; you see that nothing happens. Click
outside the document, and again nothing happens. Y ou're probably asking yourself, "Am | still in ShowString?"
Choose File, New, and you see that you are. The Paint menus and toolbars go away, and a new ShowsString
document is created. Click the bitmap item again, and you are still editing it in Paint. How can you insert another
object into the first document when the menus are those of Paint? Press Esc to cancel in-place editing so the menus
become ShowsString menus again. Insert an Excel chart into the container, and the bitmap disappears as the new
Excel chart isinserted, as shown in Figure 14.8. Obvioudly, this container leaves alot to be desired.

Press Esc to cancel the in-place editing, and notice that the view changes alittle, as shown in Figure 14.9. That's
because CShowsStringView::OnDraw() draws the contained item in a 200* 200 pixel rectangle, so the chart hasto be
squeezed alittle to fit into that space. It isthe server--Excel, in this case--that decides how to fit the item into the
space given to it by the container.

FIG. 14.8 Inserting an Excel chart gets you a default chart, but it completely coversthe old bitmap.
FIG. 14.9 Items can look quite different when they are not active.

Asyou can see, there's alot to be done to make thisfeel like areal container. But first, you have to turn it back into
ShowsString.

Returning the ShowString Functionality

This section provides a quick summary of the steps presented in Chapter 8, "Building a Complete Application:
ShowsString." Open the files from the old ShowString as you go so that you can copy code and resources wherever
possible. Follow these steps:

1. In ShowStringDoc.h, add the private member variables and public Get functions to the class.

2. In CShowsStringDoc:: Serialize(), paste the code that saves or restores these member variables. Leave the
call to COleDocument::Serialize() in place.

3. In CShowsStringDoc::OnNewDocument(), paste the code that initializes the member variables.

4. In CShowsStringView::OnDraw(), add the code that draws the string before the code that handles the
contained items. Remove the TODO task about drawing native data.

5. Copy the Tools menu from the old ShowString to the new container ShowString. Choose File, Open to

open the old ShowString.rc, open the IDR_SHOWSTTY PE menu, click the Tools menu, and choose Edit,
Copy. Open the new ShowsString's IDR_SHOWSTTY PE menu, click the Window menu, and choose Edit,
Paste. Don't paste it into the IDR_SHOWSTTYPE_CNTR_IP menu.

6. Add the accelerator Ctrl+T for ID_TOOLS_OPTIONS as described in Chapter 8, "Building a Complete
Application: ShowString." Add it to the IDR_MAINFRAME accelerator only.

7. Delete the IDD_ABOUTBOX diaog box from the new ShowString. Copy IDD_ABOUTBOX and
IDD_OPTIONS from the old ShowString to the new.

8. While IDD_OPTIONS has focus, choose View, Class Wizard. Create the COptionsDialog class asin the
original ShowString.

9. Use the Class Wizard to connect the dialog controls to COptionsDialog member variables, as described in
Chapter 10.

10. Use the Class Wizard to arrange for CShowStringDoc to catch the ID_TOOLS _OPTIONS command.

11. In ShowStringDoc.cpp, replace the Class Wizard version of CShowStringDoc::OnToolsOptions() with the
OnToolsOptions() from the old ShowString, which puts up the dialog box.

12. In ShowStringDoc.cpp, add #include " OptionsDialog.h" after the #include statements already present.

Build the application, fix any typos or other simple errors, and then execute it. It should run as before, saying Hello,

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (13 of 28) [7/29/1999 3:50:22 PM]

javascript:popUp('14uvc08.gif')
javascript:popUp('14uvc09.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

world! in the center of the view. Convince yourself that the Options dialog box still works and that you have
restored al the old functionality. Then resize the application and the view as large as possible, so that when you
insert an object it doesn't land on the string. Insert an Excel chart as before, and press Esc to stop editing in place.
There you haveit: A version of ShowString that is also an ActiveX container. Now it's time to get to work making it
agood container.

Moving, Resizing, and Tracking

Thefirst task you want to do, even when there is only one item contained in ShowString, isto allow the user to
move and resize that item. It makes life simpler for the user if you also provide atracker rectangle, a hashed line
around the contained item. Thisis easy to do with the MFC class CRectTracker.

Thefirst step isto add a member variable to the container item (CShowStringCntritem) definition in Cntrltem.h, to
hold the rectangle occupied by this container item. Right-click CShowStringCntritem in ClassView and choose Add
Member Variable. The variable type is CRect, the declaration is m_rect; leave the access public.

m_rect needs to beinitialized in afunction that is called when the container item isfirst used and then never again.
Whereas view classes have OnlnitialUpdate() and document classes have OnNewDocument(), container item classes
have no such called-only-once function except the constructor. Initialize the rectangle in the constructor, as shownin
Listing 14.23.

Listing 14.23 Cntrltem.cpp--Constructor

CShowStringCntritem : CShowStri ngCntrltem CShowSt ri ngDoc* pCont ai ner)
: Cdedientltem pContainer)
{

}

The numerical values used here are those in the boilerplate OnDraw() provided by AppWizard. Now you need to
start using the m rect member variable and setting it. The functions affected are presented in the same order asin the
earlier section, CShowStringView.

mrect = CRect (10, 10, 210, 210);

First, change CShowStringView::OnDraw(). Find thisline:
m pSel ecti on->Drawm(pDC, CRect (10, 10, 210, 210));

Replace it with this:
m _pSel ecti on->Dram(pDC, m pSel ecti on->mrect);
Next, change CShowStringCntrltem::OnGetltemPosition(), which needs to return this rectangle. Take away all the
comments and the old hardcoded rectangle (leave the ASSERT _VALID macro call), and add thisline:
rPosition = mrect;

The partner function
CShowsStringCntrltem : OnChangel t emPosi ti on()

is caled when the user moves theitem. Thisiswhere m_rect is changed from theinitial value. Remove the
comments and add code immediately after the call to the base class function,
COleClientltem::OnChangeltemPosition(). The code to add is:

m rect = rectPos;
Get Docunent () - >Set Modi fi edFl ag() ;
Get Docunent () - >Updat eAl | Vi ews(NULL) ;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (14 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

Finally, the new member variable needs to be incorporated into CShowStringCntritem::Serialize(). Remove the
comments and add lines in the storing and saving blocks so that the function looks like Listing 14.24.

Listing 14.24 Cntritem.cpp--CShowStringCntritem::Serialize()

voi d CShowStringCntritem: Serialize(CArchive& ar)

{
ASSERT_VALI D(t hi s);
/1l Call base class first to read in COeCientltem data.
/| Because this sets up the m pDocunent pointer returned from
/1 CShowStringCntrltem: Get Docunent, it is a good idea to call
/'l the base class Serialize first.
CleCientltem: Serialize(ar);
/'l now store/retrieve data specific to CShowStringCntrltem
if (ar.IsStoring())
{
ar << mrect;
}
el se
{
ar >> mrect;
}
}

Build and execute the application, insert a bitmap, and scribble something in it. Press Esc to cancel editing in place,
and your scribble shows up in the top-right corner, next to Hello, world!. Choose Edit, Bitmap Image Object and
then Edit. (Choosing Open allows you to edit it in a different window.) Use the resizing handles that appear to drag
the image over to the left, and then press Esc to cancel in-place editing. Theimage is drawn at the new position, as
expected.

Now for the tracker rectangle. The Microsoft tutorials recommend writing a helper function, SetupTracker(), to
handle this. Add these lines to CShowStringView::OnDraw(), just after the call to m_pSel ection->Draw():

CRect Tracker trackrect;
Set upTracker (m pSel ecti on, & rackrect);
trackrect. Draw(pDC) ;

CAUTION: The one-line statement after the if was not in brace brackets before; don't forget to add
them. The entire if statement should look like this:

i f (mpSelection !'= NULL)

{
m pSel ecti on- >Drawm(pDC, m pSel ection->mrect);
CRect Tracker trackrect;
Set upTracker (m pSel ection, & rackrect);
trackrect. Draw pDC) ;

}

Add the following public function to ShowStringView.h (inside the class definition):

voi d SetupTracker (CShowStringCntritent item
CRect Tracker* track);

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (15 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application
Add the codein Listing 14.25 to ShowStringView.cpp immediately after the destructor.

Listing 14.25 ShowStringView.cpp--CShowStringView::SetupTracker()

voi d CShowStri ngVi ew. : Set upTr acker (CShowStringCntritent item
CRect Tracker* track)

{
track->mrect = item>mrect;
if (item== mpSel ection)
{
track->m nStyl e | = CRect Tracker::resizel nside;
}
I f (item>CetType() == OT_LI NK)
{
track->m nStyl e | = CRect Tracker: : dottedLi ne;
}
el se
{ L
track->m nStyle | = CRect Tracker: :solidLi ne;
}
If (item>CetltentState() == COeClientltem:openState ||
item>CGetltenState() == COeCientltem:activeUl State)
{
track->m nStyl e | = CRect Tracker: : hat chl nsi de;
}
}

This code first sets the tracker rectangle to the container item rectangle. Then it adds styles to the tracker. The styles
available are asfollows:

« solidLine--Used for an embedded item.
« dottedLine--Used for alinked item.
 hatchedBorder--Used for an in-place active item.
« resizelnside--Used for a selected item.
 resizeOutside--Used for a selected item.
« hatchinside--Used for an item whose server is open.
This code first compares the pointersto thisitem and the current selection. If they are the same, thisitem is selected

and it getsresize handles. It's up to you whether these handles go on the inside or the outside. Then this code asks
the item whether it is linked (dotted line) or not (solid line.) Finally, it adds hatching to active items.

Build and execute the application, and try it out. You still cannot edit the contained item by double-clicking it;
choose Edit from the cascading menu added at the bottom of the Edit menu. Y ou can't move and resize an inactive
object, but if you activate it, you can resize it while active. Also, when you press Esc, the inactive object is drawn at
its new position.

Handling Multiple Objects and Object Selection

The next step isto catch mouse clicks and double-clicks so that the item can be resized, moved, and activated more
easily. Thisinvolvestesting to see whether aclick is on a contained item.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (16 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

Hit Testing

Y ou need to write a hel per function that returns a pointer to the contained item that the user clicked, or NULL if the
user clicked an area of the view that has no contained item. This function runs through all the items contained in the
document. Add the codein Listing 14.26 to ShowStringView.cpp immediately after the destructor.

Listing 14.26 ShowStringView.cpp--CShowStringView::SetupTracker()

CShowStringCntriltent CShowStringView : Hit Test (CPoi nt point)

{
CShowSt ri ngDoc* pDoc = Get Docunent () ;
CShowStringCntriltent pHitltem = NULL,
POSI TI ON pos = pDoc->CGet Start Position();
whi l e (pos)
CShowStringCntritent pCurrentltem =
(CShowStringCntritent) pDoc->CGetNextCientlten(pos);
if (pCurrentltem>mrect.PtlnRect(point))
{
pHitltem = pCurrentltem
}
}
return pHitltem
}

TIP: Don't forget to add the declaration of this public function to the header file.

This function is given a CPoint that describes the point on the screen where the user clicked. Each container item has
arectangle, m_rect, as you saw earlier, and the CRect class has a member function called PtInRect() that takes a
CPoint and returns TRUE if the point isin the rectangle or FALSE if it is not. This code simply loops through the
items in this document, using the OL E document member function GetNextClientltem(), and calls PtinRect() for
each.

What happensif there are several itemsin the container, and the user clicks at a point where two or more overlap?
The one on top is selected. That's because GetStartPosition() returns a pointer to the bottom item, and
GetNextClientltem() works its way up through the items. If two items cover the spot where the user clicked,
pHitltem is set to the lower one first, and then on alater iteration of the while loop, it is set to the higher one. The
pointer to the higher item is returned.

Drawing Multiple Iltems

While that code to loop through al the itemsis still fresh in your mind, why not fix CShowStringView::OnDraw()
so it draws all the items? Leave al the code that draws the string, and replace the code in Listing 14.27 with that in
Listing 14.28.

Listing 14.27 ShowStringView.cpp--Lines in OnDraw() to Replace

/'l Draw the selection at an arbitrary position. This code should
/'l be renoved once your real drawing code is inplenented. This
/| position corresponds exactly to the rectangle returned by

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (17 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

[l CShowStringCntritem to give the effect of in-place editing.
/1 TODO renove this code when final draw code is conplete.
I f (m_pSel ection == NULL)

{
POSI TI ON pos = pDoc->Get StartPosition();
m pSel ection = (CShowStringCntrltent)pDoc->Get NextClientltem pos);
I f (mpSelection !'= NULL)
{
m pSel ecti on->Drawm pDC, m pSel ecti on->mrect);
CRect Tracker trackrect;
Set upTracker (m pSel ecti on, & rackrect);
trackrect. Draw(pDC) ;
}

Listing 14.28 ShowStringView.cpp--New Lines in OnDraw()

PCSI TI ON pos = pDoc->Cet StartPosition();
whi |l e (pos)
{
CShowStringCntriltent pCurrentltem =
(CShowStringCntritent) pDoc->CGet NextCientlten(pos);
pCurrentltem >Draw(pDC, pCurrentltem >mrect);
if (pCurrentltem == m pSel ection)

{
CRect Tracker trackrect;
SetupTracker (pCurrentltem & rackrect);
trackrect. Draw pDC) ;

}

}

Now each item is drawn, starting from the bottom and working up, and if it is selected, it gets a tracker rectangle.

Handling Single Clicks

When the user clicks the client area of the application, aWM_LBUTTONDOWN message is sent. This message
should be caught by the view. Right-click CShowStringView in ClassView, and choose Add Windows Message
Handler from the shortcut menu. Click WM_LBUTTONDOWN in the New Windows M essages/Events box on the
left (see Figure 14.10), and then click Add and Edit to add a handler function and edit the code immediately.

FIG. 14.10 Add a function to handle left mouse button clicks.
Add the code in Listing 14.29 to the empty OnL ButtonDown() that Add Windows Message Handler generated.

Listing 14.29 ShowsStringView.cpp--CShowStringView::OnLButtonDown()

voi d CShowSt ri ngVi ew. : OnLBut t onDown(Ul NT nFl ags, CPoi nt poi nt)
{
CShowStringCntritent pHitltem = HitTest(point);
Set Sel ection(pH titem;
if (pHtltem == NULL)

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (18 of 28) [7/29/1999 3:50:22 PM]

javascript:popUp('14uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

return;
CRect Tracker track;
SetupTracker (pHi tltem &track);
Updat eW ndow() ;
if (track. Track(this, point))

{
I nval i date();
pHitltem>mrect = track. mrect;
Get Docunent () - >Set Modi fi edFl ag() ;
}

}

This code determines which item has been selected and setsit. (SetSelection() isn't written yet.) Then, if something
has been selected, it draws a tracker rectangle around it and calls CRectTracker:: Track(), which allows the user to
resize the rectangle. After the resizing, the item is sized to match the tracker rectangle and is redrawn.

SetSelection() is pretty straightforward. Add the definition of this public member function to the header file,
ShowStringView.h, and the code in Listing 14.30 to ShowStringView.cpp.

Listing 14.30 ShowStringView.cpp--CShowStringView::SetSelection()

voi d CShowsStri ngVi ew. : Set Sel ection(CShowStringCntritent item
{
/1 1f an itemis being edited in place, close it
iIf (item== NULL || item!= m pSel ection)
{
CdeCientltent pActive =
Get Docunent () - >Get | nPl aceActi velten(this);

I f (pActive !'= NULL && pActive !'=itemnm
{
pActi ve->C ose();
}
}
I nval i date();
m pSel ection = item

}

When the selection is changed, any item that is being edited in place should be closed. SetSelection() checks that the
item passed in represents a change, and then gets the active object from the document and closes that object. Then it
callsfor aredraw and sets m_pSelection. Build and execute ShowString, insert an object, and press Esc to stop
in-place editing. Click and drag to move the inactive object, and insert another. Y ou should see something like
Figure 14.11. Notice the resizing handles around the bitmap, indicating that it is selected.

FIG. 14.11 ShowString can now hold multiple items, and the user can move and resize them intuitively.

Y ou might have noticed that the cursor doesn't change as you move or resize. That's because you didn't tell it to.
Luckily, it'seasy to tell it this: CRectTracker has a SetCursor() member function, and all you need to doiscall it
when aWM_SETCURSOR message is sent. Again, it should be the view that catches this message; right-click
CShowsStringView in ClassView, and choose Add Windows Message Handler from the shortcut menu. Click
WM_SETCURSOR in the New Windows Messages/Events box on the left; then click Add and Edit to add a handler
function and edit the code immediately. Add the code in Listing 14.31 to the empty function that was generated for
you.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (19 of 28) [7/29/1999 3:50:22 PM]

javascript:popUp('14uvc11.gif')

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

Listing 14.31 ShowsStringView.cpp--CShowStringView::OnSetCursor()

BOOL CShowsStringVi ew. : OnSet Cur sor (CWhd* pWhd, UI NT nHit Test,
U NT nessage)

{
if (pwWhd == this &% m pSel ection != NULL)
{
CRect Tracker track;
Set upTracker (m pSel ecti on, &track);
I f (track.SetCursor(this, nH tTest))
{
return TRUE;
}
}
return CVi ew. : OnSet Cur sor (pWhd, nHit Test, nessage);
}

This code does nothing unless the cursor change involves this view and there is a selection. It gives the tracking
rectangle's SetCursor() function a chance to change the cursor because the tracking object knows where the
rectangle is and whether the cursor is over aboundary or sizing handle. If SetCursor() didn't change the cursor, this
code lets the base class handle it. Build and execute ShowString, and you should see cursors that give you feedback
as you move and resize.

Handling Double-Clicks

When a user double-clicks a contained item, the primary verb should be called. For most objects, the primary verb is
to Edit in place, but for some, such as sound files, it is Play. Arrange as before for CShowStringView to catch the
WM_LBUTTONDBLCLK message, and add the code in Listing 14.32 to the new function.

Listing 14.32 ShowStringView.cpp--CShowStringView::OnLButtonDbICIk()

voi d CShowSt ri ngVi ew. : OnLBut t onDbl C k(Ul NT nFl ags, CPoi nt point)

{
OnLBut t onDown(nFl ags, point);

I f(m_pSel ection)

{
I f (GetKeyState(VK CONTROL) < 0)
{
m _pSel ecti on- >DoVer b(OLEl VERB_OPEN, this);
}
el se
{
m pSel ecti on- >DoVer b(OLEI VERB_PRI MARY, t his);
}
}

CVi ew. : OnLBut t onDbl d k(nFl ags, point);
}

First, this function handles the fact that this item has been clicked; calling OnLButtonDown() draws the tracker
rectangle, sets m_pSelection, and so on. Then, if the user holds down Ctrl while double-clicking, the item is opened,;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (20 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

otherwise, the primary verb is called. Finally, the base class function is called. Build and execute ShowString and try
double-clicking. Insert an object, press Esc to stop editing it, moveit, resize it, and double-click it to edit in place.

Implementing Drag and Drop

The last step to make ShowString a completely up-to-date ActiveX container application isto implement drag and
drop. The user should be able to grab a contained item and drag it out of the container, or hold down Ctrl while
dragging to drag out a copy and leave the original behind. The user should also be able to drag items from el sewhere
and drop them into this container just as though they had been inserted through the Clipboard. In other words, the
container should operate as a drag source and adrop target.

Implementing a Drag Source

Because CShowStringCntritem inherits from COleClientltem, implementing adrag sourceisreally easy. By
clicking a contained object, edit these lines at the end of CShowStringView::OnLButtonDown() so that it resembles
Listing 14.33. The new lines are in bold type.

Listing 14.33 CShowsStringView::OnLButtonDown()--Implementing a Drag Source

voi d CShowsSt ri ngVi ew. : OnLBut t onDown(Ul NT nFl ags, CPoi nt poi nt)
{

CShowsStringCntrlitent pHitltem = HitTest(point);

Set Sel ection(pH tlitem;

if (pHtltem == NULL)

return;

CRect Tracker track;

SetupTracker (pHitltem &track);

Updat eW ndow() ;

i f (track.H tTest(point) == CRectTracker::hitM ddle)
{
CRect rect = pHtltem>mrect;
Cd ientDC dc(this);
OnPr epar eDC(&dc) ;
dc. LPtoDP(&rect); // convert |ogical rect to device rect
rect. Normal i zeRect () ;
CPoi nt newpoint = point - rect. TopLeft();
DROPEFFECT dropEffect = pHitltem >DoDragDrop(rect, newpoint);
i f (dropEffect == DROPEFFECT_MOVE)
{
I nval i date();
if (pHitltem == m pSel ecti on)
{
m pSel ecti on = NULL;
}
pHi t1tem >Del et e() ;
}
}
el se
{

i f (track. Track(this, point))

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (21 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

{
I nval i date();
pHitltem>mrect = track. mrect;
Get Docunent () - >Set Modi fi edFl ag() ;
}

}

This code first confirms that the mouse click was inside the tracking rectangle, rather than on the sizing border. It
sets up atemporary CRect object that will be passed to DoDragDrop() after some coordinate scheme conversions are
complete. The first conversion isfrom logical to device units, and is accomplished with a call to CDC::LPtoDP(). In
order to call this function, the new code must create a temporary device context based on the CShowStringView for
which OnLButtonDown() is being called. Having converted rect to device units, the new code normalizesit and
calculates the point within the rectangle where the user clicked.

Then the new code calls the DoDragDrop() member function of CShowStringCntritem, inherited from
COleClientltem and not overridden. It passes in the converted rect and the offset of the click. If DoDragDrop()
returns DROPEFFECT_MOVE, the item was moved and needs to be deleted. The code to handle adrop, whichis
not yet written, will create a new container item and set it as the current selection. This meansthat if the object was
dropped elsewhere in the container, the current selection will no longer be equal to the hit item. If these two pointers
are still equal, the object must have been dragged away. If it was dragged away, this code sets m_pSelection to
NULL. In either case, pHitltem should be deleted.

Build and execute ShowString, insert a new object, press Esc to stop editing in place, and then drag the inactive
object to an ActiveX container application such as Microsoft Excel. Y ou can aso try dragging to the desktop. Be
sure to try dragging an object down to the taskbar and pausing over the icon of a minimized container application,
and then waiting while the application is restored so that you can drop the object.

Implementing a Drop Target

It is harder to make ShowString adrop target (it could hardly be easier). If you dragged a contained item out of
ShowString and dropped it into another container, try dragging that item back into ShowString. The cursor changes
to acircle with a slash through it, meaning "you can't drop that here." In this section, you make the necessary code
changes that allow you to drop it there after all.

Y ou need to register your view as a place where items can be dropped. Next, you need to handle the following four
events that can occur:

« Anitem might be dragged across the boundaries of your view. This action will require a cursor change or
other indication you will take the item.

« Intheview, theitem will be dragged around within your boundaries, and you should give the user feedback
about that process.

« That item might be dragged out of the window again, having just passed over your view on the way to itsfina
destination.

« The user may drop theitemin your view.

Registering the View as a Drop Target

To register the view as adrop target, add a COleDropTarget member variable to the view. In ShowStringView.h,
add thisline to the class definition:

CA eDropTarget m droptarget;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (22 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

To handle registration, override OnCreate() for the view, which is called when the view is created. Arrange for
CShowsStringView to catch the WM _CREATE message. Add the code in Listing 14.34 to the empty function
generated for you.

Listing 14.34 ShowsStringView.cpp--CShowStringView::OnCreate()

i nt CShowStri ngVi ew. : OnCr eat e(LPCREATESTRUCT | pCreateStruct)

if (CView :OnCreate(l pCreateStruct) == -1)
return -1;

i f (m.droptarget. Register(this))

{

return O;

return -1;

OnCreate() returns O if everything is going well and -1 if the window should be destroyed. This code calls the base
class function and then uses COleDropTarget::Register() to register this view as a place to drop items.

Setting Up Function Skeletons and Adding Member Variables

The four events that happen in your view correspond to four virtual functions you must override: OnDragEnter(),
OnDragOver(), OnDragL eave(), and OnDrop(). Right-click CShowStringView in ClassView and choose Add
Virtual Function to add overrides of these functions. Highlight OnDragEnter() in the New Virtual Functions list,
click Add Handler, and repeat for the other three functions.

OnDragEnter() sets up afocus rectangle that shows the user where the item would go if it were dropped here. Thisis
maintained and drawn by OnDragOver(). But first, a number of member variables related to the focus rectangle must
be added to CShowStringView. Add these lines to ShowStringView.h, in the public section:

CPoi nt m dr agpoi nt;
CSi ze m dragsi ze;
CSi ze m dragof f set;

A data object contains agreat deal of information about itself, in various formats. Thereis, of course, the actual data
astext, device independent bitmap (DIB), or whatever other format is appropriate. But there is also information
about the object itself. If you request datain the Object Descriptor format, you can find out the size of the item and
where on the item the user originally clicked, and the offset from the mouse to the upper-left corner of the item.
These formats are generaly referred to as Clipboard formats because they were originally used for Cut and Paste via
the Clipboard.

To ask for thisinformation, call the data object's GetGlobal Data() member function, passing it a parameter that
means "Object Descriptor, please.” Rather than build this parameter from a string every time, you build it once and
storeit in a static member of the class. When a class has a static member variable, every instance of the class |ooks
at the same memory location to see that variable. It isinitialized (and memory is allocated for it) once, outside the
class.

Add thisline to ShowStringView.h:
static CLI PFORVAT m cf Cbj ect Descri pt or For mat ;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (23 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

In ShowStringView.cpp, just before the first function, add these lines:
CLI PFORMAT CShowsSt ri ngVi ew. : m cf Obj ect Descri pt or Format =
(CLI PFORMAT) :: Regi sterd i pboardFormat (" Qbject Descriptor");

This makes a CLIPFORMAT from the string "Object Descriptor" and savesit in the static member variable for all
instances of this classto use. Using a static member variable speeds up dragging over your view.

Y our view doesn't accept any and all items that are dropped on it. Add a BOOL member variable to the view that
indicates whether it accepts the item that is now being dragged over it:

BOOL m OKt odr op;
Thereis one last member variable to add to CShowStringView. Asthe item is dragged across the view, afocus

rectangleis repeatedly drawn and erased. Add another BOOL member variable that tracks the status of the focus
rectangle:

BOOL m FocusRect angl eDr awn;

Initialize m_FocusRectangleDrawn, in the view constructor, to FALSE:
CShowSt ri ngVi ew. : CShowSt ri ngVi ew()

{

m pSel ecti on = NULL;

m FocusRect angl eDr awn = FALSE;
}
OnDragEnter()

OnDragEnter() is called when the user first drags an item over the boundary of the view. It sets up the focus
rectangle and then calls OnDragOver(). As the item continues to move, OnDragOver() is called repeatedly until the
user drags the item out of the view or dropsit in the view. The overall structure of OnDragEnter() is shownin
Listing 14.35.

Listing 14.35 ShowStringView.cpp--CShowStringView::OnDragEnter()

DROPEFFECT CShowsSt ri ngVi ew. : OnDr agEnt er (CA eDat aCbj ect * pDat aChj ect,
DWORD dwKeySt at e, CPoi nt poi nt)

{
ASSERT(! m FocusRect angl eDr awn) ;
/'l check that the data object can be dropped in this view
/'l set dragsize and dragoffset with call to Getd obal Data
/'l convert sizes with a scratch dc
/1 hand off to OnDragOver
return OnDragOver (pDat aCbj ect, dwKeyState, point);

}

First, check that whatever pDataObject carries is something from which you can make a COleClientltem (and
therefore a CShowsStringCntritem). If not, the object cannot be dropped here, and you return
DROPEFFECT_NONE, as shown in Listing 14.36.

Listing 14.36 ShowStringView.cpp--Can the Object Be Dropped?

/'l check that the data object can be dropped in this view
m_OKt odr op = FALSE;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (24 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

iIf (!CaeCientltem: CanCreat eFronDat a(pDat albj ect))
ret urn DROPEFFECT NONE;

m_CKt odr op = TRUE;

Now the weird stuff starts. The GetGlobal Data() member function of the data item that is being dragged into this
view is called to get the object descriptor information mentioned earlier. It returns a handle of a global memory
block. Then the SDK function GlobalLock() is called to convert the handle into a pointer to the first byte of the
block and to prevent any other object from allocating the block. Thisis cast to a pointer to an object descriptor
structure (the undyingly curious can check about 2,000 lines into oleidl.h, in the \Program Files\Microsoft Visual
Studio\V C98\Include folder for most installations, to see the members of this structure) so that the sizel and pointl
elements can be used to fill the\m_dragsize and m_dragoffset member variables.

TIP: That isnot anumber 1 at the end of those structure elements, but alowercase letter L. The
elements of the sizel structure are cx and cy, but the elements of the pointl structure are x and y. Don't
get carried away cutting and pasting.

Finally, GlobalUnlock() reverses the effects of GlobalLock(), making the block accessible to others, and
Global Free() frees the memory. It ends up looking like Listing 14.37.

Listing 14.37 ShowStringView.cpp--Set dragsize and dragoffset

/'l set dragsize and dragoffset with call to Getd obal Dat a
HGLOBAL hQObj ect Descri ptor = pDat albj ect - >Get A obal Dat a(

m cf Obj ect Descri pt or For mat) ;
i f (hQObj ectDescriptor)

{
LPOBJECTDESCRI PTOR p(hj ect Descri ptor =
(LPOBJECTDESCRI PTOR) d obal Lock(hObj ect Descri ptor);
ASSERT(pQbj ect Descri ptor);
m dragsi ze.cx = (int) pCbjectDescriptor->sizel.cx;
m dragsi ze.cy = (int) pQObjectDescriptor->sizel.cy;
m dragoffset.cx = (int) pObjectDescriptor->pointl.x;
m dragoffset.cy = (int) pQObjectDescriptor->pointl.y;
A obal Unl ock(hObj ect Descri ptor);
G obal Free(hObj ect Descri ptor);
}
el se
{
m dr agsi ze = CSi ze(0, 0);
m dr agof fset = CSi ze(0, 0);
}

NOTE: Global memory, also called shared application memory, is allocated from a different place
than the memory available from your process space. It is the memory to use when two different
processes need to read and write the same memory, and so it comes into play when using ActiveX.
For some ActiveX operations, global memory is too small--imagine trying to transfer a40MB file
through global memory! There is amore general function than GetGlobal Data(), called (not
surprisingly) GetData(), which can transfer the data through a variety of storage medium choices.
Because the object descriptors are small, asking for them in global memory is a sensible approach.

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (25 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

If the call to GetGlobal Data() didn't work, set both member variables to zero by zero rectangles. Next, convert those
rectangles from OLE coordinates (which are device independent) to pixels:

/'l convert sizes with a scratch dc
Cd i ent DC dc(NULL);
dc. H METRI Ct oDP(&m dr agsi ze) ;
dc. H METRI Ct oDP(&m dr agof f set) ;

HIMETRICtoDP() isavery useful function that happens to be a member of CClientDC, which inherits from the
familiar CDC of Chapter 5, "Drawing on the Screen." Y ou create an instance of CClientDC just so you can call the
function.

OnDragEnter() closes with acall to OnDragOver(), so that's the next function to write.

OnDragOver()

This function returns a DROPEFFECT. Asyou saw earlier in the "Implementing a Drag Source" section, if you
return DROPEFFECT_MOVE, the source deletes the item from itself. Returning DROPEFFECT _NONE rejects the
copy. It is OnDragOver() that deals with preparing to accept or reject adrop. The overall structure of the function
looks like this:

DROPEFFECT CShowsSt ri ngVi ew. : OnDr agOver (CA eDat athj ect * pDat aCbj ect,
DWORD dwKeySt at e, CPoi nt poi nt)

{
/1l return if dropping is already rejected
/'l determ ne drop effect according to keys depressed
/| adjust focus rectangle

}

First, check to see whether OnDragEnter() or an earlier call to OnDragOver() aready rejected this possible drop:

/1l return if dropping is already rejected
I f (! m OKtodrop)
{

}

Next, look at the keys that the user is holding down now, available in the parameter passed to this function,
dwKeyState. The code you need to add (see Listing 14.38) is straightforward.

return DROPEFFECT _NONE;

Listing 14.38 ShowStringView.cpp--Determine the Drop Effect

/'l determ ne drop effect according to keys depressed
DROPEFFECT dr opef fect = DROPEFFECT_NONE;
I f ((dwKeyState & (MK_CONTROL| MK_SHI FT))

== (MK_CONTRCOL| MK_SHI FT))

{
[/l Crl+Shift force a link
dropeffect = DROPEFFECT_LI NK;
}
else if ((dwKeyState & MK CONTRCL) == MK_CONTRQL)
{

/1 Crl forces a copy
dr opef fect = DROPEFFECT_COPY;

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (26 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application

}
else if ((dwKeyState & MK ALT) == MK ALT)
{

/1 Al't forces a nove

dr opef fect = DROPEFFECT_MOVE;
}
el se
{

/1l default is to nove

dr opef fect = DROPEFFECT_MOVE;
}

NOTE: This code hasto be alot more complex if the document might be smaller than the view, as can
happen when you are editing a bitmap in Paint, and especialy if the view can scroll. The Microsoft
ActiveX container sasmple, DRAWCLI, (included on the Visual C++ CD) handles these contingencies.
Look in the CD folder \V c98\Samples\M cl\Mfc\Ole\DrawCli for the file drawvw.cpp and compare that
code for OnDragOver() to this code.

If the item has moved since the last time OnDragOver() was called, the focus rectangle has to be erased and redrawn
at the new location. Because the focus rectangle is a simple XOR of the colors, drawing it a second time in the same
place removes it. The code to adjust the focus rectangleisin Listing 14.39.

Listing 14.39 ShowsStringView.cpp--Adjust the Focus Rectangle

/| adjust focus rectangle
poi nt -= m.dragoffset;

I f (point == m.dragpoint)
{

}
Cd i ent DC dc(this):

i f (m_FocusRect angl eDr awn)

return dropeffect;

{
dc. DrawFocusRect (CRect (m dr agpoi nt, m.dragsi ze));
m _FocusRect angl eDr awn = FALSE;
}
i f (dropeffect != DROPEFFECT_NONE)
{
dc. DrawFocusRect (CRect (poi nt, m.dragsi ze));
m dr agpoi nt = poi nt;
m _FocusRect angl eDr awn = TRUE;
}

To test whether the focus rectangle should be redrawn, this code adjusts the point where the user clicked by the
offset into the item to determine the top-left corner of the item. It can then compare that location to the top-left
corner of the focus rectangle. If they are the same, there is no need to redraw it. If they are different, the focus
rectangle might need to be erased.

NOTE: Thefirst time OnDragOver() is called, m_dragpoint is uninitialized. That doesn't matter
because m_FocusRectangleDrawn is FALSE, and an ASSERT in OnDragEnter() guaranteesit. When

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (27 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 14 -- Building an ActiveX Container Application
m_FocusRectangleDrawn is set to TRUE, m_dragpoint gets a value at the same time.

Finally, replace the return statement that was generated for you with one that returns the cal culated DROPEFFECT:
return dropeffect;

OnDraglLeave()

Sometimes a user drags an item right over your view and out the other side. OnDraglL eave() just tidies up alittle by
removing the focus rectangle, as shown in Listing 14.40.

Listing 14.40 ShowStringView.cpp--ShowStringView::OnDragLeave()

voi d CShowStri ngVi ew. : OnDr agLeave()

{
Cd ientDC dc(this);
I f (m_FocusRect angl eDr awn)
{
dc. DrawFocusRect (CRect (m dr agpoi nt, m dragsi ze));
m _FocusRect angl eDr awn = FALSE;
}
}
OnDragDrop()

If the user lets go of an item that is being dragged over ShowsString, the item lands in the container and
OnDragDrop() iscalled. The overall

http://www.pbs.mcp.com/ebooks/0789715392/ch14/ch14.htm (28 of 28) [7/29/1999 3:50:22 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

oue
Special Edition Using Visual C++ 6

(< Pravious Chaptor S Next Chaptor

_15 -

Building an ActiveX Server Application

o Adding Server Capabilities to ShowString
o AppWizard's Server Boilerplate

o Showing a String Again
o Applications That Are Both Container and Server
o Building Another Version of ShowString

0 Nesting and Recursion | ssues

o Active Documents

o What Active Documents Do

o Making ShowString an Active Document Server

Just as AppWizard builds ActiveX containers, it also builds ActiveX servers. However, unlike containers, the
AppWizard code is complete, so there isn't much work to do for improving the AppWizard code. This chapter builds
aversion of ShowString that is only a server and discusses how to build another version that is both a container and a
server. You also learn about ActiveX documents and how they can be used in other applications.

Adding Server Capabilities to ShowString

Like Chapter 14, "Building an ActiveX Container Application," this chapter starts by building an ordinary server
application with AppWizard and then adds the functionality that makes it ShowString. Thisisfar quicker than adding
ActiveX functionality to ShowString because ShowString doesn't have much code and can be written quickly.

AppWizard's Server Boilerplate

Build the new ShowString in a different directory, making almost exactly the same AppWizard choices as when you
built versions of ShowString in Chapter 8, "Building a Complete Application: ShowString," and Chapter 14. Call it
ShowString, and choose an M DI application with no database support. In AppWizard's Step 3, select full server as
your compound document support. This enables the check box for ActiveX document support. Leave this deselected
for now. Later in this chapter you see the consequences of selecting this option. Continue the AppWizard process,
selecting a docking toolbar, initial status bar, printing and print preview, context sensitive Help, and 3D controls.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (1 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application
Finally, select source file comments and a shared DLL. Finish AppWizard and, if you want, build the project.

NOTE:: Even though the technology is now called ActiveX, the AppWizard dialog boxes refer to
compound document support. Many of the class names that are used throughout this chapter have Ole in
their names as well. Although Microsoft has changed the name of the technology, it has not propagated
that change throughout Visual C++ yet. Y ou will have to live with these contradictions for awhile.

There are many differences between the application you have just generated and a do-nothing application without
ActiveX server support. These differences are explained in the next few sections.

Menus There are two new menusin an ActiveX server application. Thefirst, called
IDR_SHOWSTTYPE_SRVR_IP, isshown in Figure 15.1. When an item is being edited in place, the container
in-place menu (called IDR_SHOWSTTYPE_CNTR_IPin the container version of ShoeString) is combined with the
server in-place menu, IDR_SHOWSTTYPE_SRVR _IP, to build the in-place menu as shown in Figure 15.2. The
double separators in each partial menu show where the menus are joined.

FIG. 15.1 AppWizard adds another menu for editing in place.
FIG. 15.2 The container and server in-place menus are interlaced during in-place editing.

The second new menu isIDR_SHOWSTTYPE_SRVR_EMB, used when an embedded item is being edited in a
separate window. Figure 15.3 shows this new menu next to the more familiar IDR_SHOWSTTY PE menu, whichis
used when ShowString is acting not as a server but as an ordinary application. The File menus have different items:
IDR_SHOWSTTYPE_SRVR_EMB has Update in place of Save, and Save Copy Asin place of Save As. Thisis
because the item the user is working on in the separate window is not a document of its own, but is embedded in
another document. File, Update updates the embedded item; File, Save Copy As doesn't save the whole document,
just a copy of this embedded portion.

FIG. 15.3 The embedded menu has different items under File than the usual menu.

CShowsStringApp Another member variable has been added to this class. It is declared in ShowString.h as:
CA eTenpl at eServer m server;

COleTemplateServer handles the majority of the work involved in connecting documents to code, as you will see.

Thefollowing line is added at the top of ShowString.cpp:
#i ncl ude "I pFrane. h"

This sets up the class ClnPlaceFrame, discussed later in this chapter. Just before Initlnstance(), the lines shown in
Listing 15.1 are added.

Listing 15.1 Excerpt from ShowString.cpp--CLSID

/[l This identifier was generated to be statistically unique for
/'l your app. You may change it if you prefer to choose a specific
/1l identifier.

/1 {OB1DEE40- C373-11CF- 870C- 00201801DDD6}

static const CLSID clsid =

{ Oxbldee40, 0xc373, Oxllcf,

{ 0x87, Oxc, O0x0, 0x20, 0x18, O0x1, Oxdd, Oxd6 } };

The numbers will be different in your code. This Class ID identifies your server application and document type.
Applications that support several kinds of documents (for example, text and graphics) use adifferent CLSID for each
type of document.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (2 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc01.gif')
javascript:popUp('15uvc50.gif')
javascript:popUp('15uvc02.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

Asit did for the OLE container version of ShowString, CShowStringA pp::Initinstance() has several changes from the
non-ActiveX ShowString you developed in Chapter 8. The code in Listing 15.2 initializes the ActiveX (OLE)
libraries.

Listing 15.2 Excerpt from ShowString.cpp--Initializing Libraries

[/ Initialize OLE libraries

if (TAfxAelnit())

{
Af xMessageBox (1 DP_CLE | NI T_FAI LED) ;
return FALSE;

}

While still in CShowStringA pp::Initlnstance(), after the CMultiDocTemplate isinitialized but before the call to
AddDocTemplate(), the following line is added to register the menu used for in-place editing and for
separate-window editing:
pDocTenpl at e- >Set Ser ver | nf of

| DR_SHOANSTTYPE_SRVR_EMB, | DR_SHOASTTYPE_SRVR | P,

RUNTI ME_CLASS(Cl nPl aceFrane)) ;

A change that was not in the container version is connecting the template for the document to the class ID, like this:

/'l Connect the CO eTenpl ateServer to the docunent tenpl ate.
/1 The CA eTenpl ateServer creates new docunents on behal f
/1 of requesting COLE containers by using information
/[l specified in the docunent tenplate.
m server. Connect Tenpl at e(cl si d, pDocTenpl ate, FALSE);

Now when a user chooses Create New when inserting an object, the document used for that creation will be available.

When a server application is launched to edit an item in place or in a separate window, the system DLLs add
/Embedding to the invoking command line. But if the application is aready running, and it isan MDI application, a
new copy is not launched. Instead, a new MDI window is opened in that application. That particular piece of magicis
accomplished with one function call, as shown in Listing 15.3.

Listing 15.3 Excerpt from ShowString.cpp--Registering Running MDI Apps

/'l Register all OLE server factories as running. This enables the
/1 OLE libraries to create objects from other applications.

Cd eTenpl at eServer: : RegisterAll();

/1 Note: MDI applications register all server objects wthout regard

/[l to the /Enbedding or /Automation on the command | i ne.

After parsing the command line, the AppWizard boilerplate code checks to seeif this application is being launched as
an embedded (or automation) application. If so, there is no need to continue with the initialization, so this function
returns, as shown in Listing 15.4.

Listing 15.4 Excerpt from ShowString.cpp--Checking How the App was Launched

/!l Check to see if |l aunched as OLE server
i f (cmdl nfo. m bRunEnbedded || cndl nf o. m bRunAut omat ed)

{
/1l Application was run with /Enbeddi ng or /Autonmation.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (3 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

[/ Don't show the main window in this case.
return TRUE;

}

If the application is being run standal one, execution continues with a registration update:

/1 \When a server application is |aunched standalone, it is a good idea
/1 to update the system Registry in case it has been danmged.
m server. Updat eRegi st ry(QAT_I NPLACE_SERVER) ;

ActiveX information is stored in the Registry. (The Registry is discussed in Chapter 7, "Persistence and File [/0.")
When a user chooses Insert, Object or Edit, Insert Object, the Registry provides the list of object types that can be
inserted. Before ShowString can appear in such alist, it must be registered. Many devel opers add code to their install
programs to register their server applications, and MFC takes this one step further, registering the application every
timeitisrun. If the application files are moved or changed, the registration is automatically updated the next time the
application is run standalone.

CShowstringDoc The document class, CShowsStringDoc, now inherits from COleServerDoc rather than CDocument.
Aswell, the following lineis added at the top of ShowStringdoc.cpp:

#i nclude "Srvrlitem h"

This header file describes the server item class, CShowStringSrvritem, discussed in the CShowStringSrvritem
subsection of this section. The constructor, CShowStringDoc::CShowStringDoc(), has the following line added:

Enabl eConpoundFi | e();
This turns on the use of compound files.

Thereisanew public function inlined in the header file so that other functions can access the server item:

CShowst ri ngSrvriltent Get Enbeddedl tem()
{ return (CShowStringSrvriltenr)CdA eServerDoc: : Get Enbeddedltem(); }

This calls the base class GetEmbeddeditem(), which in turn calls the virtual function OnGetEmbeddeditem(). That
function must be overridden in the ShowString document class as shown in Listing 15.5.

Listing 15.5 ShowStringDoc.cpp--CShowStringDoc::OnGetEmbeddeditem()

CA eServerltent CShowsStringDoc: : OnCet Enbeddedl t en()

{
/'l OnGet Enbeddedltemis called by the framework to get the
/1 COeServerltemthat is associated with the docunent.
[l It is only called when necessary.
CShowStringSrvritent pltem = new CShowStringSrvriten(this);
ASSERT _VALI D(pltem;
return pltem

}

This makes anew server item from this document and returns a pointer to it.

CShowsStringView The view class has a new entry in the message map:
ON_COMVAND(| D_CANCEL_EDI T_SRVR, OnCancel Edi t Srvr)

ThiscatchesID_CANCEL_EDIT_SRVR, and the cancellation of editing isin place. An accelerator has already been
added to connect this message to Esc. The function that catchesit looks like this:

voi d CShowStringVi ew. : OnCancel Edi t Srvr ()

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (4 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

{
}

This function simply deactivates the item. There are no other view changes--server views are so much simpler than
container views.

Get Docunent () - >OnDeact i vat eUl (FALSE) ;

CShowsStringSrvritem The server item classis a completely new addition to ShowString. It provides an interface
between the container application that launches ShowString to and opens a ShowString document. It describes an
entire ShowString document that is embedded into another document, or a portion of a ShowString document that is
linked to part of a container document. It has no member variables other than those inherited from the base class,
COleServerltem. It has overrides for eight functions. They are asfollows:

« A constructor

o A destructor

o GetDocument()

o AssertValid()

o Dump()

o Seridize()

e OnDraw()

« OnGetExtent()

The constructor simply passes the document pointer along to the base class. The destructor does nothing.
GetDocument() is an inline function that calls the base class function with the same name and casts the resullt.
AssertValid() and Dump() are debug functions that simply call the base class functions. Serialize() actually does some
work, as shown in Listing 15.6.

Listing 15.6 Srvritem.cpp--CShowStringSrvritem::Serialize()

void CShowStringSrvritem: Serialize(CArchive& ar)

{
[l CShowStringSrvritem: Serialize will be called by the framework if
/Il the itemis copied to the clipboard. This can happen automatically
/1 through the OLE cal | back OnGet C i pboardData. A good default for
/1 the enbedded itemis sinply to delegate to the docunent's Serialize
[l function. |If you support links, then you will want to serialize
/1l just a portion of the docunent.
if (!lIsLinkedltem())

{
CShowst ri nghoc* pDoc = Get Docunent () ;
ASSERT_VALI D(pDoc) ;
pDoc->Seri al i ze(ar);

}

Thereis no need to duplicate effort here. If the item is embedded, it is an entire document, and that document has a
perfectly good Serialize() that can handle the work. AppWizard doesn't provide boilerplate to handle serializing a
linked item because it is application-specific. Y ou would save just enough information to describe what part of the
document has been linked in, for example, cells A3 to D27 in a spreadsheet. This doesn't make sense for ShowString,
so don't add any code to Serialize().

Y ou may fedl that OnDraw() is out of place here. It is normally thought of as a view function. But this OnDraw()
draws a depiction of the server item when it isinactive. It should look very much like the view when it is active, and it

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (5 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

makes sense to share the work between CShowStringView::OnDraw() and CShowStringSrvritem::OnDraw(). The
boilerplate that AppWizard providesisin Listing 15.7.

Listing 15.7 Srvritem.cpp--CShowStringSrvritem::OnDraw()

BOOL CShowsStringSrvritem : OnDraw CDC* pDC, CSi ze& rSi ze)

{
CShowSt ri ngDoc* pDoc = Get Docunent () ;
ASSERT_VALI D(pDoc) ;
/1 TODO set mappi ng node and extent
/[l (The extent is usually the sane as the size returned from OnGet Extent)
pDC- >Set MapMbde(MM_ANI SOTROPI C) ;
pDC- >Set W ndowOr g(0, 0) ;
pDC- >Set W ndowExt (3000, 3000);
[/ TODO add draw ng code here. Optionally, fill in the H METRI C extent.
/'l Al drawing takes place in the netafile device context (pDC).
return TRUE;
}

Thiswill change a great deal, but it's worth noting now that unlike CShowStringView::OnDraw(), this function takes
two parameters. The second is the size in which the inactive depiction isto be drawn. The extent, as mentioned in the
boilerplate comments, typically comes from OnGetExtent(), which is shown in Listing 15.8.

Listing 15.8 Srvritem.cpp--CShowStringSrvritem:: OnGetExtent()

BOOL CShowStringSrvriltem : OnCGet Ext ent (DVASPECT dwDr awAspect, CSize& rSize)
{
/'l Most applications, like this one, only handl e drawi ng the content
/1 aspect of the item |[If you wish to support other aspects, such
/1 as DVASPECT THUMBNAIL (by overriding OnDrawkx), then this
/1 inplenentation of OnGet Extent should be nodified to handle the
/1 additional aspect(s).
i f (dwDrawAspect ! = DVASPECT_ CONTENT)
return CA eServerltem : OnGet Ext ent (dwDr awAspect, rSize);
[l CShowStringSrvritem ::OnGetExtent is called to get the extent in
[l H METRIC units of the entire item The default inplenentation
/1 here sinply returns a hard-coded nunber of units.
CShowSt ri ngDoc* pDoc = Get Docunent () ;
ASSERT_VALI D(pDoc) ;
/] TODO. replace this arbitrary size
rSize = CSi ze(3000, 3000); /] 3000 x 3000 H METRIC units
return TRUE;

}
Y ou will replace thiswith real code very shortly.

ClnPlaceFrame Thein-place frame class, which inherits from COlel PFrameWnd, handles the frame around the
server item and the toolbars, status bars, and dialog-box bars, collectively known as control bars, that it displays. It
has the following three protected member variables:

CTool Bar m wndTool Bar ;
CA eResi zeBar m wndResi zeBar ;
CA eDropTarget m dropTarget;

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (6 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

The CToolBar classis discussed in Chapter 9, "Status Bars and Toolbars." COleDropTarget is discussed in the drag
and drop section of Chapter 14. COleResizeBar looks just like a CRectTracker, which was used extensively in
Chapter 14, but allows the resizing of a server item rather than a container item.
The following are the seven member functions of CinPlaceFrame:

« A constructor

« A destructor

o AssertValid()

o Dump()

e OnCreate()

« OnCreateControlBars()

o PreCreateWindow()

The constructor and destructor do nothing. AssertValid() and Dump() are debug functions that ssimply call the base
class functions. OnCreate() actually has code, shown in Listing 15.9.

Listing 15.9 IPFrame.cpp--CinPlaceFrame::OnCreate()

I nt ClnPl aceFrane: : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)

{
if (CA el PFraneWwhd: : OnCreate(l pCreateStruct) == -1)
return -1;
/'l CResizeBar inplenents in-place resizing.
if (!'mwndResi zeBar. Create(this))
{
TRACEO("Failed to create resize bar\n");
return -1; /] fail to create
}
/1 By default, it is a good idea to register a drop-target that does
/1 nothing with your frame wi ndow. This prevents drops from
/1 "falling through" to a container that supports drag-drop.
m dr opTar get. Regi ster(this);
return O;
}

Thisfunction catches the WM _CREATE message that is sent when an in-place frame is created and drawn onscreen.
It calls the base class function and then creates the resize bar. Finally, it registers adrop target so that if anything is
dropped over thisin-place frame, it is dropped on this server rather than the underlying container.

When a server document is activated in place, COleServerDoc::ActivatelnPlace() calls
ClnPlaceFrame::OnCreateControlBars(), which is shown in Listing 15.10.

Listing 15.10 IPFrame.cpp--CinPlaceFrame::OnCreateControlBars()

BOOL ClI nPl aceFr ane: : OnCr eat eCont r ol Bar s(CFr ameWhd* pWhdFr ane,
CFrameWhd* pWhdDoc)
{

/1 Set owner to this wi ndow, so nessages are delivered to correct app
m wndTool Bar. Set Omer (this);

/'l Create toolbar on client's frane w ndow

if (!mwndTool Bar. Creat e(pWhdFrane) ||

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (7 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application
I'm wndTool Bar. LoadTool Bar (1 DR_SHOANSTTYPE _SRVR | P))

TRACEO("Failed to create tool bar\n");
return FALSE;
}
/1 TODO Renove this if you don't want tool tips or a resizeable tool bar
m wndTool Bar. Set Bar St yl e(m whdTool Bar. Get Bar Styl e() |
CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SI ZE DYNAM O) ;
/1 TODO Delete these three lines if you don't want the tool bar to
/'l be dockabl e
m wndTool Bar . Enabl eDocki ng(CBRS_ALI GN_ANY) ;
pWhdFr ame- >Enabl eDocki ng(CBRS_ALI GN_ANY) ;
pWhdFr ame- >DockCont r ol Bar (&m wndTool Bar) ;
return TRUE;

}

This function creates a docking, resizable toolbar with Tool Tips, docked against the edge of the main frame window
for the application.

TIPP: If you are developing an MDI application and prefer the toolbar against the document frame, use
pWndDoc instead of PWndFrame, in the call to m_wndToolBar.Create() but be sure to check that it is
not NULL.

Thelast function in ClnPlaceFrame is PreCreateWindow(). At the moment, it just calls the base class, as shownin
Listing 15.11.

Listing 15.11 IPFrame.cpp--CinPlaceFrame::PreCreateWindow()

BOOL ClI nPl aceFr ane: : PreCr eat eW ndow CREATESTRUCT& csS)

{
/1 TODO. Modify the Wndow class or styles here by nodifying
/'l the CREATESTRUCT cs
return CA el PFrameWhd: : PreCr eat eW ndow cs) ;

}

Thisfunction is called before OnCreate() and sets up the styles for the frame window through a CREATESTRUCT.

CAUTION: Modifying these stylesis not for the faint of heart. The Microsoft documentation
recommends reading the source code for all the classesin the hierarchy of your CInPlaceFrame (Cwnd,
CFrameWnd, COlel PFrameWnd) to see what CREATESTRUCT elements are already set before making
any changes. For this sample application, don't change the CREATESTRUCT.

Shortcomings of This Server Apart from the fact that the starter application from AppWizard doesn't show a string,
what's missing from this server? The OnDraw() and GetExtent() TODOs are the only significant tasks |eft for you by
AppWizard. Try building ShowString, and then run it once standalone just to register it.

Figure 15.4 shows the Object dialog box in Microsoft Word, reached by choosing Insert, Object. ShowString appears
in thislist as ShowSt Document--not surprising considering the menu name was IDR_SHOWSTTY PE. Devel oper
Studio calls this document a ShowSt document. This setting could have been overriden in AppWizard by choosing the
Advanced button in Step 4 of AppWizard. Figure 15.5 shows this dialog box and the long and short names of the file

type.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (8 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

FIG. 15.4 The ShowString document type, called ShowS document, now appears in the Object dialog box when
inserting a new object into a Word document.

FIG. 15.5 The Advanced Options dialog box of Sep 4 in AppWizard provides an opportunity to change the name of
thefile type.

So, the file type names used by the Registry have been set incorrectly for this project. The next few pages take you on
atour of the way file type names are stored and show you how difficult they are to change.

The file type name has been stored in the string table. It is the caption of the IDR_SHOWSTTY PE resource, and
AppWizard has set it to:

\ nShowsSt \ nShowSt \ n\ n\ nShowSt ri ng. Docunent \ nShowSt Docunent

To look at this string, choose String Table from the Resource View, open the only string table there, click
IDR_SHOWSTTY PE onceto highlight it, and choose View, Properties (or double-click the string). Thisstring is
saved in the document template when a new one is constructed in CShowStringApp::Initinstance(), like this:

Listing 15.12 ShowString.cpp--Excerpt from ShowStringApp::Initinstance()

pDocTenpl ate = new CMul ti DocTenpl at e(
| DR_SHOWSTTYPE,
RUNTI ME_CLASS(CShowst ri ngDoc) ,
RUNTI ME_CLASS(CChi | dFrane), // custom MDI child frame

RUNTI ME_CLASS(CShowSt ri ngVi ew)) ;

The caption of the menu resource holds seven strings, and each is used by a different part of the framework. They are
separated by the newline character \n. The seven strings, their purposes, and the values provided by AppWizard for
ShowString are as follows:

« Window Title--Used by SDI appsin thetitle bar. For ShowString: not provided.

« Document Name--Used as the root for default document names. For ShowString: ShowSt, so that new
documents will be ShowSt1, ShowSt2, and so on.

« File New Name--Prompt in the File New dialog box for file type. (For example, in Developer Studio there are
eight file types, including Text File and Project Workspace.) For ShowString: ShowSt.

« Filter Name--An entry for the drop-down box Files of Type in the File Open dialog box. For ShowString: not
provided.

« Filter Extension--The extension that matches the filter name. For ShowString: not provided.

« Registry File Type I D--A short string to be stored in the Registry. For ShowString: ShowsString.Document.

« Registry File Type Name--A longer string that shows in dialog boxes involving the Registry. For ShowString:
ShowSt Document.

Look again at Figure 15.5 and you can see where these values came from. Try changing the last entry. In the
Properties dialog box, change the caption so that the last element of the string is ShowString Document and press
Enter. Build the project. Run it once and exit. In the output section of Developer Studio, you see these messages.
War ni ng: Leavi ng val ue "~ ShowSt Docunent' for key "~ ShowString. Docunment'

in registry

i nt ended val ue was "~ ShowString Docunent'.
War ni ng: Leavi ng val ue " ShowSt Docunent' for key

" CLSI D\ { OB1DEE40- C373- 11CF- 870C- 00201801DDD6}" in registry

i nt ended val ue was "~ ShowString Docunent'.

This means that the call to UpdateRegistry() did not change these two keys. Thereisaway to provide parameters to

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (9 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc04.gif')
javascript:popUp('15uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

UpdateRegistry() to insist that the keys be updated, but it's even more complicated than the route you will follow.
Because no code has been changed from that provided by AppWizard, it's much quicker to delete the ShowString
directory and create it again, this time setting the long file type to ShowString Document.

CAUTTION: Alwaystest AppWizard-generated code before you add changes of your own. Until you
are familiar with every default you are accepting, it is worth afew moments to see what you have before
moving on. Rerunning AppWizard is easy, but if you've made several hours worth of changes and then
decide to rerun it, it's not such a simple task.

Close Visua Studio, delete the ShowString folder entirely, and generate a new application with AppWizard as before.
Thistime, in Step 4, click the Advanced button and change the file type names as shown in Figure 15.6. After you
click Finish, AppWizard asks whether you wish to reuse the existing CLSID, as shown in Figure 15.7. Click Yes and
then OK to create the project. This makes a new showstring.reg file for you with the correct Registry values.

FIG. 15.6 The Advanced Options dialog box of Sep 4 of AppWizard is the place to improve the file type names.
FIG. 15.7 AppWizard makes sure that you don't accidentally reusea CLSD.

This changes the string table as well as the showstring.reg file, so you might be tempted to build and run the
application to make this fix complete. It's true, when you run the application, it will update the Registry for you, using
the values from the new string table. Alas, the registration update will fail yet again. If you wereto try it, these
messages would appear in the output window:
War ni ng: Leavi ng val ue ~ShowSt Docunent' for key

" ShowSt ri ng. Docunent' in registry

i nt ended val ue was "~ ShowString Docunent'.
War ni ng: Leavi ng val ue " ShowSt Docunent' for key

" CLSI D\ { OB1DEE40- C373- 11CF- 870C- 00201801DDD6}" in registry

i nt ended val ue was "~ ShowString Docunent'.
Warni ng: Leaving value " ShowSt' for key

" CLSI D\ { OB1DEE40- C373- 11CF- 870C- 00201801DDD6} \ AuxUser Type\ 2

in registry

i ntended val ue was "~ ShowString'.

So, how do you get out of this mess? Y ou have to edit the Registry. If that doesn't sound intimidating, it should.
Messing with the Registry can leave your system unusable. But you are not going to go in by hand and change keys;
instead, you are going to use the Registry file that AppWizard generated for you. Here's what to do:

1. Choose Start, Run.
2. Type regedit and press Enter.
3. Choose Registry, Import Registry File from the Registry Editor menu.

4. Using the Import Registry File dialog box, move through your folders until you reach the one where the
replacement ShowString server was just generated by AppWizard, as shown in Figure 15.8. Click Open.

5. A success message is shown. Click OK.
6. Close the Registry Editor.

FIG. 15.8 Registry files generated by AppWizard have the extension .reg.

Now if you run ShowString again, those error messages don't appear. Run Word again and choose Insert, Object. The
Object dialog box now has a more meaningful ShowString entry, as shown in Figure 15.9.

NOTE: There are three moralsto this side trip. Thefirst is that you should think really carefully before

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (10 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc06.gif')
javascript:popUp('15uvc07.gif')
javascript:popUp('15uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

clicking Finish on the AppWizard dialog box. The second is that you cannot ignore the Registry if you
are an ActiveX programmer. The third is that anything can be changed if you have the nerve for it.

Click OK on the Object dialog box to insert a ShowString object into the Word document. Y ou can immediately edit
it in place, as shown in Figure 15.10. Y ou can see that the combined server and container in-place menus are being
used. There's not much you can do to the embedded object at this point because the ShowString code that actually
shows a string has not been added. Press Esc to finish editing in place, and the menus return to the usual Word menus,
asshownin Figure 15.11.

FIG. 15.9 The updated long file type name appears in the Object dialog box of other applications.
FIG. 15.10 While editing in place, the in-place menus replace the Word menus.
FIG. 15.11 When the object isinactive, Word reminds the user of the object type.

Although this server doesn't do anything, it is a perfectly good server. Y ou can resize and move the embedded item
whileit is active or inactive, and everything operates exactly as you expect. All that remainsisto restore the
ShowsString functionality.

Showing a String Again

Asyou did in Chapter 14, it istime to add the ShowString functionality to this version of the program. If you went
through this process before, it will be even quicker thistime. Remember to open the ShowString files from Chapter 8,
so that you can copy code and resources from the functional ShowString to the do-nothing ActiveX server you have
just created and explored. (If you didn't code along in Chapter 8, you can get the completed code on the Web at
www.mcp.com/info or www.gr egcons.com/uvcé.htm.) Here's what to do:

1. In ShowStringDoc.h, add the private member variables and public Get functions to the class.
2. In CShowsStringDoc::Serialize(), paste in the code that saves or restores these member variables.

3. In CShowsStringDoc::OnNewDocument(), paste in the code that initializes the member variables. Change the
default values of horizcenter and vertcenter to FALSE. Y ou'll see why towards the end of the chapter.

4. Copy the entire Tools menu from the old ShowString to the new server ShowString. Choose File, Open to
open the old ShowString.rc, open the IDR_SHOWSTTY PE menu, click the Tools menu, and choose Edit,
Copy. Open the new ShowString's IDR_SHOWSTTY PE menu, click the Window menu, and choose Edit,
Paste.

5. Paste the Tools menu into the IDR_SHOWSTTY PE_SRVR_IP (before the separator bars) and
IDR_SHOWSTTYPE_SRVR_EMB menusin the same way.

6. Add the accelerator Ctrl+T for ID_TOOLS_OPTIONS as described in Chapter 8. Add it to all three
accelerators.

7. Deletethe IDD_ABOUTBOX dialog box from the new ShowsString. Copy IDD_ABOUTBOX and
IDD_OPTIONS from the old ShowString to the new.

8. While IDD_OPTIONS has focus, choose View, ClassWizard. Create the COptionsDialog class asin the
origina ShowString.

9. Use ClassWizard to arrange for CShowStringDoc to catch the ID_TOOLS OPTIONS command.

10. In ShowStringDoc.cpp, replace the ClassWizard version of CShowStringDoc::OnToolsOptions() with the
one that puts up the dialog box.

11. In ShowStringDoc.cpp, add #include " OptionsDialog.h" after the #include statements already present.

12. Use ClassWizard to connect the dialog box controls to COptionsDialog member variables as before.
Connect IDC_OPTIONS BLACK tom _color, IDC_OPTIONS HORIZCENTER to m_horizcenter,
IDC_OPTIONS STRING to m_string, and IDC_OPTIONS_VERTCENTER to m_vertcenter.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (11 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc09.gif')
javascript:popUp('15uvc10.gif')
javascript:popUp('15uvc11.gif')
http://www.mcp.com/info
http://www.gregcons.com/uvc6.htm

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

To confirm you've made all the changes correctly, build the project--there should be no errors.

Y ou haven't restored CShowStringView::OnDraw() yet because there are actually going to be two OnDraw()
functions. Thefirstisin the view class, shown in Listing 15.13. It draws the string when ShowString is running
standalone and when the user is editing in place, and it's the same asin the old version of ShowString. Just copy it
into the new one.

Listing 15.13 ShowStringView.cpp--CShowStringView::OnDraw()
voi d CShowsSt ri ngVi ew. : OnDr aw(CDC* pDC)

{

CShowst ri ngDoc* pDoc = Get Docunent () ;

ASSERT VALI D(pDoc) ;

COLORREF ol dcol or;

switch (pDoc->Get Col or())

{

case O:
ol dcol or = pDC- >Set Text Col or (RGB(0,0,0)); //black
br eak;

case 1:
ol dcol or = pDC- >Set Text Col or (RGB(0xFF, 0,0)); //red
br eak;

case 2:
ol dcol or = pDC- >Set Text Col or (RGB(0, OxFF, 0)); //green
br eak;

}

int DTflags = 0O;

i f (pDoc->CetHorizcenter())

{
DTf |l ags | = DT_CENTER;

}

i f (pDoc->CetVertcenter())

{
DTfl ags | = (DT_VCENTER| DT_SI NGLELI NE) ;

}

CRect rect;

GetCient Rect (& ect);

pDC- >Dr awText (pDoc->Get String(), &rect, DTflags);

pDC- >Set Text Col or (ol dcol or);

}

When the embedded ShowsString item isinactive, CShowStringSrvritem::OnDraw() drawsit. The code in here should
be very similar to the view's OnDraw, but because it is a member of CShowStringSrvritem rather than
CShowsStringView, it doesn't have access to the same member variables. So although there is still a GetDocument()
function you can call, GetClientRect doesn't work. It's a member of the view class but not of the server item class.
You use afew CDC member functions instead. It's a nice touch to draw the item dlightly differently to help remind
the user that it is not active, as shown in Listing 15.14. Y ou can paste in the drawing code from the view's OnDraw(),
but change the colors dlightly to give the user areminder.

Listing 15.14 Srvritem.cpp--CShowStringSrvritem::OnDraw()

BOOL CShowsStringSrvritem : OnDraw CDC* pDC, CSi ze& rSi ze)

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (12 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

{
CShowSt ri ngDoc* pDoc = Get Docunent () ;

ASSERT VALI D(pDoc) ;
/1 TODO set mappi ng node and extent
Il (The extent is usually the sanme as the size returned from OnGet Extent)
pDC- >Set MapMbde(MM_ANI SOTROPI C) ;
pDC- >Set W ndowOr g(0, 0) ;
pDC- >Set W ndowExt (3000, 3000);
COLORREF ol dcol or;
switch (pDoc->Get Col or())
{
case O:
ol dcol or
br eak;
case 1:
ol dcol or = pDGC- >Set Text Col or (RGB(0xB0, 0,0)); // dull red
br eak;
case 2:
ol dcol or
br eak;

pDC- >Set Text Col or (RGB(0x80, 0x80, 0x80)); //gray

pDC- >Set Text Col or (RGB(0, 0xB0, 0)); // dull green

—_——

int DIflags = 0;
i f (pDoc->GetHorizcenter())

DTf | ags | = DT_CENTER;

—_—— ~—

i f (pDoc->GetVertcenter())

=

DTf | ags | = (DT_VCENTER| DT_SI NGLELI NE) ;
}
CRect rect,;
rect. TopLeft() = pDC >Get W ndowOr g() ;
rect.BottonRight() = rect. TopLeft() + pDC- >Get W ndowExt () ;
pDC- >Dr awText (pDoc->Get String(), &rect, DTflags);
pDC- >Set Text Col or (ol dcol or) ;
return TRUE;

}

The function starts with the boilerplate from AppWizard. With an application that doesn't just draw itself in whatever
space is provided, you would want to add code to determine the extent rather than just using (3000,3000). (You'd
want to add the code to OnGetExtent(), too.) But hardcoding the numbers works for this simple example.

Build the application, fix any typos or other ssmple errors, and then start Word and insert a ShowString document into
your worksheet. ShowString should run as before, with Hello, world! in the center of the view. Convince yourself that
the Options dialog box still works and that you have restored all the old functionality. Be sure to change at least one
thing: the string, the color, or the centering. Then, press Esc to finish editing in place. Oops! It still draws the old
Hello, world! in gray in the top left of the server area. Why?

Remember that in CShowStringDoc::OnTool sOptions(), after the user clicks OK, you tell the document that it has
been changed and arrange to have the view redrawn:

Set Modi fi edFl ag() ;
Updat eAl | Vi ews(NULL) ;

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (13 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

Y ou need to add another line there to make sure that any containers that are containing this document are also
notified:

Not i f yChanged() ;
Now build it again and insert a different ShowString object into a Word document. This time the changes are reflected

in the inactive server display aswell. Figure 15.12 shows a ShowString item being edited in place, and Figure 15.13
shows the same item inactive.

NOTE: If you turn on either centering option, the string will not appear when the item isinactive. It
seems that DrawText is centering the string within a much larger rectangle than the one you passto it.
Simpler CDC functions, such as DrawEllipse, don't have this problem. It might be wise to avoid
centering text with DrawText() if your inactive appearance is important.

FIG. 15.12 This ShowString itemis being edited in place.
FIG. 15.13 This ShowString itemisinactive.

Good old ShowString has been through alot. It'stime for one more transformation.

Applications That Are Both Container and Server

As you might expect, adding container features to this version of ShowString is as difficult as adding them to the
ordinary ShowString of the previous chapter. If you add these features, you gain an application that can tap the full
power of ActiveX to bring extraordinary power to your work and your documents.

Building Another Version of ShowString

The way to get a ShowString that is both a container and a server isto follow these steps:

1. Build anew ShowsString with AppWizard that is a container and afull server. Run AppWizard as usual but
in adifferent directory than the one where you created the server-only ShowString. Be sure to select the Both
Container And Server radio button in Step 3. In Step 4, click the Advanced button and change the filename
types as you did earlier in this chapter. Finally, when asked whether you want to use the same CLSID, click No.
Thisis adifferent application.

2. Make the container changes from the preceding chapter. When adding the Tools, Options menu item and
accelerator, add it to the main menu, the server in-place menu, and the server-embedded menu.

3. Make the server changes from this chapter.
4. Add the ShowString functionality.
This section does not present the process of building a container and server application in detail; that is covered in the

"Adding Server Capabilitiesto ShowString" section of this chapter and all of Chapter 14. Rather, the focus hereis on
the consequences of building such an application.

Nesting and Recursion Issues

After an application is both a server (meaning its documents can be embedded in other applications) and a container,
it is possible to create nested documents. For example, Microsoft Word is both container and server. An Excel
spreadsheet might contain a Word document, which in turn contains a bitmap, as shown in Figure 15.14.

Within Excel, you can double-click the Word document to edit it in place, as shown in Figure 15.15, but you cannot
go on to double-click the bitmap and edit it in place, too. Y ou can edit it in awindow of its own, as shown in Figure

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (14 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc12.gif')
javascript:popUp('15uvc13.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application
15.16. Itisalimitation of ActiveX that you cannot nest in-place editing sessions indefinitely.

Active Documents

Thefinal, important recent addition to ActiveX is Active Documents, formerly known as ActiveX Document Objects.
An ordinary ActiveX server takes over the menus and interface of a container application when the document is being
edited in place but does so in cooperation with the container application. An Active Document server takes over far
more dramatically, as you will shortly see.

FIG. 15.14 This Excel spreadsheet contains a Word document that contains a bitmap.
FIG. 15.15 This Word document is being edited in place.

FIG. 15.16 This bitmap is nested within a Word document within an Excel spreadsheet, and so cannot be edited in
place. Instead, it is edited in a separate window.

What Active Documents Do

The first application to demonstrate the use of Active Documentsis the Microsoft Office Binder, shown in Figure
15.17. To the user, it appears that this application can open any Office document. In reality, the documents are opened
with their own server applications while the frame around them and the list of other documents remain intact.
Microsoft Internet Explorer (version 3.0 and later) is also an Active Document container--Figure 15.18 shows a Word
document open in Explorer. Notice the menus are mostly Word menus, but the Explorer toolbar can still be used. For
example, clicking the Back button closes this Word document and opens the document that was loaded previously.

To users, thisis a complete transition to a document-centered approach. No matter what application the user is
working with, any kind of document can be opened and edited, using the code written to work with that document but
the interface that the user has learned for his or her own application.

Making ShowString an Active Document Server

Making yet another version of ShowString, this one as an Active Document server, is pretty ssmple. Follow the
instructions from the "AppWizard's Server Boilerplate” section at the beginning of this chapter, with two exceptions:
in AppWizard's Step 3, select Active Document Server and in AppWizard's Step 4, click the Advanced button. Fix the
file type names and fill in the file extension as .SST, as shown in Figure 15.19. This helps Active Document
containers determine what application to launch when you open a ShowString file.

FIG. 15.17 The Microsoft Office Binder makes it simple to pull Office documents together.
FIG. 15.18 Microsoft Internet Explorer isalso a container for Active Documents.

FIG. 15.19 The Advanced Options dialog box of AppWizard's Step 4 is where you specify the extension for
ShowString files.

Document Extension Boilerplate Any one of the versions of ShowString built up to this point could have had a
document extension specified. AppWizard adds these lines to CShowsStringApp::Initinstance() when you specify a
document extension for an Active Document server application:

/1l Enabl e drag/drop open
m_pMai nWhd- >Dr agAccept Fil es();
/'l Enabl e DDE Execute open
Enabl eShel | Open();

Regi st er Shel | Fi | eTypes(TRUE) ;

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (15 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc14.gif')
javascript:popUp('15uvc15.gif')
javascript:popUp('15uvc16.gif')
javascript:popUp('15uvc17.gif')
javascript:popUp('15uvc18.gif')
javascript:popUp('15uvc19.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

It isthe call to RegisterShellFileTypes() that matters here, though the drag and drop is a nice touch. You're able to
drag files from your desktop or a folder onto the ShowString icon or an open copy of ShowString, and the file opens
in ShowString.

Active Document Server Boilerplate Selecting Active Document support makes remarkably little difference to the
code generated by AppWizard. In CShowStringApp::Initlnstance(), the versions of ShowString that were not Active
Document servers had this call to update the Registry:

m server. Updat eRegi st ry(QAT_I NPLACE_SERVER) ;

The Active Document version of ShowString has thisline:
m ser ver. Updat eRegi st ry(OAT_DOC_OBJECT_SERVER) ;

In both cases, m_server is a CShowStringSrvritem, but now the Active Document server version has a server item
that inherits from CDocObjectServerltem. This causes a number of little changes throughout the source and includes
filesfor CShowStringSrvritem, where base class functions are called. Similarly, the in-place frame object,
ClnPlaceFrame, now inherits from COleDocl PFrameWnd.

Showing Off the Newest ShowString Restore the ShowString functionality once again as described in the section
"Showing a String Again," earlier in this chapter. Also copy the OnDraw() code from an old version of ShowString to
CshowsStringDoc::OnDraw(). Build the application, run it once to register it, and then run Microsoft Binder (if you
have Office installed). Choose Section Add to bring up the Add Section dialog box shown in Figure 15.20. On the
General tab, highlight ShowString Document and click OK.

FI1G. 15.20 Not many applications on the market are Active Document servers, but you can write one in minutes.

The menus include ShowString's Tools menu, as before. Choose Tools, Options and change something--for example,
in Figure 15.21, the string has been changed to "Hello from the Binder" and the horizontal centering has been turned
on. You have accessto all of ShowString's functionality, although it doesn't look as though you are running
ShowString.

Now run ShowString alone and save a document by choosing File, Save. Y ou don't need to enter an extension: The
extension .SST is used automatically. Open an Explorer window and explore until you reach the file you saved. Bring
up Internet Explorer 4.0 and drag the file you saved onto Internet Explorer.

Y our ShowString document opensin Explorer, as you can seein Figure 15.22. The toolbar is clearly the Explorer
toolbar, but the menu has the Tools item, and you can change the string, centering, and color as before. If you use the
Back button on the Explorer toolbar, you reload the document you had open. If you change the ShowString document
before clicking Back, you'll even be prompted to save your changes! Microsoft plansto integrate the desktop in the
next generation of Windows with the Internet Explorer interface. What you see here is a sneak preview of how that
will work.

FIG. 15.21 All of ShowString's functionality is available from within the Binder.
FIG. 15.22 Internet Explorer appears to be able to read and write ShowString files now.

Y ou can also arrange for your applications to be Active Document containers. Perhaps you noticed the check box on
AppWizard's Step 3 where you could ask AppWizard to turn on this feature. It's not much harder to do than serving
Active Documents, so you can explore it on your own. If you would like your users to be able to open Word files,
Excel spreadsheets, or other Active Documents from within your application, be sure to look into this feature.

Eventually Windows will look very much like Internet Explorer; Active Documents will make that possible.

T Previous Chapter B> Nex Chapter

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (16 of 17) [7/29/1999 3:51:43 PM]

javascript:popUp('15uvc20.gif')
javascript:popUp('15uvc21.gif')
javascript:popUp('15uvc22.gif')

Special Edition Using Visual C++ 6 -- Ch 15 -- Building an ActiveX Server Application

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch15/ch15.htm (17 of 17) [7/29/1999 3:51:43 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

oue
Special Edition Using Visual C++ 6

(e Provious Chapter Q> Nox Chapter

_ 16 -

Building an Automation Server

o Designing ShowString Again

o AppWizard's Automation Boilerplate

0 Properties to Expose

o The OnDraw() Function

o Showing the Window

o Building a Controller Application in Visual Basic

o Type Libraries and ActiveX Internals

Designing ShowString Again

Automation, formerly called OLE Automation and then ActiveX Automation, is about writing code that other
programs can call. Other programs call your code directly, not in the insulated manner of aDLL. Thejargon is that
your code exposes methods (functions) and properties (variables) to other applications. The good part isthat if
your application is an Automation server, you don't have to create a macro language for your application; you only
have to make hooks for a more universal macro language, Visual Basic for Applications, to grab on to.

All Microsoft Office applications are Automation servers, so you may have seen for yourself what a nice feature it
Isfor a program to expose its methods and properties in thisway. What's more, Developer Studio itself isan
Automation server, easy to control with VBScript.

If you've been building the sample applications throughout this book, you can probably design ShowString in your
sleep by now, but it's time to do it once again. Thistime, ShowString won't have a Tools, Options menu; instead,
other programs will directly set the string and other display options. The member variables in the document will be
the same, and the code in OnDraw() will be the same asin all the other implementations of ShowString.

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (1 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

AppWizard's Automation Boilerplate

To build the Automation server version of ShowString, first use AppWizard to create an empty shell in adifferent
directory from your other versions of ShowString. Make almost exactly the same AppWizard choices as before:
Cdll it ShowString and then choose an M DI application and no database support. In AppWizard's Step 3, choose
No Compound Document Support (the None radio buttons at the top of the dialog box) but turn on support for
Automation. Continue through the AppWizard process, selecting a docking toolbar, status bar, printing and print
preview, context-sensitive help, and 3D controls. Finally, select source file comments and a shared DLL.

NOTE: Even though the technology is now called ActiveX, and ActiveX Automation is starting to be
known simply as Automation, the AppWizard dialog boxes refer to Compound Document Support.
Aswell, many of the classes used throughout this chapter have Ole in their names, and comments
refer to OLE. Although Microsoft has changed the name of the technology, it hasn't propagated that
change throughout Visual C++ yet. You'll have to live with these contradictions until the next release
of Visual C++.

There are just afew differencesin this application from the do-nothing application without Automation support,
primarily in the application object and the document.

CShowsStringApp The application object, CShowStringApp, has a number of changes. In the source file, just
before Initlnstance(), the code shown in Listing 16.1 has been added:

Listing 16.1 ShowString.cpp--CLSID

/1 This identifier was generated to be statistically unique for your app.
/1 You may change it if you prefer to choose a specific identifier.

/1 {61C76C05- 70EA- 11D0- 9AFF- 0080C81A397C}

static const CLSID clsid =

{ 0x61c76¢c05, Ox70ea, 0x11d0, { Ox9a, Oxff, Ox0, 0x80, 0xcS8,

Oxla, 0x39, Ox7c } };
The numbers will be different in your code. This class ID identifies your Automation application.

CShowsStringApp::Initinstance() has several changes. The lines of codein Listing 16.2 initialize the ActiveX
(OLE) libraries.

Listing 16.2 ShowString.cpp--Initializing Libraries

[/ Initialize OLE libraries
If ('AfxAelnit())

{
Af xMessageBox(1 DP_OLE | NI T_FAI LED) ;

return FALSE;
}

Aswith the server application of Chapter 15, "Building an ActiveX Server Application,” Initlnstance() goes on to
connect the document template to the COleTemplateServer after the document template isinitialized:

m server. Connect Tenpl at e(cl sid, pDocTenpl ate, FALSE);

Then InitInstance() checks whether the server is being launched as an Automation server or to edit an embedded
object. If so, there's no need to display the main window, so the function returns early, as shown in Listing 16.3.

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (2 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

Listing 16.3 ShowString.cpp--How the App Was Launched

/'l Check to see if |aunched as OLE server
I f (cmdl nfo. m bRunEnbedded || cndl nf o. m bRunAut onat ed)

{
/'l Application was run with /Enbeddi ng or /Automation. Don't show the
/1 main windowin this case.
return TRUE;

}

/1 When a server application is |launched stand-alone, it is a good idea
/[l to update the systemregistry in case it has been danaged.
m ser ver . Updat eRegi st ry(OAT_DI SPATCH OBJECT) ;

CA ebj ect Factory: : Updat eRegi stryAl |l ();

If ShowString is being run as a standalone application, the code in Listing 16.3 updates the Registry as discussed in
Chapter 15.

CShowsStringDoc The document class, CShowStringDoc, still inherits from CDocument rather than from any
OLE document class, but that's where the similarities to the old non-OLE CShowStringDoc end. The first block of
new code in ShowStringDoc.cpp is right after the message map (see Listing 16.4).

Listing 16.4 ShowStringDoc.cpp--Dispatch Map

BEG N_DI SPATCH_MAP(CShowSt ri ngDoc, CDocunent)
/1 {{ AFX_DI SPATCH_MAP(CShowst ri ngDoc)
/'l NOTE - the CassWzard will add and renove mappi ng nmacros here.
/1] DO NOT EDI T what you see in these bl ocks of generated code!
/'1}} AFX_DI SPATCH_MAP

END_DI SPATCH_MAP()

Thisisan empty dispatch map. A dispatch map islike a message map in that it maps eventsin the real world into
function calls within this C++ class. When you expose methods and properties of this document with Classwizard,
the dispatch map will be updated.

After the dispatch map is another unique identifier, the 11D (interface identifier). As Listing 16.5 shows, the lID is
added as a static member, like the CLSID.

Listing 16.5 ShowStringDoc.cpp--1ID

/1 Note: we add support for IID IShowString to support typesafe binding
/1 fromVBA. This IID nust match the GU D that is attached to the

/1l dispinterface in the .ODL file.

/1 {61C76C07- 70EA- 11D0- 9AFF- 0080C81A397C}

static const IID IID_|IShowString =

{ 0x61c76¢c07, 0Ox70ea, 0x11d0O, { Ox9a, Oxff, Ox0, 0x80,

Oxc8, Oxla, 0x39, Ox7c } };

Then the interface map looks like this:

BEG N _| NTERFACE_MAP(CShowsSt ri ngDoc, CDocunent)
| NTERFACE_PART(CShowSt ri nghoc, 11D_I ShowSt, D spatch)
END_| NTERFACE_MAP()

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (3 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

An interface map hides COM functions such as QuerylInterface() from you, the programmer, and, like a message
map, enables you to think at a more abstract level. ShowString won't have multiple entriesin the interface map, but
many applications do. ClassWizard manages entries in the interface map for you.

The document constructor has some setting up to do. The AppWizard codeisin Listing 16.6.
Listing 16.6 ShowStringDoc.cpp--Constructor

CShowst ri ngDoc: : CShowsSt ri ngDoc()

{
[/ TODO add one-tine construction code here
Enabl eAut omati on() ;
Af xA eLockApp();

}

EnableAutomation() does just what its name suggests--enables Automation for this document. AfxOlelL ockApp()
Is used to ensure that an application isn't closed while one of its documentsis still in use elsewhere. Imagine that a
user has two applications open that use ShowString objects. When the first application is closed, ShowString
shouldn't be closed because it's needed by the other application. ActiveX technology implements this by keeping a
count, within the framework, of the number of active objects. AfxOleLockApp() increases this count. If it's
nonzero when users finish using a server application, the application is hidden but not actually closed.

It shouldn't be surprising, then, to see the destructor for ShowString's document:

CShowsSt ri ngDoc: : ~CShowSt ri ngDoc()
{

}

AfxOleUnlockApp() decreases the count of active objects so that eventually ShowString can be closed.

Af xd eUnl ockApp() ;

Properties to Expose

At this point, you have an Automation server that doesn't expose any methods or properties. Also, the four member
variables of the document that have been in all the previous versions of ShowString haven't been added to this
version. These member variables are

« string--The string to be shown

« color--0for black, 1 for red, and 2 for green

« horizcenter--TRUE if the string should be centered horizontally
« Vvertcenter--TRUE if the string should be centered vertically

These variables will be added as Automation properties, so you won't type their names into the class definition for
CShowsStringDoc. Bring up ClassWizard by clicking its toolbar button or choosing View, ClassWizard. Click the
Automation tab (see Figure 16.1) to add properties and methods. Make sure that CShowStringDoc is selected in
the Class Name box.

Thefirst step in restoring the old ShowString functionality isto add member variables to the document class that
will be exposed as properties of the Automation server. There are two ways to expose properties: as a variable and
with functions. Exposing a property as avariableis like declaring a public member variable of a C++ class; other
applications can look at the value of the property and change it directly. A notification function within your server
Is called when the variable is changed from the outside. Exposing with Get and Set functionsis like implementing

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (4 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

a private member variable with public access functions. Other applications appear to access the variable directly,
but the framework arranges for a call to your functions to Get and Set the property. Y our Get may make sure that
the object isin avalid state (for example, that a sorted list is now sorted or that atotal has been calculated) before
returning the property value. Y our Set function may do error checking (validation) or may calculate other variables
that depend on the property that the outside application is changing. To make a property read-only, you add it asa
Get/Set function property and then don't implement a Set function.

FIG. 16.1 ClassWizard's Automation page handles most of the work of building an Automation server.

For the purposes of this chapter, you'll add the two centering flags to the CShowStringDoc class with Get and Set
functions and add the string and color properties as direct-access properties. To do so, follow these steps:

1. Make sure that CShowStringDoc is the selected class, and then click the Add Property button to bring up
the Add Property dialog box.

2. Type String in the External Name box. ClassWizard types along with you, filling in the Variable Name
and Notification Function boxes for you.

3. Choose CString from the drop-down list box for Type. The dialog box should resemble Figure 16.2.

4. Click OK, click Add Property again, and then add Color as a direct-access property (see Figure 16.3). Use
short as the data type.

5. Click OK, click Add Property again, and then add HorizCenter.

6. Choose BOOL for the type and then select the Get/Set Methods radio button. The Variable Name and
Notification Function boxes are replaced by Get Function and Set Function, aready filled in, as shown in
Figure 16.4. (If the type changes from BOOL, choose BOOL again.) Click OK.

7. Add VertCenter in the same way that you added HorizCenter.
FIG. 16.2 Add Sring as a direct-access property.

FIG. 16.3 Add Color as a direct-access property.
FIG. 16.4 Add HorizCenter as a Get/Set method property.

CAUTION: After you click OK to add a property, you can't change the type, external name, or other
properties of the property. Y ou have to delete it and then add one that has the new type, or external
name, or whatever. Always look over the Add Property dialog box before clicking OK.

Figure 16.5 shows the ClassWizard summary of exposed properties and methods. The details of each property are
shown in the Implementation box below the list of properties. In Figure 16.5, VertCenter is highlighted, and the

I mplementation box reminds you that VertCenter has a Get function and a Set function, showing their declarations.
Click OK to close ClassWizard.

FIG. 16.5 ClassWizard provides a summary of the properties you've added.

It should come as no surprise that as aresult of these additions, ClassWizard has changed the header and source
filesfor CShowsStringDoc. Listing 16.7 shows the new dispatch map in the header file.

Listing 16.7 ShowStringDoc.h--Dispatch Map
[{{ AFX_DI SPATCH(CShowsSt ri ngDoc)

CString mstring;
af x_msg void OnStringChanged();

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (5 of 14) [7/29/1999 3:52:08 PM]

javascript:popUp('16uvc01.gif')
javascript:popUp('16uvc02.gif')
javascript:popUp('16uvc03.gif')
javascript:popUp('16uvc04.gif')
javascript:popUp('16uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

short m col or;

af x_nmsg voi d OnCol or Changed() ;

af x_nsg BOOL Get HorizCenter();

af x_nsg voi d Set Hori zCent er (BOOL bNewval ue) ;
af x_nmsg BOCOL Get VertCenter();

af x_nmsg void SetVert Cent er (BOOL bNewval ue) ;
/1}} AFX_DI SPATCH

DECLARE_DI SPATCH_MAP()

Two new member variables have been added: m_string and m_color.

NOTE: It's natural to wonder whether these are actually public member variables; they aren't. Just
above this dispatch map isthisline:

DECLARE_MESSAGE_MAP()

That macro, when it expands, declares a number of protected variables. Because these declarations are
immediately afterward, they are protected member variables and protected functions. They're accessed
in just the same way that protected message-catching functions are--they're called by a member
function hidden in the class that directs traffic by using these maps.

A block of code has been added in the sourcefile, but it's boring, as you can see by looking at Listing 16.8.

Listing 16.8 ShowStringDoc.cpp--Notification, Get, and Set Functions

FEETTEEEEE i r i rr i irirririnr
/1 CShowsSt ri ngDoc commands

voi d

CShowSt ri ngDoc: : OnCol or Changed()

[/ TODO Add notification handler code
CShowSt ri ngDoc: : OnSt ri ngChanged()

[/ TODO Add notification handler code
CShowsSt ri ngDoc: : Get Hori zCenter ()

/[l TODO Add your property handl er here
return TRUE;

CShowSt ri ngDoc: : Set Hori zCent er (BOOL bNewval ue)
/1l TODO Add your property handl er here
CShowSt ri ngDoc: : Get Vert Center ()

/1l TODO Add your property handl er here
return TRUE;

CShowSt ri ngDoc: : Set Vert Cent er (BOOL bNewval ue)

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (6 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server
/1l TODO Add your property handl er here

The class still doesn't have member variables for the centering flags. (Y ou might have decided to implement these
in some other way than as two simple variables, so ClassWizard doesn't even try to guess what to add.) Add them
by hand to the header file, ShowStringDoc.h, as private member variables:
/1l Attributes
privat e:

BOOL m hori zcenter;

BOOL m vertcenter;

Now you can write their Get and Set functions; Listing 16.9 shows the code.

Listing 16.9 ShowStringDoc.cpp--Get and Set Functions for the Centering
Flags

BOOL CShowSt ri ngDoc: : Get Hori zCent er ()

{ return mhorizcenter;

zloi d CShowStri ngDoc: : Set Hori zCent er (BOOL bNewval ue)
{ m hori zcenter = bNewval ue;

fBCIJ_ CShowst ri ngDoc: : Get Vert Center ()

{ return myvertcenter;

zloi d CShowsStringDoc: : Set Vert Cent er (BOOL bNewval ue)
{ m vertcenter = bNewval ue;

}

The OnDraw() Function

Restoring the member variables takes you halfway to the old functionality of ShowString. Changing the view's
OnDraw() function will take you most of the rest of the way.

To write aversion of OnDraw() that shows a string properly, you have afair amount of background work to do.
Luckily, you can open an old version of ShowString from your own work in Chapter 8, "Building a Complete
Application: ShowString," and paste in the following bits of code. (If any of this code is unfamiliar to you, Chapter
8 explainsit fully.) First, CShowStringDoc::OnNewDocument() in Listing 16.10 should initialize the member
variables.

Listing 16.10 ShowStringDoc.cpp--CShowStringDoc::OnNewDocument()

BOOL CShowSt ri ngDoc: : OnNewDocunent ()

{
i f (!CDocunent:: OnNewDocunent ())

return FALSE;
mstring = "Hello, world!";

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (7 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

m col or = O; /1 bl ack
m _hori zcenter = TRUE;

m vertcenter = TRUE;
return TRUE;

}
Next, edit the document's Serialize function. Listing 16.11 shows the new code.

Listing 16.11 ShowStringDoc.cpp--CShowStringDoc::Serialize()

voi d CShowsStringDoc: : Seri alize(CArchive& ar)

if (ar.l1sStoring())
ar << m.string;
ar << m.col or;
ar << m horizcenter;
ar << myvertcenter;
el se
ar >> mstring;
ar >> mcol or;
ar >> m horizcenter;
ar >> myvertcenter;

Finally, the view's OnDraw() function in Listing 16.12 actually shows the string.
Listing 16.12 ShowStringView.cpp--CShowStringView::OnDraw()

voi d CShowSt ri ngVi ew. : OnDr aw(CDC* pDC)
{
CShowSt ri ngDoc* pDoc = Get Docunent () ;
ASSERT_VALI D(pDoc) ;
COLORREF ol dcol or;
switch (pDoc->Cet Color())

{

case O:
ol dcol or = pDGC- >Set Text Col or (RGB(0,0,0)); //black
br eak;

case 1:
ol dcol or = pDC->Set Text Col or (R&(0xFF, 0,0)); //red
br eak;

case 2:
ol dcol or = pDC- >Set Text Col or (RGB(0, OxFF, 0)); //green
br eak;

}

int DTflags = O;

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (8 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

i f (pDoc->Cet Hori zcenter())

{ DTfl ags | = DT_CENTER;

;ff (pDoc->Cet Vertcenter())

{ DTfl ags | = (DT_VCENTER| DT_SI NGLELI NE) ;
%:Rect rect;

Get Cl i ent Rect (&rect);
pDC- >Dr awText (pDoc->Get String(), & ect, DTflags);
pDC- >Set Text Col or (ol dcol or) ;

}

When you added m_string, m_color, m_horizcenter, and m_vertcenter to the document with ClassWizard, they
were added as protected member variables. This view code needs access to them. Asyou can see, the view calls
public functions to get to these member variables of the document.

NOTE: You could have chosen instead to make the view afriend to the document so that it could
access the member variables directly, but that would give view functions the capability to use and
change all private and protected member variables of the document. This more limited accessis more
appropriate and better preserves encapsulation. Encapsulation and other object-oriented concepts are
discussed in Appendix A, " C++ Review and Object-Oriented Concepts.”

Severa functions already in the document class access these variables, but they're protected functions for use by
ActiveX. The four public functions you'll add won't be able to use those names, because they're taken, and will
have to have not-so-good names. Add them inline, as shown in Listing 16.13, to ShowStringDoc.h.

Listing 16.13 ShowStringDoc.h--Public Access Functions

publ i c:
CString GetDocString() {return mstring;}
i nt Get DocCol or () {return mcolor;}
BOOL GetHorizcenter() {return m_horizcenter;}

BOOL GetVertcenter() {return mvertcenter;}

In CShowStringView::OnDraw(), change the code that calls GetColor() to call GetDocColor() and then change the
code that calls GetString() to call GetDocString(). Build the project to check for any typing mistakes or forgotten
changes. Although it may be tempting to run ShowString now, it won't do what you expect until you make a few
more changes.

Showing the Window

By default, Automation servers don't have a main window. Remember the little snippet from
CShowStringApp::Initinstance() in Listing 16.14.

Listing 16.14 ShowString.cpp--How the App Was Launched
/] Check to see if |aunched as OLE server

I f (cmdl nfo. m bRunEnbedded || cndl nf o. m bRunAut onat ed)

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (9 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

{
/'l Application was run with /Enbeddi ng or /Automation. Don't show the
/1 main window in this case.
return TRUE;

}

This code returns before showing the main window. Although you could remove this test so that ShowString
aways shows its window, it's more common to add a ShowWindow() method for the controller application to call.
You'll also need to add a RefreshWindow() method that updates the view after avariable is changed; ClassWizard
makes it simple to add these functions. Bring up ClassWizard, click the Automation tab, make sure that
CShowsStringDoc is still the selected class, and then click Add Method. Fill in the External name as
ShowWindow. ClassWizard fillsin the internal name for you, and there's no need to change it. Choose void from
the Return Type drop-down list box. Figure 16.6 shows the dialog box after it'sfilled in.

FIG. 16.6 ClassWizard makes it simple to add a ShowWindow() method.

Click OK the dialog box, and ShowWindow() appears in the middle of the list of properties, which turns out to be
alist of properties and methods in alphabetical order. The C next to the properties reminds you that these
properties are custom properties. The M next to the methods reminds you that these are methods. With
ShowWindow() highlighted, click Edit Code and then type the function, as shown in Listing 16.15.

See "Displaying the Current Value," ch. 17

Listing 16.15 ShowStringDoc.cpp--CShowStringDoc::ShowWindow()
voi d CShowsSt ri ngDoc: : Showw ndow()

{
POSI TI ON pos = Cet FirstViewPosition();
CVi ew pView = Get Next Vi em pos);
if (pView != NULL)
{
CFrameWhd* pFranmeWid = pVi ew >Cet Par ent Frane() ;
pFrameWhd- >Act i vat eFr ame(SW SHOW ;
pFrameWhd = pFranmeWhd- >Get Par ent Frane() ;
I f (pFrameWihd ! = NULL)
pFrameWhd- >Act i vat eFr ame(SW SHOW ;
}
}

This code activates the view and asksfor it to be shown. Bring up ClassWizard again, click Add Method, and add
RefreshWindow(), returning void. Click OK and then Edit Code. The code for RefreshwWindow(), shown in Listing
16.16, iseven simpler.

Listing 16.16 ShowStringDoc.cpp--CShowStringDoc::RefreshWindow()

voi d CShowsSt ri ngDoc: : Ref reshW ndow()

{
Updat eAl | Vi ews(NULL) ;

Set Modi fi edFl ag() ;

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (10 of 14) [7/29/1999 3:52:08 PM]

javascript:popUp('16uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

Thisarranges for the view (now that it's active) and its parent frame to be redrawn. Because a change to the
document is amost certainly the reason for the redraw, thisis a handy place to put the call to SetM odifiedFlag();
however, if you prefer, you can put it in each Set function and the notification functions for the direct-access
properties. You'll add a call to RefreshWindow() to each of those functions now--for example, SetHorizCenter():

voi d CShowSt ri ngDoc: : Set Hori zCent er (BOOL bNewVal ue)
{

m _hori zcenter = bNewval ue;
Ref reshW ndow() ;

}

And OnColorChanged() looks like this:

voi d CShowSt ri ngDoc: : OnCol or Changed()
{

}

Add the same RefreshWindow() call to SetVertCenter() and OnStringChanged(). Now you're ready to build and
test. Build the project and correct any typing errors. Run ShowString as a standal one application to register it and
to test your drawing code. Y ou can't change the string, color, or centering as you could with older versions of
ShowString because this version doesn't implement the Tools, Options menu item and its dialog box. The
controller application will do that for this version.

Ref r eshW ndow() ;

Building a Controller Application in Visual Basic

This chapter has mentioned a controller application several times, and you may have wondered where it will come
from. You'll put it together in Visual Basic. Figure 16.7 shows the Visual Basic interface.

FIG. 16.7 Visual Basic makes Automation controller applications very quickly.

TIP: If you don't have Visual Basic but Visual C++ version 4.x or earlier, you can use DispTest, a
watered-down version of Visual Basic that once came with Visual C++. It was never added to the
Start menu, but you can run DISPTEST.EXE from the C:\MSDEV\BIN folder or from your old
Visual C++ CD-ROM's\MSDEV\BIN folder. If you've written VBA macrosin Excel and have a copy
of Excel, you can use that, too. For testing OLE Automation servers, it doesn't matter which you
choose.

To build a controller application for the ShowString Automation server, start by running Visual Basic. Create and
empty project by choosing File, New, and double-clicking Standard EXE. In the window at the upper-right labeled
Projectl, click the View Code button. Choose Form from the left drop-down list box in the new window that
appears, the Form_Load() subroutine is displayed. Enter the code in Listing 16.17 into that subroutine.

Listing 16.17 Forml.frm--Visual Basic Code

Private Sub Form Load ()
Set ShowTest = CreateObject("ShowsString. Docunent™)
ShowTest . ShowW ndow
ShowTest . Hori zCenter = Fal se
ShowTest . Col or =
ShowTest. String = "Hello from VB"

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (11 of 14) [7/29/1999 3:52:08 PM]

javascript:popUp('16uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

Set ShowTest = Not hi ng
End Sub

Choose (General) from the left drop-down list box and then enter this line of code:
Di m ShowTest As (bj ect

For those of you who don't read Visual Basic, this code will be easier to understand if you execute it oneline at a
time. Choose Debug, Step Into to execute the first line of code. Then repeatedly press F8 to move through the
routine. (Wait after each press until the cursor is back to normal.) Theline in the general code sets up an object
called ShowTest. When the form is loaded (which is whenever you run this little program), an instance of the
ShowString object is created. The next line calls the ShowWindow method to display the main window onscreen.
Whenever the debugger pauses, the line of code that will run next is highlighted in yellow. Also notice that thereis
an arrow beside the highlighted line to further mark it. Y ou will see something like Figure 16.8 with the default
ShowsString behavior.

FI G. 16.8 The ShowWindow method displays the main ShowString window.

Press F8 again to run the line that turns off horizontal centering. Notice that you don't call the function
SetHorizCenter. Y ou exposed HorizCenter as a property of the OLE Automation server, and from Visual Basic
you access it as a property. The difference is that the C++ framework code calls SetHorizCenter to make the
change, rather than just make the change and then call a notification function to tell you that it was changed. After
this line executes, your screen will resemble Figure 16.9 because the SetHorizCenter method calls
RefreshWindow() to immediately redraw the screen.

FIG. 16.9 The Visual Basic program has turned off centering.

As you continue through this program, pressing F8 to move a step at a time, the string will turn red and then
change to Hello from VB. Notice that the change to these directly exposed properties looks no different than the
change to the Get/Set method property, HorizCenter. When the program finishes, the window goes away. You've
successfully controlled your Automation server from Visual Basic.

Type Libraries and ActiveX Internals

Many programmers are intimidated by ActiveX, and the last thing they want is to know what's happening under
the hood. There's nothing wrong with that attitude at al. It's quite object-oriented, really, to trust the already
written ActiveX framework to handle the black magic of translating ShowTest.HorizCenter = Falseinto acall to
CShowsStringDoc:: SetHorizCenter(). If you want to know how that "magic" happens or what to do if it doesn't, you
need to add one more piece to the puzzle. Y ou've aready seen the dispatch map for ShowString, but you haven't
seen the type library. It's not meant for humansto read, but it isfor ActiveX and the Registry. It's generated for
you as part of anormal build from your Object Definition Language (ODL) file. Thisfile was generated by
AppWizard and is maintained by ClassWizard.

Perhaps you've noticed, as you built this application, anew entry in the ClassView pane. Figure 16.10 shows this
entry expanded--it contains all the properties and methods exposed in the | ShowString interface of your
Automation server. If you right-click 1ShowString in thislist, you can use the shortcut menu to add methods or
properties. If you double-click any properties or methods, the .ODL file is opened for you to view. Listing 16.18
shows ShowString.odl.

FIG. 16.10 Automation servers have an entry in the ClassView for each of their interfaces.

Listing 16.18 ShowString.odl--ShowString Type Library

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (12 of 14) [7/29/1999 3:52:08 PM]

javascript:popUp('16uvc08.gif')
javascript:popUp('16uvc09.gif')
javascript:popUp('16uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

/1l ShowString.odl : type library source for ShowString. exe

[l This file will be processed by the M DL conpiler to produce the
[l type library (ShowString.tlDb).

[uui d(61C76C06- 70EA- 11D0- 9AFF- 0080C81A397C), version(1.0)]
library ShowString

{
inmportlib("stdole32.t1b");
/1 Primary dispatch interface for CShowStringDoc
[uuid(61C76C07- 70EA- 11D0- 9AFF- 0080C81A397C) |
di spi nterface | ShowStri ng
{
properties:
/'l NOTE - ClassWzard will maintain property information here.
/1 Use extrene caution when editing this section.
[{{ AFX_ODL_PROP(CShowSt ri ngDoc)
[1d(1)] BSTR String;
[id(2)] short Col or;
[1d(3)] bool ean Hori zCenter;
[1d(4)] bool ean VertCenter;
/1}}AFX_ODL_PROP
nmet hods:
/1 NOTE - ClassWzard will maintain nethod information here.
/1 Use extrene caution when editing this section.
[{{ AFX_ODL_METHOD(CShowSt r i ngDoc)
[1d(5)] void Showw ndow) ;
[1d(6)] void RefreshWndow);
/1}}AFX_ODL_METHOD
1
/1 dass information for CShowStringDoc
[uui d(61C76C05- 70EA- 11D0- 9AFF- 0080C81A397C) |
cocl ass Docunent
{
[defaul t] dispinterface | ShowStri ng;
¥
/1 {{ AFX_APPEND_ODL}}
/1}}AFX_APPEND ODL}}
b

This explains why Visual Basic just thought of all four properties as properties; that's how they're listed in this
.ODL file. The two methods are here, too, in the methods section. Y ou passed " ShowString.Document” to
CreateObject() because there is a coclass Document section here. It pointsto a dispatch interface (dispinterface)
called I ShowString. Here's the interface map from ShowStringDoc.cpp:

BEG N_| NTERFACE_MAP(CShowsSt ri ngDoc, CDocunent)
| NTERFACE_PART(CShowsSt ri ngDoc, |1 D_|I ShowString, Dispatch)
END_| NTERFACE_MAP()

A call to CreateObject(" ShowString.Document™) leads to the coclass section of the .ODL file, which pointsto
| ShowString. The interface map points from | ShowString to CShowStringDoc, which has a dispatch map that
connects the properties and methods in the outside world to C++ code. Y ou can see that editing any of these
sections by hand could have disastrous results. Trust the wizardsto do this for you.

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (13 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 16 -- Building an Automation Server

In this chapter, you built an Automation server and controlled it from Visual Basic. Automation servers are far
more powerful than older ways of application interaction, but your server doesn't have any user interaction. If the
Visual Basic program wanted to enable users to choose the color, that would have to be built into the Visual Basic
program. The next logical step isto alow the little embedded object to react to user events such as clicks and drags
and to report to the controller program what has happened. That's what ActiveX controls do, as you'll seein the
next chapter.

(4 Previous Chapter JM.—* Mext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch16/ch16.htm (14 of 14) [7/29/1999 3:52:08 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

oue
Special Edition Using Visual C++ 6

(4= Previous Chapter J0.-» Next Chapter

17 -
Building an ActiveX Control

« Creating a Ralling-Die Control
o Building the Control Shell
0 AppWizard's Code
o Designing the Control

« Displaying the Current Value

o Adding a Property

o Writing the Drawing Code

¢ Reacting to a Mouse Click and Rolling the Die

o Notifying the Container

o Rolling the Die

o Creating aBetter User Interface

o A Bitmap Icon

o Displaying Dots

o Generating Property Sheets

o Digits Versus Dots
o User-Selected Colors
« Rolling on Demand

o Future Improvements
o Enable and Disable Rolling
o Dice with Unusual Numbers of Sides

o Arrays of Dice

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (1 of 23) [7/29/1999 3:52:47 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Creating a Rolling-Die Control

ActiveX controls replace OLE controls, though the change affects the name more than anything else. (Much of the
Microsoft documentation still refersto OLE controls.) The exciting behavior of these controls is powered by COM
(the Component Object Model), which also powers OLE. This chapter draws, in part, on the work of the previous
chapters. An ActiveX control is similar to an Automation server, but an ActiveX control also exposes events, and
those enable the control to direct the container's behavior.

ActiveX controls take the place that VBX controls held in 16-bit Windows programming, enabling programmersto
extend the control set provided by the compiler. The original purpose of VBX controls was to enable programmers
to provide their users with unusual interface controls. Controls that look like gas gauges or volume knobs became
easy to develop. Almost immediately, however, VBX programmers moved beyond simple controls to modul es that
involved significant amounts of calculation and processing. In the same way, many ActiveX controls are far more
than just controls--they are components that can be used to build powerful applications quickly and easily.

The sample application for this chapter isadie, one of apair of dice. Imagine a picture of acubic die with the
familiar pattern of dots indicating the current value, between 1 and 6. When the user clicks the picture, a new,
randomly chosen number is shown. Y ou might use one or more dice in any game program.

Building the Control Shell

The process of building this die control starts, as always, with AppWizard. Begin Developer Studio and then choose
File, New. Click the Projects tab and then click MFC ActiveX ControlWizard, whichisin thelist at the |eft of the
dialog box; fill in aproject name at the top, choose an appropriate folder for the project files, and click OK. Figure
17.1 shows the completed dialog box, with the project name Dierall.

FIG. 17.1 AppWizard makes creating an ActiveX control simple.

NOTE: Even though the technology is now called ActiveX, many classnames used throughout this
chapter have Ole in their names, and comments refer to OLE. Though Microsoft has changed the
technology's name, it has not yet propagated that change throughout Visual C++. You will haveto live
with these contradictions until the next release of Visual C++.

There are two steps in the ActiveX control wizard. Fill out the first dialog box as shown in Figure 17.2: Y ou want
one control, no runtime licensing, source-file comments, and no Help files. After you have completed the dialog
box, click Next.

FIG. 17.2 AppWizard's first step sets your control's basic parameters.

Runtime Licensing

Many devel opers produce controls as a salable product. Other programmers buy the rights to use such
controlsin their programs. Imagine that a developer, Alice, produces a fantastic die control and sellsit
to Bob, who incorporates it into the best backgammon game ever. Carol buys the backgammon game
and loves the die control, and she decides that it would be perfect for a children's board game sheis
planning. Because the DIEROLL.OCX fileisin the backgammon package, there is nothing (other than
ethics) to stop her from doing this.

Runtime licensing issimple: Thereis asecond file, DIEROLL.LIC, that contains the licensing
information. Without that file, a control can't be embedded into aform or program, though a program
into which the control is already embedded will work perfectly. Alice ships both DIEROLL.OCX and

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (2 of 23) [7/29/1999 3:52:47 PM]

javascript:popUp('17uvc01.gif')
javascript:popUp('17uvc02.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

DIEROLL.LIC to Bob, but their licensing agreement states that only DIEROLL.OCX goes out with the
backgammon game. Now Carol can admire DIEROLL.OCX, and it will work perfectly in the
backgammon game, but if she wants to include it in the game she builds, she'll have to buy alicense
from Alice.

Y ou arrange for runtime licensing with AppWizard when you first build the control. If you decide, after
the control is already built, that you should have asked for runtime licensing after al, build a new
control with licensing and copy your changes into that control.

The second and final AppWizard step enables you to set the new control's features. Make sure that Activates When
Visible, Availablein "Insert Object” Dialog, and Has an "About Box" are selected, as shown in Figure 17.3, and
then click Finish. AppWizard summarizes your settings in afinal dialog box. Click OK, and AppWizard creates 19
files for you and adds them to a project to make them easy to work with. These files are ready to compile, but they
don't do anything at the moment. Y ou have an empty shell; it's up to you to fill it.

FIG. 17.3 AppWizard's second step governs your control's appearance and behavior.

AppWizard's Code

Nineteen files sound like alot, but they aren't. There are only three classes: CDieroll App, CDierol|Ctrl, and
CDierollPropPage. They take up six files; the other 13 are the project file, make file, resource file, ClassWizard
database, ODL file, and so on.

CDierollApp CDierollAppisavery small class. It inherits from COleControlModule and provides overrides of
Initinstance() and Exitlnstance() that do nothing but call the base-class versions of these functions. Thisis where
you find _tlid, the external globally unique ID for your control, and some version numbers that make delivering
upgrades of your control simpler. The linesin Dieroll.cpp that set up these identifiers are the following:

const GUID CDECL BASED CODE tlid =
{ 0x914b21a5, 0x7946, 0x11d0, { Ox9b, 0Ox1, 0, 0x80,
Oxc8, Oxla, 0x39, O0x7c } };

const WORD w\ er Maj or = 1,

const WORD werM nor = O;

CDierolICtrl The CDierollCtrl class inherits from COleControl, and it has a constructor and destructor, plus
overrides for these four functions:

o OnDraw() draws the control.
« DoPropExchange() implements persistence and initialization.
« OnResetState() causes the control to be reinitialized.
« AboutBox() displays the About box for the control.
None of the code for these functions is particularly interesting. However, some of the maps that have been added to

this class are of interest. There is an empty message map, ready to accept new entries, and an empty dispatch map,
ready for the properties and methods that you choose to expose.

TIP: Message maps are explained in the "Message Maps" section of Chapter 3, "Messages and
Commands." Dispatch maps are discussed in the "AppWizard's Automation Boilerplate” sectionin
Chapter 16, "Building an Automation Server."

Below the empty message and dispatch maps comes a new map: the event map. Listing 17.1 shows the event map in
the header file, and the source file event map is shown in Listing 17.2.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (3 of 23) [7/29/1999 3:52:47 PM]

javascript:popUp('17uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Listing 17.1 Excerpt from DierollCtl.h--Event Map

/'l Event maps
[{{AFX_EVENT(CDi eroll Ctrl)
/'l NOTE - CassWzard will add and renove nenber functions here.
/1 DO NOT EDI T what you see in these bl ocks of generated code !
/1}} AFX_EVENT

DECLARE_EVENT_MAP()
Listing 17.2 Excerpt from DierollCtl.cpp--Event Map

BEG N EVENT _MAP(CDi erol I Ctrl, CA eControl)
I {{AFX_EVENT _MAP(CDi eroll Ctrl)
/'l NOTE - ClassWzard will add and renove event map entries
/1 DO NOT EDI T what you see in these bl ocks of generated code !
/ 1} } AFX_EVENT _NVAP

END_EVENT_MAP()

Event maps, like message maps and dispatch maps, link real-world happenings to your code. Message maps catch
things the user does, such as choosing a menu item or clicking a button. They also catch messages sent from one part
of an application to another. Dispatch maps direct requests to access properties or invoke methods of an Automation
server or ActiveX control. Event maps direct notifications from an ActiveX control to the application that contains
the control (and are discussed in more detail later in this chapter).

There's one more piece of code worth noting in Dierol| Ctl.cpp. It appearsin Listing 17.3.
Listing 17.3 Excerpt from DierollCtl.cpp--Property Pages

FHOEEEEErr bbb rrririrrrr
/'l Property pages
/[l TODO Add nore property pages as needed. Renenber to increase the count!
BEG N_PROPPACEI DS(CDhi erol I Ctrl, 1)

PROPPAGEI D(CDi er ol | PropPage: : gui d)
END_PROPPACEI DS(CDi erol I Ctrl)

Thecodein Listing 17.3 is part of the mechanism that implements powerful and intuitive property pagesin your
controls. That mechanism is discussed later in this chapter.

CDierollPropPage The entire CDierollPropPage classis the domain of ClassWizard. Like any class with adiaog
box in it, it has significant data exchange components. The constructor will initialize the dialog box fields using
code added by ClassWizard. Listing 17.4 shows this code.

Listing 17.4 DierollPpg.cpp--CDierollPropPage::CDierollPropPage()

CDi erol | PropPage: : CDi erol | PropPage()
CA ePropertyPage(|I DD, |1 DS DI EROLL_PPG CAPTI ON)

{
I 1 {{ AFX_DATA I NI T(CDi er ol | PropPage)
/1 NOTE: CdassWzard will add nenber initialization here
/1 DO NOT EDI T what you see in these bl ocks of generated code !
[1}}ARFX DATA INIT
}

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (4 of 23) [7/29/1999 3:52:47 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

The DoDataExchange() function moderates the data exchange between CDierol| PropPage, which represents the
dialog box that is the property page, and the actual boxes on the user's screen. It, too, will have code added by
ClassWizard--Listing 17.5 shows the empty map AppWizard made.

Listing 17.5 DierollPpg.cpp--CDierollPropPage::DoDataExchange()

voi d CDi erol | PropPage: : DoDat aExchange(CDat aExchange* pDX)

{
I 1 {{ AFX_DATA MAP(CDi er ol | PropPage)
/1 NOTE: C assWzard wll add DDP, DDX, and DDV calls here
/1 DO NOT EDI T what you see in these bl ocks of generated code !
/1}} AFX_DATA NAP
DDP_Post Pr ocessi ng(pDX) ;
}

Thereis, not surprisingly, a message map for CDierollPropPage, and some registration code (shown in Listing 17.6),
that enables the ActiveX framework to call this code when a user edits the control's properties.

Listing 17.6 DierollPpg.cpp--CDierollPropPageFactory::UpdateRegistry()

FEELEEErrr b rr i rrrrrrrr
/1l Initialize class factory and guid
| MPLEMENT _OLECREATE_EX(CDi er ol | PropPage, "DI EROLL. Di erol | PropPage. 1",
0x914b21a8, 0x7946, 0x11d0, Ox9b, Ox1, 0, 0x80, 0xc8, Oxla, 0x39, 0x7c)
FHCEEEEErr i rrriririrr
/'l CDierol | PropPage: : CDi erol | PropPageFact ory: : Updat eRegi stry -
/'l Adds or renpves systemregistry entries for CDieroll PropPage
BOOL CDi erol | PropPage: : CDi erol | PropPageFact ory: : Updat eRegi st ry(BOOL bRegi st er)
{
I f (bRegister)
return Af xO eRegi st er PropertyPageC ass(Af xCGet | nst anceHandl e(),
m cl sid, 1 DS DI EROLL_PPG ;
el se
return Af xd eUnregisterC ass(mclsid, NULL);

}
Designing the Control

Typicaly, acontrol has internal data (properties) and shows them in some way to the user. The user provides input
to the control to change its internal data and perhaps the way the control looks. Some controls present data to the
user from other sources, such as databases or remote files. The only internal data that makes sense for the die-roll
control, other than some appearance settings that are covered later, isa single integer between 1 and 6 that represents
the current number showing in the die. Eventually, the control will show a dot pattern like areal-world die, but the
first implementation of OnDraw() will ssmply display the digit. Another simplification is to hard-code the digit to a
single value while coding the basic structure; add the code to roll the die later, while dealing with input from the
user.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (5 of 23) [7/29/1999 3:52:47 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Displaying the Current Value

Before the value can be displayed, the control must have a value. That involves adding a property to the control and
then writing the drawing code.

Adding a Property

ActiveX controls have four types of properties:

Sock. These are standard properties supplied to every control, such as font or color. The developer must
activate stock properties, but thereislittle or no coding involved.

Ambient. These are properties of the environment that surrounds the control--properties of the container into
which it has been placed. These can't be changed, but the control can use them to adjust its own properties.
For example, it can set the control's background color to match the container's background color.

Extended. These are properties that the container handles, usually involving size and placement onscreen.
Custom. These are properties added by the control developer.

To add the value to the die-roll control, use ClassWizard to add a custom property called Number. Follow these

steps:

1. Choose View, ClassWizard, and then click the Automation tab.

2. Make sure that the Project drop-down list box at the upper-left of the dialog box is set to Dieroll (unless
you chose a different name when building the control with AppWizard) and that the Class Name drop-down
list box on the right has the classname CDieRollCtrl.

3. Click the Add Property button and fill in the dialog box as shown in Figure 17.4.

4. Type Number into the External Name combo box and notice how ClassWizard fillsin suggested values for
the VVariable Name and Notification Function boxes.

5. Select short for the type.
6. Click OK to close the Add Property dialog box and OK to close ClassWizard.

FIG. 17.4 ClassWizard simplifies the process of adding a custom property to your die-rolling control.

Before you can write code to display the value of the Number property, the property must have a value to display.
Control properties areinitialized in DoPropExchange(). This method actually implements persistence; that is, it
enables the control to be saved as part of a document and read back in when the document is opened. Whenever a
new control is created, the properties can't be read from afile, so they are set to the default values provided in this
method. Controls don't have a Serialize() method.

AppWizard generated a skeleton DoPropExchange() method; this codeisin Listing 17.7.

Listing 17.7 DierollCtl.cpp--CDierollCtrl::DoPropExchange()

void CDieroll Crl::DoPropExchange(CPropExchange* pPX)

{

}

ExchangeVer si on(pPX, MAKELONG _wMer M nor, _wMer Maj or));
Cd eControl : : DoPropExchange(pPX) ;
/[l TODO Call PX_ functions for each persistent custom property.

Notice the use of the version numbers to ensure that afile holding the values was saved by the same version of the
control. Take away the TODO comment that AppWizard left for you, and add this line:

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (6 of 23) [7/29/1999 3:52:47 PM]

javascript:popUp('17uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control
PX_Short (pPX, "Nunber", mnunber, (short)3);

PX_Short() is one of many property-exchange functions that you can call--one for each property typethat is
supported. The parameters you supply are as follows:

« The pointer that was passed to DoPropExchange()

« Theexterna name of the property as you typed it on the ClassWizard Add Property dialog box

« The member variable name of the property as you typed it on the ClassWizard Add Property dialog box
« Thedefault value for the property (later, you can replace this hard-coded 3 with arandom value)

The following are the PX functions:

PX_Blob() (for binary large object [BLOB] types)
PX_Bool()

PX_Color() (OLE_COLOR)

PX_Currency()

PX_DATAPATH (CDataPathProperty)
PX_Double()

PX_Float()

PX_Font()

PX_IUnknown() (for LPUNKNOWN types, COM interface pointer)
PX_Long()

PX_Picture()

PX_Short()

PX_String()

PX_ULong()

PX_UShort()

PX_VBXFontConvert()

Filling in the property's default value is simple for some properties but not for others. For example, you set colors
with the RGB() macro, which takes values for red, green, and blue from 0 to 255 and returns a COLORREF. Say
that you had a property with the external name EdgeColor and the internal name m_edgecolor and you wanted the
property to default to gray. Y ou would code that like the following:

PX _Short (pPX, "EdgeColor", m edgecol or, RGB(128,128,128));

Controls with font properties should, by default, set the font to whatever the container is using. To get thisfont, call
the COleControl method AmbientFont().

Writing the Drawing Code
The code to display the number belongs in the OnDraw() method of the control class, CDierollCtrl. (Controls don't

have documents or views.) This function is called automatically whenever Windows needs to repaint the part of the
screen that includes the control. AppWizard generated a skeleton of this method, too, shown in Listing 17.8.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (7 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Listing 17.8 DierollCtl.cpp--CDierollCtrl::OnDraw()

void CDieroll Crl::OnDraw CDC* pdc, const CRect & rcBounds,
const CRect & rclnvalid)

{
/'l TODO Replace the follow ng code with your own draw ng code.
pdc->Fi | | Rect (r cBounds,
CBr ush: : Fr omHandl e((HBRUSH) Get St ockObj ect (WHI TE_BRUSH))) ;
pdc->El | i pse(rcBounds);
}

Asdiscussed in the " Scrolling Windows" section of Chapter 5, "Drawing on the Screen," the framework passes the
function a device context to draw in, a CRect describing the space occupied by your control, and another CRect
describing the space that has been invalidated. The code in Listing 17.8 draws a white rectangl e throughout
rcBounds and then draws an ellipse inside that rectangle, using the default foreground color. Y ou can keep the white
rectangle for now, but rather than draw an ellipse on it, draw a character that corresponds to the value in Number. To
do that, replace the last line in the skeletal OnDraw() with these lines:

CString val; //character representation of the short val ue
val . Format ("% ", m nunber) ;
pdc- >Ext Text Qut (0, 0, ETO OPAQUE, rcBounds, val, NULL);

These code lines convert the short value in m_number (which you associated with the Number property on the Add
Property dialog box) to a CString variable called val, using the new CString::Format() function (which eliminates
one of the last uses of sprintf() in C++ programming). The ExtTextOut() function draws a piece of text--the
character in val--within the rcBounds rectangle. Asthe die-roll control is written now, that number will always be 3.

Y ou can build and test the control right now if you would like to see how little effort it takes to make a control that
does something. Unlike the other ActiveX applications, a control isn't run as a standalone application in order to
register it. Build the project and fix any typing mistakes. Choose Tools, ActiveX Control Test Container to bring up
the control test container, shown in Figure 17.5.

FIG. 17.5 The ActiveX control test container isthe ideal place to test your control.

NOTE: If the Tools menu in Developer Studio doesn't include an ActiveX Control Test Container
item, you can add it to the menu by following these steps:

1. Choose Tools, Customize.

2. Click the Tools tab.

3. Look at thelist of tools and make sure that ActiveX Control Test Container isn't there.
4. Go to the bottom of the list and double-click the empty entry.

5. Type Activ& eX Control Test Container in the entry and press Enter.

6. Click the ... button to the right of the Command box and browse to your Visual C++ CD, or to the
hard drive on which you installed Visual C++, and to the BIN folder beneath the Developer Studio
folder. Highlight tstcon32.exe and click OK to finish browsing. On many systems the full path will be
C:\Program Files\Microsoft Visua Studio\Common\Tools\TSTCON32.EXE. Y our system may be
different.

7. Click the rightward-pointing arrow beside the Initial Directory box and choose Target Directory from

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (8 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc05.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control
the list that appears.

8. Make sure that the three check boxes across the bottom of the directory are not selected.

9. Click the Close button.

If you haven't built arelease version and your target is arelease version, or if you have not built a
debug version and your target is a debug version, you will receive an error message when you choose
Tools, ActiveX Control Test Container. Simply build the control and you will be able to choose the
menu item.

After you have installed the test container under the tools menu, you will not need to do so again. By
bringing up the test container from within Developer Studio like this, you make it ssmpler to load your
die-roll control into the test container.

Within the test container, choose Edit, Insert New Control and then choose Dieroll Control from the displayed list.
As Figure 17.6 shows, the control appears as awhite rectangle displaying a small number 3. Y ou can move and
resize this control within the container, but that little 3 stays doggedly in the upper-left corner. The next step isto
make that number change when a user clicks the die.

Reacting to a Mouse Click and Rolling the Die

There are actually two things that you want your control to do when the user clicks the mouse on the control: to
inform the container that the control has been clicked and to roll the die and display the new internal value.

FIG. 17.6 By adding one property and changing two functions, you have transformed the empty shell into a control
that displaysa 3.

Notifying the Container

Let'sfirst tackle using an event to notify a container. Events are how controls notify the container of a user action.
Just as there are stock properties, there are stock events. These events are already coded for you:

« Click iscoded to indicate to the container that the user clicked.

« DbIClick is coded to indicate to the container that the user double-clicked.

« Error iscoded to indicate an error that can't be handled by firing any other event.

« KeyDown is coded to indicate to the container that a key has gone down.

« KeyPressis coded to indicate to the container that a complete keypress (down and then up) has occurred.

« KeyUpiscoded to indicate to the container that a key has gone up.

« MouseDown is coded to indicate to the container that the mouse button has gone down.

« MouseMoveis coded to indicate to the container that the mouse has moved over the control.

« MouseUp is coded to indicate to the container that the mouse button has gone up.
The best way to tell the container that the user has clicked over the control isto fire a Click stock event. The first
thing to do isto add it to the control with ClassWizard. Follow these steps:

1. Bring up ClassWizard by choosing View, ClassWizard, and click the ActiveX Eventstab. Make sure that
the selected class is CDierol | Ctrl.

2. Click the Add Event button and fill in the Add Event dialog box, as shown in Figure 17.7.

3. The external name is Click; choose it from the drop-down list box and notice how the internal nameis
filled in as FireClick.

4. Click OK to add the event, and your work is done. Close ClassWizard.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (9 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

FIG. 17.7 ClassWizard helps you add events to your contral.

Y ou may notice the ClassView pane has a new addition: two icons resembling handles. Click the + next to
_DDierollEventsto see that Click is now listed as an event for this application, as shown in Figure 17.8.

FIG. 17.8 ClassView displays events as well as classes.

Now when the user clicks the control, the container class will be notified. If you are writing a backgammon game,
for example, the container can respond to the click by using the new value on the die to evaluate possible moves or
do some other backgammon-specific task.

The second part of reacting to clicks involves actually rolling the die and redisplaying it. Not surprisingly,
ClassWizard helps implement this. When the user clicks over your control, you catch it with a message map entry,
just as with an ordinary application. Bring up ClassWizard and follow these steps.

1. Select the Message Maps tab this time and make sure that your control class, CDierolICtrl, is selected in the
Class Name combo box.

2. Scroll through the Messages list box until you find the WM_LBUTTONDOWN message, which Windows
generates whenever the left mouse button is clicked over your control.

3. Click Add Function to add afunction that will be called automatically whenever this messageis
generated--in other words, whenever the user clicks your control. This function must always be named
OnLButtonDown(), so ClassWizard doesn't give you a dialog box asking you to confirm the name.

4. ClassWizard has made a skeleton version of OnLButtonDown() for you; click the Edit Code button to close
ClassWizard, and look at the new OnLButtonDown() code. Here's the skeleton:

void CDieroll Crl::OnLButtonDown(U NT nFl ags, CPoint point)
{

/[l TODO Add your nessage handl er code here and/or call default

Cd eControl : : OnLBut t onDown(nFl ags, point);

5. Replace the TODO comment with a call to anew function, Roll(), that you will write in the next section.
This function will return a random number between 1 and 6.

m nunber = Roll ();
6. To force aredraw, next add thisline:
I nval i dat eControl ();

7. Leave the call to COleControl::OnLButtonDown() at the end of the function; it handles the rest of the work
involved in processing the mouse click.

Rolling the Die

To add Roll() to CDierollCtrl, right-click on CDierollCtrl in the ClassView pane and then choose Add Member
Function from the shortcut menu that appears. As shown in Figure 17.9, Roll() will be a public function that takes
no parameters and returns a short.

FIG. 17.9 Use the Add Member Function dialog box to speed routine tasks.

What should Roll() do? It should calculate arandom value between 1 and 6. The C++ function that returns arandom
number is rand(), which returns an integer between 0 and RAND_MAX. Dividing by RAND_MAX + 1 givesa
positive number that is always less than 1, and multiplying by 6 gives a positive number that is less than 6. The
integer part of the number will be between 0 and 5, in other words. Adding 1 produces the result that you want: a

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (10 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc07.gif')
javascript:popUp('17uvc08.gif')
javascript:popUp('17uvc09.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control
number between 1 and 6. Listing 17.9 shows this code.

Listing 17.9 DierollCtl.cpp--CDierolICtrl::Roll()

short CDieroll Crl::Roll(void)

{
doubl e nunber = rand();
nunmber /= RAND MAX + 1;
nunber *= 6;
return (short)nunber + 1;
}

NOTE: If RAND_MAX + lisn't amultiple of 6, this code will roll low numbers slightly more often
than high ones. A typical value for RAND MAX is 32,767, which meansthat 1 and 2 will, on the
average, come up 5,462 timesin 32,767 rolls. However, 3 through 6 will, on the average, come up
5,461 times. Y ou're neglecting this inaccuracy.

Some die-rolling programs use the modulo function instead of this approach, but it is far less accurate.
The lowest digits in the random number are least likely to be accurate. The algorithm used here
produces a much more random dieroll. n

The random number generator must be seeded before it is used, and it's traditional (and practical) to use the current
time as a seed value. In DoPropExchange(), add the following line before the call to PX_Short():

srand((unsigned)time(NULL));

Rather than hard-code the start value to 3, call Roll() to determine arandom value. Change the call to PX_Short() so
that it reads as follows:

PX _Short (pPX, "Nunber", mnunber, Roll());

Make sure the test container is not still open, build the control, and then test it again in the test container. Asyou
click the control, the displayed number should change with each click. Play around with it alittle: Do you ever seea
number less than 1 or more than 6? Any surprisesat all?

Creating a Better User Interface

Now that the basic functionality of the die-roll control isin place, it'stime to neaten it alittle. It needsan icon, and it
needs to display dotsinstead of asingle digit.

A Bitmap Icon

Because some die-roll control users might want to add this control to the Control Palette in Visual Basic or Visual
C++, you should have an icon to represent it. AppWizard has aready created one, but it is simply an MFC logo that
doesn't represent your control in particular. Y ou can create a more specialized one with Developer Studio. Click the
ResourceView tab of the Project Workspace window, click the + next to Bitmap, and double-click IDB_DIEROLL.
Y ou can now edit the bitmap 1 pixel at atime. Figure 17.10 shows an icon appropriate for a die. From now on, when
you load the die-roll control into the test container, you will see your icon on the toolbar.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (11 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Displaying Dots

The next step in building this die-roll control isto make the control ook like adie. A nice 3D effect with parts of
some of the other sides showing is beyond the reach of an illustrative chapter like this one, but you can at least
display adot pattern.

FIG. 17.10 The ResourceView of Visual C++ enables you to build your own icon to be added to the Control Palette
in Visual Basic.

Thefirst step isto set up aswitch statement in OnDraw(). Comment out the three drawing lines and then add the
switch statement so that OnDraw() looks like Listing 17.10.

Listing 17.10 DierolICtl.cpp--CDierollCtrl::OnDraw()

void CDieroll Crl::OnDraw
CDC* pdc, const CRect& rcBounds, const CRect& rclnvalid)
{

pdc->Fi | | Rect (r cBounds,
CBr ush: : Fr omHandl e((HBRUSH) Get St ockObj ect (WHI TE_BRUSH))) ;
/1 CString val; //character representation of the short val ue
/1 val . Format ("% ", m nunber) ;
/1 pdc- >Ext Text Qut (0, 0, ETO OPAQUE, rcBounds, val, NULL);
swi t ch(m nunber)
{
case 1:
br eak;
case 2:
br eak;
case 3:
br eak;
case 4:
br eak;
case 5:
br eak;
case 6:
br eak;
}

}

Now all that remainsis adding code to the case 1: block that draws one dot, to the case 2: block that draws two dots,
and so on. If you happen to have areal die handy, take a close look at it. The width of each dot is about one quarter
of the width of the whole die's face. Dots near the edge are about one-sixteenth of the die's width from the edge. All
the other rolls except 6 are contained within the layout for 5, anyway; for example, the single dot for 1 isin the same
place as the central dot for 5.

The second parameter of OnDraw(), rcBounds, is a CRect that describes the rectangle occupied by the control. It has
member variables and functions that return the control's upper-left coordinates, width, and height. The default code
generated by AppWizard called CDC::Ellipse() to draw an ellipse within that rectangle. Y our code will call

Ellipse(), too, passing a small rectangle within the larger rectangle of the control. Y our code will be easier to read
(and will execute slightly faster) if you work in units that are one-sixteenth of the total width or height. Each dot will
be four units wide or high. Add the following code before the switch statement:

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (12 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

int Xunit = rcBounds. Wdth()/16;
int Yunit = rcBounds. Hei ght ()/16;
int Top = rcBounds.top;

int Left = rcBounds.left;

Before drawing a shape by calling Ellipse(), you need to select atool with which to draw. Because your circles
should befilled in, they should be drawn with a brush. This code creates a brush and tells the device context pdc to
useit, while saving a pointer to the old brush so that it can be restored later:

CBrush Bl ack;
Bl ack. Cr eat eSol i dBr ush(R@(0x00, 0x00, 0x00)); //solid black brush
CBrush* savebrush = pdc->Sel ect Obj ect (&Bl ack) ;
After the switch statement, add this line to restore the old brush:
pdc- >Sel ect Obj ect (savebrush);
Now you're ready to add lines to those case blocks to draw some dots. For example, rollsof 2, 3, 4, 5, or 6 all need a

dot in the upper-left corner. Thisdot will bein arectangular box that starts one unit to the right and down from the
upper-left corner and extends five units right and down. The call to Ellipse looks like this:

pdc->El | i pse(Left +Xunit, Top+Yunit,
Left +5*Xunit, Top + 5*Yunit);

The coordinates for the other dots are determined similarly. The switch statement ends up as show in Listing 17.11.
Listing 17.11 DierolICtl.cpp--CDierollCtrl::OnDraw()

swi t ch(m nunber)

{
case 1:
pdc->El | i pse(Left +6*Xunit, Top+6*Yunit,
Left +10*Xunit, Top + 10*Yunit); //center
br eak;
case 2:
pdc->El | i pse(Left +Xunit, Top+Yunit,
Left+5*Xunit, Top + 5*Yunit); [[upper |eft
pdc->El | i pse(Left +11*Xunit, Top+ll*Yunit,
Left +15* Xunit, Top + 15*Yunit); //lower right
br eak;
case 3:
pdc->El | i pse(Left+Xunit, Top+Yunit,
Left+5*Xunit, Top + 5*Yunit); [lupper |eft
pdc->El | i pse(Left +6*Xunit, Top+6*Yunit,
Left +10* Xunit, Top + 10*Yunit); //center
pdc->El | i pse(Left+11*Xunit, Top+11l*Yunit,
Left +15*Xunit, Top + 15*Yunit); //|lower right
br eak:
case 4:
pdc->El | i pse(Left +Xunit, Top+Yunit,

Left+5*Xunit, Top + 5*Yunit); [[upper |eft
pdc->El | i pse(Left +11*Xunit, Top+Yunit,

Left +15* Xunit, Top + 5*Yunit); //upper right
pdc->El | i pse(Left +Xunit, Top+l1l1*Yunit,

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (13 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Left+5*Xunit, Top + 15*Yunit); //lower |eft
pdc->El | i pse(Left+11*Xunit, Top+l11*Yunit,
Left +15*Xunit, Top + 15*Yunit); //lower right
br eak;
case 5:
pdc->El | i pse(Left +Xunit, Top+Yunit,
Left+5*Xunit, Top + 5*Yunit); [[upper |eft
pdc->El | i pse(Left+11*Xunit, Top+Yunit,
Left +15*Xunit, Top + 5*Yunit); //upper right
pdc->El | i pse(Left +6* Xunit, Top+6*Yunit,
Left +10* Xunit, Top + 10*Yunit); //center
pdc->El | i pse(Left+Xunit, Top+1ll*Yunit,
Left+5*Xunit, Top + 15*Yunit); //lower |eft
pdc->El | i pse(Left+11*Xunit, Top+11l*Yunit,
Left +15*Xunit, Top + 15*Yunit); //lower right
br eak:
case 6:
pdc->El | i pse(Left+Xunit, Top+Yunit,
Left+5*Xunit, Top + 5*Yunit); / lupper |eft
pdc->El | i pse(Left+11*Xunit, Top+Yunit,
Left+15*Xunit, Top + 5*Yunit); //upper right
pdc->El | i pse(Left+Xunit, Top+6*Yunit,
Left+5*Xunit, Top + 10*Yunit); //center left
pdc->El | i pse(Left+11*Xunit, Top+6*Yunit,
Left +15* Xunit, Top + 10*Yunit); //center right
pdc->El | i pse(Left+Xunit, Top+1ll*Yunit,
Left+5*Xunit, Top + 15*Yunit); //lower |eft
pdc->El | i pse(Left+11*Xunit, Top+11*Yunit,
Left+15*Xunit, Top + 15*Yunit); //lower right
br eak:

}

Build the OCX again and try it out in the test container. Y ou will see something similar to Figure 17.11, which
actually lookslike adie!

FIG. 17.11 Your rolling-die control now looks like a die.

If you're sharp-eyed or if you stretch the die very small, you might notice that the pattern of dotsis just slightly
off-center. That's because the control's height and width are not always an exact multiple of 16. For example, if
Width() returned 31, Xunit would be 1, and al the dots would be arranged between positions 0 and 16, leaving a
wide blank band at the far right of the control. Luckily, the width is typically far more than 31 pixels, and so the
asymmetry is less noticeable.

To fix this, center the dots in the control. Find the lines that calculate Xunit and Y unit, and then add the new lines
from the code fragment in Listing 17.12.

Listing 17.12 DierolICtl.cpp--Adjusting Xunit and Yunit

//dots are 4 units wide and high, one unit fromthe edge

int Xunit = rcBounds. Wdth()/16;
int Yunit = rcBounds. Hei ght()/16;
int Xleft = rcBounds. Wdt h() %.6;

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (14 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc11.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

int Yleft = rcBounds. Hei ght () %46;
/1l adjust top left by anmount |eft over
int Top = rcBounds.top + Yleft/2;

int Left = rcBounds.left + Xl eft/2;

Xleft and Yleft are the leftoversin the X and Y direction. By moving Top and Left over by half the leftover, you
center the dots in the control without having to change any other code.

Generating Property Sheets

ActiveX controls have property sheets that enable the user to set properties without any change to the container
application. (Property sheets and pages are discussed in Chapter 12, "Property Pages and Sheets.") Y ou set these up
as dialog boxes, taking advantage of prewritten pages for font, color, and other common properties. For this control,
the obvious properties to add are the following:

« A flag to indicate whether the value should be displayed as adigit or a dot pattern
« Foreground color
« Background color

NOTE: It's easy to become confused about what exactly a property pageis. Is each one of the tabs on a
dialog box a separate page, or isthe whole collection of tabs a page? Each tab is called a page and the
collection of tabsis called a sheet. Y ou set up each page as adialog box and use ClassWizard to
connect the values on that dialog box to member variables.

Digits Versus Dots

It's a simple enough matter to allow the user to choose whether to display the current value as adigit or adot pattern.
Simply add a property that indicates this preference and then use the property in OnDraw(). The user can set the
property, using the property page.

First, add the property using ClassWizard. Here's how: Bring up ClassWizard and select the Automation tab. Make
sure that the CDierol|ICtrl classis selected and then click Add Property. On the Add Property dialog box, provide the
external name Dots and the internal name m_dots. The type should be BOOL because Dots can be either TRUE or
FALSE. Implement this new property as a member variable (direct-access) property. Click OK to complete the Add
Property dialog box and click OK to close ClassWizard. The member variable is added to the class, the dispatch map
is updated, and a stub is added for the notification function, OnDotsChanged().

To initialize Dots and arrange for it to be saved with a document, add the following line to DoPropExchange() after
the call to PX_Short():

PX Bool (pPX, "Dots", mdots, TRUE);
Initializing the Dots property to TRUE ensures that the control's default behavior isto display the dot pattern.

In OnDraw(), uncomment those lines that displayed the digit. Wrap an if around them so that the digit is displayed if
m_dotsis FALSE and dots are displayed if it is TRUE. The code looks like Listing 17.13.

Listing 17.13 DierolICtl.cpp--CDierollCtrl::OnDraw()

void CDieroll Crl::OnDraw
CDC* pdc, const CRect & rcBounds, const CRect& rclnvalid)
{

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (15 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

pdc->Fi | | Rect (r cBounds,
CBr ush: : Fr onHandl e((HBRUSH) Get St ockObj ect (WHI TE_BRUSH))) ;
I f (!m.dots)
{
CString val; //character representation of the short val ue
val . Format ("% ", m nunber) ;
pdc- >Ext Text Qut (0, 0, ETO OPAQUE, rcBounds, val, NULL);
}

el se

{

//dots are 4 units wi de and high, one unit fromthe edge

Int Xunit = rcBounds. Wdth()/16;
int Yunit = rcBounds. Hei ght()/16;
int Xleft = rcBounds. Wdt h() %6;
int Yleft = rcBounds. Hei ght () %46;

/1 adjust top left by anmount |eft over

int Top = rcBounds.top + Yleft/2;

int Left = rcBounds.left + Xl eft/2;

CBrush Bl ack;

Bl ack. Creat eSol i dBr ush(RGB(0x00, 0x00, 0x00)); //solid black brush
CBrush* savebrush = pdc->Sel ect Qbj ect (&Bl ack) ;

swi t ch(m nunber)

{

case 1:

}
pdc->Sel ect Qoj ect (savebrush);

}

To give the user away to set Dots, you build a property page by following these steps.
1. Click the ResourceView tab in the Project Workspace window and then click the + next to Dialog.

2. The OCX hastwo dialog boxes: one for the About box and one for the property page. Double-click
IDD_PROPPAGE_DIEROLL to openit. Figure 17.12 shows the boilerplate property page generated by
AppWizard.

3. Remove the static control with the TODO reminder by highlighting it and pressing Delete.
4. Drag a check box from the Control Palette onto the dialog box. Choose View, Properties and then pin the
Property dialog box in place.

FIG. 17.12 AppWizard generates an empty property page.

5. Change the caption to Display Dot Pattern and change the resource ID to IDC_DOTS, as shown in Figure
17.13.

FIG. 17.13 You build the property page for the die-roll control like any other dialog box.

When the user brings up the property page and clicks to set or unset the check box, that doesn't directly affect the
value of m_dots or the Dots property. To connect the dialog box to member variables, use ClassWizard and follow
these steps:
1. Bring up ClassWizard while the dialog box is still open and on top, and then select the Member Variables
tab.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (16 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc12.gif')
javascript:popUp('17uvc13.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

2. Make sure that CDierollPropPage is the selected class and that the IDC_DOTS resource ID is highlighted,
and then click the Add Variable button.

3. Fill inm_dots as the name and BOOL as the type, and fill in the Optional Property Name combo box with
Dots, as shown in Figure 17.14.

4. Click OK, and ClassWizard generates code to connect the property page with the member variablesin
CDierollPropPage::DoDataExchange().

FIG. 17.14 You connect the property page to the properties of the control with ClasswWizard.

The path that data follows can be a little twisty. When the user brings up the property sheet, the value of TRUE or
FALSE isin atemporary variable. Clicking the check box toggles the value of that temporary variable. When the
user clicks OK, that value goes into CDieroll PropPage::m_dots and also to the Automation property Dots. That
property has already been connected to CDierollCtrl::m_dots, so the dispatch map in CDierol|Ctrl will make sure
that the other m_dots is changed. Because the OnDraw() function uses CDierol | Ctrl::m_dots, the control's
appearance changes in response to the change made by the user on the property page. Having the same name for the
two member variables makes things more confusing to first-time control builders but less confusing in the long run.

Thisworks now. Build the control and insert it into the test container. To change the properties, choose Edit, Dieroll
Control Object, and Properties; your own property page will appear, as shown in Figure 17.15. (The Extended tab is
provided for you, but as you can see, it doesn't really do anything. Y our General tab is the important one at the
moment.) Prove to yourself that the control displays dots or a digit, depending on the page's setting, by changing the
setting, clicking OK, and then watching the control redraw.

When the control is displaying the value as a number, you might want to display that number in afont that's more in
proportion with the control's current width and height and centered within the control. That's arelatively simple
modification to OnDraw(), which you can investigate on your own.

FIG. 17.15 The control test container displays your own property page.

User-Selected Colors

The die you've created will always have black dots on a white background, but giving the user control to change this
isremarkably ssmple. Y ou need a property for the foreground color and another for the background color. These
have aready been implemented as stock properties. BackColor and ForeColor.

Stock Properties Hereisthe complete list of stock properties available to a control that you write:

« Appearance. Specifies the control's general 100k

« BackColor. Specifies the control's background color

« BorderStyle. Specifies either the standard border or no border

« Caption. Specifies the control's caption or text

« Enabled. Specifies whether the control can be used

« Font. Specifiesthe control's default font

« ForeColor. Specifiesthe control's foreground color

« Text. Also specifies the control's caption or text

« hWnd. Specifies the control's window handle
Ambient Properties Controls can also access ambient properties, which are properties of the environment that
surrounds the control--that is, properties of the container into which you place the control. Y ou can't change ambient

properties, but the control can use them to adjust its own properties. For example, the control can set its background
color to match that of the container.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (17 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc14.gif')
javascript:popUp('17uvc15.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

The container provides al support for ambient properties. Any of your code that uses an ambient property should be
prepared to use a default value if the container doesn't support that property. Here's how to use an ambient property
called UserMode:

BOOL bUser Mode;
i f(!Get Anbi ent Property(DI SPI D_AMBI ENT_USERMODE,
VT_BOCL, &bUser Mode))
{

}

This code calls GetAmbientProperty() with the display ID (DISPID) and variable type (vartype) required. It also
provides a pointer to avariable into which the value is placed. This variable's type must match the vartype. If
GetAmbientProperty() returns FALSE, bUserMode is set to a default value.

bUser Mbde = TRUE;

A number of useful DISPIDs are defined in olectl.h, including these:
DISPID_AMBIENT _BACKCOLOR
DISPID_AMBIENT_DISPLAYNAME

DISPID_ AMBIENT _FONT
DISPID_AMBIENT_FORECOLOR
DISPID_AMBIENT_LOCALEID
DISPID_AMBIENT _MESSAGEREFLECT
DISPID_AMBIENT _SCALEUNITS
DISPID_AMBIENT _TEXTALIGN
DISPID_AMBIENT_USERMODE
DISPID_AMBIENT_UIDEAD

DISPID_AMBIENT _SHOWGRABHANDLES
DISPID_AMBIENT_SHOWHATCHING
DISPID_AMBIENT _DISPLAYASDEFAULT
DISPID_AMBIENT_SUPPORTSMNEMONICS
DISPID_AMBIENT_AUTOCLIP
DISPID_AMBIENT_APPEARANCE

Remember that not all containers support all these properties. Some might not support any, and still others might
support properties not included in the preceding list.

The vartypes include those shown in Table 17.1.

Table 17.1 Variable Types for Ambient Properties

]vartype ’Description
’VT_BOOL ’BOOL

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (18 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

]VT_BST R ’CString

]VT_I 2]short
’VT_I 4 ’ long
VT_R4 float
]VT_R8]double
VT_CY cY

VT_COLOR [OLE_COLOR
VT_DISPATCH|LPDISPATCH
VT_FONT ~ [LPFONTDISP

Remembering which vartype goes with which DISPID and checking the return from GetAmbientProperty() area
bothersome process, so the framework provides member functions of COleControl to get the most popular ambient
properties:

o« OLE COLOR AmbientBackColor()

o CString AmbientDisplayName()

o LPFONTDISP AmbientFont() (Don't forget to release the font by using Release().)

o OLE_COLOR AmbientForeColor()

o LCID AmbientLocalelD()

« CString AmbientScal eUnits()

« short AmbientTextAlign() (O means general--numbers right, text left; 1 means left-justify; 2 means center;

and 3 means right-justify.)

« BOOL AmbientUserMode() (TRUE means user mode; FAL SE means design mode.)

« BOOL AmbientUIDead()

« BOOL AmbientShowHatching()

« BOOL AmbientShowGrabHandles()

All these functions assign reasonable defaults if the container doesn't support the requested property.

I mplementing BackColor and ForeColor To add BackColor and ForeColor to the control, follow these steps:
1. Bring up ClassWizard, and select the Automation tab.
2. Make sure that CDierolICtrl isthe selected class, and click Add Property.
3. Choose BackColor from the top combo box, and the rest of the dialog box isfilled out for you; it is grayed
out to remind you that you can't set any of these fields for a stock property. Figure 17.16 shows the values
provided for you.

FIG. 17.16 ClassWizard describes stock properties for you.

4. Click OK and then add ForeColor in the same way. After you click OK, ClassWizard's Automation tab will
resemble Figure 17.17. The S next to these new properties reminds you that they are stock properties.

5. Click OK to close ClassWizard.
FIG. 17.17 An Sprecedes the stock propertiesin the OLE Automation list of properties and methods.

Setting up the property pages for these colors is almost as simple because there is a prewritten page that you can use.
Look through DierollCtl.cpp for ablock of code like Listing 17.14.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (19 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc16.gif')
javascript:popUp('17uvc17.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control
Listing 17.14 DierolICtl.cpp--Property Pages

FEEEEEEEErrr i rr i ririrrri
/'l Property pages
/1 TODO Add nore property pages as needed. Renenber to increase the count!
BEG N_PROPPACEI DS(CDhi erol I Ctrl, 1)
PROPPAGEI D(CDi er ol | PropPage: : gui d)
END_PROPPAGEI DS(CDi erol I Ctrl)

Remove the TODO reminder, change the count to 2, and add another PROPPAGEID so that the block looks like
Listing 17.15.

Listing 17.15 DierolICtl.cpp--Property Pages

FEEEEEEEE i rrrrrrr
/'l Property pages
BEG N_PROPPACEI DS(CDi erol | Ctrl, 2)
PROPPAGEI D(CDi er ol | PropPage: : gui d)
PROPPAGEI D{ CLSI D_CCol or Pr opPage)
END_PROPPAGEI DS(CDi erol I Ctrl)

CLSID_CColorPropPageisaclass D for aproperty page that is used to set colors. Now when the user brings up the
property sheet, there will be two property pages. one to set colors and the general page that you already created.
Both ForeColor and BackColor will be available on this page, so all that remains to be done is using the values set
by the user. Y ou will have a chance to see that very soon, but first, your code needs to use these colors.

Changesto OnDraw() In OnDraw(), your code can access the background color with GetBackColor(). Though you
can't seeit, this function was added by ClassWizard when you added the stock property. The dispatch map for
CDierollCtrl now lookslike Listing 17.16.

Listing 17.16 DierollCtl.cpp--Dispatch Map

BEG N_DI SPATCH MAP(CDi erol I Ctrl, CO eControl)
I 1 {{ AFX_DI SPATCH MAP(CDi erol 1 Crl)
DI SP_PROPERTY_NOTI FY(CDi erol I Ctrl, "Nunber", m nunber,
[ccc] OnNunber Changed, VT _I2)
DI SP_PROPERTY_NOTI FY(CDi erol I Ctrl, "Dots", mdots,
[ccc] OnDot sChanged, VT_BOQL)
DI SP_STOCKPROP_BACKCOLOR()
DI SP_STOCKPROP_FORECOLOR()
/1}}AFX_DI SPATCH NMAP
DI SP_ FUNCTION ID(CDierol I Ctrl, "AboutBox",
[ccc] DI SPI D_ABOUTBOX, About Box, VT_EMPTY, VTS _NONE)

END_DI SPATCH_MAP()

The macro DISP_STOCKPROP_BACKCOLOR() expandsto these lines:

#def i ne DI SP_STOCKPROP_BACKCOLOR() \
DI SP_PROPERTY_STOCK(CA eControl, "BackColor", \
DI SPI D_BACKCOLOR, Cd eControl :: Get BackCol or, \
CA eControl :: Set BackCol or, VT_COLOR)

This codeis calling another macro, DISP_PROPERTY _STOCK, which ends up declaring the GetBackColor()

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (20 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

function as amember of CDierollCtrl, which inherits from COleControl. Although you can't seeit, thisfunction is
available to you. It returnsan OLE_COLOR, which you translate to a COL ORREF with TranslateColor(). You can
pass this COLORREF to CreateSolidBrush() and use that brush to paint the background. Access the foreground
color with GetForeColor() and give it the same treatment. (Use SetTextColor() in the digit part of the code.) Listing
17.17 shows the completed OnDraw() (with most of the switch statement cropped out).

Listing 17.17 DierolICtl.cpp--CDierollCtrl::OnDraw()

void CDieroll Crl::OnDraw CDC* pdc, const CRect & rcBounds,
const CRect& rclnvalid)

{
COLORREF back = Transl at eCol or (Get BackCol or ()) ;
CBrush backbrush
backbrush. Creat eSol i dBr ush(back) ;
pdc->Fi | | Rect (rcBounds, &backbrush);
if (!'m.dots)
{
CString val; //character representation of the short val ue
val . Format ("% ", m_nunber);
pdc- >Set Text Col or (Tr ansl at eCol or (Get ForeCol or ()));
pdc- >Ext Text Qut (0, 0, ETO OPAQUE, rcBounds, val, NULL);
}
el se
{
//dots are 4 units wide and high, one unit fromthe edge
Int Xunit = rcBounds. Wdth()/16;
int Yunit = rcBounds. Hei ght()/16;
I nt Top = rcBounds. top;
Int Left = rcBounds.|left;
COLORREF fore = Transl at eCol or (Get ForeCol or());
CBrush forebrush;
f orebrush. CreateSol i dBrush(fore);
CBrush* savebrush = pdc->Sel ect Obj ect (&f or ebrush);
swi t ch(m nunber)
{
}
pdc- >Sel ect Qbj ect (savebrush);
}
}

Build the control again, insert it into the test container, and again bring up the property sheet by choosing Edit,
Dieroll Control Object, Properties. As Figure 17.18 shows, the new property pageisjust fine for setting colors.
Change the foreground and background colors afew times and experiment with both dots and digit display to
exercise all your new code.

FIG. 17.18 Sock property pages make short work of letting the user set colors.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (21 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc18.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control

Rolling on Demand

ActiveX controls expose methods (functions) just as Automation servers do. This control rolls when the user clicks
it, but you might want the container application to request aroll without the user's intervention. To do this, you add a
function called DoRoall() and expose it.

Bring up ClassWizard, click the Automation tab, and then click Add Method. Name the new function DoRoll, select
Return Type of Void, and when it is added, click Edit Code and fill it in like this:

void CDieroll Crl::DoRoll ()
{

m _nunber = Roll ();

| nval i dat eControl ();

}

This simple code rolls the die and requests a redraw. Not everything about ActiveX controls needs to be difficult!

Y ou can test this code by building the project, opening the test container, inserting adieroll control, then choosing
Control, Invoke Methods. On the Invoke Methods dialog box, shown in Figure 17.19, select DoRoll(Method) from
the upper drop-down box; then click Invoke. Y ou will see the dierall.

Future Improvements

The die-rolling control may seem complete, but it could be even better. The following sections discuss
improvements that can be made to the control for different situations.

Enable and Disable Rolling

In many dice games, you can roll the die only when it is your turn. At the moment, this control rolls whenever it is
clicked, no matter what. By adding a custom property called RollAllowed, you can allow the container to control the
rolling. When RollAllowed is FALSE, CDieCtrl::OnLButtonDown should just return without rolling and redrawing.
Perhaps OnDraw should draw a dlightly different die (gray dots?) when RollAllowed is FALSE. Y ou decide; it's
your control. The container would set this property like any Automation property, according to the rules of the game
in which the control is embedded.

FIG. 17.19 You can invoke your control's methods in the test container.

Dice with Unusual Numbers of Sides

Why restrict yourself to six-sided dice? There are dice that have 4, 8, 12, 20, and even 30 sides; wouldn't they make
an interesting addition to a dice game? Y ou'll need to get one pair of these odd dice so that you can see what they
look like and change the drawing code in CDierolCtrl::OnDraw(). Y ou then need to change the hard-coded 6 in
Roll() to a custom property: an integer with the external name Sides and a member variable m_sides. Don't forget to
change the property page to enable the user to set Sides, and don't forget to add aline to
CDieCitrl::DoPropExchange() to make Sides persistent and initialize it to 6.

TIP: Thereissuch athing as atwo-sided die; it's commonly called a coin.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (22 of 23) [7/29/1999 3:52:48 PM]

javascript:popUp('17uvc19.gif')

Special Edition Using Visual C++ 6 -- Ch 17 -- Building an ActiveX Control
Arrays of Dice

If you were writing a backgammon game, you would need two dice. One approach would be to embed two
individual die controls. How would you synchronize them, though, so that they both rolled at once with asingle
click? Why not expand the control to be an array of dice? The number of dice would be another custom property,
and the control would roll the dice all at once. The RollAllowed flag would apply to al the dice, as would Sides, so
that you could have two six-sided dice or three 12-sided dice, but not two four-sided dice and a 20-sider. Number
would become an array.

TIP: In Chapter 20, "Building an Internet ActiveX Control," you discover one way to synchronize two
or more separate dice within one control container, and you'll learn some of the difficulties involved.

| ¢ Previous ['.haptf:r-' (5 Next Chapter)

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch17/ch17.htm (23 of 23) [7/29/1999 3:52:48 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

ouie
Special Edition Using Visual C++ 6

(< Previous Chapter JR> Next Chapter

- 18 -
Sockets, MAPI, and the Internet

Using Windows Sockets
o Winsock in MFC
Using the Messaging APl (MAPI)
o What IsMAPI?
o Win95 Logo Requirements
o Advanced Use of MAPI
Using the Winlnet Classes
Using Internet Server APl (ISAPI) Classes

Using Windows Sockets

There are anumber of ways your applications can communicate with other applications through a
network like the Internet. This chapter introduces you to the concepts involved with these programming
techniques. Subsequent chapters cover some of these conceptsin more detail.

Before the Windows operating system even existed, the Internet existed. Asit grew, it became the largest
TCP/IP network in the world. The early sites were UNIX machines, and a set of conventions called
Berkeley sockets became the standard for TCP/IP communication between UNIX machines on the
Internet. Other operating systems implemented TCP/IP communications, too, which contributed
immensely to the Internet's growth. On those operating systems, things were becoming messy, with a
wide variety of proprietary implementations of TCP/IP. Then a group of more than 20 vendors banded
together to create the Winsock specification.

The Winsock specification definesthe interfaceto aDLL, typically called WINSOCK.DLL or

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (1 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

WSOCK32.DLL. Vendors write the code for the functions themselves. Applications can call the
functions, confident that each function's name, parameter meaning, and final behavior are the same no
matter which DLL isinstalled on the machine. For example, the DLLs included with Windows 95 and
Windows NT are not the same at all, but a 32-bit Winsock application can run unchanged on a Windows
95 or Windows NT machine, calling the Winsock functions in the appropriate DLL.

NOTE: Winsock isn't confined to TCP/IP communication. |PX/SPX support is the second
protocol supported, and there will be others. For more information, check the Winsock
specification itself. The Stardust Labs Winsock Resource Page at

http://www.star dust.com/wsr esour ce/ isagreat starting point. n

An important concept in sockets programming is a socket's port. Every Internet site has a numeric
address called an IP address, typically written as four numbers separated by dots: 198.53.145.3, for
example. Programs running on that machine are all willing to talk, by using sockets, to other machines. If
arequest arrives at 198.53.145.3, which program should handle it?

Requests arrive at the machine, carrying a port number--a number from 1,024 and up that indicates
which program the request is intended for. Some port numbers are reserved for standard use; for
example, Web serverstraditionally use port 80 to listen for Web document requests from client programs
like Netscape Navigator.

Most socket work is connection-based: Two programs form a connection with a socket at each end and
then send and receive data along the connection. Some applications prefer to send the data without a
connection, but there is no guarantee that this data will arrive. The classic example is atime server that
regularly sends out the current time to every machine near it without waiting until it is asked. The delay
In establishing a connection might make the time sent through the connection outdated, so it makes sense
In this case to use a connectionless approach.

Winsock in MFC

At first, sockets programming in Visual C++ meant making API callsinto the DLL. Many developers
built socket classes to encapsulate these calls. Visual C++ 2.1 introduced two new classes:
CAsyncSocket and CSocket (which inherits from CAsyncSocket). These classes handle the API callsfor
you, including the startup and cleanup calls that would otherwise be easy to forget.

Windows programming is asynchronous. lots of different things happen at the same time. In older
versions of Windows, if one part of an application was stuck in aloop or otherwise hung up, the entire
application--and sometimes the entire operating system--would stick or hang with it. Thisis obviously
something to avoid at all costs. Y et a socket call, perhaps a call to read some information through a
TCP/IP connection to another site on the Internet, might take along time to complete. (A function that is
waiting to send or receive information on a socket is said to be blocking.) There are three ways around
this problem:

« Put the function that might block in athread of its own. The thread will block, but the rest of the
application will carry on.

« Havethe function return immediately after making the request, and have another function check
regularly (poll the socket) to see whether the request has compl eted.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (2 of 12) [7/29/1999 3:53:08 PM]

http://www.stardust.com/wsresource/

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

« Havethe function return immediately, and send a Windows message when the request has
compl eted.

The first option was not available until recently, and the second is inefficient under Windows. Most
Winsock programming adopts the third option. The class CAsyncSocket implements this approach. For
example, to send a string across a connected socket to another Internet site, you call that socket's Send()
function. Send() doesn't necessarily send any data at all; it triesto, but if the socket isn't ready and
waiting, Send() just returns. When the socket is ready, a message is sent to the socket window, which
catches it and sends the data across. This s called asynchronous Winsock programming.

NOTE: Winsock programming isn't asimple topic; entire books have been written on it. If
you decide that this low-level sockets programming isthe way to go, building standard
programsis a good way to learn the process. n

CAsyncSocket The CAsyncSocket classis awrapper class for the asynchronous Winsock calls. It hasa
number of useful functions that facilitate using the Winsock API. Table 18.1 lists the CAsyncSocket
member functions and responsibilities.

Table 18.1 CAsyncSocket Member Functions

Method Name Description

Accept Handles an incoming connection on alistening socket, filling a new socket with the
address information.

AsyncSelect Requests that a Windows message be sent when a socket is ready.

Attach Attaches a socket handle to a CAsyncSocket instance so that it can form a
connection to another machine.

Bind Associates an address with a socket.

Close Closes the socket.

Connect Connects the socket to a remote address and port.

Create Completes the initialization process begun by the constructor.

Detach Detaches a previoudly attached socket handle.

FromHandle Returns a pointer to the CAsyncSocket attached to the handle it was passed.

GetLastErro Returns the error code of the socket. After an operation fails, call GetLastError to
find out why.

GetPeerName Finds the | P address and port number of the remote socket that the calling object
socket is connected to, or fills a socket address structure with that information.

GetSockName Returns the | P address and port number of this socket, or fills a socket address
structure with that information.

GetSockOpt Returns the currently set socket options.

|OCtl Sets the socket mode most commonly to blocking or non-blocking.

Listen Instructs a socket to watch for incoming connections.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (3 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

OnA ccept Handles the Windows message generated when a socket has an incoming
connection to accept (often overridden by derived classes).

OnClose Handles the Windows message generated when a socket closes (often overridden
by derived classes).

OnConnect Handles the Windows message generated when a socket becomes connected or a
connection attempt ends in failure (often overridden by derived classes).

OnOutOfBandData|Handl es the Windows message generated when a socket has urgent, out-of-band
data ready to read.

OnReceive Handles the Windows message generated when a socket has data that can be read
with Receive() (often overridden by derived classes).

OnSend Handles the Windows message generated when a socket is ready to accept data that
can be sent with Send() (often overridden by derived classes).

Recelve Reads data from the remote socket to which this socket is connected.

RecelveFrom Reads a datagram from a connectionless remote socket.

Send Sends data to the remote socket to which this socket is connected.

SendTo Sends a datagram without a connection.

SetSockOpt Sets socket options.

ShutDown Keeps the socket open but prevents any further Send() or

Recelve() calls.

If you use the CAsyncSocket class, you'll have to fill the socket address structures yourself, and many
developers would rather delegate alot of thiswork. In that case, CSocket is a better socket class.

CSocket CSocket inherits from CAsyncSocket and has all the functions listed for CAsyncSocket. Table
18.2 describes the new methods added and the virtual methods overridden in the derived CSocket class.

Table 18.2 CSocket Methods

Method Name Description

Attach Attaches a socket handle to a CAsyncSocket instance so that it can form a
connection to another machine

Create Completes the initialization after the constructor constructs a blank socket

FromHandle Returns a pointer to the CSocket attached to the handle it was passed

|sBlocking Returns TRUE if the socket is blocking at the moment, waiting for something to

happen

CancelBlockingCal

Cancels whatever request had left the socket blocking

OnM essagePending

Handles the Windows messages generated for other parts of your application while
the socket is blocking (often overridden by derived classes)

In many cases, socket programming is no longer necessary because the Winlnet classes, |SAPI

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (4 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

programming, and ActiveX controls for Web pages are bringing more and more power to Internet
programmers. If you would like to explore a sample socket program, try Chatter and ChatSrvr, provided
by Visual C++. Search either name in the online help to find the files.

Each session of Chatter emulates a user server. The ChatSrvr program is the server, acting as traffic
manager among several clients. Each Chatter can send messages to the ChatSrvr by typing in some text,
and the ChatSrvr sends the message to everyone logged on to the session. Several traffic channels are
managed at once.

If you've worked with sockets before, this short overview may be all you need to get started. If not, you
may not need to learn them. If you plan to write a client/server application that runs over the Internet and
doesn't use the existing standard applications like mail or the Web, then learning socketsis probably in
your future. But, if you want to use email, the Web, FTP, and other popular Internet information sources,
you don't have to do it by writing socket programs at all. Y ou may be able to use MAPI, the Winlnet
classes, or ISAPI to achieve the results you are looking for.

Using the Messaging APl (MAPI)

The most popular networking feature in most officesis electronic mail. Y ou could add code to your
application to generate the right commands over a socket to transmit a mail message, but it's smpler to
build on the work of others.

What Is MAPI?

MAPI isaway of pulling together applications that need to send and receive messages (messaging
applications) with applications that know how to send and receive messages (messaging services and
service providers), in order to decrease the work load of all the developersinvolved. Figure 18.1 shows
the scope of MAPI. Note that the word messaging covers far more than just electronic mail: A MAPI
service can send afax or voice-mail message instead of an electronic mail message. If your application
uses MAPI, the messaging services, such as email clients that the user has installed, will carry out the
work of sending the messages that your application generates.

The extent to which an application uses messaging varies widely:

« Some applications can send a message, but sending messages isn't really what the application is
about. For example, aword processor is fundamentally about entering and formatting text and then
printing or saving that text. If the word processor can also send the text in a message, fine, but
that'sincidental. Applications like this are said to be messaging-aware and typically use just the tip
of the MAPI functionality.

« Some applications are useful without being able to send messages, but they are far more useful in
an environment where messages can be sent. For example, a persona scheduler program can
manage one person’'s To Do list whether messaging is enabled or not. If it is enabled, a number of
work group and client-contact features--such as sending email to confirm an appointment--become
avallable. Applications like this are said to be messaging-enabled and use some, but not al, of the
MAPI features.

« Finaly, some applications are all about messaging. Without messaging, these applications are

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (5 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

useless. They are said to be messaging-based, and they use all of MAPI's functionality.
FIG. 18.1 The Messaging API includes applications that need messaging and those that provideit.

Win95 Logo Requirements

The number-one reason for a devel oper to make an application messaging aware is to meet the
requirements of the Windows 95 Logo program. To qualify for the logo, an application must have a Send
item on the File menu that uses MAPI to send the document. (Exceptions are granted to applications
without documents.)

To add this feature to your applications, it's best to think of it before you create the empty shell with
AppWizard. If you are planning ahead, hereisalist of all the work you have to do to meet this part of the
logo requirement:

1. In Step 4 of AppWizard, select the MAPI (Messaging API) check box.

That'sit! The menu item is added, and message maps and functions are generated to catch the menu item
and call functions that use your Serialize() function to send the document through MAPI. Figure 18.2
shows an application called MAPIDemo that is just an AppWizard empty shell.

No additional code was added to this application, beyond the code generated by AppWizard, and the
Send item is on the File menu, as you can see. If you choose this menu item, your MAPI mail clientis
launched to send the message. Figures 18.2 and 18.3 were captured on a machine with Microsoft
Exchange installed as an Internet mail client (Inbox), and so it is Microsoft Exchange that is launched, as
shown in Figure 18.3. The message contains the current document, and it is up to you to fill in the
recipient, the subject, and any text you want to send with the document.

FIG. 18.2 AppWizard adds the Send item to the File menu, as well as the code that handles the item.

FIG. 18.3 Microsoft Mail islaunched so that the user can fill in the rest of the email message around the
document that is being sent.

TIP: If the Send item doesn't appear on your menu, make sure that you have a MAPI client
installed. Microsoft Exchange is an easy-to-get MAPI client. The OnUpdateFileSendMail()
function removes the menu item Send from the menu if no MAPI client is registered on your
computer.

If you didn't request MAPI support from AppWizard when you built your application, here are the steps
to manually add the Send item:

1. Add the Send item to the File menu. Use aresource ID of ID_FILE_SEND_MAIL. The
prompt will be supplied for you.

2. Add these two lines to the document's message map, outside the //AFX comments:

ON_COWWAND(| D FI LE_SEND MAI L, OnFil eSendMi l)
ON_UPDATE_COVMAND Ul (I D_FI LE_SEND MAI L, OnUpdat eFi | eSendMai |)

Adding the mail support to your application manually isn't much harder than asking AppWizard to do it.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (6 of 12) [7/29/1999 3:53:08 PM]

javascript:popUp('18uvc01.gif')
javascript:popUp('18uvc02.gif')
javascript:popUp('18uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

Advanced Use of MAPI

If you want more from MAPI than just meeting the logo requirements, things do become harder. There
are four kinds of MAPI client interfaces:

o Smple MAPI, an older API not recommended for use in new applications

« Common Messaging Calls (CMC), asimple API for messaging-aware and messaging-enabled
applications

« Extended MAPI, afull-featured API for messaging-based applications

« Active Messaging, an APl with somewhat fewer features than Extended MAPI but ideal for use
with Visual C++

Common Messaging Calls There are only ten functionsin the CMC API. That makes it easy to learn,
yet they pack enough punch to get the job done:

« cmc_logon() connectsto a mail server and identifies the user.

« cmc_logoff() disconnects from amail server.

« cmc_send() sends a message.

« cmc_send documents() sends one or more files.

o cmc_list() lists the messages in the user's mailbox.

« cmc_read() reads a message from the user's mailbox.

« cmc_act_on() saves or deletes a message.

o cmc_look up() resolves names and addresses.

« cmc_query_configuration() reports what mail server is being used.
« cmc_free() frees any memory allocated by other functions.

The header file XCMC.H declares a number of structures used to hold the information passed to these
functions. For example, recipient information is kept in this structure:

/ * RECI Pl ENT*/
t ypedef struct ({

CMC string narme;

CMC _enum nane_type;

CMC _string addr ess;

CMC_enum rol e;

CMC fl ags reci p_fl ags;
CMC_ext ensi on FAR *reci p_extensions;

} CMC _recipient;

Y ou could fill this structure with the name and address of the recipient of a mail message by using a
standard dialog box or by hard-coding the entries, like this:
CMC recipient recipient = {

"Kate G egory",

CMC_TYPE_| NDI VI DUAL,

" SMIP: kat e@r egcons. cont',

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (7 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

CMC_ROLE_TO,
CMC_RECI P_LAST_ELEMENT,
NULL };

The type, role, and flags use one of these predefined values:
Listing 18.1 (Excerpt from \MSDev\Include\XCMC.H) Command Definitions

[* NAME TYPES */

#def i ne CMC_TYPE_UNKNOMN ((CMC_enum) 0)
#defi ne CMC_TYPE_| NDI VI DUAL ((CMC_enum) 1)
#defi ne CMC_TYPE_GROUP ((CMC_enum) 2)
/* ROLES */

#define CMC ROLE TO ((CMC_enum O0)
#define CMC ROLE _CC ((CMC_enum 1)
#defi ne CMC_RCLE BCC ((CMC_enum) 2)
#defi ne CMC _ROLE ORI G NATOR ((CMC_enum 3)
#defi ne CMC_ROLE_AUTHORI ZI NG_USER ((CMC_enunm) 4)
/| * RECI PI ENT FLAGS */

#defi ne CMC_RECI P_| GNORE ((CMC flags) 1)
#define CMC_RECI P_LI ST_TRUNCATED ((CMC_flags) 2)
#defi ne CMC_RECI P_LAST ELEMENT ((CMC_fl ags) 0x80000000)

There is amessage structure you could fill in the same way or by presenting the user with a dialog box to
enter the message details. This structure includes a pointer to the recipient structure you have already
filled. Y our program then calls cmc_logon(), cmc_send(), and cmc_logoff() to complete the process.

Extended MAPI Extended MAPI is based on COM, the Component Object Model. Messages,
recipients, and many other entities are defined as objects rather than as C structures. There are far more
object typesin Extended MAPI than there are structure typesin CMC. Access to these objectsis through
OLE (ActiveX) interfaces. The objects expose properties, methods, and events. These concepts are
discussed in Part IV, Chapter 13, "ActiveX Concepts.”

Active Messaging If you understand Automation (described in Chapter 16, "Building an Automation
Server"), you will easily understand Active Messaging. Y our application must be an Automation client,
however, and building such aclient is beyond the scope of this chapter. Various ways to use Active
Messaging are in Visual Basic programming and VBA scripts for programs such as Excel. Y our program
would set up objects and then set their exposed properties (for example, the subject line of a message
object) and invoke their exposed methods (for example, the Send() method of a message object).

The objects used in Active Messaging include the following:
e Session
o Message
» Recipient
o Attachment

Active messaging is part of the Collaboration Data Objects (CDO) library. A detailed reference of these

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (8 of 12) [7/29/1999 3:53:08 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

objects, aswell as their properties and methods, can be found in MSDN under Platform SDK, Database
and Messaging Services, Collaboration Data Objects, CDO Library, and Reference. Y ou'll find three
articles on using Active Messaging, and sample applications, under Technical Articles, Database and
Messaging Services, Microsoft Exchange Server.

Using the WinlInet Classes

MFC 4.2 introduced a number of new classes that eliminate the need to learn socket programming when
your applications require access to standard Internet client services. Figure 18.4 shows the way these
classes relate to each other. Collectively known as the WinlInet classes, they are the following:

o ClnternetSession
 ClnternetConnection
o ClnternetFile

« HttpConnection

« CHttpFile

« CGopherFile

o CFtpConnection

o CGopherConnection
« CFileFind

« CFtpFileFind

o CGopherFileFind

« CGopherLocator

« ClnternetException

TIP: These classes help you write Internet client applications, with which users interact
directly. If you want to write server applications, which interact with client applications,
you'll be interested in |SAPI, discussed in the next section.

First, your program establishes a session by creating a ClnternetSession. Then, if you have a uniform
resource locator (URL) to a Gopher, FTP, or Web (HTTP) resource, you can call that session's
OpenURL () function to retrieve the resource as aread-only ClnternetFile. Y our application can read the
file, using CStdioFile functions, and manipulate that data in whatever way you need.

FIG. 18.4 The Winlnet classes make writing Internet client programs easier.

If you don't have an URL or don't want to retrieve aread-only file, you proceed differently after
establishing the session. Make a connection with a specific protocol by calling the session's
GetFtpConnection(), GetGopherConnection(), or GetHttpConnection() functions, which return the
appropriate connection object. Y ou then call the connection’'s OpenFile() function.
CFtpConnection::OpenFile() returns a ClnternetFile; CGopherConnection::OpenFile() returns a
CGopherFile; and CHttpConnection::OpenFile() returns a CHttpFile. The CFileFind class and its derived
classes help you find the file you want to open.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (9 of 12) [7/29/1999 3:53:09 PM]

javascript:popUp('18uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

Chapter 19, "Internet Programming with the Winlnet Classes," works through a sample client program
using Winlnet classes to establish an Internet session and retrieve information.

NOTE: Though email is a standard Internet application, you'll notice that the Winlnet
classes don't have any email functionality. That's because email is handled by MAPI. There
Is no support for Usenet news either, in the Winlnet classes or elsewhere.

Using Internet Server API (ISAPI) Classes

|SAPI isused to enhance and extend the capabilities of your HTTP (World Wide Web) server. ISAPI
developers produce extensions and filters. Extensions are DLL s invoked by a user from aWeb pagein
much the same way as CGI (common gateway interface) applications are invoked from a\Web page.
Filters are DLLsthat run with the server and examine or change the data going to and from the server.
For example, afilter might redirect requests for one file to a new location.

NOTE: For the ISAPI extensions and filters that you write to be useful, your Web pages
must be kept on a server that is running an ISAPI-compliant server such asthe Microsoft [1S
Server. You must have permission to install DLLs onto the server, and for an |SAPI filter,
you must be able to change the Registry on the server. If your Web pages are kept on a
machine administered by your Internet service provider (1SP), you will probably not be able
to use ISAPI to bring more power to your Web pages. Y ou may choose to move your pages
to adedicated server (a powerful Intel machine running Windows NT Server 4.0 and
Microsoft 11Sis agood combination) so that you can use ISAPI, but thiswill involve
considerable expense. Make sure that you understand the constraints of your current Web
server before embarking on a project with ISAPI.

One of the major advantages of ActiveX controls for the Internet (discussed in Chapter 20,
"Building an Internet ActiveX Control") isthat you don't need access to the server in order
to implement them. n

The five MFC ISAPI classes form awrapper for the API to make it easier to use:

o CHttpServer

o CHittpFilter

o CHttpServerContext

» CHittpFilterContext

o CHtmlStream
Y our application will have aserver or afilter class (or both) that inherits from CHttpServer or
CHttpFilter. These are rather like the classes in anormal application that inherit from CWinApp. Thereis
only one instance of the classin each DLL, and each interaction of the server with a client takes place
through its own instance of the appropriate context class. (A DLL may contain both a server and afilter

but, at most, one of each.) CHtmlStream is a helper class that describes a stream of HTML to be sent by a
server to aclient.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (10 of 12) [7/29/1999 3:53:09 PM]

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

The ISAPI Extension Wizard is an AppWizard that simplifies creating extensions and filters. To use this
wizard, choose File, New (as always) and then the Project tab. Scroll down the list on the left and select
|SAPI Extension Wizard (as shown in Figure 18.5). Fill in the project name and folder, and click OK.

Creating a server extension is a one-step process. That step, which isaso thefirst step for afilter, is
shown in Figure 18.6. The names and descriptions for the filter and extension are based on the project
name that you chose.

If you choose to create afilter, the Next button is enabled and you can move to the second step for filters,
shown in Figure 18.7. Thislist of parameters gives you an idea of the power of an ISAPI filter. You can
monitor al incoming and outgoing requests and raw data, authenticate users, log traffic, and more.

FIG. 18.5 The ISAPI Extension Wizard is another kind of AppWizard.

FIG. 18.6 Thefirst step in the ISAPI Extension Wizard process is to name the components of the DLL
that you are creating.

FIG. 18.7 The second step in the ISAPI Extension Wizard processis to set filter parameters.

AppWizard shows you afinal confirmation screen, like the one in Figure 18.8, before creating the files.
When you create a server and afilter at the same time, 11 files are created for you, including source and
headers for the class that inherits from CHttpServer and the class that inherits from CHttpFilter.

FIG. 18.8 The ISAPI Extension Wizard process summarizes the files that will be created.

Writing afilter from this shell is quite simple. Y ou have been provided with a stub function to react to
each event for which notification was requested. For example, the filter class has a function called
OnEndOfNetSession(), which is called when a client's session with this server is ending. You add code to
this function to log, monitor, or otherwise react to this event. When the filter is complete, you edit the
Registry by hand so that the server will run your DLL.

To write an extension, add one or more functions to your DLL. Each function will be passed a
CHttpContext pointer, which can be used to gather information such as the user's IP address. If the
function isinvoked from an HTML form, additional parameters such as values of other fields on the form
will also be passed to the function.

The details of what the function does depend on your application. If you are implementing an online
ordering system, the functions involved will be lengthy and complex. Other extensions will be simpler.

When the function is complete, place the DLL in the executable folder for the server--usually the folder
where CGI programs are kept--and adjust your Web pages so that they include links to your DLL, like
this:

Now you can

pl ace an order onli ne!

For more information on |SAPI programming, be sure to read Que's Soecial Edition Using ISAPI. Y ou
will discover how ISAPI applications can make your Web site dynamic and interactive, learn how to
write filters and extensions, and cover advanced topics including debugging | SAPI applications and
writing multithreaded applications.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (11 of 12) [7/29/1999 3:53:09 PM]

javascript:popUp('18uvc05.gif')
javascript:popUp('18uvc06.gif')
javascript:popUp('18uvc07.gif')
javascript:popUp('18uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 18 -- Sockets, MAPI, and the Internet

Adding the Internet to your applications is an exciting trend. It's going to make lots of work for
programmers and create some powerful products that simplify the working life of anyone with an
Internet connection. Just ayear ago, writing Internet applications meant getting your fingernails dirty
with sockets programming, memorizing TCP/IP ports, and reading RFCs. The new Winlnet and | SAPI
classes, aswell as improvements to the old MAPI support, mean that today you can add amazing power
to your application with just afew lines of code or by selecting a box on an AppWizard dialog box. |

| € Previous Chapter JBR\.-> MNext Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch18/ch18.htm (12 of 12) [7/29/1999 3:53:09 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

oue
Special Edition Using Visual C++ 6

(¢ Provious Chaptar (> Next Chapter

- 19 -

Internet Programming with the Winlnet
Classes

o Designing the Internet Query Application

« Building the Query Dialog Box
e Querying HTTP Sites

o Querying FTP Sites

» Querying Gopher Sites

o Using Gopher to Send a Finger Query
o Using Gopher to Send a Whois Query
o Future Work

Designing the Internet Query Application

Chapter 18, "Sockets, MAPI, and the Internet,” introduces the Winlnet classes that you can use to build
Internet client applications at afairly high level. This chapter devel ops an Internet application that
demonstrates a number of these classes. The application also serves a useful function: Y ou can useit to learn
more about the Internet presence of a company or organization. Y ou don't need to learn about sockets or
handle the details of Internet protocols to do this.

Imagine that you have someone's email address (kate@gr egcons.com, for example) and you'd like to know
more about the domain (gregcons.com in this example). Perhaps you have a great idea for adomain name
and want to know whether it's already taken. This application, Query, will try connecting to gregcons.com
(or greatidea.or g, or any other domain name that you specify) in avariety of ways and will report the results
of those attempts to the user.

This application will have asimple user interface. The only piece of information that the user needs to supply

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (1 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

Is the domain name to be queried, and there is no need to keep this information in a document. Y ou might
want a menu item called Query that brings up a dialog box in which to specify the site name, but a better
approach is to use a dialog-based application and incorporate a Query button into the dialog box.

A dialog-based application, as discussed in the section "A Diaog-Based Application" of Chapter 1,
"Building Your First Application," has no document and no menu. The application displays a dialog box at
all times; closing the dialog box closes the application. Y ou build the dialog box for this application like any
other, with Developer Studio.

To build this application's shell, choose File, New from within Developer Studio and then click the Project
tab. Highlight MFC AppWizard(exe), name the application Query, and in Step 1 choose Dialog Based, as
shown in Figure 19.1. Click Next to moveto Step 2 of AppWizard.

FIG. 19.1 Choose a dialog-based application for Query.

In Step 2 of AppWizard, request an About box, no context-sensitive Help, 3D controls, no automation or
ActiveX control support, and no sockets support. (This application won't be calling socket functions
directly.) Give the application a sensible title for the dialog box. The AppWizard choices are summarized, as
shown in Figure 19.2. Click Next to moveto Step 3 of AppWizard.

FIG. 19.2 This application doesn't need Help, automation, ActiveX controls, or sockets.

The rest of the AppWizard process will be familiar by now: Y ou want comments, you want to link to the
MFC libraries as a shared DLL, and you don't need to change any of the classnames suggested by
AppWizard. When the AppWizard process is completed, you're ready to build the heart of the Query
application.

Building the Query Dialog Box

AppWizard produces an empty dialog box for you to start with, as shown in Figure 19.3. To edit thisdialog
box, switch to the resource view, expand the Query Resources, expand the Dial ogs section, and double-click
the IDD_QUERY _DIALOG resource. The following steps will transform this dialog box into the interface
for the Query application.

FI G. 19.3 AppWizard generates an empty dialog box for you.

TIP: If working with dialog boxesis still new to you, be sure to read Chapter 2, "Diaogs and
Controls."

1. Change the caption on the OK button to Query.
2. Change the caption on the Cancel button to Close.
3. Delete the TODO static text.

4. Grab a sizing handle on the right edge of the dialog box and stretch it so that the dialog box is 300
pixels wide or more. (The size of the currently selected item isin the lower-right corner of the screen.)

5. At the top of the dialog box, add an edit box with the resource ID IDC_HOST. Stretch the edit box
aswide as possible.

6. Add a static |abel next to the edit box. Set the text to Site name.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (2 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc01.gif')
javascript:popUp('19uvc02.gif')
javascript:popUp('19uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

7. Grab asizing handle along the bottom of the dialog box and stretch it so that the dialog box is 150
pixels high, or more.

8. Add another edit box and resizeit to fill as much of the bottom part of the dialog box as possible.
9. Givethis edit box the resource ID IDC_OUT.

10. Click the Styles tab on the Properties box and select the Multiline, Horizontal Scroll, Vertical
Scroll, Border, and Read-Only check boxes. Make sure al the other check boxes are desel ected.

The finished dialog box and the Style properties of the large edit box will resemble Figure 19.4.

FIG. 19.4 Build the Query user interface as a single dialog box.

When the user clicks the Query button, this application should somehow query the site. The last step in the
building of the interface is to connect the Query button to code with ClassWizard. Follow these steps to
make that connection:

1. Choose View, Class Wizard to bring up ClassWizard.

2. There are three possible classes that could catch the command generated by the button click, but
CQueryDlg isthelogical choice because the host name will be known by that class. Make sure that
CQueryDlg isthe class selected in the Class Name drop-down list box.

3. Highlight ID_OK (you did not change the resource ID of the OK button when you changed the
caption) in the left list box and BN_CLICKED in theright list box.

4. Click Add Function to add a function that will be called when the Query button is clicked.

5. ClassWizard suggests the name OnOK; change it to OnQuery, as shown in Figure 19.5, and then
click OK.

FIG. 19.5 Add a function to handle a click on the Query button, still with the ID IDOK.

6. Click the Member Variables tab to prepare to connect the edit controls on the dialog box to member
variables of the dialog class.

7. Highlight IDC_HOST and click Add Variable. As shown in Figure 19.6, you'll connect this control
to a CString member variable of the dialog class m_host.

8. Connect IDC_OUT to m_out, also a CString.

Click OK to close ClassWizard. Now all that remainsisto write CQueryDIg::OnQuery(), which will use the
valuein m_host to produce lines of output for m_out.

FIG. 19.6 Connect IDC_HOST to CQueryDIlg::m_host.

Querying HTTP Sites

Thefirst kind of connection to try when investigating a domain's Internet presence is HT TP because so many
sites have Web pages. The simplest way to make a connection using HTTP is to use the Winlnet class
ClnternetSession and call its OpenURL() function. Thiswill return afile, and you can display the first few
lines of the filein m_out. First, add this line at the beginning of QueryDlg.cpp, after the include of stdafx.h:

#i ncl ude " af xi net. h"

This gives your code access to the Winlnet classes. Because this application will try a number of URLSs, add
afunction called TryURL () to CQueryDlIg. It takes a CString parameter called URL and returns void.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (3 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc04.gif')
javascript:popUp('19uvc05.gif')
javascript:popUp('19uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

Right-click CQueryDlg in the ClassView and choose Add Member Function to add TryURL() as a protected
member function. The new function, TryURL (), will be called from CQueryDIg::OnQuery(), as shown in
Listing 19.1. Edit OnQuery() to add this code.

Listing 19.1 QueryDIg.cpp--CQueryDIg::OnQuery()

voi d CQueryDl g:: OnQuery()
{
const CString http = "http://";

Updat eDat a(TRUE) ;

mout = "";

Updat eDat a(FALSE) ;

TryURL(http + m host);
TryURL(http + "www. " + m_host);

}

The call to UpdateData(TRUE) fills m_host with the value that the user typed. The cal to
UpdateData(FAL SE) fillsthe IDC_OUT read-only edit box with the newly cleared m_out. Then come two
callsto TryURL(). If, for example, the user typed microsoft.com, thefirst call would try
http://microsoft.com and the second would try http://www.microsoft.com. TryURL() isshown in Listing
19.2.

Listing 19.2 QueryDIg.cpp--CQueryDIg::TryURL()

void CQueryDl g:: TryURL(CString URL)
{
Cl nt er net Sessi on sessi on;
mout += "Trying " + URL + "\r\n";
Updat eDat a(FALSE) ;
CinternetFile* file = NULL;

try
{
[/ W know for sure this is an Internet file,
//so the cast is safe
file = (ClnternetFile*) session. QpenURL(URL);
}
catch (Cl nternet Excepti on* pEXx)
{
/1if anything went wong, just set file to NULL
file = NULL;
pEx->Del et e();
}
if (file)
{

m out += "Connection established. \r\n";
CString line;
for (int i=0; i < 20 && file->ReadString(line); i++)

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (4 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

{
}

file->C ose();
delete file;

mout +=line + "\r\n";

}
el se
{
m out += "No server found there. \r\n";
}
mout += "-------iima oo \r\n";

Updat eDat a(FALSE) ;
}

The remainder of this section presents this code again, afew lines at atime. First, establish an Internet
session by constructing an instance of ClnternetSession. There are a number of parametersto this
constructor, but they all have default values that will be fine for this application. The parameters follow:

o LPCTSTR pstrAgent The name of your application. If NULL, it'sfilled in for you, using the name
that you gave to AppWizard.

« DWORD dwContext The context identifier for the operation. For synchronous sessions, thisis not an
important parameter.

« DWORD dwAccessType The accesstype: INTERNET _OPEN_TYPE PRECONFIG (default),
INTERNET_OPEN_TYPE _DIRECT, or INTERNET_OPEN_TYPE_PROXY.

o LPCTSTR pstrProxyName The name of your proxy, if accessis
INTERNET_OPEN_TYPE_PROXY.

o LPCTSTR pstrProxyBypass A list of addresses to be connected directly rather than through the proxy
server, if accessisINTERNET _OPEN_TYPE_PROXY.

« DWORD dwFlags Options that can be OR'ed together. The available options are
INTERNET_FLAG_DONT_CACHE, INTERNET_FLAG_ASYNC, and
INTERNET_FLAG_OFFLINE.

dwA ccessType defaults to using the value in the Registry. Obviously, an application that insists on direct
Internet access or proxy Internet accessisless useful than one that enables users to configure that
information. Making users set their Internet access type outside this program might be confusing, though. To
set your default Internet access, double-click the My Computer icon on your desktop, then on the Control
Panel, and then on the Internet tool in the Control Panel. Choose the Connection tab (the version for Internet
Explorer under Windows 95 is shown in Figure 19.7) and compl ete the dialog box as appropriate for your
setup. If you areusing NT or Windows 98, or if your browser version is different, you might see adlightly
different dialog, but you should still be able to choose your connection type.

FIG. 19.7 Set your Internet connection settings once, and all applications can retrieve them from the
Registry.
« If you dia up to the Internet, select the Dial check box and fill in the parametersin the top half of the
page.

« |f you connect to the Internet through a proxy server, select the Proxy check box and click the Settings
button to identify your proxy addresses and ports.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (5 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

« If you are connected directly to the Internet, leave both check boxes unsel ected.

If you want to set up an asynchronous (nonblocking) session, for the reasons discussed in the "Using
Windows Sockets' section of Chapter 18, your options in dwFlags must include

INTERNET _FLAG_ASYNC. In addition, you must call the member function EnableStatusCallback() to set
up the callback function. When arequest is made through the session--such as the call to OpenURL() that
occurs later in TryURL()--and the response will not be immediate, a nonblocking session returns a pseudo
error code, ERROR_IO_PENDING. When the response is ready, these sessions automatically invoke the
callback function.

For this simple application, there is no need to allow the user to do other work or interact with the user
interface while waiting for the session to respond, so the session is constructed as a blocking session and all
the other default parameters are al so used:

Cl nt er net Sessi on sessi on;

Having constructed the session, TryURL () goes on to add aline to m_out that echoes the URL passed in asa
parameter. The "\r\n" characters are return and newline, and they separate the lines added to m_ouit.
UpdateData(FAL SE) gets that onscreen:

mout += "Trying " + URL + "\r\n";
Updat eDat a(FALSE) ;
Next isacall to the session's OpenURL () member function. This function returns a pointer to one of severa
file types because the URL might have been to one of four protocols:
« file/// opens afile. The function constructs a CStdioFile and returns a pointer to it.
« ftp:// goesto an FTP site and returns a pointer to a ClnternetFile object.
« gopher:// goesto a Gopher site and returns a pointer to a CGopherFile object.
« http:// goesto aWorld Wide Web site and returns a pointer to a CHttpFile object.

Because CGopherFile and CHttpFile both inherit from ClnternetFile and because you can be sure that
TryURL() will not be passed afile:// URL, it is safe to cast the returned pointer to a ClnternetFile.

TIP: Thereis some confusion in Microsoft's online documentation whenever sample URLs are
shown. A backslash (\) character will never appear in an URL. In any Microsoft example that
includes backslashes, use forward slashes (/) instead.

If the URL would not open, file will be NULL, or OpenURL () _ will throw an exception. (For background on
exceptions, see Chapter 26, "Exceptions and Templates.") Whereas in anormal application it would be a
serious error if an URL didn't open, in this application you are making up URLs to see whether they work,
and it's expected that some won't. As aresult, you should catch these exceptions yourself and do just enough
to prevent runtime errors. In this case, it's enough to make sure that fileis NULL when an exception is
thrown. To delete the exception and prevent memory leaks, call CException::Delete(), which safely deletes
the exception. The block of code containing the call to OpenURL() isin Listing 19.3.

Listing 19.3 QueryDIg.cpp--CQueryDIg::TryURL()

CinternetFile* file = NULL;
try

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (6 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

{
[/ W know for sure this is an Internet fil e,
//so the cast is safe
file = (ClnternetFile*) session. QpenURL(URL);
}
catch (Cl nternet Exception* pEXx)
{
/1if anything went wong, just set file to NULL
file = NULL;
pEx->Del et e() ;
}

If fileisnot NULL, thisroutine will display some of the Web page that was found. It first echoes another
lineto m_out. Then, inafor loop, the routine calls ClnternetFile::ReadString() to fill the CString line with
the charactersin file up to the first \r\n, which are stripped off. This code simply tacks line (and another \r\n)
onto m_out. If you would like to see more or less than the first 20 lines of the page, adjust the number in this
for loop. When the first few lines have been read, TryURL () closes and deletes the file. That block of codeis

shown in Listing 19.4.

Listing 19.4 QueryDIg.cpp--CQueryDIg::TryURL()

if (file)
{
m out += "Connection established. \r\n";
CString line;
for (int i=0; i < 20 && file->ReadString(line); i++)
{
mout +=line + "\r\n";
}
file->C ose();
delete file;
}
If the file could not be opened, a message to that effect is added to m_out:
el se
{
m out += "No server found there. \r\n";
}

Then, whether the file existed or not, aline of dashesistacked on m_out to indicate the end of this attempt,
and one last call to UpdateData(FAL SE) puts the new m_out onscreen:

m_out =T \r\n" ,
Updat eDat a(FALSE) ;

}

Y ou can now build and run this application. If you enter micr osoft.com in the text box and click Query,
you'll discover that there are Web pages at both http://micr osoft.com and http://www.micr osoft.com.
Figure 19.8 shows the results of that query.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (7 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

FI G. 19.8 Query can find Microsoft's Web sites.

If Query doesn't find Web pages at either the domain name you provided or www. plus the domain name, it
doesn't mean that the domain doesn't exist or even that the organization that owns the domain name doesn't
have a Web page. It does make it less likely, however, that the organization both exists and has a Web page.
If you see a stream of HTML, you know for certain that the organization exists and has a Web page. Y ou
might be able to read the HTML yourself, but even if you can't, you can now connect to the site with aWeb
browser such as Microsoft's Internet Explorer.

Querying FTP Sites

As part of asite name investigation, you should check whether thereisan FTP site, too. Most FTP sites have
names like ftp.company.com, though some older sites don't have names of that form. Checking for these
sitesisn't assmple asjust calling TryURL () again because TryURL () assumes that the URL leadsto afile,
and URLslike ftp.greatidea.org lead to alist of filesthat cannot simply be opened and read. Rather than
make TryURL () even more complicated, add a protected function to the class called TryFTPSite(CString
host). (Right-click CQueryDIg in the ClassView and choose Add Member Function to add the function. It
can return void.)

TryFTPSite() has to establish a connection within the session, and if the connection is established, it hasto
get some information that can be added to m_out to show the user that the connection has been made.
Getting alist of filesis reasonably complex; because thisisjust an illustrative application, the simpler task of
getting the name of the default FTP directory isthe way to go. The codeisin Listing 19.5.

Listing 19.5 QueryDlg.cpp--CQueryDIg::TryFTPSite()

void CQueryD g:: TryFTPSite(CStri ng host)
{
Cl nt er net Sessi on sessi on;
mout += "Trying FTP site " + host + "\r\n";
Updat eDat a(FALSE) ;
CFt pConnecti on* connection = NULL;

try

{ | | |
connection = session. Get Ft pConnecti on(host);

}

catch (Cl nternet Excepti on* pEXx)

{
/1if anything went wong, just set connection to NULL
connection = NULL;
pEx->Del et e() ;

}

I f (connection)

{

m out += "Connection established. \r\n";
CString line;
connection->CGetCurrentDirectory(line);

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (8 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

m out += "default directory is " + line + "\r\n";
connection->C ose();
del ete connecti on;

}
el se
{
m out += "No server found there. \r\n";
}
mout += "------iie oo \r\n";

Updat eDat a(FALSE) ;
}

This codeis very much like TryURL (), except that rather than open afile with session.OpenURL(), it opens
an FTP connection with session.GetFtpConnection(). Again, exceptions are caught and essentially ignored,
with the routine just making sure that the connection pointer won't be used. The call to
GetCurrentDirectory() returns the directory on the remote site in which sessions start. The rest of the routine
Isjust like TryURL().

Add two lines at the end of OnQuery() to call this new function:

TryFTPSi t e(m_host) ;
TryFTPSIite("ftp." + m_host);

Build the application and try it: Figure 19.9 shows Query finding no FTP site at microsoft.com and finding
one at ftp.microsoft.com. The delay before results start to appear might be alittle disconcerting. Y ou can
correct this by using asynchronous sockets, or threading, so that early results can be added to the edit box
while later results are still coming in over the wire. However, for a ssimple demonstration application like
this, just wait patiently until the results appear. It might take several minutes, depending on network traffic
between your site and Microsoft's, your line speed, and so on.

FI G. 19.9 Query finds one Microsoft FTP site.

If Query doesn't find Web pages or FTP sites, perhaps this domain doesn't exist at all or doesn't have any
Internet services other than email, but there are afew more investigative tricks available. The results of these
investigations will definitely add to your knowledge of existing sites.

Querying Gopher Sites

Aswith FTP, TryURL() won't work when querying a Gopher site like gopher .company.com because this
returns alist of filenames instead of asingle file. The solution is to write a protected member function called
TryGopherSite() that is almost identical to TryFTPSite(), except that it opens a CGopherConnection. Also,
rather than echo a single line describing the default directory, it echoes a single line describing the Gopher
locator associated with the site. Add TryGopherSite to CQueryDIg by right-clicking the classnamein
ClassView and choosing Add Member Function, as you did for TryFTPSite(). The code for TryGopherSite()
isin Listing 19.6.

Listing 19.6 QueryDlg.cpp--CQueryDIg::TryGopherSite()
void CQueryD g:: TryGopherSite(CString host)

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (9 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc09.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

{
Cl nt ernet Sessi on sessi on;
m out += "Trying Gopher site " + host + "\r\n";
Updat eDat a(FALSE)
CGopher Connecti on* connection = NULL;
try
{
connecti on = sessi on. Get Gopher Connecti on(host);
}
catch (Cl nternet Excepti on* pEXx)
{
/[/1f anything went wong, just set connection to NULL
connection = NULL;
pEx->Del et e();
}
I f (connecti on)
{
m out += "Connection established. \r\n";
CString line;
C&opher Locator | ocator = connection->CreatelLocat or (NULL, NULL,
GOPHER _TYPE_DI RECTORY) ;
line = | ocator;
mout += "first locator is " + line + "\r\n";
connecti on->Cl ose();
del et e connecti on;
}
el se
{
m out += "No server found there. \r\n";
}
mout += "-------mi e \r\n";
Updat eDat a(FALSE)
}

The call to Createl ocator() takes three parameters. The first is the filename, which might include wild cards.
NULL means any file. The second parameter is a selector that can be NULL. The third is one of the
following types:

GOPHER_TYPE_TEXT FILE
GOPHER_TYPE_DIRECTORY
GOPHER_TYPE_CSO
GOPHER_TYPE_ERROR
GOPHER_TYPE_MAC_BINHEX
GOPHER_TYPE_DOS ARCHIVE

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (10 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

GOPHER_TYPE_UNIX_UUENCODED
GOPHER_TYPE_INDEX_SERVER
GOPHER_TYPE_TELNET
GOPHER_TYPE_BINARY
GOPHER_TYPE_REDUNDANT
GOPHER_TYPE_TN3270
GOPHER_TYPE_GIF
GOPHER_TYPE_IMAGE
GOPHER_TYPE_BITMAP
GOPHER_TYPE_MOVIE
GOPHER_TYPE_SOUND
GOPHER_TYPE_HTML
GOPHER_TYPE_PDF
GOPHER_TYPE_CALENDAR
GOPHER_TYPE_INLINE
GOPHER_TYPE_UNKNOWN
GOPHER_TYPE_ASK
GOPHER_TYPE_GOPHER_PLUS

Normally, you don't build locators for files or directories; instead, you ask the server for them. The locator
that will be returned from this call to Createl ocator() describes the locator associated with the site you are
Investigating.

Add apair of lines at the end of OnQuery() that call this new TryGopherSite() function:

TryGopher Si t e(m_host) ;

TryGopher Site("gopher." + m host);
Build and run the program again. Again, you might have to wait several minutes for the results. Figure 19.10
shows that Query has found two Gopher sites for harvard.edu. In both cases, the locator describes the site

itself. Thisis enough to prove that there is a Gopher site at harvard.edu, which is all that Query is supposed
to do.

FI G. 19.10 Query finds two Harvard Gopher sites.

TIP: Gopher is an older protocol that has been supplanted amost entirely by the World Wide
Web. Asagenera rule, if asite has a Gopher presence, it's been on the Internet since before the
World Wide Web existed (1989) or at |east before the huge upsurge in popularity began (1992).
What's more, the site was probably large enough in the early 1990s to have an administrator

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (11 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

who would set up the Gopher menus and text.

Using Gopher to Send a Finger Query

There is another protocol that can give you information about a site. It's one of the oldest protocols on the
Internet, and it's called Finger. Y ou can finger asingle user or an entire site, and though many sites have
disabled Finger, many more will provide you with useful information in response to a Finger request.

Thereisno MFC class or API function with the word finger in its name, but that doesn't mean you can't use
the classes already presented. This section relies on atrick--and on knowledge of the Finger and Gopher
protocols. Although the Winlnet classes are a boon to new Internet programmers who don't quite know how
the Internet works, they also have alot to offer to old-timers who know what's going on under the hood.

As discussed in the "Using Windows Sockets" section of Chapter 18, all Internet transactions involve a host
and a port. Well-known services use standard port numbers. For example, when you call
ClnternetSession::OpenURL () with an URL that begins with http://, the code behind the scenes connects to
port 80 on the remote host. When you call GetFtpConnection(), the connection is made to port 21 on the
remote host. Gopher uses port 70. If you look at Figure 19.10, you'll see that the locator that describes the
gopher.harvard.edu site includes a mention of port 70.

The Gopher documentation makes this clear: If you build alocator with a host name, port 70, Gopher type O
(GOPHER_TYPE _TEXT_FILE isdefined to be 0), and a string with afilename, any Gopher client smply
sends the string, whether it's a filename or not, to port 70. The Gopher server listening on that port responds
by sending thefile.

Finger isasimple protocol, too. If you send a string to port 79 on aremote host, the Finger server that is
listening there will react to the string by sending a Finger reply. If the string is only \r\n, the usual reply isa
list of all the users on the host and some other information about them, such as their real names. (Many sites
consider thisan invasion of privacy or a security risk, and they disable Finger. Many other sites, though,
deliberately make this same information available on their Web pages.)

Putting this all together, if you build a Gopher locator using port 79--instead of the default 70--and an empty
filename, you can do a Finger query using the MFC Winlnet classes. First, add another function to
CQueryDlg called TryFinger(), which takes a CString host and returns void. The code for thisfunction is
very much like TryGopherSite(), except that the connection is made to port 79:

connection = session. Get Gopher Connecti on(host, NULL, NULL, 79);

After the connection is made, atext file locator is created:

CCGopher Locator | ocator = connection->CreatelLocat or (NULL, NULL,
GOPHER _TYPE_TEXT_FI LE) ;

Thistime, rather than ssimply cast the locator into a CString, use it to open afile:
C&opherFile* file = connection->0CpenFil e(locator);

Then echo thefirst 20 lines of thisfile, just as TryURL () echoed the first 20 lines of the file returned by a
Web server. The code for thisisin Listing 19.7.

Listing 19.7 QueryDlg.cpp--CQueryDIg::TryFinger() Excerpt

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (12 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

if (file)
{
CString line;
for (int i=0; I < 20 && file->ReadString(line); i++)
{
mout +=1line + "\r\n";
}

file->C ose();
delete file;

}
Putting it all together, Listing 19.8 shows TryFinger().

Listing 19.8 QueryDIg.cpp--CQueryDIg::TryFinger()

voi d CQueryDl g:: TryFinger (CString host)
{
Cl nt er net Sessi on sessi on;
mout += "Trying to Finger " + host + "\r\n";
Updat eDat a(FALSE) ;
CGopher Connecti on* connection = NULL;

try
{
connection = sessi on. Get Gopher Connecti on(host, NULL, NULL, 79) ;
}
catch (Clnternet Exception* pEx)
{
/1if anything went wong, just set connection to NULL
connection = NULL;
pEx- >Del et e() ;
}
I f (connection)
{

m out += "Connection established. \r\n";

C&opher Locator | ocator = connection->CreatelLocat or (NULL, NULL,

GOPHER_TYPE_TEXT_FI LE) ;
CGopherFile* file = connection->CpenFil e(locator);

if (file)
{
CString line;
for (int i=0; I < 20 && file->ReadString(line); i++)
{
mout +=1line + "\r\n";
}

file->C ose();
delete file;

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (13 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

connecti on->C ose();
del et e connecti on;

}
el se
{
mout += "No server found there. \r\n";
}
m_OUt += M e e e e e e e e e e e e e e e e e e, m— \r\nu’

Updat eDat a(FALSE) ;
}

Add aline at the end of OnQuery() that calls this new function:
TryFi nger (m_host) ;

Now, build and run the application. Figure 19.11 shows the result of a query on the site whitehouse.gov,
scrolled down to the Finger section.

FIG. 19.11 Query gets email addresses from the White House Finger server.

NOTE: If the site you are investigating isn't running a Finger server, the delay will be longer
than usual and a message box will appear, telling you the connection timed out. Click OK on the

message box if it appears.[dagger]n

Using Gopher to Send a Whois Query

One last protocol provides information about sites. It, too, is an old protocol not supported directly by the
Winlnet classes. It is called Whois, and it's a service offered by only afew servers on the whole Internet. The
servers that offer this service are maintained by the organizations that register domain names. For example,
domain names that end in .com are registered through an organization called InterNIC, and it runs a Whois
server called rs.internic.net (the rs stands for Registration Services.) Like Finger, Whois responds to a string
sent on its own port; the Whois port is 43. Unlike Finger, you don't send an empty string in the locator; you
send the name of the host that you want to ook up. Y ou connect to rs.internic.net every time. (Dedicated
Whois servers offer users a chance to change this, but in practice, no one ever does.)

Add afunction called TryWhois(); as usual, it takes a CString host and returns void. The codeisin Listing
19.9.

Listing 19.9 QueryDlg.cpp--CQueryDIg::TryWhois()

voi d CQueryD g:: TryWoi s(CString host)
{
Cl nt er net Sessi on sessi on;
mout += "Trying Whois for " + host + "\r\n";
Updat eDat a(FALSE) ;
CGopher Connecti on* connecti on = NULL;
try
{

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (14 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc11.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

connection = session. Get Gopher Connecti on
s("rs.internic.net", NULL, NULL, 43);

}
catch (Cl nternet Exception* pEx)
{
/1if anything went wong, just set connection to NULL
connection = NULL;
pEx->Del et e() ;
}
I f (connection)
{
m out += "Connection established. \r\n";
CGopher Locator | ocator = connecti on->Creat elLocat or (NULL, host,
GOPHER _TYPE_TEXT_FI LE) ;
CCGopherFile* file = connection->QpenFil e(l ocator);
if (file)
{
CString line;
for (int i=0; I < 20 && file->ReadString(line); i++)
{
mout +=line + "\r\n";
}
file->C ose();
delete file;
}
connecti on->C ose();
del et e connecti on;
}
el se
{
m out += "No server found there. \r\n";
}
mout += "--------ime e \r\n";

Updat eDat a(FALSE) ;

}

Add aline at the end of OnQuery() to call it:
Tr yWhoi s(m _host);

Build and run the application one last time. Figure 19.12 shows the Whois part of the report for
mcp.com--thisis the domain for Macmillan Computer Publishing, Que's parent company.

FIG. 19.12 Query gets real-life addresses and names from the InterNIC Whois server.

Adding code after the Finger portion of this application means that you can no longer ignore the times when
the Finger code can't connect. When the call to OpenFile() in TryFinger() tries to open afile on a host that
isn't running a Finger server, an exception is thrown. Control will not return to OnQuery(), and TryWhois()
will never be called. To prevent this, you must wrap the call to OpenFile() in atry and catch block. Listing

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (15 of 17) [7/29/1999 3:53:31 PM]

javascript:popUp('19uvc12.gif')

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

19.10 shows the changes to make.
Listing 19.10 QueryDlg.cpp Changes to TryFinger()
[lreplace this |ine:

CCopherFile* file
[/wth these |ines:

connecti on->QpenFi |l e(l ocator);

CCGopherFile* file = NULL;
try
{
file = connection->QpenFil e(l ocator);
}
catch (Cl nternet Exception* pEX)
{
/1if anything went wong, just set file to NULL
file = NULL;
pEx->Del et e() ;
}

Change TryFinger(), build Query again, and query a site that doesn't run a Finger server, such as
micr osoft.com. You will successfully reach the Whois portion of the application.

Future Work

The Query application built in this chapter does alot, but it could do much more. There are email and news
protocols that could be reached by stretching the Winlnet classes a little more and using them to connect to
the standard ports for these other services. Y ou could also connect to some well-known Web search engines
and submit queries by forming URL s according to the pattern used by those engines. In thisway, you could
automate the sort of poking around on the Internet that most of us do when we're curious about a domain
name or an organization.

If you'd like to learn more about Internet protocols, port numbers, and what's happening when a client
connects to a server, you might want to read Que's Building Internet Applications with Visual C++. The
book was written for Visual C++ 2.0, and though all the applications in the book compile and run under |ater
versions of MFC, the applications would be much shorter and easier to write now. Still, the insight into the
way the protocols work is valuable.

The Winlnet classes, too, can do much more than you've seen here. Query doesn't use them to retrieve rea
files over the Internet. Two of the Winlnet sample applications included with Visual C++ 6.0 do afine job of
showing how to retrievefiles:

o FTPTREE builds atreelist of the files and directories on an FTP site.
o TEAR brings back a page of HTML from a Web site.
There are alot more Microsoft announcements to come in the next few months. Keep an eye on the Web site

www.micr osoft.com for libraries and software development kits that will make Internet software
development even easier and faster.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (16 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 19 -- Internet Programming with the WinlInet Classes

[€= Previous Chapter JBK\=* Next Chapter

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.pbs.mcp.com/ebooks/0789715392/ch19/ch19.htm (17 of 17) [7/29/1999 3:53:31 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

oue
Special Edition Using Visual C++ 6

(e Previons Chapisr JRC> Next Chaptar

- 20 -
Building an Internet ActiveX Control

« Embedding an ActiveX Control in a Microsoft Internet Explorer Web Page
« Embedding an ActiveX Control in a Netscape Navigator Web Page
» Registering as Safe for Scripting and Initializing
o Choosing Between ActiveX and Java Applets
« Using AppWizard to Create Faster ActiveX Controls
« Speeding Control Loads with Asynchronous Properties
o Properties
o Using BLOBs
o Changing Dieroll
o Testing and Debugging Dieroll

Embedding an ActiveX Control in a Microsoft Internet
Explorer Web Page

In Chapter 17, "Building an ActiveX Control,” you learned how to build your own controls and include them in
forms-based applications written in Visual Basic, Visual C++, and the VBA macro language. There's one other place
those controls can go--on a Web page. However, the ActiveX controls generated by older versions of Visual C++
were too big and slow to put on a Web page. This chapter shows you how to place these controls on your Web pages
and how to write faster, sleeker controls that will make your pages a pleasure to use.

It's aremarkably simple matter to put an ActiveX control on a Web page that you know will be loaded by Microsoft
Internet Explorer 3.0 or later. Y ou use the <OBJECT> tag, arelatively new addition to HTML that describes awide
variety of objects that you might want to insert in a Web page: a moving video clip, a sound, a Java applet, an
ActiveX control, and many more kinds of information and ways of interacting with auser. Listing 20.1 shows the
HTML source for a page that displays the Dieroll control from Chapter 17.

Listing 20.1 fatdie.html--Using <OBJECT>

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (1 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

<HEAD>

<TI TLE>A Wb page with a rolling die</TITLE>

</ HEAD>

<BODY>

<OBJECT ID="Dierol | 1"

CLASSI D="CLSI D: 46646B43- EA16- 11CF- 870C- 00201801DDD6"
CODEBASE="di erol | . cab#Versi on=1, 0, 0, 1"

W DTH="200"

HEI GHT=" 200" >

<PARAM NAME="For eCol or" VALUE="0">

<PARAM NAME="BackCol or" VALUE="16777215">

| f you see this text, your browser does not support the OBJECT tag.

</ OBJECT>

Here is sone text after the die

</ BODY>

</ HTML>

The only ugly thing hereisthe CLSID, and the easiest way to get that, because you're a software devel oper, isto cut
and paste it from dieroll.odl, the Object Description Library. Open the dieroll project you built in Chapter 17 and use
FileView to open dieroll.odl quickly. Here's the section in dieroll.odl that includes the CLSID:

/1 Cass information for CDieroll Crl
[uuid(46646B43- EA16- 11CF- 870C- 00201801DDD6) ,
hel pstring("Dieroll Control"), control]

This section is at the end of dieroll.odl--the earlier CLSIDs do not refer to the whole control, only to portions of it.
Copy the uuid from inside the brackets into your HTML source.

TIP: Microsoft has a product called the Control Pad that gets CL SIDs from the Registry for you and
makes life easier for Web page builders who are either intimidated by instructions like "open the ODL
file" or don't have the ODL file becauseit's not shipped with the control. Because you're building this
control and know how to open filesin Developer Studio, this chapter will not describe the Control Pad
tool. If you're curious, see Microsoft's Control Pad Web page at

http://www.micr osoft.com/wor kshop/author/cpad/ for more details.

The CODEBA SE attribute of the OBJECT tag specifies where the OCX fileis kept, so if the user doesn't have a
copy of the ActiveX control, one will be downloaded automatically. The use of the CLSID meansthat if this user
has already installed this ActiveX control, there is no download time; the control is used immediately. Y ou can
simply specify an URL to the OCX file, but to automate the DLL downloading, this CODEBA SE attribute points to
a CAB file. Putting your control in a CAB file will cut your download time by nearly half. Y ou can learn more about
CAB technology at http://www.micr osoft.com/intdev/cab/. That page iswritten for Java developers, but the

technology works just as well to cut the download time for ActiveX controls.

TIP: If you don't have access to a Web server in which to put controls while you're developing them,
use afile:// URL in the CODEBASE attribute that points to the control's location on your hard drive.

The remaining OBJECT tag attributes will be intuitive if you've built a Web page before: 1D is used by other tags on
the page to refer to this control; WIDTH and HEIGHT specify the size, in pixels, of the control's appearance; and

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (2 of 12) [7/29/1999 3:54:12 PM]

http://www.microsoft.com/workshop/author/cpad/
http://www.microsoft.com/intdev/cab/

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control
HSPACE and VSPACE are horizontal and vertical blank spaces, in pixels, around the entire control.

Everything after the <OBJECT ...> tag and before the </OBJECT> tag isignored by browsers that understand the
OBJECT tag. (The <OBJECT...> tag is usually many lines long and contains all the information to describe the
object.) Browsers that don't understand the OBJECT tag ignore the <OBJECT ...> tag and the </OBJECT> tag and
display the HTML between them (in this case, aline of text pointing out that this browser doesn't support the tag).
Thisis part of the specification for a \Web browser: It should ignore tags it doesn't understand.

Figure 20.1 shows this page displayed in Microsoft Explorer 3.0. Clicking the die rollsit, and everything works
beautifully. Things certainly look simple and amazing, but two flaws appear immediately:

« Not all browsers support the OBJECT tag.
« It cantake along timeto download the control.

FI G. 20.1 Microsoft Internet Explorer can show ActiveX controls.

Figure 20.2 shows the same page displayed in Netscape Navigator 3.0. It doesn't support the OBJECT tag, so it
doesn't show the die. Also, Netscape Navigator is used by more than half the people who browse the Web! Does that
mean it's not worth writing ActiveX controls for Web pages? Not at all. Asyou'll seein the very next section, there's
away that Navigator users can use the same controls as Explorer users.

FI G. 20.2 Netscape Navigator can't show ActiveX controls.

The sizeissue isabigger worry. The release version of the Dieroll control, as built for Chapter 17, is 26KB. Many
designers put a 50K B limit per Web page for graphics and other material to be downloaded, and this simple control
uses half that limit. A more powerful control would easily exceed it. The mgjority of this chapter deals with waysto
reduce that size or otherwise minimize the download time for ActiveX controls. Web page designers can then tap the
controls full power without worrying that users will label their pages as slow, one of the worst knocks against any
Web site.

There's athird flaw that you won't notice because you have Visual C++ installed on your computer. The control
requires the MFC DLL. The user must download it and install it before the controls can run. The mechanism that
automatically downloads and installs controls doesn't automatically download and install this DLL, though using a
CAB file as discussed earlier can make it possible.

TIP: For an example of a Web page that includes a CAB file for the Dieroll control and the MFC
DLLs, cometo http://www.gr egcons.com/dieroll.htm.

NOTE: It might occur to you to try linking the MFC Library statically into your control. It seems easy
enough to do: Choose Project, Settings, and on the General tab there is a drop-down list box inviting
you to choose static linking. If you do that and build, you'll get hundreds of linker errors: The
COleControl and CPropPage functions are not in the DLL that islinked statically. (That's because
Microsoft felt it would be foolish to link the MFC functions statically in a control.) Setting up another
library to link in those functions is beyond the scope of this chapter, especially because al this work
would lead to an enormous (more than IMB) control that would take far too long to download the first
time.

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (3 of 12) [7/29/1999 3:54:12 PM]

javascript:popUp('20uvc01.gif')
javascript:popUp('20uvc02.gif')
http://www.gregcons.com/dieroll.htm

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

Embedding an ActiveX Control in a Netscape Navigator
Web Page

NCompass L abs (www.ncompasslabs.com) has produced a Netscape plug-in, called ScriptActive, that enables you
to embed an ActiveX control in a page to be read with Netscape Navigator. The HTML for the page must be
changed, as shown in Listing 20.2. (Resist the temptation to get the plug-in and load this HTML into Netscape
yourself until you have registered the control as safe for initializing and scripting in the next section.)

TIP: You can download a demonstration version of the plug-in for afree 30-day trial from the
NCompass Labs Web site.

Listing 20.2 fatdie2.html--Using <OBJECT> and <EMBED>

<HTM_>

<HEAD>

<TI TLE>A Wb page wth a rolling die</TITLE>
</ HEAD>

<BODY>

<OBJECT ID="Dieroll 1"

CLASSI D="CLSI D: 46646B43- EA16- 11CF- 870C- 00201801 DDD6"
CODEBASE="di erol | . cab#Ver si on=1, 0, 0, 1"

W DTH=" 200"

HElI GHT=" 200" >

<PARAM NAME=" For eCol or" VALUE="0">

<PARAM NANME="BackCol or" VALUE="16777215">
<PARAM NAME="| mage" VALUE="beans. bnp">
<EMBED LI VECONNECT NAME="Di erol | 1"

W DTH=" 200"

HEI GHT=" 200"

CLASSI D="CLSI D: 46646B43- EA16- 11CF- 870C- 00201801DDD6"
TYPE="appl i cati on/ ol eobj ect"
CODEBASE="di erol | . cab#Versi on=1, 0, 0, 1"
PARAM For eCol or =" 0"

PARAM BackCol or="16777215" >

</ OBJECT>

Here is sone text after the die

</ BODY>

</ HTM.>

It isthe <EMBED> tag that brings up the plug-in. Because it'sinside the <OBJECT>...</OBJECT> tag, Microsoft
Internet Explorer and other browsers that know the OBJECT tag will ignore the EMBED. This means that this
HTML source will display the control equally well in Netscape Navigator and in Explorer. You'll probably want to
include alink on your page to the NCompass page to help your readers find the plug-in and learn about it.

Microsoft is committed to establishing ActiveX controls as a cross-platform, multibrowser solution that will, in the
words of its slogan, "Activate the Internet.” The ActiveX control specification isno longer a proprietary document
but has been released to a committee that will maintain the standard. Don't pay any attention to people who suggest
you should only build these controlsif your readers use Internet Explorer!

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (4 of 12) [7/29/1999 3:54:12 PM]

http://www.ncompasslabs.com/

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

Registering as Safe for Scripting and Initializing

For any of your readers who operate with a Medium safety level, the control should be registered as safe for
scripting and initializing. This assures anyone who wants to view a page containing the control that no matter what
functions are called from a script or what parameters are initialized through the PARAM attribute, nothing unsafe
will happen. For an example of a control that isn't safe, think of a control that deletes afile on your machine when it
executes. The default file is one you won't miss or that probably won't exist. A page that put this control in a script,
or that initialized the filename with PARAM attributes, might order the control to delete a very important file or
files, based on guesses about where most people keep documents. It would be simple to delete

C:\M SOFFICE\WINWORD\WINWORD.EXE, for example, and that would be annoying for Word users. Figure
20.3 shows the error message displayed in Explorer when you are using the Medium safety level and load a page
featuring a control that isn't registered as script-safe or init-safe. The NCompass L abs plug-in, ScriptActive, also
refuses to load controls that are not registered as script-safe and init-safe.

FIG. 20.3 Explorer alerts you to controls that might run amok.

First, you need to add three functions to DierolICtl.cpp. (They come unchanged from the ActiveX SDK.) These
functions are called by code presented later in this section. Don't forget to add declarations of these functions to the
header file, too. The codeisin Listing 20.3.

Listing 20.3 DierolICtl.cpp--New Functions to Mark the Control as Safe

FOEEEEEErr i rrrriry
/'l Copied fromthe ActiveX SDK
/1l This code is used to register and unregister a
/'l control as safe for initialization and safe for scripting
HRESULT Creat eConponent Cat egory(CATID catid, WCHAR* cat Descri pti on)
{
| Cat Regi ster* pcr = NULL ;
HRESULT hr = S K ;
hr = CoCreat el nstance(CLSI D_St dConponent Cat egori esMyr,
NULL, CLSCTX | NPROC _SERVER, |1D_|I Cat Regi ster, (void**)&pcr);
i f (FAILED(hr))
return hr;
/1 Make sure the HKCR\ Conponent Categories\{..catid...}
/'l key is registered
CATEGORYI NFO cati nf o;
catinfo.catid = catid;
catinfo.lcid = 0x0409 ; // english
/1 Make sure the provided description is not too | ong.
/'l Only copy the first 127 characters if it is
int len = wesl en(cat Descri ption);
i f (1 en>127)
len = 127;
wesncpy(cati nfo.szDescription, catDescription, |en);
/'l Make sure the description is null term nated
catinfo.szDescription[len] = "\0';
hr = pcr->Regi sterCategories(1l, &catinfo);
pcr - >Rel ease() ;
return hr;

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (5 of 12) [7/29/1999 3:54:12 PM]

javascript:popUp('20uvc03.gif')

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

}
HRESULT Regi st er CLSI DI nCat egor y(REFCLSI D cl sid, CATID catid)

{
/'l Register your conponent categories infornmation.
| Cat Regi ster* pcr = NULL ;
HRESULT hr = S K ;
hr = CoCreatel nstance(CLSI D_St dConponent Cat egori esMyr,
NULL, CLSCTX | NPROC _SERVER, |1D_I Cat Regi ster, (void**)&pcr);
i f (SUCCEEDED(hr))

{

/'l Register this category as being "inplenented" by

/'l the cl ass.

CATID rgcatid[1] ;

rgcatid[0] = catid,;

hr = pcr->Regi sterd assl npl Categories(clsid, 1, rgcatid);
}

if (pcr !'= NULL)
pcr - >Rel ease() ;
return hr;

}
HRESULT UnRegi st er CLSI DI nCat egor y(REFCLSI D cl sid, CATID cati d)

{
| Cat Regi ster* pcr = NULL ;
HRESULT hr = S K ;
hr = CoCreat el nstance(CLSI D_St dConponent Cat egori esMyr,
NULL, CLSCTX | NPROC_SERVER, |1D_I Cat Regi ster, (void**)&pcr);
i f (SUCCEEDED(hr))

{

/'l Unregister this category as being "inplenented" by

/'l the cl ass.

CATID rgcatid[1] ;

rgcatid[0] = catid;

hr = pcr->UnRegi ster d assl npl Cat egories(clsid, 1, rgcatid);
}

i f (pcr !'= NULL)
pcr - >Rel ease();
return hr;

}

Second, add two #include statements at the top of DierollCtl.cpp:

#i ncl ude "conctat. h"
#i ncl ude "objsafe. h"

Finally, modify UpdateRegistry() in DierolICtl.cpp to call these new functions. The new code calls
CreateComponentCategory() to create a category called CATID_SafeForScripting and adds this control to that
category. Then it creates a category called CATID_SafeForlnitializing and adds the control to that category as well.
Listing 20.4 shows the new version of UpdateRegistry().

Listing 20.4 DierollCtl.cpp--CDierollCtrl::CDierollCtrIFactory::UpdateRegistry()

BOOL Chieroll Ctrl::Ch eroll Crl Factory:: Updat eRegi stry(BOOL bRegi ster)

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (6 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

{
/[l TODO Verify that your control follows apartnent-nodel threading rules.
/! Refer to MFC TechNote 64 for nore information.
/1 1f your control does not conformto the apartnent-nodel rules, then
/'l you nmust nodify the code bel ow, changing the 6th paraneter from
/'l af xRegl nsertabl e | af xRegApartnment Threadi ng to af xRegl nsert abl e.
i f (bRegister)
{
HRESULT hr = S K ;
/'l register as safe for scripting
hr = Creat eConponent Cat egor y(CATI D_Saf eFor Scri pti ng,
L"Controls that are safely scriptable");
if (FAILED(hr))
return FALSE;
hr = Regi ster CLSI DI nCat egory(m cl sid, CATI D _Saf eFor Scri pting);
if (FAILED(hr))
return FALSE;
/'l register as safe for initializing
hr = Creat eConponent Cat egor y(CATI D_Saf eForl nitializing,
L"Controls safely initializable from persistent data");
if (FAILED(hr))
return FALSE;
hr = Regi ster CLSI DI nCat egory(m cl sid, CATID SafeForlnitializing);
if (FAILED(hr))
return FALSE;
return Af xd eRegi sterControl d ass(
Af xCGet | nst anceHandl e() ,
m cl si d,
m | pszPr ogl D,
| DS_DI ERCOLL,
| DB_DI EROLL,
af xRegl nsertabl e | af xRegApart nment Thr eadi ng,
_dwhDi erol | d eM sc,
_tlid,
_WVer Maj or,
_WVer M nor) ;
el se
{
HRESULT hr = S K ;
hr = UnRegi st er CLSI DI nCat egory(m cl si d, CATI D _Saf eFor Scri pting);
if (FAILED(hr))
return FALSE;
hr = UnRegi st er CLSI DI nCat egory(m cl sid, CATID SafeForlInitializing);
if (FAILED(hr))
return FALSE;
return Af xd eUnregisterCl ass(mclsid, mlpszProglD);
}
}

To confirm that this works, open Explorer and set your safety level to Medium. Load the HTML page that uses the
control; it should warn you the control is unsafe. Then make these changes, build the control, and reload the page.

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (7 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

The warning will not reappear.

Choosing Between ActiveX and Java Applets

Javais an application devel opment language as well as an applet development language, which means you can
develop ActiveX controlsin Javaif you choose to, using atool like Microsoft's Visual J++ integrated into Devel oper
Studio. When most people frame a showdown like ActiveX versus Java, though, they mean ActiveX versus Java
applets, which are little, tightly contained applications that run on a Web page and can't run standalone.

Many people are concerned about the security of running an application they did not code, when they do not know
the person or organization supplying the application. The Java approach attempts to restrict the actions that applets
can perform so that even malicious applets can't do any real damage. However, regular announcements of flawsin
the restriction approach are damaging Javas credibility. Even if a Java applet were guaranteed to be safe, these same
restrictions prevent it from doing certain useful tasks, since they cannot read or write files, send email, or load
information from other Internet sites.

The approach taken by Microsoft with ActiveX is the trusted supplier approach, which is extendable to Java and any
other code that can execute instructions. Code is digitally signed so that you are sure who provided it and that it has
not been changed since it was signed. Thiswon't prevent bad things from happening if you run the code, but it will
guarantee that you know who isto blame if bad things do occur. Thisisjust the same as buying shrink- wrapped
software from the shelf in the computer store. For more details, look at

http://www.micr osoft.com/ie/most/howto/tr usted.htm and follow some of the links from that page.

Probably the biggest difference between the ActiveX approach and the Java applet approach is downloading. Java
code is downloaded every time you load the page that contains it. ActiveX code is downloaded once, unless you
already have the control installed some other way (perhaps a CD-ROM was sent to you in a magazine, for example)
and then never again. A copy is stored on the user's machine and entered in the Registry. The Java code that is
downloaded is small because most of the code involved isin the Java Virtual Machine installed on your compuiter,
probably as part of your browser.

The ActiveX code that's downloaded can be much larger, though the optimizations discussed in the next section can
significantly reduce the size by relying on DLLs and other code already on the user's computer. If users cometo this
page once and never again, they might be annoyed to find ActiveX controls cluttering their disk and Registry. On
the other hand, if they come to the same page repeatedly, they will be pleased to find that there is no download time:
The control simply activates and runs.

There are till other differences. Java applets can't fire events to notify the container that something has happened.
Java applets can't be licensed and often don't distinguish between design-time and runtime use. Java applets can't be
used in Visual Basic forms, VC++ programs, or Word documents in the same way that ActiveX controls can.
ActiveX controls are nearly 10 times faster than Java applets. In their favor, Java applets are genuinely
multiplatform and typically smaller than the equivalent ActiveX control.

Using AppWizard to Create Faster ActiveX Controls

Microsoft did not develop OCX controls to be placed in Web pages, and changing their name to ActiveX controls
didn't magically make them faster to load or smaller. So the AppWizard that comes with Visual C++ has a number
of options available to achieve those ends. This chapter changes these options in the Dieroll control that was aready
created, just to show how it's done. Because Dieroll is aready alean control and loads quickly, these simple changes
won't make much difference. It's worth learning the techniques, though, for your own controls, which will surely be
fatter than Dieroll.

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (8 of 12) [7/29/1999 3:54:12 PM]

http://www.microsoft.com/ie/most/howto/trusted.htm

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

Thefirst few options to reduce your control's size have always been available on Step 2 of the ActiveX
ControlWizard:

« Activates When Visible

« Invisible at Runtime

« Availablein Insert Object Dialog Box
« Hasan About Box

« ActsasaSimple Frame Control

If you are developing your control solely for the Web, many of these settings won't matter anymore. For example, it
doesn't matter whether your control has an About box; users won't be able to bring it up when they are viewing the
control in aWeb page.

The Activates When Visible option is very important. Activating a control takes alot of overhead activity and
should be postponed as long as possible so that your control appears to load quickly. If your control activates as
soon asitisvisible, you'll add to the time it takes to load your control. To deselect this option in the existing Dieroll
code, open the Dieroll project in Developer Studio if it isn't still open, and open Dieroll Ctl.cpp with FileView. Look
for ablock of code like the onein Listing 20.5.

Listing 20.5 Excerpt from DierollCtl.cpp--Setting Activates When Visible

FEEETEEEEErr i bbb i bbb rrrrrgd
/1l Control type information
static const DWORD BASED CODE dwDieroll deMsc =

OLEM SC_ACTI VATEWHENVI S| BLE |

OLEM SC_SETCLI ENTSI TEFI RST |

OLEM SC_I NSI DEQUT |

OLEM SC_CANTLI NKI NSI DE |

OLEM SC_RECOVPOSEONRESI ZE;

| MPLEMENT_OLECTLTYPE(CDi erol I Ctrl, 1 DS DI EROLL, _dwDhierolld eM sc)

Deletethe OLEMISC_ACTIVATEWHENVISIBLE line. Build arelease version of the application. Though the size
of the Dieroll OCX fileis unchanged, Web pages with this control should load more quickly because the window
isn't created until the user first clicks on the die. If you reload the Web page with the diein it, you'll see the first
value immediately, even though the control isinactive. The window is created to catch mouse clicks, not to display
thedierall.

There are more optimizations available. Figure 20.4 shows the list of advanced options for ActiveX ControlWizard,
reached by clicking the Advanced button on Step 2. Y ou can choose each of these options when you first build the
application through the ControlWizard. They can also be changed in an existing application, saving you the trouble
of redoing AppWizard and adding your own functionality again. The options are

« Windowless Activation

« Unclipped Device Context

o Flicker-Free Activation

« Mouse Pointer Notifications When Inactive
« Optimized Drawing Code

« Loads Properties Asynchronously

FI G. 20.4 The Advanced button on Step 2 of the ActiveX ControlWizard leads to a choice of optimizations.

Windowless activation is going to be very popular because of the benefitsit provides. If you want atransparent

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (9 of 12) [7/29/1999 3:54:12 PM]

javascript:popUp('20uvc04.gif')

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

control or one that isn't arectangle, you must use windowless activation. However, because it reduces code size and
speeds execution, every control should consider using this option. Modern containers provide the functionality for
the control. In older containers, the control creates the window anyway, denying you the savings but ensuring that
the control still works.

To implement the Windowless Activation option in Dieroll, override CDierolICtrl::GetControl Flags() like this:

DWORD CDi erol I Ctrl:: GetControl Fl ags()
{

}

Add the function quickly by right-clicking CDierollICtrl in ClassView and choosing Add Member Function. If you
do thisto Dierall, build it, and reload the Web page that usesit, you'll notice no apparent effect because Dieroll is
such alean control. You'll at least notice that it still functions perfectly and doesn't mind not having a window.

return CA eControl::GetControl Flags()| w ndow essActi vat e;

The next two options, Unclipped Device Context and Flicker-Free Activation, are not available to windowless
controls. In acontrol with awindow, choosing Unclipped Device Context means that you are completely sure that
you never draw outside the control's client rectangle. Skipping the checks that make sure you don't means your
control runs faster, though it could mean trouble if you have an error in your draw code. If you were to do thisin
Dierall, the override of GetControlFlags() would look like this:

DWORD CDieroll Ctrl:: GetControl Fl ags()
{

}

Don't try to combine this with windowless activation: It doesn't do anything.

return CO eControl:: GetControl Fl ags() & ~cl i pPai nt DC,

Flicker-free activation is useful for controls that draw their inactive and active views identically. (Think back to
Chapter 15, "Building an ActiveX Server Application," in which the server object was drawn in dimmed colors
when the objects were inactive.) If thereisno need to redraw, because the drawing code is the same, you can select
this option and skip the second draw. Y our users won't see an annoying flicker as the control activates, and
activation will be atiny bit quicker. If you wereto do thisin Dieroll, the GetControl Flags() override would be

DWORD CDieroll Ctrl:: GetControl Fl ags()
{

}

Like unclipped device context, don't try to combine this with windowless activation: It doesn't do anything.

return CA eControl::GetControl Flags()| noFlickerActi vate;

Mouse pointer notifications, when inactive, enable more controlsto turn off the Activates When Visible option. If
the only reason to be active isto have awindow to process mouse interactions, this option will divert those
interactions to the container through an | Pointerlnactive interface. To enable this option in an application that is
already built, you override GetControl Flags()again:

DWORD CDi erol I Ctrl:: GetControl Fl ags()
{

}

Now your code will receive WM_SETCURSOR and WM_MOUSEM OV E messages through message map entries,
even though you have no window. The container, whose window your control is using, will send these messages to
you through the | Pointerl nactive interface.

return CA eControl::GetControl Flags()| pointerlnactive;

The other circumstance under which you might want to process window messages while still inactive, and so

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (10 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

without awindow, isif the user drags something over your control and drops it. The control needs to activate at that
moment so that it has a window to be a drop target. Y ou can arrange that with an override to GetActivationPolicy():

DWORD CDierol I Ctrl::GetActivationPolicy()
{

}

Don't bother doing thisif your control isn't adrop target, of course.

return PO NTERI NACTI VE_ACTI VATEONDRAG

The problem with relying on the container to pass on your messages through the | Pointerl nactive interface is that the
container might have no idea such an interface exists and no plans to pass your messages on with it. If you think
your control might end up in such a container, don't remove the OLEMISC_ACTIVATEWHENVISIBLE flag from
the block of code shown previously inin Listing 20.5

Instead, combine another flag, OLEMISC_IGNOREACTIVATEWHENVISIBLE, with these flags using the bitwise
or operator. This oddly named flag is meaningful to containers that understand | Pointerlnactive and means, in effect,
"| take it back-- don't activate when visible after all." Containers that don't understand | Pointerl nactive don't
understand this flag either, and your control will activate when visible and thus be around to catch mouse messages
in these containers.

Optimized drawing code is only useful to controls that will be sharing the container with a number of other drawing
controls. Asyou might recall from Chapter 5, "Drawing on the Screen," the typical pattern for drawing aview of
any kind isto set the brush, pen, or other GDI object to a new value, saving the old. Then you use the GDI object
and restore it to the saved value. If there are several controls doing thisin turn, all those restore steps can be skipped
in favor of one restore at the end of all the drawing. The container saves all the GDI object values before instructing
the controls to redraw and afterwards restores them all.

If you would like your control to take advantage of this, you need to make two changes. First, if a pen or other GDI
object is to remain connected between draw calls, it must not go out of scope. That means any local pens, brushes,
and fonts should be converted to member variables so that they stay in scope between function calls. Second, the
code to restore the old objects should be surrounded by an if statement that calls COleControl::1sOptimizedDraw()
to see whether the restoration is necessary. A typical draw routine would set up the colors and proceed like this:

i f(' m_pen. m _hQbj ect)

{
m _pen. Cr eat ePen(PS_SOLI D, 0, forecolor);
}
i f(!'mbrush. m hQbject)
{
m _brush. Creat eSol i dBr ush(backcol or);
}

CPen* savepen = pdc->Sel ect Obj ect (&m pen);
CBrush* savebrush = pdc->Sel ect Obj ect (&m brush);

// . use devi ce cont ext
i f(11sOptimzedDraw())
{

pdc- >Sel ect Obj ect (savepen);
pdc- >Sel ect Obj ect (savebrush);

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (11 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 20 -- Building an Internet ActiveX Control

The device context has the addresses of the member variables, so when it lets go of them at the direction of the
container, their m_hObject member becomes NULL. Aslong asit isn't NULL, there is no need to reset the device
context, and if this contain

http://www.pbs.mcp.com/ebooks/0789715392/ch20/ch20.htm (12 of 12) [7/29/1999 3:54:12 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

oue
Special Edition Using Visual C++ 6

{4 Previous Chapter JER.—* Next Chapter

21 -
The Active Template Library

e Why Usethe ATL?
« Using AppWizard to Get Started
« Using the Object Wizard
o Adding a Control to the Project
o Naming the Control
o Setting Control Attributes
0 Supporting Stock Properties

« Adding Properties to the Control
0 Code from the Object Wizard
0 Adding the ReadyState Stock Property
o Adding Custom Properties

o Initializing the Properties

o Adding the Asynchronous Property

« Drawing the Control

o Persistence and a Property Page
o Adding a Property Page
o Connecting the Property Page to CDieRoll

o Persistence in a Property Bag
« Using the Control in Control Pad
o Adding Events
o Adding Methods to the Event Interface
o Implementing the I ConnectionPoint | nterface

o Firing the Click Event
o Firing the ReadyStateChange Event
o Exposing the DoRoll() Function

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (1 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

o Registering asinit Safe and script Safe

o Preparing the Control for Usein Design Mode

« Minimizing Executable Size

« Using the Control in a Web Page

The Active Template Library (ATL) isacollection of C++ class templates that you can useto build ActiveX controls.
These small controls generally don't use MFC, the Microsoft Foundation Classes, at all. Writing an ActiveX control
with ATL requires alot more knowledge of COM and interfaces than writing an MFC ActiveX control, because MFC
protects you from alot of low-level COM concepts. Using ATL is not for the timid, but it pays dividendsin smaller,
tighter controls. This chapter rewrites the Dieroll control of Chapter 17, "Building an ActiveX Control," and Chapter
20, "Building an Internet ActiveX Control," by using ATL rather than MFC as in those chapters. Y ou will learn the
important COM/ActiveX concepts that were skimmed over while you were using MFC.

Why Use the ATL?

Building an ActiveX Control with MFC issimple, as you saw in Chapters 17 and 20. Y ou can get by without
knowing what a COM interface is or how to use atype library. Y our control can use al sorts of handy MFC classes,
such as CString and CWnd, can draw itself by using CDC member functions, and more. The only downside is that
users of your control need the MFC DLLs, and if those DLLs aren't on their system aready, the delay while 600KB
or so of CAB file downloads will be significant.

The dternative to MFC isto obtain the ActiveX functionality from the ATL and to call Win32 SDK functions, just as
C programmers did when writing for Windows in the days before Visual C++ and MFC. The Win32 SDK isalot to
learn and won't be fully covered in this chapter. The good newsisthat if you're familiar with magjor MFC classes, such
as CWnd and CDC, you will recognize alot of these SDK functions, even if you've never seen them before. Many
MFC member functions are merely wrappers for SDK functions.

How much download time can you save? The MFC control from Chapter 20 is nearly 30KB plus, of course, the MFC
DLLs. The ATL control built in this chapter is, at most, 100KB and is fully self-contained. With afew tricks, you
could reduce it to 50K B of control and 20KB for the ATL DLL--one-tenth the size of the total control and DLL from
Chapter 20!

Using AppWizard to Get Started

There'san AppWizard that knows how to make ATL controls, and it makes your job much simpler than it would be
without the wizard. As always, choose File, New and click the Projects tab on the New dialog. Fill in an appropriate
directory and name the project DieRollControl, as shown in Figure 21.1. Click OK.

NOTE: It'stempting to name the project DieRoll, but later in this process you will be inserting a control
into the project--that control will be called DieRoll, so to avoid name conflicts, choose alonger name for
the project.

FIG. 21.1 AppWizard makes creating an ATL control simple.

Thereisonly one step inthe ATL COM AppWizard, and it is shown in Figure 21.2. The default choices-DLL
control, no merging proxy/stub code, no MFC support, no MTS support--are the right ones for this project. Thefile
extension will be DLL rather than OCX, asit was for MFC controls, but that's not an important difference. Click
Finish.

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (2 of 26) [7/29/1999 3:54:54 PM]

javascript:popUp('21uvc01.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

FIG. 21.2 Create a DLL control.

The New Project Information dialog box, shown in Figure 21.3, confirms the choices you have made. Click OK to
create the project.

Using the Object Wizard

The ATL COM AppWizard created 13 files, but you don't have a skeleton control yet. First, you haveto follow the
instructions included in the Step 1 dialog box and insert an ATL object into the project.

Adding a Control to the Project

Choose Insert, New ATL Object from the menu bar. This opensthe ATL Object Wizard, shown in Figure 21.4.

FIG. 21.3 Your ATL choices are summarized before you create the project.
FIG. 21.4 Add an ATL control to your project.

Y ou can add severa kinds of ATL objectsto your project, but at the moment you are interested only in controls, so
select Controlsin the list box on the left. The choicesin the list box on the |eft include Full Control, Lite Control, and
Property Page. If you know for certain that this control will be used only in Internet Explorer, perhaps as part of an
intranet project, you could choose Lite Control and save alittle space. This DieRoll control might end up in any
browser, aVisual Basic application, or anywhere else for that matter, so a Full Control isthe way to go. You will add
aproperty page later in this chapter. Select Full Control and click Next.

Naming the Control

Now the ATL Object Wizard Properties dialog box appears. The first tab is the Names tab. Here you can customize
all the names used for this control. Enter DieRoll for the Short Name of DieRoll, and the rest will default to names
based on it, as shown in Figure 21.5. Y ou could change these names if you want, but there is no need. Note that the
Type, DieRoll Class, isthe name that will appear in the Insert Object dialog box of most containers. Because the
MFC version of DieRoll is probably already in your Registry, having adifferent name for this version is a good thing.
On other projects, you might consider changing the type name.

FIG. 21.5 Sat the names of the files and the control.

Setting Control Attributes

Click the Attributes tab. Leave the default values: Apartment Threading Model, Dual Interface, and Yes for
Aggregation. Select the check boxes Support | SupportErrorinfo and Support Connection Points. Leave Free Threaded
Marshaler deselected, as shown in Figure 21.6. Each of these choicesis discussed in the paragraphs that follow.

FIG. 21.6 Set the COM properties of your control.

Threading Models Avoid selecting the Single Threading Model, even if your controls don't have any threading. To
be sure that no two functions of such a control are running at the same time, al calls to methods of a single-threaded
control must be marshalled through a proxy, which significantly slows execution. The Apartment setting is a better
choice for new controls.

The Apartment model refersto STA (Single-Threaded A partment model). This means that access to any resources
shared by instances of the control (globals and statics) is through serialization. Instance data--local automatic
variables and objects dynamically alocated on the heap--doesn't need this protection. This makes STA controls faster

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (3 of 26) [7/29/1999 3:54:54 PM]

javascript:popUp('21uvc02.gif')
javascript:popUp('21uvc03.gif')
javascript:popUp('21uvc04.gif')
javascript:popUp('21uvc05.gif')
javascript:popUp('21uvc06.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
than single-threaded controls. Internet Explorer exploits STA in controlsit contains.

TIP: If the design for your control includes alot of globals and statics, it might be agreat deal of work to
use the Apartment model. Thisisn't agood reason to write a single-threaded control; it's a good reason to
redesign your control as a more object-oriented system.

The Free Threading (Multithreaded Apartment or MTA) Model refers to controls that are threaded and that already
include protection against thread collisions. Although writing a multithreaded control might seem like a great idea,
using such a control in a nonthreaded or STA container will result in marshalling again, this time to protect the
container against having two functions called at once. This, too, introduces inefficiencies. Also, you, the developer,
will do a significant amount of extrawork to create a free-threaded control, because you must add the thread collision
protection.

The Both option in the Threading Model column asks the wizard to make a control that can be STA or MTA,
avoiding inefficiences when used in a container that is single-threaded or STA, and exploiting the power of MTA
models when available. You will have to add the threading-protection work, just as when you write an MTA control.

At the moment, controls for Internet Explorer should be STA. DCOM controls that might be accessed by several
connections at once can benefit from being MTA.

Dual and Custom Interfaces COM objects communicate through interfaces, which are collections of function
names that describe the possible behavior of a COM object. To use an interface, you obtain a pointer to it and then
call amember function of the interface. All Automation servers and ActiveX controls have an IDispatch interfacein
addition to any other interfaces that might be specific to what the server or control isfor. To call amethod of a
control, you can use the Invoke() method of the IDispatch interface, passing in the dispid of the method you want to
invoke. (This technique was developed so that methods could be called from Visual Basic and other pointerless
languages.)

Simply put, a dual-interface control lets you call methods both ways: by using a member function of a custom
interface or by using I Dispatch. MFC controls use only IDispatch, but thisis slower than using a custom interface.
The Interface column on this dialog box lets you choose Dual or Custom: Custom leaves | Dispatch out of the picture.
Select Dual so that the control can be used from Visual Basic, if necessary.

Aggregation The third column, Aggregation, governs whether another COM class can use this COM class by
containing areference to an instance of it. Choosing Y es means that other COM objects can use this class, No means
they can't, and Only means they must--this object can't stand alone.

Other Control Settings Selecting support for | SupportErrorinfo means that your control will be able to return richer
error information to the container. Selecting support for Connection Points is vital for a control, like this one, that will
fire events. Selecting Free-Threaded Marshaler isn't required for an STA control.

Click the Miscellaneous tab and examine all the settings, which can be | eft at their default values (see Figure 21.7).
The control should be Opague with a Solid Background and should use a normalized DC, even though that's slightly
less efficient, because your draw code will be much easier to write.

TIP: If you'd like to see how aDC is normalized for an ATL control, remember that the entire ATL
sourceis available to you, just asthe MFC sourceis. In Program Files\Microsoft Visual
Studio\VC98\ATL\ Include\ATLCTL.CPP, you will find CComControlBase::OnDrawA dvanced(),
which normalizes aDC and calls OnDraw() for you.

FIG. 21.7 Leave the Miscellaneous properties at the defaults.

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (4 of 26) [7/29/1999 3:54:54 PM]

javascript:popUp('21uvc07.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

Supporting Stock Properties

Click the Stock Properties tab to specify which stock properties the control will support. To add support for a stock
property, select it in the Not Supported list box; then click the > button, and it will be moved to the Supported list on
the right. Add support for Background Color and Foreground Color, as shown in Figure 21.8. If you plan to support a
lot of properties, use the >> button to move them all to the supported list and then move back the ones you don't want
to support.

FIG. 21.8 Support Background Color and Foreground Color.

Click OK on the Object Wizard to complete the control creation. At this point, you can build the project if you want,
though the control does nothing at the moment.

Adding Properties to the Control

The MFC versions of DieRoll featured three stock properties: BackColor, ForeColor, and ReadyState. The first two
have been added already, but the ReadyState stock properties must be added by hand. Also, there are two custom
properties, Number and Dots, and an asynchronous property, Image.

Code from the Object Wizard

A COM class that implements or uses an interface does so by inheriting from a class representing that interface.
Listing 21.1 shows all the classes that CDieRoll inherits from.

Listing 21.1 Excerpt from DieRoll.h in the DieRollControl Project--Inheritance

cl ass ATL_NO VTABLE CDi eRol | :
publ i ¢ CConthj ect Root Ex<CConSi ngl eThr eadModel >,
public CStockProplnpl<ChieRoll, IDieRoll, & ID ID eRoll,
-&LI Bl D_DI EROLLCONTROLLI b>,
publ i ¢ CContControl <CDi eRol | >,

public | PersistStream nitlnpl <CDi eRol | >,

public 1A eControl | nmpl <CDhi eRol | >,

public 1A eMojectlnpl <Chi eRol | >,

public 1A el nPlaceActiveQbjectl npl <CDi eRol | >,
public |Vi enCbj ect ExI npl <CDi eRol | >,

public 1A el nPlaceCbj ect Wndow essl npl <CDi eRol | >,
publ i c | SupportErrorlnfo,

publ i ¢ | Connecti onPoi nt Cont ai ner | npl <CDi eRol | >,
publ i c | Persi st Storagel npl <CDi eRol | >,

publ i c | SpecifyPropertyPagesl npl <CDi eRol | >,
public | Qui ckActi vatel npl <CDi eRol | >,

publ i ¢ | Dat aQbj ect | npl <CDi eRol | >,

public | Provided assl nf o2l npl <&CLSI D Di eRol |,
-&DI | D__I Di eRol | Events, &LI Bl D_DI EROLLCONTROLLI b>,
public I PropertyNotifySi nkCP<CDi eRol | >,

publ i ¢ CContCoC ass<CDi eRol |, &CLSI D Di eRol | >,

Now you can see wherethe T in ATL comesin: All these classes are template classes. (If you aren't familiar with
templates, read Chapter 26, "Exceptions and Templates.") Y ou add support for an interface to a control by adding
another entry to thislist of interface classes from which it inherits.

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (5 of 26) [7/29/1999 3:54:54 PM]

javascript:popUp('21uvc08.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

NOTE:otice that some names follow the pattern IxxxImpl: That means that this class implements the
Ixxx interface. Classes inheriting from IxxxImpl inherit code as well as function names. For example,
CDieRoall inherits from ISupportErrorinfo, not | SupportErrorlnfolmpl<CDieRoll>, even though such a
template does exist. That is because the code in that template implementation class isn't appropriate for
an ATL control, so the control inherits only the names of the functions from the original interface and
provides code for them in the source file, as you will shortly see.

Farther down the header file, you will find the COM map shown in Listing 21.2.
Listing 21.2 Excerpt from DieRollControl.h--COM Map

BEG N_COM MAP(CDi eRol 1)
COM_|I NTERFACE_ENTRY_I MPL(| Connect i onPoi nt Cont ai ner)
COM _| NTERFACE_ENTRY(| Di eRol I')
COM _| NTERFACE_ENTRY(| Di spat ch)
COM_| NTERFACE_ENTRY(| Vi ewQbj ect Ex)
COM _| NTERFACE_ENTRY(| Vi ew(hj ect 2)
COM _| NTERFACE_ENTRY(| Vi ewChj ect)
COM_| NTERFACE_ENTRY(I A el nPl aceObj ect W ndow ess)
COM_| NTERFACE_ENTRY(I A el nPl aceOnj ect)
COM | NTERFACE_ENTRY2(| A eW ndow, |d el nPl aceCbj ect Wndow ess)
COM_| NTERFACE_ENTRY(I A el nPl aceAct i veQbj ect)
COM_| NTERFACE_ENTRY(I A eCont rol)
COM _| NTERFACE_ENTRY(| A eObj ect)
COM | NTERFACE_ENTRY(| PersistStream nit)
COM_| NTERFACE_ENTRY2(| Persist, |PersistStreamnit)
COM_| NTERFACE_ENTRY(| Support Errorl nf o)
COM | NTERFACE_ENTRY(| Connect i onPoi nt Cont ai ner)
COM | NTERFACE_ENTRY(| Speci f yPr opert yPages)
COM | NTERFACE_ENTRY(| Qui ckActi vat e)
COM | NTERFACE_ENTRY(| Per si st St or age)
COM_| NTERFACE_ENTRY(| Dat aOnbj ect)
COM_| NTERFACE_ENTRY(I Provi ded assl nf 0)
COM_| NTERFACE_ENTRY(| Provi deC assl nf 02)

END_COM MAP()

This COM map is the connection between IUnknown::Querylnterface() and all the interfaces supported by the
control. All COM objects must implement IUnknown, and Querylnterface() can be used to determine what other
interfaces the control supports and obtain a pointer to them. The macros connect the Ixxx interfaces to the IxxxImpl
classes from which CDieRoll inherits.

TIP: 1lUnknown and Querylnterface are discussed in Chapter 13, "ActiveX Concepts," in the section
titled " The Component Object Model."

Looking back at the inheritance list for CDieRoll, most templates take only one parameter, the name of this class, and
come from AppWizard. This entry came from ObjectWizard:

publ i ¢ CSt ockProplnpl <ChieRoll, IDieRoll, & ID IDi eRoll,
-&L| Bl D_DI EROLLCONTROLLI b>,

Thislineis how ObjectWizard arranged for support for stock properties. Notice that there is no indication which

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (6 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

properties are supported. Farther down the header file, two member variables have been added to CDieRoall:

OLE_COLOR m_cl r BackCol or;
OLE_COLOR m cl r For eCol or;

The ObjectWizard aso updated DieRollControl.idl, the interface definition file, to show these two stock properties, as
shown in Listing 21.3. (Double-click on the interface, IDieRall, in ClassView to edit the .IDL file.)

Listing 21.3 Excerpt from DieRollControl.idl--Stock Properties
[

obj ect,

uui d(2DE15F32- 8A71- 11D0- 9B10- 0080C81A397C),
dual ,

hel pstring("I D eRoll Interface"),

poi nter defaul t (uni que)

]

interface IDieRoll : |D spatch
{
[propput, id(D SPI D BACKCOLOR)]
HRESULT BackCol or ([in] OLE COLOR clr);
[propget, id(DlI SPI D BACKCOLOR)]
HRESULT BackCol or ([out, retval] OLE COLOR* pclr);
[propput, id(D SPI D FORECOLCOR)]
HRESULT ForeCol or ([in] OLE_COLOR clr);
[propget, id(D SPI D FORECOLOR)]
HRESULT ForeCol or ([out,retval] OLE COLOR* pclr);

b

This class will provide all the support for the get and put functions and will notify the container when one of these
properties changes.

Adding the ReadyState Stock Property

Although ReadyState wasn't on the stock property list in the ATL Object Wizard, it's supported by CStockProplmpl.
Y ou can add another stock property by editing the header and idl files. In the header file, immediately after the lines
that declare m_clrBackColor and m_clrForeColor, declare another member variable:

| ong m nReadySt at e;

This property will be used in the same way as the ReadyState property in the MFC version of DieRoall: to implement
Image as an asynchronous property. In DieRollControl.idl, add these lines to the IDispatch block, after the lines for
BackColor and ForeColor:

[propget, id(Dl SPI D READYSTATE)]
HRESULT ReadyState([out,retval]long* prs);

Y ou don't need to add a pair of lines to implement put for this property, because external objects can't update
ReadyState. Save the header and idl files to update ClassView--if you don't, you won't be able to add more properties
with ClassView. Expand CDieRoll and IDieRall in ClassView to see that the member variable has been added to
CDieRoll and a ReadyState() function has been added to IDieRoll.

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (7 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

Adding Custom Properties

To add custom properties, you will use an ATL tool similar to the MFC ClassWizard. Right-click on IDieRoll (the
top-level one, not the one under CDieRoll) in ClassView to open the shortcut menu shown in Figure 21.9, and choose
Add Property.

FIG. 21.9 ATL projects have a different ClassView shortcut menu than MFC projects.

The Add Property to Interface dialog box, shown in Figure 21.10, appears. Choose short for the type and fill in
Number for the name. Deselect Put Function because containers won't need to change the number showing on the
die. Leave therest of the settings unchanged and click OK to add the property.

FIG. 21.10 Add Number as a read-only property.

Repeat this process for the BOOL Dots, which should have both get and put functions. (L eave the Put radio button at
PropPut.) The ClassView now shows entries under both CDieRoll and IDieRoll related to these new properties. Try
double-clicking the new entries. For example, double-clicking get_Dots() under the IDieRall that is under CDieRoll
opens the source (cpp) file scrolled to the get_Dots() function. Double-clicking Dots() under the top-level IDieRall
openstheidl file scrolled to the propget entry for Dots.

Although a number of entries have been added to CDieRoll, no member variables have been added. Only you can add
the member variables that correspond to the new properties. Although in many cases it's safe to assume that the new
properties are simply member variables of the control class, they might not be. For example, Number might have been
the dimension of some array kept within the class rather than a variable of its own.

Add the following to the header file, after the declarations of m_clrBackColor, m_clrForeColor, and m_nReadyState:

short m sNunber;
BOOL m bDot s;

In theidl file, the new propget and propput entries use hard-coded dispids of 1 and 2, like this:
[propget, id(1l), helpstring("property Nunber")]
HRESULT Nunber ([out, retval] short *pVal);
[propget, id(2), helpstring("property Dots")]
HRESULT Dots([out, retval] BOOL *pVal);
[propput, 1d(2), helpstring("property Dots")]
HRESULT Dots([in] BOOL newval);

To make the code more readable, use an enum of dispids. Adding the declaration of the enum to theidl file will make
it usable in both the idl and header file. Add these lines to the beginning of DieRollControl.idl:

t ypedef enum propertydi spids
{
di spi dNunber =
di spi dDots = 2,
} PROPERTYDI SPI DS;

1,

Now you can change the propget and propput lines:

[propget, id(dispidNunber), hel pstring("property Nunber")]
HRESULT Nunber ([out, retval] short *pVal);

[propget, id(dispidDots), helpstring("property Dots")]
HRESULT Dots([out, retval] BOOL *pVal);

[propput, id(dispidDots), helpstring("property Dots")]
HRESULT Dots([in] BOOL newval);

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (8 of 26) [7/29/1999 3:54:54 PM]

javascript:popUp('21uvc09.gif')
javascript:popUp('21uvc10.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

The next step isto code the get and set functions to use the member variables. Listing 21.4 shows the completed
functions. (If you can't see these in ClassView, expand the IDieRoll under CDieRall.)

Listing 21.4 Excerpt from DieRoll.cpp--get and set Functions

STDVETHODI MP CDi eRol | : : get _Nunber (short * pVal)

{
*pVal = m sNunber;
return S_OK;
}
STDVETHODI MP CDi eRol | : : get _Dots(BOCL * pVal)
{
*pVal = m bDots;
return S _OK;
}
STDVETHCODI VP CDi eRol | : : put _Dot s(BOOL newval)
{
if (FireOnRequest Edit(di spidDots) == S FALSE)
{
return S _FALSE;
}
m bDots = newval ;
SetDirty(TRUE);
Fi r eOnChanged(di spi dDot s) ;
Fi reVi enChange() ;
return S _CK;
}

The code in the two get functions is simple and straightforward. The put_dots() code is more complex because it fires
notifications. FireOnRequestEdit() notifies all the IPropertyNotifySink interfaces that this property is going to change.
Any one of these interfaces can deny the request, and if one does, this function will return S_FALSE to forbid the
change.

Assuming the change is allowed, the member variable is changed, and the control is marked as modified (dirty) so
that it will be saved. The call to FireOnChange() notifies the IPropertyNotifySink interfaces that this property has
changed, and the call to FireViewChange() tells the container to redraw the control.

Initializing the Properties

Having added the code to get and set these properties, you should now change the CDieRoll constructor to initialize
all the stock and custom properties, as shown in Listing 21.5. A stub for the constructor isin the header file for you to
edit.

Listing 21.5 Excerpt from DieRoll.h--Constructor

CDi eRol | ()
{
srand((unsigned)tinme(NULL));
m nReadySt at e = READYSTATE COVPLETE;
m cl r BackCol or = 0x80000000 | COLOR_W NDOW
m cl r For eCol or = 0x80000000 | COLOR W NDOWEXT;
m sNunber = Rol | ();

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (9 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
m bDots = TRUE;

At the top of the header, add this line to bring in a declaration of the time() function:
#include "time. h"

Just as you did in the MFC version of this control, you initialize m_sNumber to arandom number between 1 and 6,
returned by the Roll() function. Add this function to CDieRoll by right-clicking on the classname in ClassView and
choosing Add Member Function from the shortcut menu. Roll() is protected takes no parameters and returns a short.
The code for Roll() isin Listing 21.6 and is explained in Chapter 17.

Listing 21.6 CDieRoll::Roll()

short CDieRoll::Roll ()

{
doubl e nunber = rand();
nunmber /= RAND MAX + 1;
nunber *= 6;
return (short)nunber + 1;
}

It'sagood ideato build the project at this point to be sure you haven't made any typos or missed any steps.

Adding the Asynchronous Property

Just asin Chapter 20, the Image property represents a bitmap to be loaded asynchronously and used as a background
image. Add the property to the interface just as Number and Dots were added. Use BSTR for the type and I mage for
the name. Update the enum in theidl file so that dispidimage is 3, and edit the propget and propput linesin theidl
file to use the enum value:
[propget, id(dispidlnage), helpstring("property |Inage")]

HRESULT | mage([out, retval] BSTR *pVal);
[propput, id(dispidlnmage), helpstring("property |Inmage")]

HRESULT | mage([in] BSTR newval);

Add a member variable, m_bstrimage, to the class after the five properties you have aready added:
CConBSTR m bstr | mage;

CComBSTR isan ATL wrapper class with useful member functions for manipulating aBSTR.

A number of other member variables must be added to handle the bitmap and the asynchronous loading. Add these
lines to DieRoll.h after the declaration of m_bstrlmage:

HBI TMAP hBi t map;

Bl TMAPI NFOHEADER bmi h;

char *| pvBits;

Bl TMAPI NFO *I| pbmi ;

HGLOBAL hnenl;

HGLOBAL hnent;

BOOL Bi t mapDat aLoaded,;

char *m Dat a;

unsi gned | ong m Dat aLengt h;

Thefirst six of these new variables are used to draw the bitmap and won't be discussed. The last three combine to

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (10 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
achieve the same behavior as the data path property used in the MFC version of this control.

Add these three lines to the constructor:

m Data = NULL;
m Dat aLengt h = 0;
Bi t mapDat aLoaded = FALSE;

Add adestructor to CDieRoll (in the header file) and add the code in Listing 21.7.

Listing 21.7 CDieRoll::~CDieRoll()

~CDi eRol | ()
{
i f (Bi t mapDat aLoaded)
{
d obal Unl ock(hnmeml) ;
A obal Free(hnmentl) ;
d obal Unl ock(hnmen?) ;
d obal Free(hnen) ;
Bi t mapDat aLoaded = FALSE;
}
if (mData != NULL)
{
del ete m Dat a;
}
}

The Image property has get and put functions. Code them asin Listing 21.8.
Listing 21.8 DieRoll.cpp--get_Image() and put_Image()

STDVETHODI MP CDi eRol | : : get | mage(BSTR * pVal)

{
*pVal = m bstrl mage. Copy();
return S _CK;
}
STDVETHCODI MP CDi eRol | : : put _I mage(BSTR newval)
{

USES CONVERSI ON,
i f (FireOnRequest Edit (dispidl mage) == S FALSE)
{

}

/1 if there was an old bitmap or data, delete it
i f (Bi tmapDat aLoaded)

return S _FALSE;

{

d obal Unl ock(hnent) ;

G obal Free(hnmentl) ;

A obal Unl ock(hnmen®) ;

d obal Free(hnent) ;

Bi t mmpDat aLoaded = FALSE;
}

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (11 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
if (mData ! = NULL)

}

m Data = NULL,;

m Dat aLengt h = 0;

m bstrl mage = newval ;

LPSTR string = WA(m bstrl mage);

if (string '= NULL && strlen(string) > 0)

del ete m Dat a;

{
/1 not a null string so try to load it
BOOL rel ati veURL = FALSE;
if (strchr(string, ":") == NULL)
{
rel ati veURL = TRUE;
}
m nReady St at e = READYSTATE _LQOADI NG
HRESULT ret = CBi ndSt at usCal | back<CDi eRol | >: : Downl oad(t hi s,
OnData, mbstrinmage, mspCientSite, relativeURL);
}
el se
{
/1 was a null string so don't try to load it
m nReady St at e = READYSTATE COVPLETE;
Fi reVi enChange() ;
}

Set Di rty(TRUE) ;
Fi reOnChanged(di spi dl nage) ;
return S _OK;

}

Aswith Numbers and Dots, the get function is straightforward, and the put function is more complicated. The
beginning and end of the put function are like put_Dots(), firing notifications to check whether the variable can be
changed and then other notifications that it was changed. In between is the code unique to an asynchronous property.

To start the download of the asynchronous property, this function will call
CBindStatusCallback<CDieRoll>::Download(), but first it needs to determine whether the URL in m_bstrimageisa
relative or absolute URL. Use the ATL macro W2A to convert the wide BSTR to an ordinary C string so that the C
function strchr() can be used to search for a: character in the URL. An URL with no : initisassumed to be arelative
URL.

NOTE: A BSTR isawide (double-byte) character on all 32-bit Windows platforms. It is a narrow
(single-byte) string on a PowerMac.

In the MFC version of the DieRoll control with an asynchronous image property, whenever a block of data came
through, the OnDataAvailable() function was called. The call to Download() arranges for a function called OnData()
to be called when data arrives. Y ou will write the OnData() function. Add it to the class with the other public
functions and add the implementation shown in Listing 21.9 to DieRoll.cpp.

Listing 21.9 DieRoll.cpp--CDieRoll::OnData()

voi d CDi eRol | :: OnDat a(CBi ndSt at usCal | back<CDi eRol | >* pbsc,

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (12 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
BYTE * pBytes, DWORD dwSi ze)

char *newbData = new char[m DatalLength + dwSi ze];
mencpy(newDat a, m Data, m Datalength);
nmencpy(newbDat a+m Dat aLengt h, pBytes, dwSi ze);
m Dat aLengt h += dwSi ze;
del et e m Dat a;
m Dat a = newDat a;
i f (ReadBitmap())
{
m nReady St at e = READYSTATE COMPLETE;
Fi reVi enChange() ;

}

Because there is no realloc() when using new, this function uses new to allocate enough chars to hold the data that has
already been read (m_Datal ength) and the new data that is coming in (dwSize); it then copies m_Data to this block,
and the new data (pBytes) after m_Data. Then it attempts to convert into a bitmap the data that has been received so
far. If this succeeds, the download must be complete, so the ready state notifications are sent, and the call to
FireViewChange() sends a notification to the container to redraw the view. Y ou can obtain the ReadBitmap() function
from the Web site and add it to your project. It's much like the MFC version, but it doesn't use any MFC classes such
as CFile. Add the function and its code to CDieRall.

Once again, build the control, just to be sure you haven't missed any steps or made any typos.

Drawing the Control

Now that all the properties have been added, you can code OnDraw(). Although the basic structure of thisfunctionis
the same asin the MFC version of Chapter 20. A Iot more work must be done because you can't rely on MFC to do
some of it for you. A more detailed explanation of the OnDraw() design isin Chapter 20.

The structure of OnDraw() is

HRESULT CDi eRol | : : OnDr aw(ATL_DRAW NFQ& di)

/1 if the bitmap is ready, draw it

/'l else draw a plan background usi ng BackCol or
[/ if 'Dots draw a nunber in ForeCol or

/1l else draw the dots

First, you need to test whether the bitmap is ready and to draw it, if possible. This codeisin Listing 21.10: Add it to
dieroll.cpp and remove the OnDraw()code left in dieroll.h by AppWizard. (Leave the declaration of OnDraw() in the
header file.) Notice that if ReadyState is READY STATE_COMPLETE, but the call to CreateDIBitmap() doesn't
result in avalid bitmap handle, the bitmap member variables are cleared away to make subsequent calls to this
function give up alittle faster. This chapter doesn't discuss how to draw bitmaps.

Listing 21.10 CDieRoll::OnDraw()--Use the Bitmap

HRESULT CDi eRol | : : OnDr awm(ATL_DRAW NFO& di)

{
int wwdth = (di.prcBounds->right - di.prcBounds->left + 1);
i nt height = (di.prcBounds->bottom - di.prcBounds->top + 1);
BOOL drawn = FALSE;
i f (mnReadyState == READYSTATE COWPLETE)

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (13 of 26) [7/29/1999 3:54:54 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

{
i f (Bi tmapDat aLoaded)
{
hBitmap = :: CreateDl Bi t map(di . hdcDraw, &mh, CBMINT, |pvBits,
| pbmi, DI B_RGB _COLORS);
i f (hBitmap)
{
HDC hnendc;
hmendc = :: Creat eConpati bl eDC(di . hdcDr aw) ;
. Sel ect Obj ect (hnmendc, hBit nmap);
DI BSECTI ON ds;
. Get bj ect (hBi t map, si zeof (DI BSECTI ON), (LPSTR) &ds) ;
::StretchBlt (di.hdcDraw,
di . prcBounds->left, // left
di . prcBounds->top, // top
width, // target width
hei ght, // target hei ght
hmendc, /1 the imge
0, //offset into i mage -x
0, //offset into imge -y
ds. dsBm bmW dth, // width
ds. dsBm brHei ght, // hei ght
SRCCOPY) ; /'l copy it over
drawn = TRUE;
: . Del et e(bj ect (hBi t map) ;
hBi t map = NULL;
. : Del et eDC(hnendc) ;
}
el se
{
G obal Unl ock(hnent) ;
A obal Free(hmentl) ;
A obal Unl ock(hnmen?) ;
d obal Free(hnment) ;
Bi t mmpDat aLoaded = FALSE;
}
}
}
return S OK;

}

If the bitmap wasn't drawn because ReadyState is not READY STATE_COMPLETE yet or there was a problem with
the bitmap, OnDraw() draws a solid background by using the BackColor property, as shownin Listing 21.11. Add
this code at the end of OnDraw(), before the return statement. The SDK calls are very similar to the MFC calls used in
the MFC version of DieRoll--for example, ::OleTranslateColor() correspondsto TranslateColor().

Listing 21.11 CDieRoll::OnDraw()--Draw a Solid Background
if (!drawn)

{
COLORREF back:

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (14 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

;. A eTransl at eCol or(m cl rBackCol or, NULL, &back);

HBRUSH backbrush = :: CreateSol i dBrush(back);

. Fill Rect (di.hdcDraw, (RECT *)di.prcBounds, backbrush);
.. Del et e(bj ect (backbrush);

}

With the background drawn, as a bitmap image or a solid color, OnDraw() must now tackle the foreground. Getting
the foreground color is simple. Add these two lines at the end of OnDraw() before the return statement:

COLORREF fore;
:: A eTransl ateCol or(m cl rForeCol or, NULL, &fore);

The project should build successfully at this point if you want to be sure you've entered all this code correctly.

If Dotsis FALSE, the die should be drawn with a number on it. Add the code in Listing 21.12 to OnDraw() before the
return statement as usual. Again, the SDK functions do the same job as the similarly named MFC functions used in
the MFC version of DieRoll.

Listing 21.12 CDieRoll::OnDraw()--Draw a Number

if (!mbDots)
{
_TCHAR val [20]; //character representation of the short val ue
_itot(msNunber, val, 10);
. . Set Text Col or (di . hdcDraw, fore);
. Ext Text Qut (di . hdcDraw, 0, 0, ETO OPAQUE,
(RECT *)di.prcBounds, val, _tcslen(val), NULL);

}

The code that draws dotsisin Listing 21.13. Add it to OnDraw() before the return statement to complete the function.
This codeislong but is explained in Chapter 17. Asin the rest of OnDraw(), MFC function calls have been replaced
with SDK calls.

Listing 21.13 CDieRoll::OnDraw()--Draw Dots

el se
{
//dots are 4 units wide and high, one unit fromthe edge
int Xunit = w dth/16;
int Yunit = height/16;
int Xleft = wi dt h9d6;
Int Yleft = hei ght %d6;

/1l adjust top |left by amount |eft over
int Top = di.prcBounds->top + Yleft/2;
Int Left = di.prcBounds->left + Xl eft/?2;
HBRUSH f or ebr ush;
forebrush = ::CreateSol i dBrush(fore);
HBRUSH savebrush = (HBRUSH): : Sel ect Obj ect (di . hdcDraw, forebrush);
swi t ch(m sNunber)
{
case 1:

. Ellipse(di.hdcDraw, Left+6*Xunit, Top+6*Yunit,

Left +10*Xunit, Top + 10*Yunit); //center

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (15 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

br eak;

case 2:
cElli pse(di .
- El i pse(di.
br eak;

case 3:
2 Eli pse(di
Bl i pse(di
cEl i pse(di
br eak;

case 4:
Bl i pse(di
cEli pse(di
cEl i pse(di
. El i pse(di.
br eak;

case 5:
Bl i pse(di
cEl i pse(di
2 Eli pse(di
- El i pse(di.
c Eli pse(di
br eak;

case 6:

Left +5* Xuni t,
Left +15* Xuni t,

Left+5*Xuni t,

Left+5*Xuni t,

. hdcDraw, Left+Xunit,

hdcDraw, Left+Xunit, Top+Yunit,
Left+5*Xunit, Top + 5*Yunit); / I upper

hdcDraw, Left+11*Xunit, Top+l11*VYunit,
Left +15* Xunit, Top + 15*Yunit); //Ilower right

| ef t

Top+Yuni t,

Left +5*Xunit, Top + 5*Yunit); [[upper |eft
. hdcDraw, Left+6*Xunit, Top+6*Yunit,
Left +10* Xunit, Top + 10*Yunit); //center
.hdcDraw, Left+11*Xunit, Top+ll*Yunit,
Left +15*Xunit, Top + 15*Yunit); //lower right
. hdcDraw, Left+Xunit, Top+Yunit,
Left +5*Xunit, Top + 5*Yunit); [l upper |eft
. hdcDraw, Left+11*Xunit, Top+Yunit,
Left +15*Xunit, Top + 5*Yunit); //upper right
. hdcDraw, Left+Xunit, Top+ll*Yunit,
Left +5*Xunit, Top + 15*Yunit); //lower left
hdcDraw, Left+11*Xunit, Top+1ll*Yunit,
Left +15*Xunit, Top + 15*Yunit); //lower right
. hdcDraw, Left+Xunit, Top+Yunit,
Left +5*Xunit, Top + 5*Yunit); /[upper |eft
. hdcDraw, Left+11*Xunit, Top+Yunit,
Left +15* Xunit, Top + 5*Yunit); //upper right
. hdcDraw, Left+6*Xunit, Top+6*Yunit,
Left +10*Xunit, Top + 10*Yunit); //center
hdcDraw, Left+Xunit, Top+ll*Yunit,
Left +5*Xunit, Top + 15*Yunit); //lower left
. hdcDraw, Left+11*Xunit, Top+ll*Yunit,
Left +15* Xunit, Top + 15*Yunit); //lower right
cEl'l'i pse(di.hdcDraw, Left+Xunit, Top+Yunit,
Top + 5*Yunit); [l upper |eft
::Ell'i pse(di.hdcDraw, Left+11*Xunit, Top+Yunit,
Top + 5*Yunit); //upper right
: Ell'ipse(di.hdcDraw, Left+Xunit, Top+6*Yunit,
Top + 10*Yunit); [//center left
. Ellipse(di.hdcDraw, Left+11*Xunit, Top+6*Yunit,
Left +15* Xunit, Top + 10*Yunit); //center right
::Ell'i pse(di.hdcDraw, Left+Xunit, Top+1ll*Yunit,
Top + 15*Yunit); [//lower |eft
::Ell'ipse(di.hdcDraw, Left+11*Xunit, Top+ll*Yunit,
Top + 15*Yunit); //lower right

Left +15* Xuni t,

br eak;

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (16 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

}
.. Sel ect Obj ect (di . hdcDraw, savebrush);

. . Del et eCbj ect (forebrush);
}

Again, build the project to be sure you haven't missed anything. If you look in your project folder now, you should see
afile called DieRoll.htm (it doesn't show up in FileView). ThisHTML is generated for you to test your control. Try
loading it into Internet Explorer now, and a die should display, asin Figure 21.11. It will not have an image
background and it will not roll when you click it.

FI1G. 21.11 Your control can draw itself in a browser.

Persistence and a Property Page

The properties have been added to the control and used in the drawing of the control. Now all that remains isto make
the properties persistent and to add a property page.

Adding a Property Page

To add a property page to this control, follow these steps:
1. Choose Insert, New ATL Object from the menu bar to open the ATL Object Wizard.
2. Select Controlsin the left pane and Property Page in the right pane; then click Next.
3. On the Names tab, enter DieRollPPG for the Short Name.

4. Click the Strings tab (the settings on the Attributes tab will not be changed). Enter General for the Title and
DieRoll Property Page for the Doc String. Blank out the Helpfile Name.

5. Click OK to add the property page to the project.
Developer Studio will switch to ResourceView and open the dialog IDD_DIEROLLPPG. Add a check box with the
resource ID IDC_DOTS and the caption Display Dot Pattern and an edit box with the resource ID IDC_IMAGE
labelled Image URL, as shown in Figure 21.12.
At the top of DieRollPPG.h, add thisline:
#i nclude "D eRol | Control . h"

Y ou need to connect the controls on this property page to properties of the DieRoll control. The first step isto add
three lines to the message map in DieRolIPPG.h so that it resembles Listing 21.14.

FIG. 21.12 Add two controlsto the property page.

Listing 21.14 DieRolIPPG.h--Message Map

BEA N_MSG_MAP(CDi eRol | PPG)
MESSAGE_HANDLER(WM | NI TDI ALOG, Onl ni t Di al og)
COVMAND_HANDLER(| DC_DOTS, BN _CLI CKED, OnDot sChanged)
COMVAND_ HANDLER(| DC_| MAGE, EN _CHANGE, Onl mageChanged)
CHAI N_MSG_MAP(| Propert yPagel npl <CDi eRol | PPG>)

END_NMSG_MAP()

These new lines ensure that OninitDialog() will be called when the dialog box isinitialized and that
OnDotsChanged() or OnlmageChanged() will be called whenever Dots or Image are changed (the other properties
don't have put methods and so can't be changed).

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (17 of 26) [7/29/1999 3:54:55 PM]

javascript:popUp('21uvc11.gif')
javascript:popUp('21uvc11a.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

Add the codein Listing 21.15 to the header file to declare and implement OnlInitDialog(). Put it after the constructor,
so it will be public aswell.

Listing 21.15 DieRolIPPG.h--CDieRolIPPG::OnlInitDialog()

LRESULT OnlnitDi al og(U NT uMsg, WPARAM wPar am LPARAM | Par am
BOOL & bHandl ed)

{
USES CONVERSI ON;
CConQ) Ptr<iDieRoll, & ID IDi eRoll> pbi eRoll (m ppUnk[0]);
BOOL dots;
pDi eRol | - >get Dot s(&dot s) ;
:: SendDl gl t emvessage(m hwid, | DC DOTS, BM SETCHECK, dots, OL);
BSTR i mage;
pDi eRol | - >get | mage(& nmage) ;
LPTSTR i mage_URL = VRT(i nage) ;
Set Dl gl temlext (1 DC_| MAGE, i mage URL);
return TRUE;
}

This code begins by declaring a pointer to an IDieRoll interface using the CComQIPtr template class and initializing
it to the first element of the m_ppUnk array in this class, CDieRolIPPG. (A property page can be associated with
multiple controls.) The constructor for the CComQI Ptr template class uses the Querylnterface() method of the
IUnknown pointer that was passed in to the constructor to find a pointer to an IDieRoll interface. Now you can call
member functions of this interface to access the properties of the DieRoll control.

Finding the value of the Dots property of the CDieRoll object is ssmple enough: Call get_Dots(). To use that value to
initialize the check box on the property page, send a message to the control using the SDK function
::SendDIgltemMessage(). The BM_SETCHECK parameter indicates that you are setting whether the box is checked
(selected). Passing dots as the fourth parameter ensuresthat IDC_DOTS will be selected if dotsis TRUE and
deselected if dotsis FALSE. Similarly, obtain the URL for the image with get_Image(), convert it from wide
characters, and then use SetDIgltemText() to set the edit box contents to that URL.

OnDotsChanged() and OnlmageChanged() are simple: Add the code for them both, as presented in Listing 21.16, to
the header file, after OninitDialog().

Listing 21.16 DieRolIPPG.h--The OnChanged Functions

LRESULT OnDot sChanged(WORD wNoti fy, WORD wi D, HWND hWwid, BOOL& bHandl ed)

{
SetDirty(TRUE);

return FALSE;

}
LRESULT Onl mageChanged(WORD wNot i fy, WORD Wi D, HWND hWwd, BOOL& bHandl ed)

{
SetDirty(TRUE);

return FALSE;
}

The callsto SetDirty() in these functions ensure that the Apply() function will be called when the user clicks OK on
the property page.

The ObjectWizard generated a simple Apply() function, but it doesn't affect the Dots or Number properties. Edit

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (18 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library
Apply() so that it resembles Listing 21.17.

Listing 21.17 DieRolIPPG.h--CDieRolIPPG::Apply()

STDVETHOD(Appl y) (voi d)

{
USES_CONVERSI ON;
BSTR i mage = NULL;
Get Dl gl temText (1 DC_| MAGE, i nage);
BOOL dots = (BOQL):: SendD gl t emvessage(m hwd, | DC DOTS,
BM GETCHECK, 0, OL);
ATLTRACE(_T(" CDi eRol | PPG : Appl y\'n"));
for (UNT i =0; i < mnQbjects; i++)
{
CConQJ Ptr<iIDi eRoll, & ID_ID eRoll> pbi eRoll (m ppUnk[i]);
i f FAILED(pD eRol | - >put Dot s(dots))
{
CConPtr<l Errorlnfo> pError;
CConBSTR strError;
GetErrorinfo(0, &pError);
pError->CGet Description(&strError);
MessageBox(OLE2T(strError), _T("Error"), MB_|I CONEXCLAVATI ON);
return E FAIL;
}
i f FAILED(pD eRol | ->put _I mage(i nage))
{
CConPtr<l Errorlnfo> pError;
CConBSTR strError;
GetErrorinfo(0, &pError);
pError->Get Description(&strError);
MessageBox(OLE2T(strError), _T("Error"), MB_| CONEXCLAVATI ON);
return E _FAIL;
}
}
m bDirty = FALSE;
return S _OK;
}

Apply starts by getting dots and image from the dialog box. Notice in the call to ::SendDIgltemMessage() that the
third parameter isBM_GETCHECK, so this call ascertains the selected state (TRUE or FAL SE) of the check box.
Then acall to ATLTRACE prints a trace message to aid debugging. Like the trace statements discussed in Chapter

24, "Improving Y our Application's Performance,” this statement disappears in arelease build.

The majority of Apply() isafor loop that is executed once for each control associated with this property page. It
obtains an IDieRoll interface pointer, just asin OnlnitDialog(), and tries calling the put_Dots() and put_Image()
member functions of that interface. If either call fails, a message box informs the user of the problem. After the loop,

the m_bDirty member variable can be set to FALSE.

Build the project at this point to be sure you have no errors.

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (19 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

Connecting the Property Page to CDieRoll

The changes to CDieRollPPG are complete. Y ou need to make some changes to CDieRoll to connect it to the
property page class. Specifically, the property map needs some more entries. Add the first two entries for Dots and
Image so that it looks like Listing 21.18.

Listing 21.18 DieRoll.h--Property Map

BEA N_PROP_MAP(CDi eRol 1)
PROP_ENTRY("Dots", dispidDots, CLSID D eRoll PPG
PROP_ENTRY("I mage", dispidlmge, CLSID D eRoll PPG
PROP_DATA ENTRY(" cx", msizeExtent.cx, VT_U 4)
PROP_DATA ENTRY(" cy", msizeExtent.cy, VT_Ul 4)
PROP_ENTRY(" BackCol or", DI SPI D_ BACKCOLOR, CLSI D_St ockCol or Page)
PROP_ENTRY(" For eCol or", DI SPI D FORECOLOR, CLSI D St ockCol or Page)

END_PROP_NMAP()
Persistence in a Property Bag

In anumber of different ways, Internet Explorer can get property values out of some HTML and into a control
wrapped in an <OBJECT> tag. With stream persistence, provided by default, you use a DATA attribute in the
<OBJECT> tag. If you would like to use <PARAM?> tags, which are far more readable, the control must support
property bag persistence through the | PersistPropertyBag interface.

Add another class to the list of base classes at the start of the CDieRoll class:

publ i c | PersistPropertyBagl npl <CDi eRol | >,

Add thisline to the COM map:
COM | NTERFACE_ENTRY(| Per si st Propert yBag)

Now you can use <PARAM> tagsto set properties of the control.

Using the Control in Control Pad

You've added alot of code to CDieRoll and CDieRollPPG, and it'stime to build the control. After fixing any typos or
minor errors, you can use the control.

Y ou are going to build the HTML to display this control in Microsoft's Control Pad. If you don't have Control Pad, it's
downloadable free from http://www.micr osoft.com/wor kshop/ author/cpad/download.htm. If you have a copy of
Control Pad from before January 1997, find the latest one. If you use the old version, the init safe and script safe work
you will do later in this chapter will appear to malfunction.

NOTE: Control Pad used to serve two purposes: It smplified building <OBJECT> tags for ActiveX
controls and helped devel opers use the HTML Layout control. Now that the functionality of the Layout
control isin Internet Explorer 4.0, it's just a handy way to make <OBJECT> tags.

When you start Control pad, it makes an empty HTML document. With the cursor between <BODY > and </BODY >,
choose Edit, Insert ActiveX Control. The Insert ActiveX Control dialog appears. Choose DieRoll Class from the list
(you might recall from Figure 21.5 that the type name for this control is DieRoll Class) and click OK. The control and
a Properties dialog appear. Click on the Image property and enter the full path to the image file you want to use in the
edit box at the top of the Properties dialog. (Y ou can use any bmp file you have handy, including one you make

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (20 of 26) [7/29/1999 3:54:55 PM]

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

yourself in the Paint program that comes with Windows, or get beans.bomp from the Web site.) Click Apply, and the
control redraws with a background image, such asthe jelly beans shown in Figure 21.13. Close the Properties dialog
and the Edit ActiveX Control dialog, and you will seethe HTML generated for you, including the <PARAM> tags
that were added because Control Pad could determine that DieRoll supports the | PersistPropertyBag interface. Close
Control Pad; you can save the HTML if you want.

FIG. 21.13 Inserting the control into Control Pad displays it for you.

The control doesn't have its full functionality yet: It doesn't roll itself when you click it. The next section will add
events.

Adding Events

Two events must be added: one when the user clicks on the control and one when the ready state changes. The Click
event is discussed in Chapter 17 and the Ready StateChanged event is discussed in Chapter 20.

Adding Methods to the Event Interface

In ClassView, right-click the _IDieRollEvents interface. Choose Add Method and fill in the Return Type as void and
the Method Name as Click; leave the parameters blank. Figure 21.14 shows the completed dialog. Click OK to add
the method.

FIG. 21.14 Add the Click method to the event interface.

In the same way, add ReadyStateChange(), returning void and taking no parameters, to the event interface. The
dispinterface section in theidl file should now look like this:

di spinterface _ID eRollEvents

{
properties:
met hods:
[1d(DI SPID CLICK), helpstring("nmethod Cick")] void Cick();
[i d(Dl SPI D_READYSTATECHANGE) ,
=hel pstring("net hod ReadySt at eChange")] void ReadySt at eChange();

If the dispids appear as 1 and 2 rather than DISPID_CLICK and DISPID_READY STATECHANGE, edit them to
match this code.

Implementing the IConnectionPoint Interface

To fire events, you implement the | ConnectionPoint interface. The Connection Point Wizard will get you started, but
first, save theidl file and build the project so that the typelib associated with the project is up-to-date.

In ClassView, right-click CDieRoll and choose Implement Connection Point. Select _IDieRollEvents, asin Figure
21.15, and click OK to generate a proxy class for the connection point. This class will have methods you can call to
fire an event.

FIG. 21.15 The Connection Point Wizard makes short work of adding events.

Look for the new class, CProxy_IDieRollEvents, in ClassView. Expand it, and you will seeit has two functions,
Fire Click() and Fire_ReadyStateChange().

http://www.pbs.mcp.com/ebooks/0789715392/ch21/ch21.htm (21 of 26) [7/29/1999 3:54:55 PM]

javascript:popUp('21uvc12.gif')
javascript:popUp('21uvc13.gif')
javascript:popUp('21uvc14.gif')

Special Edition Using Visual C++ 6 -- Ch 21 -- The Active Template Library

Firing the Click Event

When the user clicksthe control, it should fire a Click event. Right-click CDieRoll in ClassView and choose Add
Windows Message Handler. Select WM_LBUTTONDOWN from the long list on the left and click Add Handler;
then click OK. Y ou will see anew entry in the message map:

MESSAGE_HANDLER(WM LBUTTONDOWN, OnLButt onDown)
Edit the member function OnL ButtonDown() that has been added to CDieRoall, so that it looks like Listing 21.19.

Listing 21.19 CDieRoll::OnLButtonDown()

LRESULT OnLButt onDown(U NT uMsg, WPARAM wParam LPARAM | Param BOOL & bHandl ed)

{
m sNunber = Roll ();

Fi reOnChanged(di spi dNunber) ;
Fire_Cick();

Fi r eVi ewChange() ;

return O;

}

This code rollsthe die, fires a notification that Number has changed, fires a Click event, and notifies the container that
the control should be redrawn. Build the control again and load the dieroll.htm page that was generated for you into
Internet Explorer. Click the die afew times and watch the displayed number change. Close Internet Explorer, or later
you'll have trouble building the project because the DLL will be locked by Explorer.

Firing the ReadyStateChange Event

Now put_Image() and OnData() can fire events when the read