Designing Enterprise Applications
with the Jav&@' 2 Platform, Enterprise Edition

Nicholas Kassem and the Enterprise Team

Version 1.0.1
Final Release
October 3, 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, CA 94303, U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this product or documentation may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Third party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK, JDBC,
J2EE, J2SE, EJB, JavaBeans, JavaMail, Write Once, Run Anywhere, and Java Naming and Directory Interface are
trademarks or registered trademarks of Sun Microsystems, Inc in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, Etats-Unis. Tous droits
réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou de sa documentation associée ne peut
étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I’autorisation préalable et écrite de Sun et
de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun Logo, Java, JavaServer Pages, Enterprise JavaBeans, Java Compatible, JDK,
JDBC, J2EE, J2SE, EJB, JavaBeans, JavaMail, Write Once, Run Anywhere, et Java Naming and Directory Interface
sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres
pays.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open
Company Ltd.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE
PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA
QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CON-
TREFACON.

Contents

Foreword Xiii . .
Preface XVIL . .
Introduction 1...
1.1 Challenges of Enterprise Application Development. 3
1.1.1 Programming Productivity 3
1.1.2 ResponsetoDemand................ ... 4
1.1.3 Integration with Existing Systems. 5
114 FreedomtoChooseiiiiiiinnn. 5
1.1.5 Maintaining Security 5
1.2 The Platform for Enterprise Solutions 6
1.2.1 J2EE Platform Overview. o, 6
1.2.2 J2EE Platform Benefits. L. 10
1.3 J2EE Application Scenarios 14
1.3.1 Multitier Application Scenario 16
1.3.2 Stand-Alone Client Scenario. 18
1.3.3 Web-Centric Application Scenario 19
1.3.4 Business-to-Business Scenario 20
1.3.5 A Note on the MVC Architecture 21
1.4 SUMMANY . . . e e e 22
J2EE Platform Technologies 25.
2.1 Component Technologies., 25
2.1.1 Applets and ApplicationClients 26
2.1.2 WebComponents 26
2.1.3 Enterprise JavaBeans Components 28
2.1.4 Components, Containers, and Services. 29
2.2 PlatformRoles. 30
2.2.1 J2EE ProductProvider 31
2.2.2 Application Component Provider 31
2.2.3 Application Assembler 31

Vi

CONTENTS
224 Deployer 32
2.25 System Administrator 32
226 ToolProvider. 32

2.3 Platform Services e 33
231 Naming ServiCes 33
2.3.2 Deployment Services. 33
2.3.3 Transaction SErviCes, 35
2.34 SEeCUNMtYy SeIVICES. . ..ottt e e 37

2.4 Service Technologies 39
241 JIDBC APl ..o 40
2.4.2 Java Transaction APl and Service. 40
2.4.3 Java Naming and Directory Interface 40
2.4.4 Connector Architecture. 41

2.5 Communication Technologies 41
251 InternetProtocols 42
2.5.2 Remote Method Invocation Protocols. 42
2.5.3 Object Management Group Protocols. 43
2.5.4 Messaging Technologies. 44
255 DataFormats. 45

2.6 SUMMAIY . . .ot e e 46

3 TheClientTier e 49. .

3.1 Requirementsand Constraints 50
3.1.1 Operating Environment. 50
3.1.2 Deployment. 52
3.1.3 Implementation................. 52

3.2 Overview of Client Optionst 53

3.3 Web Clients. 54
3.31 Protocols ... 55
3.3.2 ContentFormat........ 55
3.3.3 TypesofWebClients 57

34 EIBCleNnts 61
3.4.1 Protocols and Facilities. 61
3.4.2 Strengthsand Weaknessesccovuunnn.. 63
3.43 TypesofEJBClients.............................. 64

3.5 Enterprise Information System Clients. 67

3.6 Designing for Multiple TypesofClient 68
3.6.1 Model e 68

3.6.2 VieW .. 69

CONTENTS Vii

3.6.3 Controller. 69
3.7 SUMMAIY . . et e e e 72
TheWeb Tier......... i d5
4.1 Web Applications and Web Containers 75
4.2 Dynamic ContentCreation 76
4.2.1 Common Gateway Interface 76
422 Servlets 77
4.2.3 JavaServer Pages Technology....................... 78
4.3 ServletsandJSP Pages 80
431 WebComponentRolesciiiiiiinnn... 80
432 Servlets 84
433 JSPPagesVersusServlets. 85
4.4 JSP Page Design 85
441 JavaBeans Components.................c0ciiiiinn.. 86
442 CUSIOM TAGS - - e 86
4.4.3 Using Scriptlets and Expressions 88
4.5 Internationalization and Localization 88
451 Internationalization, 89
452 Localization............ 91
4.6 Application Designs e 96
4.6.1 Applications with Basic JSP Pages and Servlets. 97
4.6.2 Applications with Modular Components. 98
4.6.3 EJB-Centric Applications 103
4.7 Application Migration. 107
4.7.1 Migrating a Web-Centric Application to Use
Enterprise Beans 108
4.8 SUMMANY . . oot e 110
The Enterprise JavaBeans Tier......................... 113
5.1 BuUSINESSLOQIC 113
5.1.1 Common Requirements of Business Objects 115
5.2 Enterprise Beans as J2EE Business Objects. 117
5.2.1 Enterprise Beans and EJB Containers................ 118
53 EntityBeans 121
5.3.1 Guidelines for Using Entity Beans 122
5.3.2 PersistenceinEntityBeans........................ 124
54 SesSioNBeans 125

5.4.1 Stateful SessionBeans. 126

viii

CONTENTS

5.4.2 Stateless SessionBeans. 128
55 DesignGuidelines. 130
55,1 DataAccessObjects 130
552 ValueObjecCtsc i 134
5.5.3 Session Beans as a Facade to Entity Beans. 135
5.5.4 Master-Detail Modeling Using Enterprise Beans.. 136
5.6 Summary. 137
6 The Enterprise Information System Tier. 141
6.1 Enterprise Information System Capabilities and Limitations. 142
6.2 Enterprise Information System Integration Scenarios 143
6.2.1 AnInternet E-Store Application.................... 143
6.2.2 An Intranet Human Resources Application 144
6.2.3 A Distributed Purchasing Application 145
6.3 Relational Database Management System Access............. 146
6.4 Other Enterprise Information System Access. 146
6.5 Application Component Provider Tasks. 147
6.6 Application Programming Model. 148
6.7 Programming Access to Data and Functions 149
6.7.1 Client API for Enterprise Information System Access. .. 149
6.7.2 Tools for Application Development 150
6.7.3 ACCessSODbJeCtS 151
6.8 CONNECHIONS.ttt 153
6.8.1 Establishinga Connection. 154
6.8.2 Guidelines for Connection Management. 155
B.9 SECUNMIY . . oottt 157
6.9.1 Security Architecture. 157
6.9.2 Application Programming Model 158
6.9.3 ReSsoUrce SignoNt 158
6.10 J2EE Connector Architecture 161
B.11 SUMMAIY . . .ottt e e 162
7 Packaging and Deployment............................ 165
7.1 RolesandTasks i 165
7.2 Packaging J2EE Applications. oL 168
721 EJIJBModules. 169
7.2.2 Packaging Components Into EJB Modules. 170
7.23 WebModules e 172

7.2.4 Packaging Components Into Web Modules 173

CONTENTS ix

7.2.5 Application ClientModules 174
7.3 DeploymentDescriptors.t 174
7.3.1 Specifying Deployment Descriptor Elements. 176
7.4 Deployment TOOIS. i 187
7.4.1 Deployment Tool Actions. 187
7.4.2 Deployment Tool Requirements 189
7.5 SUMMAIY . . e 193
Transaction Management. oiuiinan... 197
8.1 Propertiesof Transactions. 197
8.2 J2EE Platform Transactions, 198
8.3 SCENANOS. . .t 199
8.3.1 Accessing Multiple Databases. 199
8.3.2 Accessing Multiple Enterprise Information Systems
From Multiple EJB Servers. 200
8.4 JTATransactionst 200
8.4.1 JTAAndJTS 201
8.5 Transactions in Applets and Application Clients 202
8.6 Transactions in Web Components 202
8.7 Transactionsin EnterpriseBeans 203
8.7.1 Bean-Managed Transaction Demarcation............. 204
8.7.2 Container-Managed Transaction Demarcation 204
8.7.3 Transaction Guidelinescciuio... 207
8.8 Transactions in Enterprise Information Systems 208
8.8.1 JTATransactions................uuiiiiiinnnnnnn. 208
8.8.2 Resource Manager Local Transactions............... 209
8.8.3 Choosing Between JTA and Local Transactions. 209
8.8.4 Compensating Transactions. 210
8.85 IsolationLevel......., 212
8.9 SUMmMaAry . .. 213
SECUNMLY. . .o 215. .
9.1 Security Threats and Mechanisms 215
9.2 Authentication. 216
9.2.1 ProtectionDomains................. 217
9.2.2 Authentication Mechanisms 220
9.2.3 Authentication Call Patterns 223
9.2.4 Auto-Registration i 225

9.2.5 Exposing Authentication Boundaries with References. . . 225

X CONTENTS

9.3 Authorization 225
9.3.1 Declarative Authorization......................... 226
9.3.2 Programmatic Authorization. 227
9.3.3 Declarative Versus Programmatic Authorization. 228
9.3.4 Isolation. 228
9.3.5 ldentity Selection. 229
9.3.6 Encapsulation for Access Control. 229
9.3.7 Controlling Access to J2EE Resources. 230
9.3.8 Example. e 232
9.4 Protecting MesSsageso 234
9.4.1 Integrity Mechanisms 234
9.4.2 Confidentiality Mechanisms 235
9.4.3 Identifying Sensitive Components 236
9.4.4 Ensuring Confidentiality of Web Resources. 236
9.5 Auditing 237
9.6 SUMMANY.\ 238
10 The Sample Application. 241
10.1 Application Functionality i 241
10.1.1 SCENAMOS . - o oo e e e e e e e e 242
10.1.2 Functional Specification 247
10.2 Application Architecture. 248
10.2.1 Application Modules. 248
10.2.2 ApplicationDesign 251
10.3 The VIieW. . .. e e e 255
10.3.1 Shopping Interaction Interface 256
10.3.2 JSP Pages.ot 259
10.3.3 EXamples. .. o e 266
104 The Model. e e 273
10.4.1 Stateinthe J2EE Platform 273
10.4.2 PersistentData.coiiiiiii 277
10.5 Implementation. 278
10.6 The Controller. e e 280
10.6.1 Main ... 282
10.6.2 RequestProcessorttt 284
10.6.3 RequestToEventTranslator 285
10.6.4 ShoppingClientControllerWeblmpl 287
10.6.5 ShoppingClientController. 288

10.6.6 StateMachine., 289

CONTENTS Xi

10.6.7 ScreenFlowManagerc.oiiiinnn. 293
10.6.8 Model-View Synchronization...................... 294
10.7 MVC SUMMATY e e 296
10.8 Stateless ServiCeS . .. oo 298
10.8.1 Example: AMailerBean.......................... 298
10.9 Deployment. 300
10.10 Transactionso e e 300
10.12 SECUMEY . . v v v e et e e e e e e e e e 301
10.11.1 Requirements. 301
10.11.2 Implementation 303
10.12 SUMMAIY . . oottt e e e e e 312
Afterword 313..

Foreword

THE Javd™ platform was conceived to connect door knobs to light switches—
smart door knobs to smart light switches, certainly, but door knobs to light switches
nonetheless. And yet it is now widely used for building large server-side applica-
tions which run on some of the largest computers in the world. It is the fate of great
inventions to be used in ways unimagined by their creators even when the cre-
ators—like James Gosling, creator of the Java programming language—see a
horizon the rest of us do not glimpse. This is part of what makes an invention great.

In retrospect, the phenomenal success of the Java platform on servers might
seem inevitable. After all, the platform provides exactly what is needed to trans-
form the Internet from a publishing medium to a transactional one. The Java plat-
form is available on all of the many different servers where Internet applications
run. “Write Once, Run Anywhef&” works so the programs can be quickly tested
and deployed. Engineers are several times more productive when they write to the
Java platform. But being the right thing at the right time isn’t the whole story. Two
more elements were needed: Technical leaders who were looking in a different
direction than most of us were, and business leaders who were eager to work
together in new ways so the ideas could become reality. The result was the devel-
opment of consistent products across the computer industry in a surprisingly short
period of time.

| joined the JavaSoft Division of Sun Microsystems in late 1995, recruited by
Eric Schmidt and Bill Joy, to lead the then tiny band of engineers and marketers.
We grew as fast as we could, barely keeping up with the early success of the Java
platform and the industry alliances we'd made around it. Even then, when the
focus was on applets running in browsers, when version 1.0 had not yet shipped,
there were two brilliant engineers with a different idea—Rick Cattell and Graham
Hamilton. They were thinking about the Java runtime environment on servers, and
even mainframes. Because of them, the now ubiquitous JBHB&ehnology was
the first significant addition to the Java platform. Many excellent engineers have
followed Rick and Graham. But they started it. I'm pleased that | was clever
enough to listen to them as we expanded the group and the vision for the platform.

Until recently, “rocket scientists” have been needed to build the applications
the industry clamored for—applications that create new ways to do business over
the Internet while drawing on the resources already in place, such as databases,

Xiii

Xiv

FOREWORD

transaction systems, inventory systems, invoicing systems, and credit systems.
These applications need to scale to thousands, even millions, of users. They must
interact with a wide array of legacy technologies that can't be replaced, and they
have to be built in a hurry. The engineers who can build them are few—the rocket
scientists of our industry. But Rick and Graham saw a way to make the process a
lot easier by building the rocket science into the Java platform, bringing portabil-
ity and consistency through industry standardization, enabling quick adoption by
adapting to the systems already in place, and making development much easier by
automating most of the complicated details of server programming. These ideas
became the underpinnings of the Java 2 Platform, Enterprise Edition.

JDBC was a huge hit. As soon as the Java community released it, drivers for
all the important databases materialized in the market. Applications using JDBC
rapidly appeared in large numbers. The success of JDBC lead to a parade of other
middleware and database adapter projects—the Java Naming and Directory Inter-
facd™ API for uniform access to naming and directory services, the Java Message
Service for asynchronous exchange of data and events, the Java Transaction API
and Java Transaction Service for transactions, JavaServer Pagesnology for
building dynamic Web pages, Java XML for developing XML-oriented applica-
tions, and the Enterprise JavaBedharchitecture, a component model for server
applications. All of these were developed in collaboration with industry partners
in a process created by Rick and Graham and later refined and formalized as the
Java Community Process.

The seminal offering of JDBC in 1996 soon grew into an amazing array of
facilities, each with its own acronym and release plan. For those who didn't live
with the various “J*'s” (and for some of us who did) it could be confusing. When
vendors announced support for Enterprise JavaBEah® before the specifica-
tion had been completed, we realized it was time to make this now very successful
portfolio a little easier to understand and manage.

The Java 2 Platform, Enterprise Edition (J2ZEflatform) brings all of these
pieces together. The J2EE platform is defined by four key pieces: the specifica-
tion, the reference implementation, the compatibility test suite, and the J2EE
Blueprints design guidelines. The specification defines how the J2EE platform
works, whether it is included in an application server, a database, or anywhere
else. The reference implementation is useful for experimenting with the J2EE
platform and it offers a working standard for comparison. The compatibility test
suite ensures that J2EE vendors implement fully compliant versions of the plat-
form to ensure “Write Once, Run Anywhere” portability, and these design guide-
lines show developers how the pieces fit together to make up complete

FOREWORD XV

applications. The key J2EE specifications are publishddwa 2 Platform, Enter-
prise Edition : Platform and Components Specificati¢adso from Addison-Wes-

ley), while supplemental specifications are availablentadp://java.sun.com/

j2ee. The reference implementation used to create the examples in this book is
available on the Sun Microsystems Java Software Web sitehtap://
java.sun.com/j2ee/download.html.

Many people contributed to the Java 2 Platform, Enterprise Edition. Mala
Chandra joined the group to lead the server efforts and quickly became the chief
crusader. Her passion and determination carried the project around, over, or
through many obstacles. Jeff Jackson, Connie Weiss, Karen Tegan, and Tom
Kincaid provided exceptional engineering management. Technical leadership
came from many, including Mark Hapner, Vlada Matena, Bill Shannon, Shel
Finkelstein, Eduardo Pelegri-Llopart, Larry Cable, and Nick Kassem. Bill Roth,
Gina Centoni, George Paolini, and Kathy Knutsen kept the Sun crew connected to
the industry.

A staggering list of companies helped build this new server platform—a
“Who's Who" of the industry; big, small, old and new. BEA Systems, IBM,
Oracle and Sun Microsystems stand out as the companies who worked on nearly
every piece, but they were never alone. Many companies sent their most senior
architects and engineers and their most experienced managers to quickly build a
common platform that set a new standard for ease of development, scalability, and
applicability. They put these new Java platform technologies in their products,
both old and new. The most widely deployed databases and the newest develop-
ment tools from Silicon Valley startups now share the same interfaces. We are all
the beneficiaries of their foresight and commitment.

In many ways, this book represents the culmination of these collective efforts.
Designing Enterprise Applications with the Java 2 Platform, Enterprise Edition
effectively demonstrates how this new platform simplifies and streamlines the
design, development, and deployment of a new generation of enterprise applica-
tions.

Jon Kannegaard

Vice President and Deputy Director
Sun Microsystems Laboratories
Mountain View, California

March 20, 2000

Preface

T HIS book describes a standard approach to designing multitier enterprise appli-
cations with the Jav¥ 2 Platform, Enterprise Edition. The book does not contain
information on how to use individual J2E'E technologies to develop applica-
tions, but rather focuses on guidelines for distributing application functionality
across tiers and choosing among design options within each tier.

The book describes the principles and technologies employed in building J2EE
applications and the specific approach adopted by a sample application. Striking a
balance between specificity on the one hand, and articulating broader principles
on the other, is never easy. The hope is that the principles presented are both con-
sistent with and complement the sample application documented in the book.

This book is most relevant to IT managers, system architects, and enterprise
application developers considering a transition to or intending to use the J2EE plat-
form or vendors providing J2EE products.

How This Book Is Organized
This book contains the following chapters:

» Chapter 1, “Introduction,” discusses challenges in building enterprise appli-
cations and describes how the J2EE platform addresses those challenges. The
chapter also discusses application scenarios that the J2EE platform supports.

» Chapter 2, “J2EE Platform Technologies,”provides an overview of the
component, service, and communication technologies supported by the J2EE
platform.

e Chapter 3, “The Client Tier,” presents implementation options for J2EE cli-
ents and provides guidelines for choosing among these options.

» Chapter 4, “The Web Tier,” describes technologies available for supporting
development in the Web tier. It includes guidelines and techniques for using
J2EE Web components and describes several Web application architectures.

» Chapter 5, “The Enterprise JavaBeans Tier,"describes the capabilities of

XVii

Xviii

PREFACE

the EJB tier of the J2EE platform and discusses design choices for implement-
ing business logic.

Chapter 6, “The Enterprise Information System Tier,” describes recom-
mended approaches for accessing enterprise information systems and how J2EE
components must be configured to access them.

Chapter 7, “Packaging and Deployment,”describes the capabilities provid-

ed by the J2EE platform for packaging and deploying J2EE applications, pro-
vides heuristics and practical tips on how to use these capabilities, and
provides recommendations to the vendors who provide deployment tools.

Chapter 8, “Transaction Management,” describes the transaction services
provided by the J2EE platform and provides recommendations on how to best
use those services.

Chapter 9, “Security,” describes the mapping of the J2EE security model to
enterprise computing environments and infrastructures.

Chapter 10, “The Sample Application,”illustrates the J2EE programming
model in the context of an in-depth description of a multitier J2EE application.

“Glossary,” is a list of words and phrases found in this book and their defini-
tions.

Obtaining the Sample Application

You can download the sample application described in this book from:

http://java.sun.com/j2ee/download.html

The sample application requires a J2EE v1.2 compliant platform on which to

run. From the sample application download page you can also download Sun’s
J2EE SDK, a freely available implementation of the J2EE v1.2 platform.

Related Information

Pointers to J2EE documentation can be found at:

http://java.sun.com/j2ee/docs.html

PREFACE XiX

For information on how to use the J2EE SDK to construct multitier enterprise appli-
cations refer to thé2EE Developer’s Guidavailable at:

http://java.sun.com/j2ee/j2sdkee/techdocs/index.html
The J2EE technologies cited in this book are described in their specifications:

« Java™ 2 Platform, Enterprise Edition Specification, Version(JZEE spec-
ification). Copyright 1999, Sun Microsystems, Inc. Availabletab://ja-

va.sun.com/j2ee/download.html.

» Java™ 2 Platform, Standard Edition, Version 1.ZI2SE specification).
Copyright 1993-99, Sun Microsystems, Inc. Availabletwb: //ja-
va.sun.com/products/jdk/1.2/docs/api/index.html.

» Java™ Servlet Specification, Version 2S&rvlet specification). Copyright
1998, 1999, Sun Microsystems, Inc. Availabléatp://java.sun.com/prod-
ucts/serviet.

» JavaServer Pages™ Specification, Version(13P specification). Copyright
1998, 1999, Sun Microsystems, Inc. Availabléatp: //java.sun.com/prod-
ucts/jsp.

» Enterprise JavaBeans™ Specification, Version(EJB specification). Copy-
right 1998, 1999, Sun Microsystems, Inc. Availabl@&atp://java.sun.com/
products/ejb.

« JDBC™ 2.0 API(JDBC specification). Copyright 1998, 1999, Sun Microsys-
tems, Inc. Available atttp://java.sun.com/products/jdbc.

« JDBC™ 2.0 Standard Extension ABDBC extension specification). Copy-
right 1998, 1999, Sun Microsystems, Inc. Available&dp://java.sun.com/
products/jdbc.

« Java™ Transaction API, Version 1.Q.ITA specification). Copyright 1998,
1999, Sun Microsystems, Inc. Availablenhatp://java.sun.com/products/
jta.

« Java™ Transaction Service, Version 0(9%S specification). Copyright

1997-1999, Sun Microsystems, Inc. Availablenetp://java.sun.com/prod-
ucts/jts.

« Java Naming and Directory Interface™, Version QRDI specification).

XX

PREFACE

Copyright 1998, 1999, Sun Microsystems, Inc. Availabletag://ja-

va.sun.com/products/jndi.

» Java IDL.Copyright 1993-99, Sun Microsystems, Inc. Availabletab://
java.sun.com/products/jdk/1.2/docs/guide/id1/index.html.

* RMloverlIOP 1.0.1Available athttp://java.sun.com/products/rmi-iiop.

» Java™ Message Service, Version 1@KS specification). Copyright 1998,
Sun Microsystems, Inc. Available tattp://java.sun.com/products/jms.

» JavaMail™ API Design Specification, Version 1(JavaMail specification).
Copyright 1998, Sun Microsystems, Inc. Availabl@étaip: //java.sun.com/

products/javamail.

» JavaBeans™ Activation Framework Specification, Version 1JAE speci-
fication). Copyright 1998, Sun Microsystems, Inc. Availabletap: //ja-

va.sun.com/beans/glasgow/jaf.html.

Typographic Conventions

Table 1 describes the typographic conventions used in this book.

Table 1 Typographic Conventions
Typeface or
Symbol Meaning Example
AaBbCc123 The names of commands, files, Edit the file Main. jsp.
and directories; interface, class, = How to retrieve a UserTransaction
method, and deployment object.
descriptor element names; Specify the resource-ref element.
programming language
keywords
AaBbCc123 Variable name The files are named XYZf1iTe.
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in User’s Guide. These

or words to be emphasized

are called class options. You must be
root to do this.

PREFACE XxXi

Acknowledgments

This book is the result of many people’s efforts.

Each Enterprise Team member had primary responsibility for one chapter and
made significant contributions to other chapters. In addition, Danny Coward wrote
the initial draft of the deployment chapter.

The authors of the J2EE specifications and the developers of the reference
implementation provided useful input at various points during the development of
the J2EE programming model.

We are indebted to Rick Cattell, Bill Shannon, Mark Hapner, John Crupi,
Sean Brydon, and many other reviewers who provided feedback on early versions
of the manuscript.

Jim Inscore and Stephanie Bodoff provided editorial oversight of this project.

About the Author

NICHOLAS KASSEM is a Senior Staff Engineer with Sun Microsystems and has
influenced and had responsibility for a number of technologies and initiatives within
Java Software including the Java Web Server, Java Embedded Server, the Serviet API,
JavaServer Pages, Java Message Queuing, and the J2EE programming model. He is cur-
rently leading the XML Messaging initiative.

Nicholas has over twenty years industry experience and has held senior engineer-
ing and management positions at Philips (Data Systems) and the Santa Cruz Opera-
tion. He has had direct responsibility for a wide variety of engineering projects
including the development of Data Communications Gateway Hardware (DISOSS),
Novell and Lan Manager protocol stacks, and an implementation of OSF DCE on
SCO UNIX. He is an Engineering Graduate of Birmingham University in the UK.

CHAPTER 1

Introduction

by Nicholas Kassem

T HE Internet and World Wide Web represent a foundation on which enterprises
are working to build an information economy. In this economy, information takes on
as much value as goods and services, and becomes a vital part of the market. The
information economy challenges today’s enterprises to radically re-think the way
they do business.

Predictions about the future of this economy range from glowing scenarios of
dynamic new business, industrial, and financial environments capable of unlim-
ited expansion, to gloom and doom prophecies of overinflated expectations and
unsustainable hypergrowth. Whatever the predictions, the reality is that enter-
prises have always tried to gain a competitive advantage by any reasonable means
at their disposal, including the latest technologies. This is a natural survival
instinct: all viable enterprises, including for-profit, non-profit, and government
institutions, continuously look for ways to keep pace by adopting such changes.
Complacent organizations routinely fall by the wayside, while the innovators
work to transform new challenges into business success.

In the information economy, information assets take on far-reaching strategic
value to an organization. The ability to capitalize on this value is key to success.
Organizations that succeed will do so by increasing their productivity in moving
information into the marketplace.

While these may appear to be new challenges, in many ways the Internet and
World Wide Web only intensify a challenge that has long faced information tech-
nology professionals: the demand for responsive management of information
assets. The initial response to this demand was to ensure that all critical business
functions were effectively managed by computerized systems. More recently, the
response has been to strive for greater integration among these systems, and

CHAPTER 1 INTRODUCTION

increased ability to correlate data from disparate sources into information that
serves specific strategic needs. Corporate mergers, acquisitions, and partnerships
have provided additional incentive for organizations to integrate such information.

Distributed custom applications are the packages in which an organization
delivers information as a commodity. Custom applications add value to and
extract value from the information assets of an organization. They allow IT orga-
nizations to target specific functionality to specific user needs. By making infor-
mation available within an organization, they add strategic value to the
management and planning processes. By selectively projecting information assets
outside the organization, they enable exchanges that are mutually valuable to cus-
tomers, suppliers, and the organization itself.

In the competitive environment of the information economy, response time is
key to the value of custom applications to the enterprise. Organizations need to
quickly develop and deploy custom applications, and to easily refine and enhance
them to improve their value. They need ways to simply and efficiently integrate
these applications with existing enterprise information systems, and to scale them
effortlessly to meet changing demands. All these factors affect an organization’s
ability to respond quickly to changes in the competitive environment.

The goal of the Java2 Platform, Enterprise Edition (J2BEplatform) is to
define a standard of functionality that helps meet these challenges and thus
increases the competitiveness of enterprises in the information economy. The
J2EE platform supports distributed applications that take advantage of a wide
range of new and evolving technologies, while simplifying development through a
component-based application model. The J2EE model supports applications
ranging from traditional client-server applications delivered over corporate intra-
nets to e-commerce Web sites on the Internet.

In presenting the J2EE Blueprints programming model, this book hopes to
provide enterprise application developers with a strategic perspective on the chal-
lenges of the information economy, and a methodical exploration of ways the
J2EE platform supports custom applications to meet a reasonably broad range of
application requirements. The underlying theme of this discussion is that the J2EE
platform provides a single, unified standard that enhances the opportunity for
enterprises to project their business information systems beyond their historical
borders, while avoiding risks inherent in the task.

This book approaches the J2EE Blueprints programming model by taking a
logical view of enterprise platforms and suggesting ways to partition application
functionality to use the technologies provided by the J2EE platform most effec-
tively. The intent is to divide the problem of architecting and developing multitier

CHALLENGES OF ENTERPRISE APPLICATION DEVELOPMENT 3

applications with J2EE into manageable portions, then apply appropriate technol-
ogies to the portions, leading to more maintainable and scalable solutions. In the
process, certain simplifying assumptions are made, not to trivialize certain factors,
but to focus on the essential J2EE theme. Note that none of the statements in this
book should be interpreted as mandates or requirements, but rather as advice, sug-
gestions, and simple recommendations.

1.1 Challenges of Enterprise Application Development

While timing has always been a critical factor to adopting new technologies, the
accelerated pace inherent in a virtual, information-driven business model has put
even greater emphasis on response times. To leverage Internet economics, it's
imperative not only to project enterprise systems into various client channels, but to
do so repeatedly and in a timely manner, with frequent updates to both information
and services. The principal challenge is therefore one of keeping up with the Inter-
net’'s hyper-competitive pace while maintaining and leveraging the value of existing
business systems. In this environment, timeliness is absolutely critical in gaining
and maintaining a competitive edge. A number of factors can enhance or impede an
organization’s ability to deliver custom enterprise applications quickly, and to maxi-
mize their value over their lifetime.

1.1.1 Programming Productivity

The ability to develop and deploy applications is key to success in the information
economy. Applications need to go quickly from prototype to production, and to con-
tinue evolving even after they are deployed.

Productivity is thus vital to responsive application development. Providing
application development teams with standard means to access the services
required by multitier applications, and standard ways to support a variety of cli-
ents, can contribute to both responsiveness and flexibility.

One destabilizing factor in Internet and other distributed computing applica-
tions is the current divergence of technologies and programming models. Histori-
cally (in Web terms), technologies such as HTML and CGI have provided a
mechanism for distributing dynamic content, while backend systems such as
transaction processors and database management systems have provided con-
trolled access to the data to be presented and manipulated. These technologies
present a diversity of programming models, some based on well-defined stan-

CHAPTER 1 INTRODUCTION

dards, others on more ad-hoc standards, and others still on proprietary architec-
tures.

With no single application model, it can be difficult for teams to communicate
application requirements effectively and productively. As a result, the process of
architecting applications becomes more complex. What's more, the skill sets
required to integrate these technologies aren’t well organized for effective division
of labor. For example, CGI development requires coders to define both content
and layout to appear on a dynamic Web page.

Another complicating factor in application development time is the choice of
clients. While many applications can be distributed to Web browser clients
through static or dynamically generated HTML, others may need to support a spe-
cific type of client, or to support several types of clients simultaneously. The pro-
gramming model needs to support a variety of client configurations, with
minimum effect on basic application architecture or the core business logic of the
application.

1.1.2 Response to Demand

Imagine a brick-and-mortar business trying to increase its customer base by a scale
of 10. How much time and effort would they expend on remodelling storefronts,
building new warehouses, and so on, to keep up? The fact is, the constant rework
would drastically impact their ability to serve the customers they're trying to attract.

This holds for businesses in the information economy as well. The ability for
applications to scale easily and automatically to accommodate anticipated—or
unexpected—growth is key to achieving the goals. Systems that require any
restructuring or redeployment to scale will impede growth and diminish the com-
pany’s expected performance.

In order to scale effectively, systems need to be designed to handle multiple
client interactions with ease. They need mechanisms for efficient management of
system resources and services such as database connections and transactions.
They need to have access to features such as automatic load balancing without any
effort on the part of the application developer. Applications should be able to run
on any server appropriate to anticipated client volumes, and to easily switch server
configurations when the need arises.

CHALLENGES OF ENTERPRISE APPLICATION DEVELOPMENT5

1.1.3 Integration with Existing Systems

Much of the data of value to organizations has been collected over the years by
existing information systems. Much of the programming investment resides in
applications on those same systems. The challenge for developers of enterprise
applications is how to reuse and commaoditize this value.

To achieve this goal, application developers needs standard ways to access
middle-tier and backend services such as database management systems and
transaction monitors. They also need systems that provide these services consis-
tently, so that new programming models or styles aren't required as integration
expands to encompass various systems within an enterprise.

1.1.4 Freedom to Choose

Application development responsiveness requires the ability to mix and match solu-
tions to come up with the optimum configuration for the task at hand. Freedom of
choice in enterprise application development should extend from servers to tools to
components.

Choices among server products gives an organization the ability to select con-
figurations tailored to their application requirements. It also provides the ability to
move quickly and easily from one configuration to another as internal and external
demand requires.

Access to the appropriate tools for the job is another important choice. Devel-
opment teams should be able to adopt new tools as new needs arise, including
tools from server vendors and third-party tool developers. What's more, each
member of a development team should have access to tools most appropriate to
their skill set and contribution.

Finally, developers should be able to choose from a ready market of off-the-
shelf application components to take advantage of external expertise and to
enhance development productivity.

1.1.5 Maintaining Security

Somewhat ironically, projecting information assets to extract their value can jeopar-
dize that very value. Traditionally, IT departments have been able to maintain a rela-
tively high level of control over the environment of both servers and clients. When
information assets are projected into less-protected environments, it becomes
increasingly important to maintain tight security over the most sensitive assets,
while allowing seemingly unencumbered access to others.

CHAPTER 1 INTRODUCTION

One of the difficulties in integrating disparate systems is providing a unified
security model. Single signon across internal application and asset boundaries is
important to creating a positive user experience with the applications. Security
needs to be compatible with existing mechanisms. In cases where customers need
to access secure information, the mechanisms need to maintain high security (and
user confidence) while remaining as unobtrusive and transparent as possible.

1.2 The Platform for Enterprise Solutions

The J2EE platform represents a single standard for implementing and deploying
enterprise applications. The J2EE platform has been designed through an open pro-
cess, engaging a range of enterprise computing vendors, to ensure that it meets the
widest possible range of enterprise application requirements. As a result, the J2EE
platform addresses the core issues that impede organizations’ efforts to maintain a
competitive pace in the information economy.

1.2.1 J2EE Platform Overview

The J2EE platform is designed to provide server-side and client-side support for
developing enterprise, multitier applications. Such applications are typically config-
ured as a client tier to provide the user interface, one or more middle-tier modules
that provide client services and business logic for an application, and backend enter-
prise information systems providing data management. Figure 1.1 illustrates the
various components and services that make up a typical J2EE environment.

1.2.1.1 Multitier Model

As illustrated, the J2EE platform provides a multitier distributed application model.
This means that the various parts of an application can run on different devices. The
J2EE architecture definescéent tier, amiddle tier(consisting of one or more sub-
tiers), and a backend tier providing services of existing information systems. The
client tier supports a variety of client types, both outside and inside of corporate fire-
walls. The middle tier supports client services through Web containers /e

tier and supports business logic component services through Enterprise JavaBeans
(EJB™) containers in th&JB tier Theenterprise information system (EIS) teup-

ports access to existing information systems by means of standard APIs.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 7

Firewall

P

P
EJB Container

enterprise
bean

@erprise

bean

Q}rprise

bean

P

Enterprise
Information
Systems

(RDBMS;
ERP, Legacy

Applications)
| Web
Container
p———

JNDI;
JMS;
NEVELED

(Servlets,
JSP Pages,
HTML,; XML)

Client Tier EIS Tier

Figure 1.1 J2EE Environment

1.2.1.2 Container-Based Component Management

Central to the J2EE component-based development model is the notion of contain-
ers. Containers are standardized runtime environments that provide specific compo-
nent services. Components can expect these services to be available on any J2EE
platform from any vendor. For example, all J2EE Web containers provide runtime
support for responding to client requests, performing request time processing (such
as invoking JSP or servlet behavior), and returning results to the client. All EJB con-
tainers provide automated support for transaction and life cycle management of EJB
components, as well as bean lookup and other services. Containers also provide
standardized access to enterprise information systems; for example, providing
RDBMS access through the JDBC API.

In addition, containers provide a mechanism for selecting application behav-
iors at assembly or deployment time. Through the use of deployment descriptors
(text files that specify component behavior in terms of well-defined XML tags),

CHAPTER 1 INTRODUCTION

components can be configured to a specific container's environment when

deployed, rather than in component code. Features that can be configured at
deployment time include security checks, transaction control, and other manage-
ment responsibilities.

While the J2EE specification defines the component containers that must be
supported, it doesn’t specify or restrict the configuration of these containers. Thus,
both container types can run on a single platform, Web containers can live on one
platform and EJB containers on another, or a J2EE platform can be made up of
multiple containers on multiple platforms.

1.2.1.3 Support for Client Components

The J2EE client tier provides support for a variety of client types, both within the
enterprise firewall and outside. Clients can be offered through Web browsers by
using plain HTML pages, dynamic HTML generated with JavaServer Pages
(JSPY) technology, or Java applets. Clients can also be offered as stand-alone Java
language applications. J2EE clients are assumed to access the middle tier primarily
using Web standards, namely HTTP, HTML, and XML.

To support more complex user interactions, it may be necessary to provide
functionality directly in the client tier. This functionality is typically implemented
as JavaBearis components that interact with the service in the middle tier via
servlets. Client-tier JavaBeans components would typically be provided by the
service as an applet that is downloaded automatically into a user’s browser. To
eliminate problems caused by old or non-standard versions of the Java virtual
machine in a user’s browser, the J2EE application model provides special support
for automatically downloading and installing the Java Plug-in.

Client-tier beans can also be contained in a stand-alone application client
written in the Java programming language. In this case, the enterprise would typi-
cally make operating system specific installation programs for the client available
for users to download via their browsers. Users execute the installation file and are
then ready to access the service. Since Java technology programs are portable
across all environments, the service need only maintain a single version of the
client program. Although the client program itself is portable, installation of the
Java technology client typically requires OS-specific code. There are several com-
mercial tools that automate the generation of these OS-specific installation pro-
grams.

If desired, non-Java clients such as Visual Basic programs can present J2EE
services to users. Since the service is presented by servlets in the middle tier to

THE PLATFORM FOR ENTERPRISE SOLUTIONS 9

first-tier clients using the standard HTTP protocol, it is easy to access it from
practically any program running on any operating system.

1.2.1.4 Support for Business Logic Components

In the J2EE platform, middle-tier business logic is implemented in the middle tier as
Enterprise JavaBeans components (also referred to as enterprise beans). Enterprise
beans allow the component or application developer to concentrate on the business
logic while the complexities of delivering a reliable, scalable service are handled by
the EJB server.

The J2EE platform and EJB architecture have complementary goals. The EJB
component model is the backbone of the J2EE programming model. The J2EE plat-
form complements the EJB specification by:

* Fully specifying the APIs that an enterprise bean developer can use to imple-
ment enterprise beans.

 Defining the larger, distributed programming environment in which enterprise
beans are used as business logic components.

1.2.1.5 Support for the J2EE Standard

The J2EE standard is defined through a set of related specifications, key among
these the J2EE specification, the EJB specification, the Servlet specification, and the
JSP specification. Together, these specifications define the architecture described in
this discussion. In addition to the specifications, several other offerings are available

to support the J2EE standard, including the J2EE Compatibility Test Suite and the

J2EE SDK.

The J2EE Compatibility Test Suite (CTS) helps maximize the portability of
applications by validating the specification compliance of a J2EE platform product.
This test suite begins where the basic Java Conformance Kit (JCK) leaves off. The
CTS tests conformance to the Java standard extension API's not covered by the
JCK. In addition, it tests a J2EE platform’s ability to run standard end-to-end
applications.

The J2EE SDK is intended to achieve several goals. First, it provides an opera-
tional definition of the J2EE platform, used by vendors as the “gold standard” to
determine what their product must do under a particular set of application circum-
stances. It can be used by developers to verify the portability of an application. And
it is used as the standard platform for running the J2EE Compatibility Test Suite.

10

CHAPTER 1 INTRODUCTION

Another important role for the J2EE SDK is to provide the developer commu-
nity with a freely available implementation of the J2EE platform to help expedite
adoption of the J2EE standard. Although it is not a commercial product and its
licensing terms prohibit its commercial use, the J2EE SDK is freely available in
binary form to use in developing application demos and prototypes. The J2EE
SDK is also available in source form.

One more word on J2EE standards and portability. The J2EE specifications
have, by design, set the platform-compatibility-bar at a level that's relatively easy to
clear. Owing to the collaborative way in which the platform specifications have been
developed, it was deemed important to give platform vendors plenty of opportunity
to supply implementations of the J2EE platform. Obvious and unreasonable imple-
mentation hurdles were avoided. For example, there are no restrictions on vendors
adding value to J2EE products by supporting services not defined in the specifica-
tions.

It should therefore not be surprising that J2EE component portability is prima-
rily a function of the dependency a component has on the underlying container.
Components using a vendor-specific feature, that falls outside of the J2EE require-
ments, may have limitations in the area of portability. The J2EE specifications do
however spell out a base set of capabilities that a component can count on. Hence,
there is a minimum cross-container portability that an application should be able to
achieve. Needless to say, an application developer expecting to deploy on a specific
vendor implementation of the J2EE platform, should be able to do so across a wide
range of operating systems and hardware architectures.

1.2.2 J2EE Platform Benefits

With a set of features designed specifically to expedite the process of distributed
application development, the J2EE platform offers several benefits:

» Simplified architecture and development

Scalability to meet demand variations

Integration with existing information systems

Choices of servers, tools, components

Flexible security model

THE PLATFORM FOR ENTERPRISE SOLUTIONS 11

1.2.2.1 Simplified Architecture and Development

The J2EE platform supports a simplified, component-based development model.
Because it's based on the Java programming language and the Java 2 Platform, Stan-
dard Edition (J2SE platform), this model offers Write Once, Run Anywhere port-
ability, supported by any server product that conforms to the J2EE standard.

The component-based J2EE development model can enhance application
development productivity in a number of ways.

Maps easily to application functionality: Component-based application
models map easily and flexibly to the functionality desired from an application.
As the examples presented throughout this book illustrate, the J2EE platform pro-
vides a variety of ways to configure the architecture of an application, depending
on such things as client types required, level of access required to data sources,
and other considerations. Component-based design also simplifies application
maintenance, since components can be updated and replaced independently—new
functionality can be shimmed into existing applications simply by updating
selected components.

Enables assembly- and deploy-time behavior&€Components can expect the
availability of standard services in the runtime environment, and can be dynami-
cally connected to other components providing well-defined interfaces. As a
result, many application behaviors can be configured at the time of application
assembly or deployment, without any recoding required. Component developers
can communicate their requirements to application deployers through specific set-
tings. Tools can automate this process to further expedite development.

Supports division of labor: Components help divide the labor of application
development among specific skill sets, enabling each member of a development
team to focus on his or her ability. Thus, JSP templates can be created by graphic
designers, their behavior by Java programming language coders, business logic by
domain experts, and application assembly and deployment by the appropriate
team members. This division of labor also helps expedite application mainte-
nance. For example, the user interface is the most dynamic part of many applica-
tions, particularly on the Web. With the J2EE platform, graphic designers can
tweak the look and feel of JSP-based user interface components without the need
for programmer intervention.

A number of generic roles are discussed in the J2EE specifications, including
Application Component Provider, Application Assembler, and Application
Deployer. On some development teams, one or two people may perform all these

12

CHAPTER 1 INTRODUCTION

roles, while on others, these tasks may be further subdivided into more specific
skill sets (such as user interface designers, programmers, and so on).

1.2.2.2 Scales Easily

J2EE containers provide a mechanism that supports simplified scaling of distributed
applications, without requiring any effort on the part of the application development
team.

Because J2EE containers provide components with transaction support, data-
base connections, life cycle management, and other features that influence perfor-
mance, they can be designed to provide scalability in these areas. For example, by
providing database connection pooling, containers can ensure that clients will
have access to data quickly.

Because the J2EE specifications allow server providers freedom to configure
containers to run on multiple systems, Web containers can be implemented to
perform automatic load balancing as the demand for a particular application fluc-
tuates.

1.2.2.3 Integrating Existing Enterprise Information Systems

The J2EE platform, together with the J2SE platform, includes a number of industry
standard APIs for access to existing enterprise information systems. Basic access to
these systems is provided by the following APIs:

» JDBC™ is the API for accessing relational data from Java.

» The Java Transaction API (JTA) is the API for managing and coordinating
transactions across heterogeneous enterprise information systems.

» The Java Naming and Directory InterfA¢€INDI) is the API for accessing in-
formation in enterprise name and directory services.

» The Java Message Service (JMS) is the API for sending and receiving messag-
es via enterprise messaging systems like IBM MQ Series and TIBCO Rendez-
VOuS.

» JavaMail" is the API for sending and receiving email.

» Java IDL is the API for calling CORBA services.

THE PLATFORM FOR ENTERPRISE SOLUTIONS 13

In addition, specialized access to enterprise resource planning and mainframe
systems such as IBM’s CICS and IMS will be provided in future versions of J2EE
through the Connector architecture. Since each of these systems is highly complex
and specialized, they each require unique tools and support to ensure utmost sim-
plicity to application developers. As J2EE evolves, enterprise beans will be able to
combine the use of connector access objects and service APIs with middle-tier
business logic to accomplish their business functions.

1.2.2.4 Choice of Servers, Tools, and Components

The J2EE standard and J2EE brand are central to creating a marketplace for servers,
tools, and components. The J2EE brand on a server product ensures the kind of
ubiquity that's fundamental to the goals of the J2EE platform. In addition, J2EE
standards ensure a lively marketplace for tools and components.

A range of server choices:Application development organizations can
expect J2EE branded platforms from a variety of vendors, providing a range of
choices in hardware platforms, operating systems, and server configurations. This
ensures that businesses get a choice of servers appropriate to the strategic purpose
of the applications they need.

Designed for tool support:Both EJB and JSP components are designed to be
manipulated by graphical development tools, and to allow automating many of the
application development tasks traditionally requiring the ability to write and
debug code. Both J2EE server providers and third-party tool developers can
develop tools that conform to J2EE standards and support various application
development tasks and styles. Application developers get a choice of tools to
manipulate and assemble components, and individual team members may choose
tools that suit their specific requirements best.

A marketplace for components: Component-based design ensures that
many types of behavior can be standardized, packaged, and reused by any J2EE
application. Component vendors will provide a variety of off-the-shelf component
solutions, including accounting beans, user interface templates, and even vertical
market functionality of interest in specific industries. Application architects get a
choice of standardized components to handle common or specialized tasks.

The J2EE standard and associated branding programming ensure that solu-
tions are compatible. By setting the stage for freedom of choice, J2EE makes it
possible to develop with confidence that the value of your investment will be pro-
tected.

14

CHAPTER 1 INTRODUCTION

1.2.2.5 Simplified, Unified Security Model

The J2EE security model is designed to support single signon access to application
services. Component developers can specify the security requirements of a compo-
nent at the method level, to ensure that only users with appropriate permissions can
access specific data operations. While the EJB and Java Servlet APIs both provide
mechanisms for building security checks into code, the basic mechanism for match-
ing users with roles (groups of users having specific permissions) is performed
entirely at application deployment time. This provides both greater flexibility and
better security control.

1.3 J2EE Application Scenarios

The following sections present a number of application scenarios, setting the stage
for a detailed discussion of the sample application. In reviewing the J2EE specifica-
tions, a large number of application scenarios could be considered. Indeed, the spec-
ifications tend to embrace and encourage diversity. The J2EE specifications and
technologies, can by definition, make few assumptions about how precisely the
APIs are going to be used to deliver application-level functionality. The application-
level decisions and choices are ultimately a trade-off, between functional richness
and complexity.

The J2EE programming model needs to embrace application scenarios that
treat the Web container, and the EJB container as optional logical entities. Figure
1.2 reflects some key scenarios, including those where either the Web container or
the EJB container, and potentially both, are bypassed.

J2EE APPLICATION SCENARIOS 15

R (R
' Web Container EJB Container

Browser
EIS
Resources

(T (A
Web Container 'EJB Container

Stand-Alone I

Client

Figure 1.2 J2EE Application Scenarios

The sample application reflects a multitier application model. This decision
assumes the presence of both a Web container and an EJB container. The follow-
ing enterprise requirements heavily influenced the choices made:

» The need to make rapid and frequent changes to the “look” of the application.

» The need to partition the application along the lines of presentation and busi-
ness logic so as to increase modularity.

» The need to simplify the process of assigning suitably trained human resources
to accomplish the development task such that work can proceed along relative-
ly independent but cooperating tracks.

» The need to have developers familiar with back-office applications unbur-
dened from GUI and graphic design work, for which they may not be ideally
qualified.

» The need to have the necessary vocabulary to communicate the business logic
to teams concerned with human factors and the aesthetics of the application.

» The ability to assemble back-office applications using components from a va-
riety of sources, including off-the-shelf business logic components.

16

CHAPTER 1 INTRODUCTION

* The ability to deploy transactional components across multiple hardware and
software platforms independently of the underlying database technology.

» The ability to externalize internal data without having to make many assump-
tions about the consumer of the data and to accomplish this in a loosely cou-
pled manner.

Clearly relaxing any or all of these requirements would influence some of the
application-level decisions and choices that a designer would make. The J2EE
programming model takes the approach that it is highly desirable to engineer a
3-tier application such that the migration to a future multitier architecture is sim-
plified through component reusability. Although it is reasonable to speak of
“throw-away” presentation logic (that is, applications with a look and feel that
ages rapidly), there is still significant inertia associated with business logic. This
is even more true in the case of database schemas and data in general. It is fair to
say that as one moves further away from the EIS resources the volatility of the
application code increases dramatically; that is, the application “shelf-life” drops
significantly.

In summary, the J2EE programming model promotes a model that anticipates
growth, encourages component-oriented code reusability, and leverages the
strengths of inter-tier communication. It is the tier integration that lies at the heart
of the J2EE programming model.

Figure 1.2 illustrates a number of application scenarios that a J2EE product
should be capable of supporting. From a J2EE perspective, there is no implicit
bias favoring one application scenario over another. However, a J2EE product
should not preclude supporting any and all of these scenarios. It is worth consider-
ing the scenarios individually and elaborating on the technologies and protocols
relevant to an application developer.

1.3.1 Multitier Application Scenario

Figure 1.3 illustrates an application scenario in which the Web container hosts Web
components that are almost exclusively dedicated to handling a given application’s
presentation logic. The delivery of dynamic Web content to the client is the respon-
sibility of JSP pages (supported by servlets). The EJB container hosts application
components that, on the one hand, respond to requests from the Web tier, and on the
other hand, access the EIS resources. The ability to decouple the accessing of data
from issues surrounding end-user interactions is a strength of this particular sce-
nario. For one, the application is implicitly scalable. But more importantly, the

J2EE APPLICATION SCENARIOS 17

application back-office functionality is relatively isolated from the end-user look
and feel.

Browser
EIS
Resources

I Web Container EJB Container

JSP Pages, Enterprise Beans,
Servlets, JMS,
XML, JTA,
JavaMail JDBC (or connectors)

Figure 1.3 Multitier Application

It is worth noting that XML is included as an integral part of this scenario.
The role of XML data messaging will be expanded on in subsequent chapters, but
the ability to both produce and consume XML data messages in the Web container
is viewed as an extremely flexible way of embracing a diverse set of client plat-
forms. These platforms may range from general purpose XML-enabled browsers
to specialized XML rendering engines targeting vertical solutions. Irrespective of
the specific application area, it is assumed that XML data messages will utilize
HTTP as their communication transport. The term XML data messaging is being
used to denote a programming model where XML is being used to exchange
information as opposed to promoting an object model orthogonal to the Java
object model. The relationship of XML to Java is therefore viewed as highly com-
plementary.

At the Web tier, the question of whether to use JSP pages or servlets comes up
repeatedly. The J2EE programming model promotes JSP technology as the pre-
ferred programming facility within the Web container. JSP pages rely on the
servlet functionality but the J2EE programming model takes the position that JSP
pages are a more natural fit for Web engineers. The Web container is therefore
optimized for the creation of dynamic content destined for Web clients and that
use of JSP technology should be viewed as the norm while the use of servlets will
most likely be the exception.

18 CHAPTER 1 INTRODUCTION

1.3.2 Stand-Alone Client Scenario

Figure 1.4 illustrates a stand-alone client scenario.

EIS
Resources

Web Container EJB Container

Stand-Alone I

Client

Figure 1.4 Stand-Alone Clients

From a J2EE programming model perspective, we need to consider three
types of stand-alone clients:

» EJB clients interacting directly with an EJB server, that is enterprise beans
hosted on an EJB container. Such a scenario is illustrated in Figure 1.5. Itis
assumed that RMI-IIOP will be used in this scenario and that the EJB server
will access the EIS resources using JDBC (connectors in the future).

Client

Figure 1.5 EJB-Centric Java Client

J2EE APPLICATION SCENARIOS 19

» Stand-alone Java application clients accessing enterprise information system
resources directly using JDBC and potentially even connectors in the future. In
this scenario, presentation and business logic are by definition co-located on
the client platform and may in fact be tightly integrated into a single applica-
tion. This scenario collapses the middle tier into the client platform, and is es-
sentially a client-server application scenario with the associated application
distribution, maintenance, and scalability issues.

« Visual Basic clients consuming dynamic Web content, most likely in the form
of XML data messages. In this scenario, the Web container is essentially han-
dling XML transformations and providing Web connectivity to clients. Presen-
tation logic is assumed to be handled on the client tier. The Web tier can be
designated to handle business logic and directly access the enterprise informa-
tion system resources. Ideally, the business logic is pushed back onto the EJB
server, where the rich component model can be fully leveraged.

1.3.3 Web-Centric Application Scenario

Figure 1.6 illustrates a 3-tier Web-centric application scenario.

Browser
EIS

Resources

XML
JSP Pages,
Serviets,

XML JDBC (or connectors)

Figure 1.6 Web-Centric Application Scenario

There are numerous examples that one could concoct where an EJB server (at
least initially) could be deemed to be an overkill given the problem being tackled.
This is the sledge-hammer-to-crack-a-nut problem. In essence, the J2EE specifica-
tion does not mandate a 2, 3, or multitier application model, nor realistically could
it do so. The point is that it is important to use appropriate tools for a given
problem space.

20

CHAPTER 1 INTRODUCTION

The 3-tier Web-centric application scenario is currently in widespread use.
The Web container is essentially hosting both presentation and business logic, and
it is assumed that JDBC (and connectors in the future) will be used to access the
EIS resources.

Figure 1.7 provides a closer look at the Web container in a Web application
scenario.

Firewall

JavaMail

HTTP(S)
Browser

Data
Access
Object

Middle
8 Tier JavaMail

Figure 1.7 Web Container in a 3-Tier Scenario

It is important to keep in mind that the term Web container is being used here
in a very precise way. For example, if a given J2EE product chooses to implement,
a J2EE server, such that the Web container and the EJB container are co-located
(this assumes that the inter-container communication is optimized in some fashion
and that the implementation details are private), then the J2EE programming
model treats the application deployed on such a platform as essentially a multitier
scenario.

1.3.4 Business-to-Business Scenario

Figure 1.8 illustrates a business-to-business scenario.

This scenario focuses on peer-level interactions between both Web and EJB
containers. The J2EE programming model promotes the use of XML data messag-
ing over HTTP as the primary means of establishing loosely coupled communica-

J2EE APPLICATION SCENARIOS 21

tions between Web containers. This is a natural fit for the development and
deployment of Web-based commerce solutions.

Web Container EJB Container

RMI-lIOP
JMS

Web Container IEJB Container

HTTP(S)
XML

EIS
Resources

Figure 1.8 Business-to-Business Scenario

The peer-level communications between EJB containers is currently a more
tightly coupled solution most suitable for intranet environments. With the immi-
nent integration of JMS into the J2EE platform, the development of loosely-
coupled intranet solutions will become increasingly practical.

1.3.5 A Note on the MVC Architecture

A brief aside here regarding the subsequent discussions of application scenarios.
Throughout the remainder of this book, the Model-View-Controller (MVC) applica-
tion architecture is used to analyze features of distributed applications. This abstrac-
tion helps in the process of breaking an application up into logical components that
can be architected more easily. This section explores the general features of MVC.

The MVC architecture is a way to divide functionality among objects
involved in maintaining and presenting data so as to minimize the degree of cou-
pling between the objects. The MVC architecture was originally developed to map
the traditional input, processing, and output tasks to the graphical user interaction
model. However, it is straightforward to map these concepts into the domain of
multitier Web-based enterprise applications.

In the MVC architecture, the Model represents application data and the busi-
ness rules that govern access and modification of this data. Often the model serves

22

CHAPTER 1 INTRODUCTION

as a software approximation to a real world process and simple real world model-
ing techniques apply when defining the model.

The model notifies views when it changes and provides the ability for the
view to query the model about its state. It also provides the ability for the control-
ler to access application functionality encapsulated by the model.

A View renders the contents of a model. It accesses data from the model and
specifies how that data should be presented. When the model changes, it is the
view's responsibility to maintain consistency in its presentation. The view for-
wards user gestures to the controller.

A Controller defines application behavior; it interprets user gestures and maps
them into actions to be performed by the model. In a stand-alone GUI client, these
user gestures could be button clicks or menu selections. In a Web application, they
appear aseT andposT HTTP requests to the Web tier. The actions performed by
the model include activating business processes or changing the state of the
model. Based on the user gesture and the outcome of the model commands, the
controller selects a view to be rendered as part of the response to this user request.

There is usually one controller for each set of related functionality. For exam-
ple, human resources applications typically have a controller for managing
employee interactions and a controller for human resources personnel.

Figure 1.9 depicts the relationships between the model, view, and controller
portions of an MVC application.

1.4 Summary

The challenge to IT professionals today is to efficiently develop and deploy distrib-
uted applications for use on both corporate intranets and over the Internet. Compa-
nies that can do this effectively will gain strategic advantage in the information
economy.

The Java 2 Platform, Enterprise Edition is a standard set of Java technologies
that streamline the development, deployment, and management of enterprise
applications. The J2EE platform is functionally complete in the sense that it is
possible to develop a large class of enterprise applications using only the J2EE
technologies. Applications written for the J2EE platform will run on any J2EE-
compatible server. The J2EE platform provides a number of benefits for organiza-
tions developing such applications, including a simplified development model,

SUMMARY 23

industrial-strength scalability, support for existing information systems, choices in
servers, tools, and components, and a simple, flexible security model.

Model

» Encapsulates application state
» Responds to state queries

* Exposes application
functionality

State « Notifies views of changes State
Query Change

Change
Notification

@ .
View N — Controller

» Renders the models * Defines application behavior
* Requests updates from models » Maps user actions to

» Sends user gesturestocontroller 4°§ 3 1 1 1 | model updates

+ Allows controller to select view User Gestures * Selects view for response
* One for each functionality

Method Invocations
(1 1 Events

Figure 1.9 Relationships Between MVC Participants

By providing the ability to deploy component-oriented enterprise applications
across multiple computing tiers in a platform-neutral manner, J2EE can give fast-
moving enterprises a significant and measurable competitive edge.

About the Author

STEPHANIE BODOFFis a staff writer at Sun Microsystems. She has been involved
with object-oriented enterprise software since graduating from Columbia University
with an M.S. in electrical engineering. For several years she worked as a software engi-
neer on distributed computing and telecommunications systems and object-oriented
software development methods. During that period she co-auttipgett-Oriented
Software Development: The Fusion Methd®rentice Hall. For the past 4 years
Stephanie has concentrated on technical writing, documenting object-oriented data-
bases, application servers, and enterprise application development methods.

CHAPTER2

| J2EE Platform Technologies

by Stephanie Bodoff

T HE J2EE platform specifies technologies to support multitier enterprise applica-
tions. These technologies fall into three categories: component, service, and com-
munication.

The component technologies are those used by developers to create the essen-
tial parts of the enterprise application, namely the user interface and the business
logic. The component technologies allow the development of modules that can be
reused by multiple enterprise applications. The component technologies are sup-
ported by J2EE platform system-level services which simplify application program-
ming and allow components to be customized to use resources available in the
environment in which they are deployed.

Since most enterprise applications require access to existing enterprise informa-
tion systems, the J2EE platform supports APIs that provide access to database,
transaction, naming and directory, and messaging services. Finally, the J2EE plat-
form provides technologies that enable communication between clients and
servers and between collaborating objects hosted by different servers.

This chapter will provide an overview of the J2EE platform technologies.

2.1 Component Technologies

A componenis an application-level software unit. In addition to JavaBeans compo-
nents, which are part of the J2SE platform, the J2EE platform supports the follow-
ing types of components: applets, application clients, Enterprise JavdBeans
components, and Web components. Applets and application clients run on a client
platform and EJB and Web components run on a server platform.

25

26

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

All J2EE components depend on the runtime support of a system-level entity
called acontainer Containers provide components with services such as life cycle
management, security, deployment, and threading. Because containers manage
these services, many component behaviors can be declaratively customized when
the component is deployed in the container. For example, an Application Compo-
nent Provider can specify an abstract name for a database that an Enterprise Java-
Beans component needs to access and a Deployer will link that name with the
information (such as a user name and password) needed to access the database in
a given environment.

The following sections provide overviews of the different types of J2EE com-
ponents and containers.

2.1.1 Applets and Application Clients

Appletsandapplication clientsare client components that execute in their own Java
virtual machine. An applet container includes support for the applet programming
model. A J2EE client may make use of the Java Plug-in to provide the required
applet execution environment. An application client container provides access to
the J2EE service (see Section 2.3 on page 33) and communication (see Section 2.5
on page 41) APIs. Applets and application clients are covered in Chapter 3.

2.1.2 Web Components

A Web componeris a software entity that provides a response to a request. A Web
component typically generates the user interface for a Web-based application. The
J2EE platform specifies two types of Web components: servlets and JavaServer
Page§” (JSP) pages. The following sections give an overview of Web components.
Web components are discussed in detail in Chapter 4.

2.1.2.1 Servlets

A servletis a program that extends the functionality of a Web server. Servlets
receive a request from a client, dynamically generate the response (possibly que-
rying databases to fulfill the request), and then send the response containing an
HTML or XML document to the client.

COMPONENT TECHNOLOGIES 27

A servlet developer uses the servlet API to:

Initialize and finalize a servlet

Access a servlet’s environment

Receive requests and send responses

Maintain session information on behalf of a client

Interact with other servlets and other components

2.1.2.2 JavaServer Pages Technology

The JavaServer Pages (JSP) technology provides an extensible way to generate
dynamic content for a Web client. A JSP page is a text-based document that
describes how to process a request to create a response. A JSP page contains:

» Template data to format the Web document. Typically the template data uses
HTML or XML elements. Document designers can edit and work with these
elements on the JSP page without affecting the dynamic content. This ap-
proach simplifies development because it separates presentation from dynamic
content generation.

« JSP elements and scriptlets to generate the dynamic content in the Web docu-
ment. Most JSP pages use JavaBeans and/or Enterprise JavaBeans components
to perform the more complex processing required of the application. Standard
JSP actions can access and instantiate beans, set or retrieve bean attributes, and
download applets. JSP is extensible through the development of custom ac-
tions, which are encapsulated in tag libraries.

2.1.2.3 Web Component Containers

Web components are hosted by servlet containers, JSP containers, and Web con-
tainers. In addition to standard container servicesgmavlet containemrovides
network services (by which requests and responses are sent), decodes requests, and
formats responses. All servlet containers must support HTTP as a protocol for
requests and responses, but may also support additional request-response protocols
such as HTTPS. ASP containeprovides the same services as a servlet container
and an engine that interprets and processes a JSP page into a seWWkd. ¢on-

28

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

tainer provides the same services as a JSP container and access to the J2EE service
and communication APIs.

2.1.3 Enterprise JavaBeans Components

The Enterprise JavaBeans (EJB) architecture is a server-side technology for devel-
oping and deploying components containing the business logic of an enterprise

application. Enterprise JavaBeans components, teenestprise beansare scal-

able, transactional, and multi-user secure. There are two types of enterprise beans:
session beans and entity beans. The following sections give an overview of enter-

prise beans. Enterprise beans are discussed in detail in Chapter 5.

2.1.3.1 Session Beans

A session beais created to provide some service on behalf of a client and usually
exists only for the duration of a single client-server session. A session bean per-
forms operations such as calculations or accessing a database for the client. While a
session bean may be transactional, it is not recoverable should its container crash.

Session beans can be stateless or can maintain conversational state across
methods and transactions. If they do maintain state, the EJB container manages
this state if the object must be removed from memory. However, the session bean
object itself must manage its own persistent data.

2.1.3.2 Entity Beans

An entity beanis a persistent object that represents data maintained in a data store;
its focus is data-centric. An entity bean can manage its own persistence or it can del-
egate this function to its container. An entity bean can live as long as the data it rep-
resents.

An entity bean is identified by a primary key. If the container in which an
entity bean is hosted crashes, the entity bean, its primary key, and any remote ref-
erences survive the crash.

2.1.3.3 EJB Component Containers

Enterprise beans are hosted byEalB containerin addition to standard container
services, an EJB container provides a range of transaction and persistence services
and access to the J2EE service and communication APIs.

COMPONENT TECHNOLOGIES 29

2.1.4 Components, Containers, and Services

The J2EE component types and their containers are illustrated in Figure 2.1.

“ Applet
Container

/Applet (o - i 7EJB7
Container

E/nterprise

Bean

Java —
Mail

JAF Database

b
ES
S
)

| dOII-INY

Container

A/pplication
Client

RMI-lIOP

Figure 2.1 J2EE Components and Containers

Containers provide all application components with the J2SE platform APIs,
which include the Java IDL and JDBC 2.0 core enterprise APIs. Table 2.1 lists the
Standard Extension APIs that are available in each type of container. The J2EE
platform APIs are described in Section 2.4 on page 39 and Section 2.5 on page 41.

Table 2.1 J2EE Required Standard Extension APIs

Application
API Applet Client Web EJB
JDBC 2.0 Extension N Y Y Y

JTA 1.0 N N Y Y

30 CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

Table 2.1 J2EE Required Standard Extension APIs (continued)

Application
API Applet Client Web EJB
JNDI 1.2 N Y Y
Servlet 2.2 N N N
JSP 1.1 N N N
EJB 1.1 N Y YP Y
RMI-TIIOP 1.0 N Y Y Y
JMS 1.0 N Y Y Y
JavaMail 1.1 N N Y Y
JAF 1.0 N N Y Y

a Application clients can only make use of the enterprise bean client APIs.
b Servlets and JSP pages can only make use of the enterprise bean client
APlIs.

2.2 Platform Roles

The J2EE platform defines several distinct roles in the application development and
deployment life cycle: J2EE Product Provider, Application Component Provider,
Application Assembler, Deployer, System Administrator, Tool Provider. In general,
the roles are defined to aid in identifying the tasks performed by various parties
during the development, deployment, and running of a J2EE application. However,
while some of these roles, such as System Administrator and Tool Provider, perform
tasks that are common to non-J2EE platforms, other roles have a meaning specific to
the J2EE platform, because the tasks those roles perform are specific to J2EE tech-
nology. In particular, Application Component Providers, Application Assemblers,
and Deployers must configure J2EE components and applications to use J2EE plat-
form services (described in Section 2.3 on page 33).

The roles can be fulfilled by whatever personnel match an organization’s
actual application development and deployment workflow. Thus, each J2EE role
may be performed by a different party or a single party may perform several roles.
For example, a programmer may perform the roles of Application Component
Provider and Application Assembler.

PLATFORM ROLES 31

The following sections define the J2EE platform roles. Subsets of some of
these roles are defined in the EJB (Enterprise Bean Provider, EJB Container Pro-
vider, EJB Server Provider), JSP (JSP Container Provider), and Servlet (Applica-
tion Developer, Servlet Container Provider, Web Container Provider, Web Server
Provider) specifications.

2.2.1 J2EE Product Provider

A J2EE Product Provider, typically an operating system vendor, database system
vendor, application server vendor, or a Web server vendor, implements a J2EE
product providing the component containers, J2EE platform APIs, and other fea-

tures defined in the J2EE specification. A J2EE product is free to implement the

interfaces that are not specified by the J2EE specification in an implementation-spe-
cific way.

A J2EE Product Provider provides application deployment and management
tools. Deployment tools enable a Deployer (described in Section 2.2.4 on page 32)
to deploy components on the J2EE product. Management tools allow a System
Administrator (described in Section 2.2.5 on page 32) to manage the J2EE
product and the applications deployed on the J2EE product. The form of these
tools is not prescribed by the J2EE specification.

2.2.2 Application Component Provider

Application Component Providers produce the building blocks of a J2EE applica-
tion. They typically have expertise in developing reusable components as well as
sufficient business domain knowledge. Application Component Providers need
not know anything about the operational environment in which their components
will be used. There are multiple roles for Application Component Providers, includ-
ing HTML document designers, document programmers, enterprise bean develop-
ers, and so on. These roles use tools provided by a Tool Provider (described in
Section 2.2.6 on page 32) to produce J2EE components and applications.

2.2.3 Application Assembler

An Application Assembler takes a set of components developed by Application
Component Providers and assembles them into a complete J2EE application. Their
expertise lies in providing solutions for a specific problem domain, for example,
the financial industry. Application Assemblers may not be familiar with the
source code of the components that they use, but they use declarative descriptors

32

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

for the components in order to know how to build applications from them. Like
Application Component Providers, they need not know anything about the opera-
tional environment in which their applications will be used. An Application
Assembler will generally use GUI tools provided by either a Product Provider or
Tool Provider. An Application Assembler is responsible for providing assembly
instructions describing external dependencies of the application that the Deployer
must resolve in the deployment process.

2.2.4 Deployer

A Deployer, an expert in a specific operational environment, is responsible for
deploying J2EE components and applications into that environment. A Deployer
uses tools supplied by the J2EE Product Provider to perform deployment tasks. A
Deployer installs components and applications into a J2EE server and configures
components and applications so as to resolve all the external dependencies
declared by the Application Component Provider and Application Assembler.

2.2.5 System Administrator

A System Administrator is responsible for the configuration and administration of

an enterprise’s computing and networking infrastructure. A System Administrator is
also responsible for overseeing the runtime well-being of the deployed J2EE appli-
cations. The System Administrator typically uses runtime monitoring and manage-
ment tools provided by the J2EE Product Provider to accomplish these tasks.

2.2.6 Tool Provider

A Tool Provider provides tools used for the development and packaging of applica-

tion components. A variety of tools are anticipated, corresponding to the many com-

ponent types supported by the J2EE platform. Platform independent tools can be
used for all phases of development up to the deployment of an application. Platform

dependent tools are used for deployment, management, and monitoring of applica-
tions. Future versions of the J2EE specification may define more interfaces that

allow such tools to be platform independent.

PLATFORM SERVICES 33

2.3 Platform Services

J2EE platform services simplify application programming and allow components
and applications to be customized at deployment time to use resources available in
the deployment environment. This section gives a brief overview of the J2EE plat-
form naming, deployment, transaction, and security services.

2.3.1 Naming Services

J2EE naming services provide application clients, enterprise beans, and Web com-
ponents with access to a JNDI (described in Section 2.4.3 on page 40) naming envi-
ronment. Anaming environmerdallows a component to be customized without the
need to access or change the component’s source code. A container implements the
component’s environment, and provides it to the component as ad&bihg con-
text

A J2EE component locates its environment naming context using JNDI inter-
faces. A component createg#vax.naming.InitialContext object and looks up
the environment naming context irnitialContext under the name
java:comp/env. A component’s naming environment is stored directly in the envi-
ronment naming context, or in any of its direct or indiseticontexts

A J2EE component can access named system-provided and user-defined
objects. The names of system-provided objects, such asuddAransaction
objects, are stored in the environment haming contexi : comp/env. The J2EE
platform allows a component to name user-defined objects, such as enterprise
beans, environment entries, JDB&:aSource objects, and message connections.
An object should be named within a subcontext of the naming environment
according to the type of the object. For example, enterprise beans are named
within the subcontexava: comp/env/ejb and JDBCQbataSource references in the
subcontextjava: comp/env/jdbc.

2.3.2 Deployment Services

J2EE deployment services allow components and applications to be customized at
the time they are packaged and deployed.

J2EE applications are deployed as a set of nested units. Each unit contains a
deployment descriptoran XML-based text file whose elements declaratively
describe how to assemble and deploy the unit into a specific environment. Deploy-
ment descriptors contain many elements related to customizing J2EE platform
services such as transactions and security.

34

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

The following sections give an overview of J2EE platform deployment ser-
vices. Deployment services are discussed in detail in Chapter 7.

2.3.2.1 Deployment Units

A J2EE applicationconsists of one or more J2EE modules and one J2EE applica-
tion deployment descriptor. An application deployment descriptor contains a list of
the applications’s modules and information on how to customize the application. A
J2EE application is packaged as a Java Archive (JAR) file with an .ear (Enterprise
ARchive) extension.

A J2EE moduleonsists of one or more J2EE components for the same con-
tainer type and one component deployment descriptor of that type. A component
deployment descriptor contains declarative data to customize the components in
the module. A J2EE module without an application deployment descriptor can be
deployed as a stand-alone J2EE module.

The three types of J2EE modules are:

» Enterprise JavaBeans modules contain class files for enterprise beans and an
EJB deployment descriptor. EJB modules are packaged as JAR files with a .jar
extension.

» Web modules contain JSP files, class files for servlets, GIF and HTML files,
and a Web deployment descriptor. Web modules are packaged as JAR files
with a .war (Web ARchive) extension.

» Application client modules contain class files and an application client deploy-
ment descriptor. Application client modules are packaged as JAR files with a
.Jjar extension.

2.3.2.2 Platform Roles in the Deployment Process

Each J2EE platform role performs specific activities related to deployment. An
Application Component Provider specifies component deployment descriptor ele-
ments and packages components into modules. An Application Assembler
resolves references between modules and assembles modules into a single deploy-
ment unit. A Deployer creates links between entities referred to by the application
and entities in the deployment environment.

PLATFORM SERVICES 35

2.3.3 Transaction Services

Transactions divide an application into a series of indivisible or “atomic” units of
work. A system that supports transactions ensures that each unit fully completes
without interference from other processes. If the unit can be completed in its
entirety, it is committed. Otherwise, the system completely undoes (rolls back)
whatever work the unit had performed. Transactions simplify application develop-
ment because they free the Application Component Provider from the complex
issues of failure recovery and multi-user programming.

Transactions, as provided by the J2EE platform, have the following character-
istics:

» J2EE transactions are flat. A flat transaction cannot have any child (nested)
transactions.

» The J2EE platform implicitly handles many transaction details, such as propa-
gating information specific to a particular transaction instance, and coordinat-
ing among multiple transaction managers.

The following sections give an overview of J2EE platform transaction services.
Transaction services are discussed in detail in Chapter 8.

2.3.3.1 Accessing Transactions

A JTA transactionis a transaction that can span multiple components and
resource managers. lsource manager local transactids a transaction that is
specific to a particular enterprise information system connection.

JTA transactions are created and managed using jHvax.transac-
tion.UserTransaction interface. Different types of components accessr-
Transaction objects in different ways:

» Enterprise beans provide a mechanism for JTA transactions to be started auto-
matically by their containers. Enterprise beans that use bean-managed transac-
tions (described in Section 2.3.3.3 on page 36) use the method
EJBContext.getUserTransaction t0 I00k up theJserTransaction object.

» Applets and application clients may or may not be able to directly access a
UserTransaction object depending on the capabilities provided by the con-
tainer. However, they can always invoke enterprise beans thatsse-a
Transaction object.

36

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

» Web components use JNDI to look up therTransaction object.

A resource manager local transaction is created and managed in a manner spe-
cific to a particular connection. For example, each SQL statement executed on a
JDBC connection has its own transaction.

2.3.3.2 Web Component Transactions

Web components (JSP pages and servlets) are not designed to be transactional.
Because of this, Application Component Providers should only perform transac-
tional work directly in Web components on a very limited basis. Preferably, an
Application Component Provider should delegate transactional work to the appro-
priate enterprise beans. When an enterprise bean is used to perform transactional
work, the enterprise bean or container takes care of properly setting up the transac-
tion.

Nevertheless, there are times when a Web component may need to directly
demarcate transactions. It can do so usingjth@x. transaction.UserTransac-
tion interface. You should however, be aware of limitations in transaction propa-
gation and state isolation, as described in the following discussions.

Transaction Propagation

Transactions are propagated from a Web component to an enterprise bean only
when the Web component starts the transaction usingstwe ransaction inter-

face. Since Web components are server-side components, Web browsers and other
clients don't have direct access to transactions and so a transaction initiated by a
Web componentannotbe propagated from the client of the component or between
Web components and transactional resources such as JDBC connections.

State Isolation

A Web component can keep state for the lifetime of a client session or component.
However, because Web components are not transactional components, their state
cannot be isolated based on transactions. For example, separate servlets will see the
same state of a client session even if they each start their own transaction.

2.3.3.3 Enterprise Bean Transactions

The J2EE platform provides two styles of transaction demarcation for enterprise
beans: bean-managed and container-managed.

PLATFORM SERVICES 37

With bean-managed transaction demarcatitime enterprise bean is required
to manage all aspects of a transaction. This entails operations such as:

» Creating the transaction object
» Explicitly starting the transaction

* Completing the transaction. There are two basic ways of completing a transac-
tion:

- Committing the transaction when all updates are completed.
- Rolling back the transaction if an error occurred.

With container-managed transaction demarcatitimee EJB container handles
transaction management. The container performs the transaction demarcation
based on the Application Assembler’s deployment instructions; it handles starting
and ending the transaction, plus it maintains the transaction context throughout
the life of the transaction object. This greatly simplifies an Application Compo-
nent Provider’s responsibilities and tasks, especially for transactions in distributed
environments.

Session beans, both stateful and stateless varieties, can use either container- or
bean-managed transactions. However, a bean cannot use both types of transaction
at the same time. The Application Component Provider decides the type of trans-
action demarcation that a session bean will use and must declare the transaction
style via attributes in the enterprise bean’s deployment descriptor. The attributes
indicate whether the bean or container will manage the bean’s transactions and, if
the latter, how the container will manage the transactions. Entity beans can only
use container-managed transaction demarcation.

2.3.4 Security Services

The J2EE platform security services are designed to ensure that resources are
accessed only by users authorized to use them. Access control involves two steps:

1. Authentication—An entity must establish its identity throagthentication
It typically does so by providinguthentication daté§such as a name and pass-
word). An entity that can be authenticated is callgualiacipal. A principal can
be a user or another program. Users are typically authenticated by logging in.

2. Authorization—When an authenticated principal tries to access a resource, the

38

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

system determines whether the principal is authorized to do so based on the se-
curity policies in force in the applicationdecurity policy domain

The following sections give an overview of J2EE platform security services.
Security services are discussed in detail in Chapter 9.

2.3.4.1 Security Methodologies

Containers provide two security methodologies: declarative and programmatic.
Declarative securityrefers to the means of specifying an application’s security
structure in a form external to the application. An Application Component Provider
specifies declarative security in a component’s deployment descripriogram-

matic securityrefers to security mechanisms accessed within a program. An Appli-
cation Component Provider accesses programmatic security for EJB and Web
components with J2EE platform security APIs.

2.3.4.2 Authentication

The J2EE platform allows an Application Component Provider to choose how a
principal is authenticated. A Web client can provide authentication data to a Web
container using HTTP basic authentication, digest authentication, form-based
authentication, or certificate authentication.

With basic authenticationthe Web server authenticates a principal using the
user name and password obtained from the Web client. Like basic authentication,
digest authenticatiomuthenticates a user based on a user name and a password.
However, the authentication is performed by transmitting the password in an
encrypted form, which is much more secure than the simple base64 encoding used
by basic authentication. Witform-based authenticatigrthe Web container can
provide an application-specific form for logging in. Wigertificate authentica-
tion, the client uses a public key certificate to establish its identity and maintains
its own security context.

There is no way to authenticate to an EJB container. However, authentication
data is also often required when an enterprise bean accesses an external resource.
An enterprise bean can provide authentication data to a resource directly, or it can
request the container to perform this service for it. If the Application Component
Provider specifies that the container should propagate authentication data, the
Deployer specifies the authentication data for each resource factory reference

SERVICE TECHNOLOGIES 39

declared by the enterprise bean, and the container uses the authentication data
when obtaining a connection to the resource.

2.3.4.3 Authorization

J2EE platform authorization is based on the concept of security rolsgcirity

role is a logical grouping of users that is defined by an Application Component Pro-
vider or Application Assembler. Each security role is mapped by a Deployer to prin-
cipals in the deployment environment. A security role can be used with declarative
security and/or programmatic security.

An Application Component Provider or Application Assembler can control
access to an enterprise bean’s methods by specifyingndtiéd-permission
element in the enterprise bean’s deployment descriptor.m&tiéd-permission
element contains a list of methods that can be accessed by a given security role. If
a principal is in a security role allowed access to a method, the principal may
execute the method. Similarly, a principal is allowed access to a Web component
only if the principal is in the appropriate security role. An Application Component
Provider controls access programmatically by usingetiB€ontext.isCallerIn-

Role Or HttpServletRequest.qisRemoteUserInRole methods.

For example, suppose a payroll application specifies two security roles:
employee andadministrator. Salary update operations are executable only by a
principal acting in the role ofidministrator, but salary read operations are exe-
cutable by both roles. When the payroll application is deployed, the Deployer pro-
vides a mapping between the set of administrator and employee principals (or
groups) and their respective roles. When the salary update method is executed, the
enterprise bean’s container can check whether the principal or group propagated
from the Web server is in a role that can execute that method. Alternatively, the
method itself could use one of the security APIs to perform the check.

2.4 Service Technologies

The J2EE platform service technologies allow applications to access a wide range of
services in a uniform manner. This section describes technologies that provide
access to databases, transactions, naming and directory services, and enterprise
information systems.

40

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

2.4.1 JDBC API

The JDBC" API provides database-independent connectivity between the J2EE
platform and a wide range of tabular data sources. JDBC technology allows an
Application Component Provider to:

» Perform connection and authentication to a database server

Manage transactions

Move SQL statements to a database engine for preprocessing and execution

Execute stored procedures

Inspect and modify the results fradelect statements

The J2EE platform requires both the JDBC 2.0 Core API (included in the
J2SE platform), and the JDBC 2.0 Extension API, which provides row sets, con-
nection naming via JNDI, connection pooling, and distributed transaction support.
The connection pooling and distributed transaction features are intended for use
by JDBC drivers to coordinate with a J2EE server. Access to databases and enter-
prise information systems is covered in detail in Chapter 6.

2.4.2 Java Transaction API and Service

The Java Transaction API (JTA) allows applications to access transactions in a
manner that is independent of specific implementations. JTA specifies standard Java
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the transactional application, the J2EE server, and the manager
that controls access to the shared resources affected by the transactions.

The Java Transaction Service (JTS) specifies the implementation of a transac-
tion manager that supports JTA and implements the Java mapping of the Object
Management Group Object Transaction Service 1.1 specification. A JTS transac-
tion manager provides the services and management functions required to support
transaction demarcation, transactional resource management, synchronization,
and propagation of information that is specific to a particular transaction instance.

2.4.3 Java Naming and Directory Interface

The Java Naming and Directory Interfac@NDI) API provides naming and direc-
tory functionality. It provides applications with methods for performing standard

COMMUNICATION TECHNOLOGIES 41

directory operations, such as associating attributes with objects and searching for
objects using their attributes. Using JNDI, an application can store and retrieve any
type of named Java object.

Because JNDI is independent of any specific implementations, applications
can use JNDI to access multiple naming and directory services, including existing
naming and directory services such as LDAP, NDS, DNS, and NIS. This allows
applications to coexist with legacy applications and systems.

2.4.4 Connector Architecture

A future version of the J2EE platform will support the Connector architecture, a
standard API for connecting the J2EE platform to enterprise information systems,
such as enterprise resource planning, mainframe transaction processing, and data-
base systems. The architecture defines a set of scalable, secure, and transactional
mechanisms that describe the integration of enterprise information systems with an
EJB server and enterprise applications.

To use the Connector architecture, an enterprise information system vendor
provides a standard connector for its enterprise information system. The connec-
tor has the capability to plug in to any EJB server that supports the Connector
architecture. Similarly, an EJB server vendor extends its system once to support
this Connector architecture and is then assured of a seamless connectivity to mul-
tiple enterprise information systems.

2.5 Communication Technologies

Communication technologies provide mechanisms for communication between
clients and servers and between collaborating objects hosted by different servers.
The J2EE specification requires support for the following types of communication
technologies:

Internet protocols

Remote method invocation protocols

Object Management Group protocols

Messaging technologies

Data formats

42

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

The following sections give an overview of J2EE platform communication tech-
nologies. How these communication technologies are used by clients is discussed
in Chapter 3.

2.5.1 Internet Protocols

Internet protocols define the standards by which the different pieces of the J2EE
platform communicate with each other and with remote entities. The J2EE platform
supports the following Internet protocols:

» TCP/IP—Transport Control Protocol over Internet Protocol. These two proto-
cols provide for the reliable delivery of streams of data from one host to anoth-
er. Internet Protocol (IP), the basic protocol of the Internet, enables the
unreliable delivery of individual packets from one host to another. IP makes no
guarantees about whether or not the packet will be delivered, how long it will
take, or if multiple packets will arrive in the order they were sent. The Trans-
port Control Protocol (TCP) adds the notions of connection and reliability.

* HTTP 1.0—Hypertext Transfer Protocol. The Internet protocol used to fetch
hypertext objects from remote hosts. HTTP messages consist of requests from
client to server and responses from server to client.

» SSL 3.0—Secure Socket Layer. A security protocol that provides privacy over
the Internet. The protocol allows client-server applications to communicate in
a way that cannot be eavesdropped or tampered with. Servers are always au-
thenticated and clients are optionally authenticated.

2.5.2 Remote Method Invocation Protocols

Remote Method Invocation (RMI) is a set of APIs that allow developers to build dis-
tributed applications in the Java programming language. RMI uses Java language
interfaces to define remote objects and a combination of Java serialization technol-
ogy and the Java Remote Method Protocol (JRMP) to turn local method invocations
into remote method invocations. The J2EE platform supports the JRMP protocol,
the transport mechanism for communication between objects in the Java language in
different address spaces.

COMMUNICATION TECHNOLOGIES 43

2.5.3 Object Management Group Protocols

Object Management Group (OMG) protocols allow objects hosted by the J2EE plat-
form to access remote objects developed using the OMG’s Common Object Request
Broker Architecture (CORBA) technologies and vice versa. CORBA objects are
defined using the Interface Definition Language (IDL). An Application Component
Provider defines the interface of a remote object in IDL and then uses an IDL com-
piler to generate client and server stubs that connect object implementations to an
Object Request Broker (ORB), a library that enables CORBA objects to locate and
communicate with one another. ORBs communicate with each other using the Inter-
net Inter-ORB Protocol (IIOP). The OMG technologies required by the J2EE plat-
form are: Java IDL and RMI-IIOP.

2.5.3.1 Java IDL

Java IDL allows Java clients to invoke operations on CORBA objects that have been
defined using IDL and implemented in any language with a CORBA mapping. Java
IDL is part of the J2SE platform. It consists of a CORBA API and ORB. An Appli-
cation Component Provider uses th&ij IDL compiler to generate a Java client
stub for a CORBA object defined in IDL. The Java client is linked with the stub and
uses the CORBA API to access the CORBA object.

2.5.3.2 RMI-IIOP

RMI-IIOP is an implementation of the RMI API over IIOP. RMI-IIOP allows
Application Component Providers to write remote interfaces in the Java program-
ming language. The remote interface can be converted to IDL and implemented in
any other language that is supported by an OMG mapping and an ORB for that lan-
guage. Clients and servers can be written in any language using IDL derived from
the RMI interfaces. When remote interfaces are defined as Java RMI interfaces,
RMI over IIOP provides interoperability with CORBA objects implemented in any
language. RMI-IIOP contains:

e Thermic compiler, which generates:

- Client and server stubs that work with any ORB.

- An IDL file compatible with the RMI interface. To create a C++ server ob-
ject, an Application Component Provider would use an IDL compiler to pro-
duce the server stub and skeleton for the server object.

44

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

+ A CORBA API and ORB

Application clients must use RMI-IIOP to communicate with enterprise
beans.

2.5.4 Messaging Technologies

Messaging technologies provide a way to asynchronously send and receive mes-
sages. The Java Message Service provides an interface for handling asynchronous
requests, reports, or events that are consumed by enterprise applications. JMS mes-
sages are used to coordinate these applications. The JavaMail API provides an inter-
face for sending and receiving messages intended for users. Although either API can
be used for asynchronous notification, JMS is preferred when speed and reliability
are a primary requirement.

2.5.4.1 Java Message Service

The Java Message Service (JMS) is an API for using enterprise messaging systems
such as IBM MQ Series and TIBCO Rendezvous. JMS messages contain well-
defined information that describe specific business actions. Through the exchange of
these messages, applications track the progress of the enterprise. The JMS supports
both point-to-point and publish-subscribe styles of messaging.

In point-to-point messaging client sends a message to the message queue of
another client. Often a client will have all its messages delivered to a single queue.
Most queues are created administratively and are treated as static resources by
their clients.

In publish-subscribe messagingients publish messages to, and subscribe to
messages from, well-known nodes in a content-based hierarchy called topics. A
topic can be thought of as a message broker that gathers and distributes messages
addressed to it. By relying on the topic as an intermediary, message publishers are
independent of subscribers and vice versa. The topic automatically adapts as both
publishers and subscribers come and go. Publishers and subscribedieee
when the objects that represent them exist. JMS also supports the oplimaal
bility of subscribers that “remember” the existence of the subscribers while they
are inactive.

The JMS API definitions must be included in a J2EE product, but a product is
not required to include an implementation of the Ji@nectionFactory and
Destination Objects. These are the objects used by an application to access a JMS

COMMUNICATION TECHNOLOGIES 45

service provider. A future version of the J2EE platform will require that a J2EE
product provide support for both JMS point-to-point and publish-subscribe mes-
saging, and thus must make those facilities available usingdftectionFac-

tory andbestination APIs.

2.5.4.2 JavaMall

The JavaMalM API provides a set of abstract classes and interfaces that comprise
an electronic mail system. The abstract classes and interfaces support many different
implementations of message stores, formats, and transports. Many simple applica-
tions will only need to interact with the messaging system through these base
classes and interfaces.

The abstract classes in JavaMail can be subclassed to provide new protocols and
add functionality when necessary. In addition, JavaMail includes concrete sub-
classes that implement widely used Internet mail protocols and conform to speci-
fications RFC822 and RFC2045. They are ready to be used in application
development. Developers can subclass JavaMail classes to provide the implemen-
tations of particular messaging systems, such as IMAP4, POP3, and SMTP.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) integrates support for MIME data
types into the Java platform. JavaBeans components can be specified for operating
on MIME data, such as viewing or editing the data. The JAF also provides a mecha-
nism to map filename extensions to MIME types.

The JAF is used by JavaMail to handle the data included in email messages;
typical applications will not need to use the JAF directly, although applications
making sophisticated use of email may need it.

2.5.5 Data Formats

Data formats define the types of data that can be exchanged between components.
The J2EE platform requires support for the following data formats:

 HTML 3.2: The markup language used to define hypertext documents acces-
sible over the Internet. HTML enables the embedding of images, sounds, video
streams, form fields, references to other HTML documents and basic text for-
matting. HTML documents have a globally unique location and can link to one

46

CHAPTER 2 J2EE PLATFORM TECHNOLOGIES

another.

* Image files: The J2EE platform supports two formats for image files: GIF
(Graphics Interchange Format), a protocol for the online transmission and in-
terchange of raster graphic data, and JPEG (Joint Photographic Experts
Group), a standard for compressing gray-scale or color still images.

» JAR file: A platform-independent file format that permits many files to be ag-
gregated into one file.

+ Class file: The format of a compiled Java file as specified in the Java Virtual
Machine specification. Each class file contains one Java language type—either
a class or an interface—and consists of a stream of 8-bit bytes.

» XML: A text-based markup language that allows you to define the markup
needed to identify the data and text in XML documents. XML will be support-
ed in a future version of the J2EE specification. As with HTML, you identify
data using tags. But unlike HTML, XML tags describe the data, rather than the
format for displaying it. In the same way that you define the field names for a
data structure, you are free to use any XML tags that make sense for a given
application. When multiple applications use the same XML data, they have to
agree on the tag names they intend to use.

2.6 Summary

The primary focus of the Java 2 Platform, Enterprise Edition is a set of component
technologies (Enterprise JavaBedndavaServer Pagésand servlets) that sim-

plify the process of developing enterprise applications. The J2EE platform provides
a number of system-level services that simplify application programming and allow
components to be customized to use resources available in the environment in which
they are deployed. In conjunction with the component technologies, the J2EE plat-
form provides APIs that enable components to access a variety of remote services,
and mechanisms for communication between clients and servers and between col-
laborating objects hosted by different servers.

About the Author

ABHlSHEK CHAUHAN has been working on the design of scalable network services
and distributed programs. At Sun Microsystems, Abhishek was involved in the evolution
of the J2EE programming model from its inception. He pioneered work on Web access
optimization techniques and implementation of the Java Web Server. He worked on the
JavaServer Pages specification and Sun’s JavaServer Pages implementations.

Abhishek was one of the founders and a lead architect at Vxtreme, where he
worked on the design of its streaming server. Vxtreme was acquired by Microsoft in
1997. In a former life, Abhishek worked at Microsoft on the Office Visual Basic
scripting engine. He has an M.S. from the University of Wisconsin, Madison and a
Bachelor’s degree from the Indian Institute of Technology at Delhi.

CHAPTER3

The Client Tier

by Abhishek Chauhan

A user’s perception of an enterprise application is often closely tied to the behav-
ior of the application’s client tier. A client makes requests to the server on behalf of
the user, and presents the outcomes of those requests to the user. Therefore, it's
important to choose a client configuration that best addresses the requirements of
the application and empowers the user with a rich interface.

The J2EE platform supports many types of clients. A J2EE client can connect
across the World Wide Web, or inside an enterprise’s intranet. Clients can run on
hardware ranging from powerful desktop machines to tiny wearable assistants.
They can provide a browser-based or stand-alone interface. A client can commu-
nicate with, and use the services provided by, one or more tiers of the enterprise
application. Clients can also be written in a number of languages and use a variety
of development environments.

Since client software executes on user systems, it can be hard to control
aspects of the client environment such as hardware, operating system platform,
and browser version. In any distributed application, there are trade-offs to be made
in partitioning application responsibility between server and client. The more
functionality you keep on the client (closer to the user), the begiteceived
quality of service the user gets. The more you provide on the server, the easier it is
to distribute, deploy, and manage the application.

This chapter presents considerations for J2EE client design and provides
guidelines for choosing among the available options. First, it discusses the
requirements to consider before deciding on a client type. Then it presents a clas-
sification of clients based on the differences in the implementation model, and
provide rules for translating client requirements into a choice of a client imple-
mentation.

49

50

CHAPTER 3 THE CLIENT TIER

3.1 Requirements and Constraints

For every application, there are requirements and expectations that the client must
meet, constrained by the environment in which the client needs to operate. Some of
the considerations guiding our choice of client are: Is the client intended to be used
over the Internet, or within a company intranet? Will it present its user interface
through a Web browser or a stand-alone application? What host platforms must the
client work on? This section identifies the constraints to consider when choosing a
client. For each specific enterprise application, some constraints are more important
than others. There are also a number of choices rather than constraints the developer
needs to keep in mind. This section considers the effect of various operating envi-
ronment, deployment, and implementation constraints.

3.1.1 Operating Environment

Whether the client will be deployed inside a company intranet or in the Internet
determines many aspects of the client.

Intranets are usually managed environments, with higher quality network
service and less variance than the Internet. Virtual private networks (VPNs) and
extranets have characteristics that are a hybrid of Internet and intranet characteris-
tics. A VPN is comparable to an intranet in terms of confidentiality and firewall
concerns, but it is like the Internet when it comes to quality of network service.

Applications designed for the Internet typically take a lowest-common-
denominator approach to the client. In other words, the client must work accept-
ably over the slowest link and assume only a minimal set of platform capabilities.
Clients intended to be deployed on a company intranet may differ significantly
from those destined for the Internet. Within an intranet, it is possible to force stan-
dardization to some extent. This means less variance and possibly a higher
common denominator.

This section considers the effect of operating environment on the level of
network service, and security requirements and constraints.

3.1.1.1 Network Service

Clients working across local area networks in a company’s intranet typically enjoy a
high level of network service. Bandwidths of the order of multiple megabits/sec. are
available, and latency is negligible, often less than 25 milliseconds. On the other
hand, clients on the Internet can expect lower levels of service. Moreover, there is a
wide variance in network quality of service across Internet clients. While some

REQUIREMENTS AND CONSTRAINTS 51

clients are connected across dialup telephone lines, others could be connected over
cable modems, DSL, or better services.

Network service plays an important role in the design of any distributed appli-
cation. Let's look at two key network characteristics—bandwidth and latency—
and see how they affect the choice of what type of client to use.

Highly interactive applications place greater demands on network bandwidth
and well as latency. Low bandwidth requires settling for a less interactive inter-
face. Or, it may be necessary to move portions of the presentation responsibilities
to the client; this, coupled with some form of caching of the data, could yield
acceptable response times. Clients such as applets and application clients that can
take over presentation responsibilities, may be better adapted to work in low band-
width situations.

Consider a browser-based client that displays a hierarchy of information as a
tree, for example, a navigational menu or a list of mail folders. If the network is
fast, it may be acceptable to make a request to the server every time the user
selects a hode to see a list of the node’s children. The server then dynamically
generates a new screen reflecting the expanded node. However, if the network is
slow, a better approach might be to have the client cache the node hierarchy.

3.1.1.2 Security and Firewalls

The Internet and intranets have different security constraints.

Clients that work within the intranet usually do not have to worry about fire-
walls between the client and the server. However, clients that need to connect over
the Internet must be designed to be able to talk to servers that are often behind
firewalls. The presence of a firewall limits the possible choices for protocols that
the client can use. With the prevalence of the World Wide Web, most firewalls are
configured to allow HTTP and HTTPS protocols to pass across. Firewalls config-
ured to allow IIOP communications are not widespread. And even when a corpo-
ration allows IlIOP to pass through, the details of configuring firewalls for this
purpose may not be widely understdod.

Within an intranet, the client and server may be in the same security domain,
and can integrate with the environment better in terms of security. For instance, it
may be possible to have single signon clients within an enterprise. Over the Inter-
net, clients and the server are typically in different security domains. Another
aspect of security is confidentiality. While confidentiality is not a concern for a

! Itis possible to configure most firewalls to pass IIOP. However, because this is an excep-
tion rather than the rule, most firewall administrators may be wary of doing so.

52

CHAPTER 3 THE CLIENT TIER

large category of enterprise information within the corporate intranet, confidenti-
ality must be ensured if the communication occurs over the Internet. In this case,
its necessary to use a protocol that can ensure confidentiality, such as HTTPS.

3.1.2 Deployment

The deployment mechanisms available affect the choice of client type. A developer
needs to consider:

* The delivery vehicle for the client software
» The roll-out and upgrade strategy

* How often the client needs to be upgraded

The bandwidth available to the client plays a role in deciding the client
deployment model. For example, some clients such as applets must be down-
loaded every time the user establishes a session with the server. In this case, the
download must complete in an acceptable amount of time. Thus, when applets are
used as part of the client framework, keeping the size of the client small is impor-
tant unless the network can be expected to support a large bandwidth.

Web-based clients usually have very little that requires explicit deployment.
They therefore work well when the client is changed or upgraded often. By
keeping most of the functionality on the server, an application can also use older
versions of supporting software on the client.

3.1.3 Implementation

This section considers constraints on the client based on the platform and program-
ming language.

3.1.3.1 Platform

The first constraint to consider is whether the client presents its interface in a spe-
cific platform, a browser or as a stand-alone Java application, or does the client need
to run on multiple hardware and/or software platforms. In the latter case, an enter-
prise application developer could take one of two approaches: choose a browser-
based client, where the browser software handles platform differémres,Java

2 1IOP can be made to work over SSL connections, although such configurations are not in
widespread use.

OVERVIEW OF CLIENT OPTIONS 53

technology-based solution, where the Java runtime environment insulates the client
software from the platform.

The computation that can be done on the clients limits some client options.
For example, if the client executes in a cell-phone or pager, the server should
perform as much computation and data processing as possible and the client
should only display the results. Conversely, powerful client platforms may be
leveraged for distributed problem-solving. For example, when a financial analysis
system runs on a powerful desktop platform, it might make sense to off-load
complex financial-projection computation to the client.

3.1.3.2 Programming Language

The choice of implementation language is usually governed by non-technical
factors such as the availability of expertise and the desire to integrate with other
legacy application clients. If you already have a client that integrates services from
several enterprise applications that you are extending to add this new service you
might use a language, such as Visual Basic, C++, or another language, that does not
integrate with the J2EE platform as seamlessly as Java.

3.2 Overview of Client Options

Choices such as which tier or tiers of the application that clients interact with, the
protocols used for this communication, and the implementation language used for
the client are dependent on several factors. Different tiers expose different levels of
detail and complexity.

The Web tier presents a simplified functional facade to the application. It
takes care of presentation issues for the client. The EJB tier presents an interface
to access and manipulate the business objects according to the business rules set in
the application, leaving presentation issues to the client connecting to it. The
enterprise information system tier presents a raw view of the data, delegating the
responsibility of enforcing the business rules, as well as presenting the data to the
client.

The protocols used for communication have different strengths and limita-
tions. The Web tier typically uses HTTP-based protocols. HTML over HTTP is
suitable for handling the presentation needs of the client, while XML over HTTP

3 Recently, browsers act much like platforms. In such cases, the application will still have
to deal with differences in browser “platforms.”

54

CHAPTER 3 THE CLIENT TIER

is better suited for interchange of data to be presented by the client. The EJB tier
uses the RMI-IIOP protocol. As a full-scale distributed computing protocol, it
gives the client direct access to the services of the EJB tier. A client can use busi-
ness objects hosted by the EJB server and can participate in transactions.

For clients of the J2EE platform, the Java programming language is the imple-
mentation language of choice because Java technology-based implementations
can take advantage of services provided by the platform. Other languages, such as
C++ and Visual Basic, can be used, albeit with some limitations.

Many aspects of the client are determined by the tier of the enterprise applica-
tion the client connects to. This discussion classifies clients into three broad cate-
gories based on the tiers that they interact with:

» Web clients connect to the Web tier. They execute on a desktop or other brows-
er host usually inside a Web browser or a browser plug-in. The presentation
logic as well as the business logic of the application can run on the server or
the client.

» EJB clients connect to the EJB tier. These are typically GUI programs that ex-
ecute on a desktop computer. EJB clients have access to all of the facilities of
the J2EE EJB tier. The presentation logic of the application runs on the EJB
client, while the business logic runs on the server.

» Enterprise information system clients interface directly to an enterprise infor-
mation system resource. Typically these programs serve administrative and
management functions for the back-end system. Both presentation and busi-
ness logic are contained in the client.

3.3 Web Clients

Web clients usually run inside a browser and use the services of the browser to
render content provided by the Web tier. In these clients, the user interface is gener-
ated on the server side by the Web tier and communicated via HTML. Applets and
JavaScript can be used to enhance the browsing interface. On the client side, a
browser or equivalent program renders this user interface and carries out interac-
tions with the user. Data interchange is facilitated through XML.

WEB CLIENTS 55

3.3.1 Protocols

Web clients use HTTP or HTTPS as the transport protocol. These protocols have
several advantages:

» They are widely deployed. AlImost every computer now has a browser that can
communicate over HTTP. Thus the deployment of the application is simpli-
fied.

» They are robust and simple. The protocol is simple and well understood. Good
implementations of HTTP servers and clients are widely available.

» They go through firewalls. Due to the extensive use of HTTP, firewalls are typ-
ically set up to pass HTTP through. This makes it the protocol of choice on the
Internet where the server and the client are separated by a firewall.

At the same time, the simplicity of the protocols presents a couple of minor
disadvantages that can largely be overcome:

» They are sessionless. HTTP is a request-response protocol, with no built-in
concept of a session. Therefore, individual requests are treated independently.
Moreover, there are simple ways to provide session semantics, so in practice
this is not an issue.

* They are non-transactional. HTTP is a networking protocol, not designed for
general purpose distributed computing. As a result, it has no concept of trans-
action or security contexts. However, this is not a problem in practice because
transactions and security are commonly handled on the server.

3.3.2 Content Format

The content served over the HTTP protocol is typically the result of an action per-
formed on the server in response to a client request. This result can be formatted
using HTML or XML.

3.3.2.1 HTML

HTML content is widely supported by browsers and operating systems. Along with
HTML, a server may also provide JavaScript code in the response to enrich the user
interface.

56

CHAPTER 3 THE CLIENT TIER

This content type is best suited when presentation of the response is generated
on the server side and communicated to the browser for display. It should be used
as a markup language that instructs the browser how to present the results.

HTML is a good means of encoding static documents. However, presenting
complex documents consistently is difficult using HTML. Style sheets and
dynamic HTML (DHTML) allow more complex documents to be displayed.
However, the various commonly used browsers do not handle style sheets and
DHTML consistently, so it is necessary to design different versions of each page
or to include browser-specific markup in the pages.

HTML's strength is its wide support in many applications on many platforms.
HTML documents that do not rely on browser-specific tags should be similar in
appearance on the most commonly used browsers. The combination of HTTP and
HTML ensures that a document can be widely viewed on many platforms.

3.3.2.2 XML

The XML (eXtensible Markup Language) standard provides a mechanism for struc-
turing content and data. XML allows applications to transfer both page content and
information on how the content is structured.

The structure of the data contained within an XML document is described in a
Data Type Definition (DTD). Applications that support XML can communicate
and exchange data without any prior knowledge of each other, as long as they
share or are capable of interpreting the DTD. For example, the interoperability
portion of the sample application sends a list of orders to a Microsoft Excel
spreadsheet using XML over HTTP. J2EE servers may also transfer information
to other J2EE servers or applications using XML over HTTP. This is not possible
with HTML, because of the limited number of tags it provides to identify data.

While DTDs are useful to validate XML documents, they suffer from a
number of shortcomings, many of which stem from the fact that a DTD specifica-
tion is not hierarchical. This affects the ability to name elements relative to one
another and the ability to scope comments to sections of a document. Finally,
DTDs do not allow you to formally specify field-validation criteria, such as a lim-
itation on the size and content of a zip code field. To remedy these shortcomings, a
number of proposals have been made for future versions of XML to provide data-
base-like hierarchical schemas that specify data validation criteria.

XML also allows dynamic data presentation. That is, the same data can be
presented differently depending on the style sheet used. Fortunately, the XSL
(eXtensible Style Sheet) standard, which provides a standard approach to XML

WEB CLIENTS 57

presentation, will be completed and accepted in the near future. Most of the com-
monly used Web browsers support now, or will soon support, XML. However,
since XML is evolving, support by browsers is not as uniform as HTML. This
means that an applet, plug-in, or other application component, that handles XML
responses might be necessary. In the case of Java applets, this can happen auto-
matically at request time.

Use XML for your responses when:

* The client needs to get data from the server and process it before displaying it
to the user.

» The client needs to show multiple views of the same data. When the client
downloads XML data from the server, it can generate views on the client side
depending on local settings. This saves a round-trip to the server and reduces
load on the server by reducing the number of client requests.

For example, consider a stock quote system, where the client wants to see
a chart of the last hour's trades, as well as a table of the same data. The client
could download the quote data from the server just once, then render that data
as either a chart or a table (or both), at the user’s requests without resending a
request to the server.

* The client can pass XML in requests. The HTTP protocol allowsder data,
in any content type, in a request. An XML-aware application component run-
ning on the client could us®sT requests with XML data to exchange objects
with the server.

3.3.3 Types of Web Clients

Most Web clients run inside of or in conjunction with a Web browser. The browser
can handle details of HTTP communication and HTML rendering, while an applica-
tion component can focus on interactions that cannot be expressed in HTML. In
fact, a Web browser without any other application component is the simplest, most
widespread J2EE Web client. Additional application components such as Java
applets, browser plug-ins, or ActiveX components can make the client user interface
richer and more featureful. Finally, Web clients can be implemented as stand-alone
programs.

58

CHAPTER 3 THE CLIENT TIER

3.3.3.1 Web Browsers

The Web browser is the simplest J2EE client. It serves to render HTML content
delivered by the Web tier. With more and more browsers supporting JavaScript and
DHTML, powerful user interfaces can be created using just a Web browser.

A stand-alone Web browser is the Web client of choice on the Internet. It is
widely available, users are familiar with using it, and there are no issues with
deployment. Additionally, since Web browsers can be used wherever an Internet
connection is available, support for roaming users is possible.

3.3.3.2 Java Applets

Applets are GUI components that typically execute in a Web browser, although they
can execute in a variety of other applications or devices that support the applet pro-
gramming model. Applets can be used to provide a powerful user interface for J2EE
applications.

Since applets are Java-based components, they have access to all the features
and advantages of the Java platform technology. In a heterogeneous Web environ-
ment, it is especially important that client-side components be portable. For the
protection of the client machine, it is important to be able to place security restric-
tion on these components and detect security violations. Java applets serve both
these needs.

Browser-based applet clients communicate over HTTP. Applets can also com-
municate over a network using serialized objects or some other type of proprietary
protocol.

One advantage of applets is that they provide application with rich GUls that
can be managed at a single location. The main disadvantage with browser-based
applets is that they can be difficult to deploy, particularly when the client browsers
run a diverse set of embedded Java virtual machines. For this reason, applets may
be more successfully deployed where the browser environment is controlled (such
as an intranet).

Deployment

Applets are delivered through applet tags embedded in HTML. The Web browser
downloads the code for the applet at request time and executes it in a Java virtual
machine on the client machine.

WEB CLIENTS 59

When JSP pages are used to generate HTML, an Application Component Pro-
vider can use thgsp:plugin tag to ensure the availability of a specific JVM on
the client.

Security

The Java applet programming model protects the user from security violations. All
downloaded code is considered untrusted and strict limitations are placed on it. For
users to be more comfortable with executing application code downloaded from
another computer, vendors should use signed applets. Signed applets provide a
secure way to identify the applet’s distributor. A signed applet can also request addi-
tional permissions from the client machine if it needs access to additional function-
ality.

Session Management

When applets communicate with servlets or JSP pages over HTTP they need to

manage some details of the HTTP protocol to participate in a session. Sessions over
HTTP are managed using HTTP cookies. The server sets the cookie at the begin-

ning of the session; the client then sends the cookie back to the server each time it

makes another request. When the applet makes a request, it needs to explicitly make
sure that it sends the cookie as part of the request.

3.3.3.3 Browser Plug-ins

In addition to applets, Web browsers often support other embedded components,
such as plug-ins in the Netscape browser and ActiveX components in Microsoft's
Internet Explorer. These can be used just like applets to enhance the user experience.
There are some things to keep in mind when planning to use these component types
in a J2EE client:

* Plug-ins are usually written for a particular architecture and operating system.
On the Internet, multiple versions of these plug-ins need to be implemented for
each kind of client. If the clients run on a homogeneous intranet environment,
this is less of an issue.

* Since plug-ins run natively on the browser’s platform, security is harder to en-
force, which could expose your clients to an unacceptable risk.

60

CHAPTER 3 THE CLIENT TIER

3.3.3.4 Stand-Alone Web Clients

The discussion so far has considered Web clients with the application component
embedded in a browser. Sometimes, though, it might be desirable to invert this
model by embedding the browser in an application client. This type of client is
referred to as a stand-alone Web client.

In this configuration, the application client creates a top level window and
user interface, then uses a browser-like component to render HTML responses
from the server.

This is desirable where the client needs to look like a native application, and
provide a more interactive and customized GUI to the user. These clients often use
XML over HTTP to communicate with JSP pages or servlets and render the data
interchanged in their customized GUI.

A stand-alone Web client suffers from the same drawbacks as other stand-
alone applications:

» The client must be explicitly deployed on each user desktop. Client upgrades
are also harder for the same reason.

» Implementing the client is more work since the client must be coded to create
the bulk of the user interface.

With the availability of tools, some of this work can be automated. However,
deploying a stand-alone client remains a complex process.

Java Clients and the Swing API

The user interface of a stand-alone Web client is typically written using the Swing
API from the J2SE platform. The Swing API provides a comprehensive set of GUI
components (tables, trees, and so on) that can be used to provide a more interactive
experience than the typical HTML page. Additionally, Swing supports HTML text
components that can be used to display responses from a server. Swing APIs can be
used for both applets and stand-alone Java applications.

EJB CLIENTS 61

Non-Java Clients

Stand-alone Web clients can also be written in C++ or in automation languages such
as Visual Basié. These clients can use their own HTML renderers or third-party
browser components to present responses from the server.

Non-Java clients may be desirable where specialized services are made avail-
able by the development environment. For example, a chart plotting application
might find it useful to take advantage of this fact. If Microsoft Excel is available
on the client desktops throughout an enterprise, it might be desirable to use it for
rendering charts. A Visual Basic client embedded in Microsoft Excel could com-
municate with a JSP page and download the chart data using XML. The client
could then use specialized services in Excel to render this chart.

3.4 EJB Clients

EJB clients are application clients that interact with the J2EE EJB tier. EJB clients
are GUI programs that typically execute on a desktop computer; they manage their
own GUI and offer a user experience similar to that of native applications. Here we
discuss how to develop and deploy EJB clients.

3.4.1 Protocols and Facilities

EJB clients interact with the J2EE EJB tier using the RMI-IIOP protocol. A variety
of middle-tier services are available to an application ciedDI for directory
lookups, JMS for messaging, and JDBC for relational database access.

An EJB client depends on a client container to provide some system services.
Such a container is typically very lightweight compared to other J2EE containers
and usually provides security and deployment services.

3.4.1.1 The Client Container

A client container is usually a library that is distributed along with the client. It is
specific to the J2EE EJB contairfeaind is often provided by the same vendor. The
container manages details of RMI-IIOP communication. It also handles security,

4 Using the scripting engine on a Windows platform, a developer could use other scripting
languages such as JavaScript or Perl. The component model remains COM.

5 These services are only available if the application client is implemented using Java.

5 The IIOP protocol does not completely specify details of the security and transaction con-
texts, thus different implementations of the protocol may not be compatible.

62

CHAPTER 3 THE CLIENT TIER

transaction, and deployment issues. The following discussion assumes a Java client
container. The J2EE specification doesn'’t define service requirements for applica-
tions implemented in other languages. However, a similar set of services should be
provided by containers for such clients.

3.4.1.2 Deployment

EJB application clients are packaged in JAR files that include a deployment descrip-
tor similar to other J2EE application components. The deployment descriptor
describes the enterprise beans and external resources referenced by the application.
As with other J2EE application components, access to resources is configured at
deployment time, names are assigned for enterprise beans and resources, and so on.

The J2EE platform does not specify tools to deploy an application client, or
mechanisms to install it. Very sophisticated J2EE products might allow the appli-
cation client to be deployed on a J2EE server and automatically made available to
some set of (usually intranet) clients. Other J2EE products might require the J2EE
application bundle containing the application client to be manually deployed and
installed on each client machine. Another approach would be for the deployment
tool on the J2EE server to produce an installation package that could be taken to
each host to install the application client.

3.4.1.3 Transactions

Since client containers aren’t required to provide direct access to transaction facili-
ties, EJB clients should use enterprise beans to start transactions. They can also use
transaction facilities of JDBC. However, doing so may be risky since the J2EE plat-
form doesn't define a mechanism for propagating the transaction context to the EJB
server.

3.4.1.4 Security

The client application must be authenticated to access the J2EE middle tier. Tech-
niques for authentication are provided by the client container, and are not under the
control of the application client. The container can integrate with the platform’s
authentication system, authenticate when the application is started, or use some
other lazy authentication policy. The container takes responsibility for gathering
authentication data from the user, by presenting a login window to the user.

EJB CLIENTS 63

EJB clients in the Java programming language execute in an environment with
a security manager installed. They have similar security permission requirements
as servlets.

3.4.2 Strengths and Weaknesses

EJB clients have a number of strengths, including:

* Provide a more flexible user interface

Application clients can be made to look and feel more like native applica-
tions on the client machine. Since these clients implement their own user
interface, they can provide a richer, more natural interface to the application
tasks.

 Distribute the workload

An application client can share some of the computational expense by
doing the task on the client desktop, and thereby reducing load on the server.
In particular, the work of generating the user interface is performed by each
client. This is useful for applications with specific graphical display capabili-
ties.

« Handle complex data models

Sometimes the data associated with an application is sufficiently complex
and the manipulation interface rich enough, that a Web-based interface to
manage the interaction is not enough. In such cases, you want direct access to
the underlying object model on the client and to manipulate it directly.

For example, in a financial analysis system, it might make sense to off-
load some of the complex financial-projection number crunching to the client.
Or consider an application that allows manipulation of CAD schemas such as
a design of a circuit board (PCB). An application client, with direct access to
the objects of the CAD system, can redraw views of the layout more easily
than a Web-based interface, and with better performance. The server should
be delegated to background tasks such as converting a PCB layout to a plot of
the PCB traces.

« Are transaction-capable

Since EJB clients communicate using RMI-1IOP, they are capable of par-

64

CHAPTER 3 THE CLIENT TIER

ticipating in client-demarcated transactions through JTA APIs.

» Provide integrated security

Application client containers can integrate with the security of the under-
lying operating system where the client is executed, thereby providing a more
transparent and manageable security infrastructure.

For example, in an enterprise intranet, where the client and the server
belong to the same security domain, an application client container might
simply forward the credentials of the user already logged into the client desk-
top operating system, thereby effecting single signon. A Web client, on the
other hand, would require explicit sign on and security management.

The disadvantages of EJB clients are that they:

» Require explicit deployment

EJB clients need to be distributed and installed on the client desktops. In
an intranet, where desktops can be standardized, this is less of an issue. How-
ever, on the Internet, distribution becomes a serious consideration. Further-
more, upgrades and fixes to the client need to be distributed as well, and the
server has to deal with multiple versions of the client programs.

» Require firewall reconfiguration

The RMI-1IIOP protocol does not usually go through firewalls without
additional setup on the firewall host. This makes use of EJB clients on the
Internet very limited.

* Tend to be more complex

Since the application client needs to manage its own user interface, its
implementation is more complex. Furthermore, it communicates with the
J2EE server at a much lower level than browser-based Web clients and needs
to handle the complexity introduced as a result.

3.4.3 Types of EJB Clients

EJB clients can be implemented using either the Java programming language, or
languages such as Visual Basic or C++. When a language other than Java is used,
depending on the implementation on the client container, some of the facilities of
the J2EE platform may not be available.

EJB CLIENTS 65

3.4.3.1 Java Technology Clients

Java clients execute in their own Java virtual machine. Following the model for Java
applications, they are invoked at their main method and run until the virtual machine
is terminated. Security and deployment services are provided through the use of a
client container.

The Java programming language should be used for implementation of EJB
clients. Since the EJB server communicates using RMI-IIOP, the client needs to
support RMI-IIOP. This is most naturally done using services provided by the
standard Java platform.

Some facilities cannot be easily implemented in other languages as a result,
client containers for these languages may not provide the full set of features.

Multitier Clients

Java technology clients are usually stand-alone Java applications. However, when
appropriately signed and trusted, Java applets can also be used as EJB clients.
Applets and applications have essentially the same set of platform service available
to them. Additionally, a Java applet can communicate with the Web tier as well as
the application tier to get its job done. In this sense it is a multitier client.

3.4.3.2 Non-Java Clients

EJB clients can be implemented in programming languages other than Java. Since
the EJB server uses RMI-IIOP, this requires some form of RMI-IIOP support avail-
able to the client.

Accessing Enterprise Beans as COM Objects

Scripting COM objects together into an application is a common client implementa-
tion approach. It is possible for a client container to make enterprise beans appear as
COM obijects on the client machine.

When enterprise beans are exposed as COM objects, any scripting languages
supported by the Active Scripting Engine can be used to automate the components
to develop the application client. While Visual Basic is most often used for this
purpose, languages such as JavaScript or Perl can also be used.

The specific approach to developing such clients will be largely dependent on
the J2EE product used and the platform. Client containers will be provided by the
J2EE server.

66

CHAPTER 3 THE CLIENT TIER

Here’s an example of how such clients might work:

» Create an RMI-IIOP proxy in the client. This proxy runs in a Java virtual ma-
chine. The client uses RMI-IIOP to communicate with the EJB tier.

» The client container exposes each enterprise bean that is part of the application
as a COM object by generating and a registering type library for each enter-
prise bean. Note that the type libraries must be installed on every client desk-
top. The COM objects that are registered act as enterprise bean proxies.

* When the COMDispatch interface of the enterprise bean proxy objectis used
to make a method invocation, it communicates with the RMI-IIOP proxy using
Java Native Interface, or some other proprietary mechanism. The RMI-IIOP
proxy communicates with the EJB tier just like a Java application client and
forwards the invocation.

Limitations

Translating between one distributed computing architecture and another is not
straightforward. There are some limitations when using Visual Basic clients that
access the EJB tier:

e Security: It is hard to propagate security contexts between the J2EE platform
and Visual Basic clients. The RMI-IIOP proxy to the EJB server appears to be
the application client. The proxy thus needs to somehow authenticate the user
on behalf of the Visual Basic client. Integration with the native security system
is harder.

» Transactions: Transaction contexts cannot be propagated from a non-Java cli-
ent to the EJB tier. Although availability of JTA or propagation of contexts is
not required by the J2EE platform, it is often available in Java client contain-
ers. However, this is not possible when using the COM.

» Deployment: The type libraries that need to be generated for each enterprise
bean are application-specific and need to be distributed and installed for each
Visual Basic application client.

When to Use COM Clients

The decision to use Visual Basic clients is largely non-technical. It depends on the
expertise available, as well as the desire to integrate with existing EJB clients. When

ENTERPRISE INFORMATION SYSTEM CLIENTS 67

legacy issues are not a concern, EJB clients should be developed using Java technol-
ogy.

Active Server Pages

There is one interesting case where a COM-based scripting client might interact
with an EJB server. This is the scripting present in Microsoft IIS Active Server
Pages (ASP). ASPs are server-side scripting components that use Visual Basic script
to produce dynamic content. An ASP developer that wishes to use the J2EE plat-
form for its middle tier needs, can do so using the techniques outlined above.

3.5 Enterprise Information System Clients

Enterprise information system clients access enterprise information system
resources directly and assume responsibility for enforcing the business rules of the
application.

Enterprise information system clients can use the JDBC API to access rela-
tional databases. A future release of the J2EE specification will describe standard
ways to implement enterprise information system clients with connectors to non-
relational resources, such as mainframe or enterprise resource planning systems.

These programs should be implemented with caution, since they access the
database directly. Widely distributing such programs can also cause security prob-
lems.

Enterprise information system clients must both manage their user interface
and enforce business rules. Fully functional applications designed this way tend to
be complex. These programs should be limited to administration or management
tasks, where the user interface is small or nonexistent and the task is simple and
well understood.

For example, a stand-alone enterprise information system client could
perform maintenance on database tables, and be invoked every night through an
external mechanism.

The J2EE programming models doesn’t recommend techniques for imple-
menting these programs.

68

CHAPTER 3 THE CLIENT TIER

3.6 Designing for Multiple Types of Client

We have discussed several approaches to building clients for enterprise applications
and how the choice of a client influences service implementation. Often, an enter-
prise application will have more than one type of client accessing its services.

A banking application might expose a simple Web interface for account-
holders to view account balances, as well as provide a richer interface through a
stand-alone client that customers can install on their desktop computers. In this
example both clients have similar functionality although they use different mecha-
nisms to present their interface to the user. A banking application might also
provide a stand-alone client administration interface.

When designing an enterprise application, you should pay attention to han-
dling multiple types of client interactions. The overall application design should
support each new type of client with minimal additional effort. It should also
avoid duplicating code either by sharing the application objects among multiple
clients, or by reusing them through encapsulation, delegation, or inheritance.

This section discusses approaches to designing enterprise applications that
can support multiple types of clients.

Application data and business rules are independent of the clients that access
the application, making it desirable to design these objects to be shared across all
the different clients of the application. When different types of clients present the
same functionality through different interfaces, it is useful to share objects that
encapsulate this functionality or client behavior.

The distinction between objects that can be shared or reused, and objects that
need to be implemented separately for each type of client can be discussed in
terms of the MVC architecture. The follow sections consider the issues that arise
when designing the model, view, and controller to support multiple types of cli-
ents.

3.6.1 Model

The model is a software abstraction of the application data and the business rules
that apply for changing this data. The model can be shared across all clients of the
application. It should be consistent regardless of the type of client accessing the
data. If the model faithfully captures all possible ways that data can be changed,
there is no need to implement different model classes, or develop specific model
objects for each client type.

DESIGNING FOR MULTIPLE TYPES OF CLIENT 69

When each type of client represents a different level of authorization to the
system, it is sometimes desirable to wrap the access to the underlying model into
security mediator objects. This allows the model to be shared across all clients,
while access control restrictions can be enforced more flexibly. Security mediator
objects are described in Section 9.3.6 on page 229.

In situations where the models that two clients of the application work with
are independent of one another, the application can be thought of as being com-
prised of multiple subapplications. In this case the programming model would be
applied to each of these subapplications independently.

3.6.2 View

A view renders the contents of a model. It accesses data from the model and spec-
ifies how that data should be presented. The view changes most significantly across
clients. This makes it hard to share entire view implementations. However, some
code sharing can still be effected at a finer grained level. This is especially true when
clients use the same medium for presentation, but provide different functionality.
For example, the sample application could provide a Web-based shopping
interface and a Web-based administration interface. Although very different in
functionality, they both are Web based. Ikoworder custom JSP tag were used
to render details of a particular order to HTML, the same tag could be used by
both the shopping and the administration clients.

3.6.3 Controller

A controller defines application behavior; it interprets user gestures and maps
them into actions to be performed by the model. Each client that exposes different
functionality requires a separate controller. For example, the sample application
would need separate controllers for shopping and administration clients. There is
always some opportunity to reuse code that is part of the application controller
framework; however, this is independent of the type of clients accessing the applica-
tion.

However, multiple clients that expose similar or identical functionality should
be able to share the controller responsible for the functionality. If the clients
provide only slightly different functionality, it should still be possible to reuse the
controller implementation by using a single class to implement the common
behavior and using subclasses to implement the custom behavior. For example,
the banking application described earlier has a Web-based interface as well as a

70

CHAPTER 3 THE CLIENT TIER

stand-alone desktop client. The difference between the clients is how they present
the interface—the view. Therefore they can share the same controller.

Because the controller interacts directly with the view it is not completely
insulated from changes in the view implementation. For example, strongly typed
references to view objects in the controller make it difficult to redeploy. In order to
design the controller to allow a large portion of its implementation to be shared,
we need to examine the interactions between the view and the controller and find
ways to minimize the effect of those interactions on the controller. The interac-
tions are:

* Interpreting user gestures generated through the view

» Selecting the view

3.6.3.1 Interpreting User Gestures

The controller accepts user gestures from the view. These depend on the medium
that the view uses to present the user interface. For example, in a JFC application,
the user gestures could be “button pressed” events or “mouse moved” events, and so
on. In a Web interface, the user gestures appeagTagr POST requests for URLSs of
the application. In a messaging environment, the user gestures take the form of
asynchronous messages.

To keep the controller as reusable as possible, the controller nansiate
these user gestures as soon as possible and turn thefusitess eventsusi-
form, view-neutral representations of the actions requested by the user.

The sample application use@®questToEventTranslator for this purpose.
This object takes amttpServletRequest from the view—a browser in this
case—and translates it into @storeEvent business eventRequestToEvent-
Translator is discussed in Section 10.6.3 on page 285. The rest of the controller
implementation deals only witliStoreEvent and can be reused for different
implementations of the view. If we wanted to implement a JFC-based client for
the sample application, we could just add another translator that translates JFC
events into business events.

Code Example 3.1 shows horequestToEventTranslator takes a request
and translates it into a business event. An object that implensabgsingCli-
entControllerInterface, Which provides the core of the controller responsibili-
ties, invoked using amStoreEvent, does not need to change when the client
changes.

DESIGNING FOR MULTIPLE TYPES OF CLIENT 71

public class RequestProcessor {
ShoppingClientControllerInterface scc;
RequestToEventTranslator eventTranslator;

public void processRequest(HttpServletRequest req) {

// translate view specific event into EStoreEvent
EStoreEvent event = eventTranslator.processRequest(req);
if (event !'= null) {
// invoke the controller with EStoreEvent, instead of
// using the view specific HttpServietRequest
ColTlection updatedModelList = scc.handleEvent(event);
mm.notifylListeners(updatedModelList);

Code Example 3.1 Translating View-Dependent Gestures into View-Neutral
Business Events

3.6.3.2 Selecting the View

The controller selects which view to display. These depend on the medium that the
view uses to present the user interface. For example, in a JFC application, the user
views are composed of Swing components such as panels, lists, tables, and so on. In
a Web interface, the views are HTML pages that are rendered by a browser.

To keep the controller as reusable as possible the controller needs to express
views in a technology-neutral fashion and translate them to technology-specific ren-
ditions as late as possible. This would require a layered view selection component
that uses objects to represent views (analogous to the business events in the previous
section) which are forwarded to specific types of view generators. For example, a
product list view would contain all the data needed to represent a list of products.
This object could be passed to a view generator, which would render the data in a
specific user interface medium. Note that depending on the medium, the view gener-
ator may reside on the server (HTML) or on the client (JFC).

72

CHAPTER 3 THE CLIENT TIER

3.6.3.3 Example: The Sample Application Controller

The sample applications controller is in two parts: the EJB controller, which inter-
acts with enterprise beans and a controller proxy, which interacts with views. In the
current release, the proxy is monolithic and specific to Web clients.

If another type of shopping client interface were required, the EJB controller
could be shared without modification. However, the proxy portion of the control-
ler would have to be rearchitected to support more than one type of view technol-
ogy. For example, a JFC-based view selection component would need to register
event listeners when the view is created. These listeners would then post or propa-
gate the events to the client portion of the controller.

3.7 Summary

This chapter has discussed various types of J2EE clients, as illustrated in Figure 3.1.
EJB EIS
Tier Tier

Web Clients Application Clients EIS Clients

Browser Applet

Figure 3.1 Client Options

In general, J2EE applications should use Web clients when possible. With the
help of technologies such as DHTML and JavaScript, Web browsers can support
reasonably powerful and fast user interfaces. Additional capabilities can be pro-
vided by using applets. Java applets can be used in conjunction with the browser
using HTML or XML over HTTP for additional enhancements. A Java applet can
also communicate with the middle tier for further control and flexibility. The Web

SUMMARY 73

browser is a truly universal Web client, so for simple user interfaces, and for Inter-
net applications, it is the client of choice.

Application clients should be used when the data model is complex and
cannot be expressed through the Web interaction model. Application clients are
well-suited for intranet enterprise distribution. They can provide a richer user
experience and blend well with the desktop windowing environment. However
due to the increased complexity of such clients, there are reasons to avoid them in
favor of Web-based applications. What's more, ongoing enhancements to the Web
client speed and functionality will continue to erode the need to deploy stand-
alone clients for all but a handful of cases.

The use of application clients on the open Internet is not straightforward
because of distribution, deployment, security, and firewall issues. These clients are
best suited for the intranets, where they can provide a more featureful user inter-
face to the user and provide integrated security. Implementation of stand-alone
clients requires more effort.

Special purpose application clients can be used for administrative and man-
agement tasks. These clients are not intended to be distributed to every user, and
often have a minimal user interface. They perform specific tasks, perhaps invoked
automatically by the system, through means external to the J2EE specification.

Use of enterprise information system clients should be limited to simple,
well-understood management or administrative tasks.

The Java programming language is preferred for stand-alone clients, although
similar capabilities may be possible with languages other than Java.

About the Author

G REG MURRAY is an engineer in the J2EE programming model team at Sun Micro-
systems. He assisted in the design and implemented much of the Web tier of the portions
of Java Pet Store sample application. Prior to joining the J2EE programming model
team Greg was a member of Global Products Engineering at Sun. Greg graduated with a
B.A. in International Relations with a minor in Japanese from Brigham Young
University.

CHAPTER |

The Web Tier

by Greg Murray

USERS have benefited significantly from the increasing ability of Web-based
applications to generate dynamic content customized to their needs. JavaServer
Pages (JSP) and servlets are J2EE technologies that support dynamic content gener-
ation in a portable, cross-platform manner. Web-based J2EE applications that use
these technologies can be architected in a number of ways. Simple Web-based J2EE
applications can use basic JSP pages and servlets or JSP pages with modular com-
ponents. More complex transactional J2EE applications use JSP pages and modular
components in conjunction with enterprise beans.

This chapter begins with a description of Web applications and Web contain-
ers. It discusses the use of the Common Gateway Interface, servlets, and JSP tech-
nology for providing dynamic and interactive content. It describes what situations
require the use of servlets and when to use JSP technology and how to design the
interface of a Web-based application with internationalization and localization in
mind. Review of various design patterns for Web application will follow. Finally
we will discuss migration strategies from Web-centric to EJB-centric applications.

4.1 Web Applications and Web Containers

In the J2EE lexicon, a Web application is a collection of HTML/XML documents,
Web components (serviets and JSP pages), and other resources in either a directory
structure or archived format known as a Web ARchive (WAR) file. A Web applica-
tion is located on a central server and provides service to a variety of clients.

75

76

CHAPTER4 THE WEB TIER

Web applications provide dynamic and interactive content to browser-based
clients. Browser-based Web applications can be used for any type of application:
from secure business-to-business applications to electronic commerce Web sites.

A Web container is a runtime environment for a Web application; a Web
application runs within a Web container of a Web server. A Web container pro-
vides Web components with a naming context and life cycle management. Some
Web servers may also provide more services, such as security, concurrency, trans-
actions, and swapping to secondary storage. A Web server may work with an EJB
server to provide such services. A Web server need not be located on the same
machine as the EJB server. In some cases, a Web container may communicate
with other Web containers.

4.2 Dynamic Content Creation

In the Internet world, the need to deliver dynamically generated content in a main-
tainable fashion is extremely important. This content may be personalized to an
individual. Great care must be taken when designing the user experience of an appli-
cation because it will distinguish one application from another and potentially make
or break a company.

The sample application is an example of a Web application that delivers
dynamically generated content. The underlying data that is used to generate the
content for the sample application can be changed without modifying the sample
application code. This would allow the administrator of the application to add new
products or services which would immediately be available in the application. The
sample application was designed to be general enough to not be tied to any
product or service. With little effort, the sample application could be tailored to
offer different products or services.

In this section we will discuss the technologies used to design a personalized
Web application in which the logic that drives the application is separate from the
content. We will begin by examining the conventional technology used to generate
dynamic content, namely Common Gateway Interface (CGI) scripts. Following the
discussion of CGI we will review the features of Java servlets and JavaServer
Pages technology.

4.2.1 Common Gateway Interface

While the Internet was originally designed to provide static content, the need to
present dynamic content, customized to a user’s needs, has quickly come to drive

DYNAMIC CONTENT CREATION 77

the development of Web technology. The earliest response to this need was the
Common Gateway Interface (CGI). This interface allows Web servers to call scripts
to obtain data from (or send data to) databases, documents, and other programs, and
present that data to viewers via the Web. However, CGI technology has a number of
limitations.

One limitation is that the code within a CGI script that accesses resources,
such as a file system or database, must be specific to the server’s platform. There-
fore most CGl applications will not run on another server platform without modi-
fication. This limits their utility in a distributed environments where Web
applications may need to run on multiple platforms.

Second, because a new process must be created each time a CGI script is
invoked, CGI scripts are often resource intensive and slow and thus tend not to
scale well. Increasing the amount of hardware will allow a CGI application to
scale to a point. However, the extent to which the application will scale is limited
to the hardware and the operating system.

Finally, CGI applications are difficult to maintain because they combine
content and display logic in one code base. As a consequence, two types of exper-
tise are needed to maintain and update CGI scripts.

Many Web server vendors have enhanced CGl for their specific products and
have developed better ways of handling CGl-like functions by providing exten-
sions to their products. These have enabled the development of sophisticated Web
applications based on CGI. However, the root problems still exist: CGI applica-
tions are platform-specific, do not scale well, and are difficult to maintain.

The J2EE platform supports two technologies, servlets and JavaServer Pages,
that provide alternate solutions that overcome these problems.

4.2.2 Servlets

Java servlets are a means of extending the functionality of a Web server. Servlets can
be viewed as applets that run on the server. Servlets are a portable platform- and
Web server-independent means of delivering dynamic content. A browser-based
application that calls servlets need not support the Java programming language
because a servlet’'s output can be HTML, XML, or any other content type.

Servlets are written in the Java programming language. This allows servlets to
be supported on any platform that has a Java virtual machine and a Web server
that supports servlets. Servlets can be used on different platforms without recom-
piling. They can use generic APIs such as JDBC to communicate directly with

78

CHAPTER4 THE WEB TIER

existing enterprise resources. This simplifies application development, allowing
Web applications to be developed more rapidly.

Servlets are extensible because they are based on the Java programming lan-
guage. This allows developers to extend the functionalities of a Web application
just as they would a Java application. A good example of this would be a control-
ler servlet that is extended to be a secure controller. All of the functionalities of
the original controller would be provided along with new security features.

Servlets perform better than CGI scripts. A servlet can be loaded into memory
once and then called as many times as needed and scale well without requiring
additional hardware. Once a servlet is loaded into memory it can run on a single
lightweight thread while CGI scripts must be loaded in a different process for
every request. Another benefit of servlets is that, unlike a CGI script, a servlet can
maintain and/or pool connections to databases or other necessary Java objects
which saves time in processing requests.

Servlets eliminate much of the complexity of getting parameters from an
HTTP request; components have direct access to parameters because they are pre-
sented as objects. With CGl-based applications, parameters posted from a form
are converted to environment properties which must then read into a program.

One of their greatest benefits is that servlets provide uniform APIs for main-
taining session data throughout a Web application and for interacting with the user
requests. Session data can be used to overcome the limitations of Web applica-
tions due to the stateless nature of HTTP.

4.2.3 JavaServer Pages Technology

JavaServer Pages (JSP) technology was designed to provide a declarative, presenta-
tion-centric method of developing servlets. Along with all the benefits servlets offer,
JSP technology offers the ability to rapidly develop serviets where content and
display logic are separated, and to reuse code through a component-based architec-
ture.

Both servlets and JSP pages describe how to process a request (froman HTTP
client) to create a response. While servlets are expressed in the Java programming
language, JSP pages are text-based documents that include a combination of
HTML and JSP tags, Java code, and other information. Although both servlets
and JSP pages can be used to solve identical problems, each is intended to accom-
plish specific tasks. Servlet technology was developed as a mechanism to accept
requests from browsers, retrieve enterprise data from application tier or databases,
perform application logic on the data (especially in the case where the servlet

DYNAMIC CONTENT CREATION 79

accessed the database directly), and format that data for presentation in the
browser (usually in HTML). A servlet uses print statements to post HTML data,
both hard-coded tags and dynamic content based on the enterprise data retrieved
from the back-end tiers, back to the user’s browser.

Embedding HTML in print statements causes two problems. First, when
HTML is embedded in the print statements of a servlet, Web designers cannot
preview the look and feel of an HTML page until runtime. Second, when data or
its display format changes, locating the appropriate sections of code in the servlet
is very difficult. In addition, when presentation logic and content are intermixed,
changes in the content require that a servlet be recompiled and reloaded into the
Web server.

JSP pages provide a mechanism to specify the mapping from a JavaBeans
component to the HTML (or XML) presentation format. Since JSP pages are text-
based, a Web designer uses graphical development tools to create and view their
content. The same tools can be used to specify where data from the EJB or enter-
prise information system tiers is displayed. JSP pages use the Java programming
language for scripting complex formatting, such as the creation of dynamically-
sized tables for master-detail forms. Some JSP editing tools may provide
advanced features so that a Web designer can specify the formatting of complex
data without using Java code. Alternatively, Java programmers can provide their
Web designers with a set of JavaBeans components and/or custom tags that handle
complex dynamic formatting of HTML, so that the Web designers do not need to
understand how to code in the Java programming language in order to create a
complex JSP page.

When a Web designer changes a JSP page, the page is automatically recom-
piled and reloaded into the Web server. In addition, all the JSP pages in a Web
application can be compiled prior to deploying the application for greater effi-
ciency.

Thus JSP technology allows content developers and Web application design-
ers to clearly define what is application logic and what is content. Content provid-
ers don’'t need to know Java technology to update or maintain content. Instead
they can design interfaces using the JavaBeans components and custom tags pro-
vided by the Web application developer. Web application developers need not be
experts in user interface design to build Web applications. At the same time, a
Web application development and content can easily be performed by a single
person.

Like servlets, JSP technology is an efficient means of providing dynamic
content in a portable platform- or application-independent means. JSP technology

80

CHAPTER4 THE WEB TIER

also supports a reusable component model through the inclusion of JavaBeans
technology and custom tag extensions. Note that the JavaBeans components used
by JSP pages are not the same AWT or JFC JavaBeans components. These Java-
Beans components simply expose properties using get and set methods. custom
tags can be viewed as intelligent JavaBeans components with the exception that
the actions can better interact with the JSP page (see Section 4.4.2 on page 86).

In summary, JSP technology provides an easy way to develop servlet-based
dynamic content, with the additional benefit of separating content and display
logic. In a properly designed JSP page, content and application logic can be inde-
pendently updated by developers with specific expertise in each area.

Currently CGI scripts are widely used to provide dynamic content. Technolo-
gies such as servlets and the JSP technology that are scalable and easy to write
and maintain should be used instead of CGlI scripts. This is driven by the need to
provide dynamic content in a platform-independent, scalable way.

4.3 Servlets and JSP Pages

In an environment where only servlet technology is available, servlets can handle
complex logic processing, navigation paths between screens, access to enterprise
data, and formatting the data into an HTML response. In an environment where both
servlet and JSP technology is available, JSP pages should be used to handle almost
all of these tasks.

The Java code used within JSP pages should remain relatively simple. There-
fore, a developer should encapsulate complex tasks within custom tags and Java-
Beans components. A sophisticated Web application can consist solely of JSP
pages, custom tags, and JavaBeans components; servlets are rarely necessary.

In this section we will review the roles that Web components can play, when to
use servlets, when to use JSP pages, and when either technology may be used.

4.3.1 Web Component Roles

Although a common view is that Web components are mainly used to provide an
application’s presentation, in the J2EE application programming model Web com-
ponents can serve two roles: as presentation components and as front components.
Presentation componenggenerate the HTML/XML response that when rendered
determines the user interface. A JSP page acting as a presentation component may
contain reusable custom tags or presentation logic. A presentation component could
also be a servlet that produces binary data, such as an irfege.components

SERVLETS AND JSP PAGES 81

don’t do any presentation, but rather manage other components and handle HTTP
requests or convert the requests into a form that an application can understand. Front
components are useful because they provide a single entry point to an application,

thus making security, application state, and presentation uniform and easier to main-

tain.

Figure 4.1 illustrates the basic mechanism. The front component accepts a
request, then determines the appropriate presentation component to forward it to.
The presentation component then processes the request and returns the response
to the front component, which forwards it to the server for presentation to the user.

@entation
C

f omponent

(JSP page)

Aetuest ﬁ |;ont /
Presentation
HTTP Component * Component
Requests

(Servlet or (JSP page)

JSP page)
@entation
C

Response

omponent

(Servlet)

Figure 4.1 Web Component Roles

4.3.1.1 Front Components

While the sample application uses a JSP page as its front component, you could also
use a servlet. The JSP page simplifies the initialization of the Web-tier JavaBeans

components used by the sample application. However, a servlet could also perform
this initialization.

82

CHAPTER4 THE WEB TIER

The sample application front component parses all form data posted to the
page and generates the events that result from the posted data. The events gener-
ated by the front component are forwarded to a template presentation component.

Front components perform the function of a controller when used in an MVC
architecture (see Section 4.6.3 on page 103).

4.3.1.2 Presentation Components

Many Web applications have a shopping cart that contains the products that a user
has selected for purchase. In most applications the content of the shopping cart
needs to be displayed repeatedly. JSP technology can be used to iterate through the
list of items maintained in a shopping cart (implemented as a JavaBeans compo-
nent) and display the contents to the user.

The code that generates the shopping cart display should be maintainable by
content providers. Since the shopping cart JavaBeans object and JSP page that
generates the HTML representation of the shopping cart can also be used in more
than one part of an application, the presentation components used to generate the
HTML representation of the shopping cart should also be modular and reusable.

Modular design allows separation of roles. Content providers can specialize in
how content is displayed, and component developers can focus on the logic that is
used in the JavaBeans component to manipulate the shopping cart data, and on the
JSP page that generates the HTML representation of the data. Note that the data
that is presented to the user may be taken from multiple sources.

Other requirements that presentation components must address are creating a
consistent look and feel for an application while providing mechanisms for person-
alizing the user interface. For example, consider a Web site that has a personalized
banner, a navigation menu that displays only information that a user wants to see,
and the content a user wants to see. The next section describes how to design a JSP
page or set of JSP pages that allow for a consistent look and feel throughout an
application.

Presentation Component Templates

Figure 4.2 illustrates an application in which all pages share a common banner,
navigation menu, body, and footer. Each item in the example can be seen as a
component that is used to generate the final look and feel, can contain dynamic
information, and should be customizable. This is the kind of page design that can
benefit from the use of JSP templates.

SERVLETS AND JSP PAGES 83

Navigation
Menu

|

Figure 4.2 Presentation Components

There are two ways of constructing the page shown in Figure 4.2. Depending
on the granularity that you want your application to have, you could either build
the page using custom tags and JavaBeans components or you could break up
each portion into separate JSP pages each containing the necessary custom tags
and JavaBeans components needed to generate their portions of the content, then
build the whole page from a JSP page that incorporates the others using runtime
includes.

Code Example 4.1 contains the template used to provide the screen compo-
nents depicted in Figure 4.2. The template is constructed of an included JSP page
(ScreenDefinitions.jsp), and the custom tag2ee:insert. The content and
pages are described in tlsereenDefinitions.jsp file. The template uses the
insert custom tag to do runtime includes of the components needed to build it.
See Section 10.3.2.1 on page 259 for more discussion of the sample application’s
template mechanism.

<%@ taglib uri="Web-INF/tlds/taglib.t1d" prefix="j2ee" %>
<%@ 1include file="ScreenDefinitions.jsp" %>

84 CHAPTER4 THE WEB TIER

<html1>
<head>
<title>
<j2ee:insert template="template" parameter="HtmITitle" />
</title>
</head>
<body bgcolor="white">
<j2ee:insert template="template" parameter="HtmlBanner" />
<j2ee:insert template="template" parameter="HtmlBody" />
</body>
</html>

Code Example 4.1 JSP Page Templating Mechanism

This example illustrates a clean separation between presentation logic, data,
and content. There is no Java code in this page, so it could be managed by a
content provider not familiar with the Java programming language.

We recommend using JavaBeans components or custom tags to do data ren-
dering. These can be created by a developer familiar with the Java programming
language. If JavaBeans components and custom tags are designed in a general
manner, they should be reusable in other portions of the application or in other
applications.

4.3.2 Servlets

Although JSP pages can be used for most purposes, there are some circumstances
where servlets are more appropriate. The following sections describe common uses
of servlets.

4.3.2.1 Generating Binary Data

Servlets are well suited for dynamically generating binary data such as images or a
new content type. Requests for content of that type would be mapped to servlets that
know how to generate the content, but from the Web client’'s point of view, it is
merely requesting delivery of an ordinary image. The only assumption that need be
made about the client is that it supports the image format being generated.

One example of this would be a servlet that generates a graph summarizing
stock performance from data retrieved from a database or other source. This

JSP PAGE DESIGN 85

image can be kept in memory and updated every minute or so as needed. Using a
servlet to generate the data, then keeping the data in memory for ready display,
can save time and improve performance in both execution cycles and file access
time.

4.3.2.2 Extending a Web Server's Functionality

Servlets are a portable mechanism for extending the functionality of a Web server.
For example, if a new data format must be supported, a servlet can be mapped to the
file type for the format.

A good example of a servlet that extends a Web server is the servlet that is
mapped to JSP files. This servlet parses all files that end wiish éile extension
and compiles the JSP pages into servlets. The resulting servlets are then executed
by the Web container and the resulting response is sent back to the client.

4.3.3 JSP Pages Versus Servlets

Depending on the composition of your development team, time constraints, and
application architecture, your use of JSP pages and servlets will differ. Both technol-
ogies have merits and should be used accordingly. In some cases there is not a single
correct choice of whether to use a servlet or JSP page.

Servlets are a programmatic tool and are best suited for low-level application
functions that don’t require frequent modification.

JSP pages are a presentation-centric, declarative means of binding dynamic
content and logic. JSP pages should be used to handle the HTML representation that
is generated by a page. They are coded in HTML-like pages with structure and
content familiar to Web content providers. However, JSP pages provide far more
power than ordinary HTML pages. JSP pages can handle application logic through
the use of JavaBeans components and custom tags. JSP pages themselves can also
be used as modular, reusable presentation components that can be bound together
using a templating mechanism.

4.4 JSP Page Design

JSP pages are unigue in that they can contain both presentation logic and content.
They provide a variety of options for designing applications that are easy to main-
tain and extend. The options available for binding content to logic include Java-

86

CHAPTER4 THE WEB TIER

Beans components, custom tags, and scriptlets. The following sections describe
some of these options and recommend when to use each.

4,41 JavaBeans Components

JavaBeans technology is useful for building portable and reusable components that
can used in conjunction with JSP technology. There are many ways to use Java-
Beans components within an application.

One way to use JavaBeans components is as data-centric model objects. If
these beans are created specifically to manipulate and return data, they can be
used by multiple views of an application and by many different clients at one time.

In conjunction with a front component, a JavaBeans component can be used
as a controller. The sample application uses a JavaBeans component to process all
requests received from the front component and pass them along to the appropri-
ate page.

Page-specific JavaBeans components provide the logic to process data and
generate a result for a particular page. The disadvantage of using these types of
beans is that they are more difficult to reuse.

4.4.2 Custom Tags

Custom tagsre the mechanism provided by JSP technology for defining custom-
ized, declarative, and modular functionality for use by JSP pages. Custom tags are
delivered adag librariesand are imported into a JSP page usingdfgib direc-

tive. Once imported, a custom tag can be used in the page using the prefix defined by
the directive.

Custom tags provide the same functionality as JavaBeans components. How-
ever, unlike JavaBeans components which must first be declared and then
accessed using get and set methods, custom tags work with a page by obtaining
initialization information through parameters defined when the tag is created.
Custom tags have access to the Web container and all the objects available to JSP
pages. Custom tags can modify the generated response. Custom tags can also be
nested within one another, allowing for complex interactions with a JSP page.

Custom tags are portable and reusable. They are written in the Java program-
ming language which allows them to be used across platforms and Web contain-
ers. If you plan on reusing custom tags, you should take care to design tags that
are not application-specific.

JSP PAGE DESIGN 87

Custom tags are ideal for iterating through data and generating the HTML
code needed to render a page. For example, a custom tag could take the data con-
tained within a shopping cart JavaBeans component and generate the HTML to
render the shopping cart. Proper use of custom tags can reduce, if not eliminates,
the amount of Java language code used in a JSP page to generate dynamic content.
Portions of a page that require logic, such as looping or state display, are also
good places to use custom tags.

The template page in Code Example 4.1 provides a familiar interface to a
designer or HTML authoring tools. The custom tags in the page appear as HTML
tags. In contrast, Java language code can get corrupted by a tool or page designer not
familiar with the Java programming language.

In addition to rendering HTML, custom tags can be used to process data. This
can reduce the amount of Java language code needed within an application and
make portions of an application configurable by a page designer.

Code Example 4.2 shows one such use for custom tagsvéis e statement
for processing user input. TheeateTemplate custom tag creates Bemplate
object and places it in the request containing the data necessary to render the
current page. Th€reateTemplate tag has nested tags that corresponddee
statements in awitch statement. These nested tags inclaée:en tags which in
turn haverarameter tags nested within them. Depending on the current screen ID
obtained from thescreenManager, the propememplate object will be created and
the parameters will be set to reflect the appropriate page componentsenthe
plate object is processed by the JSP templating mechanism illustrated in Code
Example 4.1. Notice that expressions within the tag parameters are used to inter-
act with sample application data.

<j2ee:CreateTemplate template="template"
screen="<%=screenManager.getCurrentScreen(request)%>">
<j2ee:Screen screen="<%=ScreenNames .MAIN_SCREEN%>">
<j2ee:Parameter parameter=
"Htm1Title" value="Welcome to Java(TM) Pet Store Demo"
direct="true"/>
<j2ee:Parameter parameter="HtmlBody"
value="/index.jsp" direct="false"/>
</j2ee:Screen>

<j2ee:Screen screen="<%=ScreenNames.SIGN_IN_SUCCESS_SCREEN%>">
<j2ee:Parameter parameter="HtmITitle"
value="WeTlcome" direct="true"/>

88

CHAPTER4 THE WEB TIER

<j2ee:Parameter parameter="Html1Body"
value="/signinsuccess.jsp" direct="false"/>
</j2ee:Screen>
</j2ee:CreateTemplate>

Code Example 4.2 Data-Centric Custom Tags

4.4.3 Using Scriptlets and Expressions

When designing a Web site with interactive and dynamic content, it may be neces-
sary to use small portions of code to generate content. Scriptlets are small fragments
of scripting code whose language is defined by the language parameter in the JSP
page directive. Expressions are like scriptlets, except that they are played directly in
the response.

To make code easier to read and maintain, we recommend that JSP pages be
used mainly for presentation. While a major portion of an application could be
developed in JSP technology, placing large amounts of code in JSP pages makes
them more difficult to update and can be confusing to page designers.

We recommend including Java code only when necessary. JavaBeans compo-
nents and custom tags provide a means of adding functionality while avoiding
scriptlets. A developer can use expressions with JavaBeans components or custom
tags to generate dynamic content.

4.5 Internationalization and Localization

Internationalization may sometimes be overlooked when developing a Web applica-
tion targeted at a particular enterprise or localized market. However, it is becoming
increasingly important when developing a Web application that may be used in
more than one country or region that you consider internationalization from the
outset. This section presents approaches to developing an internationalized Web
application.

Internationalizationis the process of preparing an application to support
various languages, whilecalizationis the process of adapting an international-
ized application to support a specific language or locallcaleis a language or
subset of a language that includes both regional and language-specific informa-
tion. Internationalization involves identifying and isolating portions of the appli-
cation that present strings of data to the user so that the strings can be acquired

INTERNATIONALIZATION AND LOCALIZATION 89

from a single source such as a file. Localization involves translating these strings
into a specific language and assembling them in a file that the application can
access. Thus internationalizing an application allows it to be easily adapted to new
languages and markets while localization provides the adaptation of an interna-
tionalized application to a particular country or region. Neither the Web nor EJB
container need be running in the same locale as the client's Web browser.

Internationalization should not be an afterthought when developing a Web
application. It is easier to design an application that is capable of being internation-
alized than to retrofit an existing application, which can be both costly and time con-
suming. A great deal of time and money can be saved by planning for
internationalization and localization at the outset of a project.

An application written in the Java programming language is not automatically
internationalized and localizable. Though a developer of a Web application can
deal with many different character sets by using the J2SE platform, the platform’s
support for Unicode 2.0 is only as good as the data that is input into the applica-
tion.

With a Web application, the presentation layer is the focus of internationaliza-
tion and localization efforts. This includes the JSP pages and supporting helper
JavaBeans components.

45.1 Internationalization

Data handling is one part of a Web application most affected by internationalization,
with impact in three areas: data input, data storage, and locale-independent data pre-
sentation.

4.5.1.1 Data Input

Data is typically input to a Web application by posts from a form on an HTML page.
We assume that the client’s platform will provide a means for inputting the data.

The browser running in the client’'s native locale is responsible for encoding
the form parameter data in the HTTP request so that it reaches a Web application
in a readable format. By the time the application receives the data it is in Unicode
format and a developer should not have to worry about character set issues. If you
need to do any type of word breaking or parsing it is recommended that you look
at theBreakIterator class in thgava.text package.

90

CHAPTER4 THE WEB TIER

4.5.1.2 Data Storage

Setting your database to a Unicode 2.0 character encoding (such as UTF-8 or UTF-
16), allows data to be saved correctly in many different languages. The content you
are saving must be entered properly from the Web tier and the JDBC drivers must
also support the encoding you choose. Refer to your data storage vendor for the best
means of providing data persistence.

4.5.1.3 Enabling Locale-Independent Data Formatting

An application must be designed to present localized data appropriately for a
target locale. For example, you must ensure that locale-sensitive text such as dates,
times, currency, and numbers are presented in a locale-dependent way. If you design
your text-related classes in a locale-independent way, they can be reused throughout
an application. The following methods are used to format currency in locale-specific
and locale-independent ways.

Code Example 4.3 illustrates how to format currency in a locale-specific
manner. ThelumberFormat class obtained will be the defawlimberFormat for the
system. Note that the stringattern contains a $” character. This method will
only display correctly for countries that use dollars. There is not much value with
this approach because it is tied to a specific locale.

pubTlic static String formatCurrency(double amount){
NumberFormat nf = NumberFormat.getCurrencyInstance();
DecimalFormat df = (DecimalFormat)nf;
df.setMinimumFractionDigits(2);
df.setMaximumFractionDigits(2);
df.setDecimalSeparatorAlwaysShown(true);
String pattern = "S$###, ###.00";
df.applyPattern(pattern);
return df.format(amount);

Code Example 4.3 Locale-Specific Currency Formatting

Code Example 4.4 shows how to format currency in a locale-independent
manner. The user can specify any supported locale and the ressitingy will

INTERNATIONALIZATION AND LOCALIZATION 91

be formatted for that locale. For best results, the stsingern should be obtained
from a resource bundle.

public static String formatCurrency(double amount, Locale locale){
NumberFormat nf = NumberFormat.getCurrencyInstance(locale);
DecimalFormat df = (DecimalFormat)nf;
df.setMinimumFractionDigits(2);
df.setMaximumFractionDigits(2);
df.setDecimalSeparatorAlwaysShown(true);
String pattern = "###, ###.00";
return df.format(amount);

Code Example 4.4 Locale-Independent Currency Formatting

In a JSP page, the functions described in Code Example 4.3 and Code
Example 4.4 for formatting currency can be used by including the following code:

<%=]JSPUti1.formatCurrency(cart.getTotal(), Locale.JAPAN)%>

This expression uses the methfimatCurrency which is located in a class
namedisputil. The total that is returned from thert.getTotal method is a
double. Note that when using this code you will need to import the
java.util.Locale andcom.sun.estore.util.JSPUti1 classes.

45.2 Localization

Once an application has been internationalized it can be localized. This section
focuses on techniques for delivering localized content to clients. It also reviews

techniques for delivering localized content through the use of resource bundles and
language-specific JSP files.

4.5.2.1 Delivering Localized Content

Care must be taken to ensure that the application being developed handles data in
code sets other than the default ISO 8859-1 (Latin-1). Many Java virtual machines

92

CHAPTER4 THE WEB TIER

will support code sets other than English. A detailed listing of character sets sup-
ported by Sun’s Java virtual machine can be found at:

http://java.sun.com/products/jdkl.2/docs/guide/
intl/encoding.doc.html

Depending on what content is delivered to the users, localization can be done
in a few different ways. Web applications can be designed to deliver localized
content based on a user preference or to automatically deliver localized content
based on information in the HTTP request.

When an application allows users to select a language, the preferred language
can be stored in the session. The selection can occur through a URL selection or a
form post that sets an application-level language preference. The posted prefer-
ence data can be maintained as part of a user profile as a cookie on the client’s
system using a cookie or in a persistent data store on the server. Giving users the
ability to select a language ensures that the user gets the content that they expect.

Applications can also automatically deliver localized content by using
Accept-Language attribute in header information of the HTTP request and
mapping it to a supported locale. Thecept-Language attribute is set in the
user's Web browser and differs slightly between browsers. When using automatic
application-level locale selection, it is prudent to also provide a mechanism to let
the user override the automatic selection and select a preferred language. Auto-
matic locale selection also depends on application support for different locales.
Care needs to be taken to ensure that unsupported languages are handled properly.

4.5.2.2 Localized Messages

The Java programming language provides facilities for localization. This section
discusses methods of providing localized data in a Web application.

In some cases an application may need to support multiple languages on the
same JSP page. List resource bundles are also useful when using servlets. Code
Example 4.5 shows how to deliver content from a user-specified locale using a
ListResourceBundle.

public class WebMessages extends java.util.ListResourceBundle{
pubTlic Object []J[] getContents(){
return contents;
}
static final Object[][] contents = {

INTERNATIONALIZATION AND LOCALIZATION 93

//Messages
{"com.sunw.messages.welcome",

"Welcome to Java(TM) Pet Store Demo"},
{"com.sunw.messages.any_message",

"Untranslated message},
{"com.sunw.messages.come_back_soon", "Come Back Soon"}

Code Example 4.5 English Resource Bundle

In this example, localized content for messages in each supported language is
contained in separate files. Code Example 4.6 demonstrates a similar resource
bundle file that contains Japanese messages.

public class WebMessages_ja extends java.util.ListResourceBundle{
pubTlic Object [][] getContents(){
return contents;

static final Object[][] contents = {
//Messages
{"com.sunw.messages.welcome",
"Japanese welcome Java(TM) Pet Store Demo"},
{"com.sunw.messages.come_back_soon",
"Japanese Come Back Soon"}

Code Example 4.6 Japanese Resource Bundle

Inside a servlet or JSP page, the messages contained in a resource bundle can
be obtained with the code shown in Code Example 4.7.

// set the user's desired Tlocale
session.setValue("preferredLocale", Locale.JAPAN);
// Tload preferred locale

94

CHAPTER4 THE WEB TIER

ResourceBundle messages = ResourceBundle.getResource(''WebMessages",
(Locale)session.getValue("preferredLocale");

Code Example 4.7 Getting Messages From a Resource Bundle

Note that the Japanese resource bundle’s class file name ends_ydth “
When loading resources, the Japanese version of the resource bundle file will be
loaded ifLocale.JAPAN is specified in the request or the default application is
running in a Japanese locale. Also note that this file contains only the messages
that you want to appear in translation. All messages not defined in this file will be
used from the default file, which has no extension following its name.

This example shows how to specify and store a user’s preferred target lan-
guage and load messages for that language. Once the resource bundle is loaded a
message can be obtained by using the command:

messages.getString("com.sunw.messages.welcome");

In this examplemessages refers to the name of the resource bundle and
welcome refers to the message that you would like to load. You need to ensure that
the contentType Of the page is set to an encoding that supports multiple languages
(the next section provides details on setting thetentType). UTF-8 encoding
allows you to display multiple languages on a single Web page. Moreover, UTF-8
encoding is supported by the most commonly used Web browsers.

It may be useful to create a JavaBeans component to assist in loading and
managing the messages for an application to save resources. The details of how to
create this type of component aren’t covered in this document.

Resource bundles are useful for providing localized content as long as the
logic for displaying internationalized text is not going to be greatly changed by
the target locale. If the logic changes, it is recommended to use separate JSP files
for the content, as described in the following section.

Localized Content in JSP Pages

Where you need to provide messages that vary depending on the target locale, or
where the content and display logic are drastically different, it is better to use a com-
pletely different JSP file.

Since JSP pages are responsible for the presentation of a Web application’s
user interface, they provide an ideal place to put locale-specific information. It is

INTERNATIONALIZATION AND LOCALIZATION 95

important that the JSP pages and the supporting JavaBeans components and tag
libraries be able to deal with localized content. This section discusses how to
design a localized page and how to integrate this page into a Web application.
The encoding of a JSP page must be specified in order for the Web container
to process it. An Application Component Provider sets the encoding of a JSP page
using thecontentType attribute of thepage directive. This attribute sets the encod-
ing for both the JSP page and the subsequent output stream. The value of
tentType should be TYPE” or “ TYPE; charset=CHARSET” followed by a “;” and a
valid IANA registry value. The default value faiypE is text/htm1; the default
value for the character encoding1iso-8859-1. The IANA registry values can be
found at:

ftp://venera.isi.edu/in-notes/iana/assignments/character-sets

If you are using theontentType attribute of thepage directive, the resulting
output stream should not be a problem; otherwise, you will need to ensure the
output stream is set properly. Keep in mind that when using4dbedirective you
can only set the content type once, becaussya directive is set at page compile
time. If it is necessary to change the content type dynamically, you can do so with
a servlet.

When using servlets it is important to set the response encoding correctly. The
ServletResponse interface contains setLocale method which should be used to
ensure that data is set to the proper locale. The Servlet specification indicates that
the locale should be set before calling tewriter method. For more details,
refer to the Servlet specification.

To prepare an application for localization, you should follow these steps:

1. Separate the display logic from the content in the presentation layer (JSP) of
the Web application. This makes localizing content easier and prevents inte-
gration errors which could occur if portions of the display logic were localized
by accident.

The J2EE programming model recommends that you deliver locale-spe-
cific files that follow the naming convention used by resource bundles. This
naming convention is the base file name followed by an underscpaad the
language variant. A country and a variant can also be used:

a. Language

jsp + _ + language

96

CHAPTER4 THE WEB TIER

b. Language and country

jsp + _ + language + _ + country

c. Language with country and a variant

jsp + _ + language + _ + country + _ + variant

2. Ensure that the character encoding of the localized files is supported by the
Java virtural machine of the system running the Web application. Also, be sure
that the correct encoding is listed in thententType tag included in theage
directive of the JSP page.

A properly internationalized application can be quickly localized for any
number of languages without any modifications to the code of the Web applica-
tion. It is much easier to internationalize an application the beginning of a devel-
opment cycle when application design is first specified.

4.6 Application Designs

There are many ways to design a Web application. The complexity of an application
depends on various needs and requirements such as limitations on application devel-
opment, capabilities of the development team, longevity of an application, and
dynamism of the content in an application. Even if the original application is not
intended for widespread use, it is always benefical to design an application in such a
way that it can be migrated to a scalable, multitier design as a project’s scope
changes.

Four general types of Web applications can be implemented with the J2EE
platform: basic HTML, HTML with basic JSP pages, JSP pages with JavaBeans
components, and highly-structured applications that use modular components and
enterprise beans. The first three types of applications are considered/felbe
centric whereas the last type EIB-centric The spectrum of application designs
is presented in Figure 4.3.

APPLICATION DESIGNS 97

Complexity T ———

HTML Pages | Basic JSP JSP Pages JSP Pages
Pages and with Modular | with Modular
Servlets Components | Components

and Enterprise
Beans

HTML pages HTML pages HTML pages HTML pages
JSP pages JSP pages JSP pages

servlets servlets servlets

JavaBeans JavaBeans
components components

custom tags custom tags

templates

< Robustness

enterprise beans

Figure 4.3 Application Designs

4.6.1 Applications with Basic JSP Pages and Servlets

Web applications with basic JSP pages and servlets are similar in complexity to con-
ventional HTML and CGl-based applications widely deployed on the Web, except
that the dynamic portions of the pages and user interaction are handled by JSP or
servlets in place of CGlI scripts.

HTML applications with basic JSP pages are entry-level Web applications
with much of their logic in servlets or JSP pages. These applications can be devel-
oped quickly, but are more difficult to extend and maintain.

In these simple applications, some pages display static HTML content. Where
necessary to display dynamic content, (for example, content generated using data
from a database), a JSP page or servlet should contain code to connect to the data-
base and retrieve the data.

In these simplest applications, the layout will not change frequently. The
content used for the page layout of the application will be tied to the application.

98 CHAPTER4 THE WEB TIER

This means that changes to dynamic pages can only be made by an engineer or
page designer familiar with the Java programming language.

JSP Pages
HTML and Servlets

Static Dynamic
Content Content

/'——\\\

Database

Figure 4.4 Applications with Basic JSP Pages and Servlets

Including much of the logic in JSP pages or servlets is good for prototyping
an application or for controlled environments, such as intranet sites, where the
application is not expected to be used by a large number of users.

As the complexity of the application increases, a model that allows for more
modularization of components would be useful. The next section describes how to
handle more complex user interaction or dynamic data processing.

4.6.2 Applications with Modular Components

When developing Web applications with dynamic content and a large degree of user
interaction, you should use JSP pages with JavaBeans components, custom tags, and
included JSP pages. These three types of components can be used to generate con-
tent, process requests, and handle the display of personalized content.

Figure 4.5 shows a path that a user might take through a hypothetical, interac-
tive Web application and shows how reusable components can be used at each
step in the process.

APPLICATION DESIGNS 99

JSP Pages with Process Request Display
Modular Components from Form Data Personalized Content

Dynamic Personalized

Content Content

Figure 4.5 Process Flow of JSP Pages with Modular Components

Although this example appears simple, a number of components are needed to
take the user through the process. Creating more modular components will allow
for more code reuse and make the application more maintainable.

Let's look at each of the steps in more detail.

4.6.2.1 Modular Components in a JSP Page

JSP pages can be created using a variety of components. Used consistently, these
components provide a common look and feel throughout an application. This tech-
nigue is similar to templates, yet each page can be unique if needed. Figure 4.6
shows how to design a JSP page that contains products obtained from a catalog
implemented as a JavaBeans component.

In this example the fil&anner.jsp contains a reusable component. Putting
the logic to display the banner for the site in one JSP page means that the banner
code does not need to appear on each page. Instead, the JSP page containing the
banner code is added to each page using a runtime include.

In the center of the page, the body is generated using data froqathog
component (and possibly some custom tags for HTML rendering of the data). A
Catalog connects with an external data source using a connection obtained from
the JDBC connection pool JavaBeans componenta#log is also responsible
for updating the data or holding data that has been previously entered in the appli-
cation.

100 CHAPTER 4 THE WEB TIER

banner.jsp

,—@'talog

Bean

Content generated using data from
Catalog JavaBeans Component

JDBC
Database
Connection
Pool
Bean

footer.jsp

Database

Figure 4.6 Reusable Components in a JSP Page

4.6.2.2 Processing Requests with Modular Components

Processing user requests is another important aspect of Web application behavior
that can be effectively implemented using modular components. Applications that
use modular components for request processing will be easier to develop and
maintain. Figure 4.7 depicts how data from a form can be processed in a Web
application.

In this example, a user submits data from a browser. The data is posted to the
process request bean, which extracts the user data and converts it into account data
maintained by a the account bean JavaBeans component. The account data is
stored in a database using a JDBC connection obtained from the JDBC connection
pool bean, also a JavaBeans component. If the data was entered correctly, the

APPLICATION DESIGNS 101

process request bean forwards the user to the appropriate page confirming the cre-
ation of the account.

JSP Page
with Form

JDBC
Database
rocess S >
/Ii:—c;uest m@h&"t wawwy' Connection
o

/——_\A,

Database

Figure 4.7 Processing a Request with Reusable Components

To avoid confusion, JavaBeans components that interact with users and exter-
nal data (in this example, the bean that processes requests) should be separate
from the components that represent that data (the account JavaBeans component).
This separation of content and data enables the components to be reused and the
application as a whole to be migrated to a more complex design as its scope
changes.

4.6.2.3 Displaying Personalized Content

A JSP page that displays the personalized content is similar to the example shown
in Figure 4.6 except that the displayed data is obtained from the account bean.

The data used to generate the content of this page includes data entered by the
user. The page can also include other information personalized to the user’s needs.
After setting up an account, the users can be taken directly to a personalized page
each time they log into the application. Data reflecting a user’s previous visits can
be saved as part of the user account and used to drive the content of the applica-
tion seen by that user.

102 CHAPTER 4 THE WEB TIER

banner.jsp

G:;ount
L v

Bean

Content generated using data from
Account JavaBeans Component

JDBC
Database
Connection
Pool
Bean

footer.jsp

Database

Figure 4.8 Displaying Personalized Content in a JSP Page

This type of application can be used in many types of situations. However, as
an application using this design becomes larger, the level of complexity increases.
More of the developer’s time may be for work on the system-level issues such as
managing the connection pool and application state and transaction management.
Migrating to an EJB-centric design will allow the developer to stay focused on the
application design.

A well-designed application using JSP pages with JavaBeans components and
custom tags will have a clean separation of business from display logic. The
content will be easier to modify and the components, if designed well, will be
reusable. The major weakness of this design is the need for developers to provide
connections to legacy applications and transaction support. As an application

APPLICATION DESIGNS 103

becomes more complex and the need for more transactional support and external
resource integration becomes an issue, a more structured approach is required.

4.6.3 EJB-Centric Applications

An EJB-centric application extends the modular, component-based application
described in the previous section, with two main differences. First, this design uses a
front component for a controller. Second, data represented by the JavaBeans compo-
nents is maintained by enterprise beans. This design provides flexibility, manage-
ability, and separation of developer responsibilities.

Flexibility is provided by using a MVC architecture in conjunction with a
front component. The MVC architecture allows for a clean separation of business
logic, data, and presentation logic. This design also enables content providers and
application developers to focus on what they do best. The sample application uses
an MVC architecture to separate business from presentation logic.

Figure 4.9 shows how an MVC architecture can be implemented using JSP
pages, servlets, and JavaBeans components.

JSP Pages

JavaBeans
Components

View

. Session EJB
Enéeer:rzlsse Controller Cor?trr‘gller
Classes

Figure 4.9 Model-View-Controller Architecture

As illustrated in the figure, the logic driving the application is separate from
the presentation logic and from data presented to the user. This design is similar to
the design in the previous section, except that a central controller receives all
requests and updates the JavaBeans components that contain view data.

Now let us explore each part of the MVC architecture and consider how a
Web application can benefit from it.

104

CHAPTER4 THE WEB TIER

4.6.3.1 Model

The model represents the data on which an application is based. In an EJB-centric
application, enterprise beans hold the data needed by the application. All modifica-
tions to the data occur thorough events sent to the EJB controller.

4.6.3.2 View

A view presents the data represented by the model in a way that’s targeted at a spe-
cific type of client. Most enterprise applications will support a number of different
views. The same model could have a Visual Basic client view, a Swing view, or a
Web view. The view for a Web application consists of JSP files, which have sole
responsibility for displaying the model data. The JSP files can contain JavaBeans
components, custom tags, or included JSP page components (as described in
Section 4.6.2.1 on page 99).

JSP pages should only contain code related to the display of model data.
Repetitive HTML rendering, such as banners and navigation bars, should be
handled by custom tags or JavaBeans components whenever possible. Miscella-
neous tasks such as locale-specific currency formatting should be handled by
custom tags or by helper classes.

The view can employ a templating mechanism, as described in “Presentation
Component Templates” on page 82, to provide a consistent look and feel for an
application.

In the sample application, the model data maintained by enterprise beans is
mirrored by JavaBeans components that reside in the Web tier. The components in
the Web tier allow the data maintained by the enterprise beans to be easily dis-
played by a JSP page. The JavaBeans view objects are responsible for updating
themselves with the data maintained by the enterprise beans that they mirror.
These JavaBeans components register with the Web controller to listen for model
update events received from the EJB controller. When an update event is received,
JavaBeans components contact the enterprise beans they mirror and refresh the
data they contain. These JavaBeans components contain read-only data, since data
modification is the responsibility of the controller.

4.6.3.3 Controller

To ensure that a Web application runs smoothly with the Model-View-Controller
architecture, a central point of control is necessary. This is provided by using a front
component and some helper classes. This controller maintains the data in the model

APPLICATION DESIGNS 105

and ensures that the data presented by the view is consistent with the corresponding
model.

The controller provides a level of control that isn’'t possible by using stati-
cally-linked Web pages. With static pages, there is no guarantee that all users of a
Web site will use the preferred point of entry. Without a single entry point, it is
difficult to ensure that a Web application will be properly initialized to handle a
user’s request. A controller can also provide a way to prevent deep linking to
information within a site.

In designing a controller-centric application, a Web application developer can
use a front component to receive all requests. A front component works with some
JavaBeans components and enterprise beans that act as the controller. The control-
ler components span both the Web tier and the EJB tier. The design of the compo-
nents to create a controller that spans both the Web and EJB tiers is described in
the following section.

Controller Components

The controller is made up of many components responsible for taking data posted in
an HTTP request and converting it into an event to update the model data. The com-
ponents that make up the controller include: front component, request processor,
Web controller, and EJB controller.

Figure 4.10 is a diagram of a controller that converts an HTTP request into an
event that updates the application model data. This figure shows the flow of an
HTTP request from an HTTP client to the controller mechanism. As mentioned
before, all requests from HTTP clients go to a front component. The requests are
then sent to the request processor, which converts them to events and then sends
the events to the Web controller. The Web controller acts as a proxy and sends the
event to the EJB controller, which processes the event and updates the model data
maintained by the enterprise beans accordingly.

All business logic is handled by the EJB controller and enterprise beans. The
EJB controller returns a set of changed models to the Web controller. The Web
controller then sends the model update events to the respective views. The views
then contact the enterprise beans that they mirror and update their data from the
enterprise beans. The JavaBeans components do not change any data; they only
read the model data contained by the enterprise beans when they receive the
model update notification.

106 CHAPTER 4 THE WEB TIER

Web Tier EJB Tier

HTTP Requests

/ Front

Component

/Request

Processor

ﬁeb o Y EJE Tier

Controller — Controller

(Proxy)

Notification

GvaBeans /Enterprise

Components Sesnen Beans

View Data
(Mirror)

\o u

Figure 4.10 Controller Conversion of HTTP Request to Model Change Event

Now that we have described the process of how model data is updated by the
controller mechanism we review each component of the controller.

* Front component

The front component is a component to which all requests for application
URLs are delivered. The front component ensures that the Web components

APPLICATION MIGRATION 107

needed by the application are initialized at the correct time and that all HTTP
requests are sent to the request processor.

+ Request processor

The request processor is the link between the Web application and an
HTTP-based client. The request processor is responsible for converting HTTP
requests to events which will be used throughout the application. This compo-
nent allows the application developer to centralize all HTTP-specific process-
ing in one location. This component also allows the EJB portion of the
application to be independent of any single client type.

* Web controller

The Web controller is responsible for forwarding the event(s) generated
by the request processor component to the EJB controller. The Web controller
ensures that the resulting updated models returned from the EJB controller are
propagated to the appropriate Web-tier view JavaBeans components.

* EJB controller

The EJB controller accepts events from the Web controller and makes the
calls on the enterprise beans affected by the event. The EJB controller is also
responsible for maintaining the state of the user session with the application.
After each event is processed, the EJB controller is responsible for returning a
set of updated models to the Web controller.

In general it is best to design the EJB controller so that it is not tied to a
single type of client. This makes the application usable by both application
and Web-centric clients. The EJB controller is the only part of the Web appli-
cation allowed to manipulate the model data. Any less restrictive means of
data modification would be contrary to the MVC architecture and make it dif-
ficult to debug the application.

For more details about controller design, see the discussion of the sample
application’s controller in Section 10.6 on page 280.

4.7 Application Migration

It's always a good practice to design an application so that it can be extended. If you
follow the Web application design path described in this chapter, this migration can
be a gradual process. However, if you are working with a preexisting application

108

CHAPTER4 THE WEB TIER

that does not resemble any of the application types listed in Figure 4.3, migration
will be more difficult.

When migrating an application it is best to first determine the type of applica-
tion you want to implement. Figure 4.3 shows a generalized migration path that
may be followed for migrating applications of different levels of complexity. The
simpler an application is, the easier it will be to migrate. The sections correspond-
ing to the columns in Figure 4.3 review what can be done to make the components
of a Web application more modular.

When migrating applications that use basic JSP pages and servlets to a more
complex design, the general theme should be to migrate components into reusable
modules. As much as possible, the application and presentation logic should be
separated using custom tags and JavaBeans components.

The most difficult migration will be from a modular, component-based appli-
cation to an EJB-centric application with enterprise beans. The following sections
review some strategies for this migration.

4.7.1 Migrating a Web-Centric Application to Use Enterprise Beans

When migrating a Web-centric application to use enterprise beans apply the follow-
ing steps:

1. Change Web portions of the application to use a front component and MVC
architecture.

2. Create enterprise beans representing model objects.
3. Move application logic to enterprise beans.

4. Move external resource communication from JavaBeans components to enter-
prise beans.

5. Minimize display logic code in JSP pages.

4.7.1.1 Centralize Application Control Using an MVC Architecture

If your Web components do not already use an MVC architecture, you will need to
modify the design. For more details on implementing an MVC architecture with
Web components and enterprise beans, refer to Section 4.6.3 on page 103.

APPLICATION MIGRATION 109

4.7.1.2 Create Enterprise Beans

You will need to create enterprise beans corresponding to the JavaBeans compo-
nents used within your application. For an EJB-centric application, you will also
need to design a controller enterprise bean. The responsibilities of the controller
enterprise bean are described in “Controller Components” on page 105. You may
also want to introduce other enterprise beans to handle other tasks, such as sending
and receiving messages.

4.7.1.3 Move Application Logic to Enterprise Beans

All application logic provided by JavaBeans components in the Web application
will need to be migrated to enterprise beans. This includes code to communicate
with external resources.

Application logic for processing events generated by the Web components
will need to be moved into the EJB controller. The EJB controller will also need
logic for returning model update events to the Web controller.

4.7.1.4 Modify JavaBeans Components

JavaBeans components originally designed to hold the model data will need to be
modified to obtain data from the enterprise beans when they receive model update
events from the EJB controller. In addition, application logic in JavaBeans compo-
nents will need to be moved to the enterprise beans representing the model.

After this modification, the JavaBeans components will become part of the
view to represent the contract between JSP pages and the model. The only other
logic that should remain in the Web container components is that tied to handling
HTTP requests and managing the flow of the application.

4.7.1.5 Minimize Display Logic in JSP Pages

JSP pages should be used to render HTML instructions. To make the JSP pages
more manageable, display logic code should be moved out of the JSP pages into

custom tags and JavaBeans components whenever possible. For more details, refer
back to Section 4.4 on page 85 of this chapter.

110 CHAPTER4 THE WEB TIER

4.8 Summary

As a medium, the Web requires application developers to create user interfaces that
are flexible and easy to maintain. Web applications can be made more flexible and
maintainable through the use of J2EE component technologies such as servlets and
JavaServer Pages which used to generate dynamic content in a portable and scalable
manner.

Enterprise Web applications should be developed using modular components.
These components include servlets, JSP pages, JavaBeans components, and tag
libraries containing custom tags. Depending on the composition of your develop-
ment team, time constraints, and application architecture, the use of JSP pages and
servlets will differ. Both technologies have merits and should be used accordingly.

Internationalization expands the potential user base of a Web application. A
properly internationalized application can be quickly localized for any number of
languages without modifications to the code. It is much easier to internationalize
an application during the design phase at the beginning of a development cycle.
Retrofitting an existing application can be difficult and expensive.

Architectures for Web applications include basic JSP pages and servlets,
Web-centric applications that use JSP pages with modular components, and EJB-
centric applications that use JSP pages with enterprise beans. A Web-centric
application can be migrated to a highly manageable, scalable, modular, EJB-
centric application by using the steps described in this chapter. Gradual migration
to a more complex design is less risky than making large-scale design changes to
an application.

About the Author

VINlTA KHANNA is a Member of Technical Staff at Sun Microsystems, where she
works as an enterprise bean developer in the J2EE programming model team. Her major
contributions include best practices and guidelines when developing business solutions
using enterprise beans. Prior to the APM project Vinita was a member of the Enterprise
Software Solutions Group where she was involved in the design and development of
mission critical business applications for Sun. Vinita holds a B.Tech. degree in Electron-
ics from Kamla Nehru Institute of Technology, India and a M.S. degree in Computer
Science from California State University, Hayward.

CHAPTER5

The Enterprise JavaBeéns
Tier

by Vinita Khanna

I N a multitier J2EE application, the Enterprise JavaBeans (EJB) tier hosts applica-
tion-specific business logic and system-level services such as transaction manage-
ment, concurrency control, and security. Enterprise JavaBeans technology provides
a distributed component model that enables developers to focus on solving business
problems while relying on the J2EE platform to handle complex system-level
issues. This separation of concerns allows rapid development of scalable, accessible,
and highly secure applications. In the J2EE programming model, EJB components
are a fundamental link between presentation components hosted by the Web tier and
business-critical data and systems maintained in the enterprise information system
tier.

This chapter examines the nature of business logic and describes the problems
a developer needs to resolve when implementing business logic. It then describes
the component model that the EJB tier of the J2EE platform provides to address
these problems. The chapter then presents recommendations and practices to best
utilize the services provided by the J2EE platform.

5.1 Business Logic

Business logic, in a very broad sense, is the set of guidelines to manage a specific
business function. Taking the object-oriented approach enables the developer to
decompose a business function into a set of components or element$asliesss
objects Like other objects, these business objects will have both characteristics

113

114

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

(state or data) and behavior. For example, an employee object will have data such as
a name, address, social security number, and so on. It will have methods for assign-
ing it to a new department or changing its salary by a certain percentage. To manage
this business problem we must be able to represent how these objects function or
interact to provide the desired functionality. The business-specific rules that help us
identify the structure and behavior of the business objects, along with the pre- and
post-conditions that must be met when an object exposes its behavior to other
objects in the system, is knownlassiness logic.

The following discussion demonstrates how to define the structure and behav-
ior of a business object from the requirements imposed by the business problem it
belongs to. For example, the sample application contains a group of business
objects: a catalog object to show available pets, a shopping cart object to tempo-
rarily hold client’s selection of pets, an account object to keep information about
clients, and an order object to keep track of placed orders. We consider the
requirements on an account object:

1. Each client must have a unique account.

2. Each account should have contact information for a client such as name, street
address, and email address.

. Clients must be able to create new accounts.

. Clients must be able to update contact information for their account.
. Clients must be able to retrieve information for their account.

. Clients can retrieve and update only their own account information.

. The account information must be maintained in persistent storage.

o N O O~ W

. Multiple clients must be able to access their account information at the same
time.

9. Multiple clients cannot update the same account concurrently.

The first two requirements specify the structural attributes of the account
object. Following these rules, the account object should have a field to hold
account identification and several other fields to hold address, phone, and other
contact information.

The behavior of the account object is described in requirements three, four,
and five. For example, accounts should have methods to create a new account,
update contact information, and to get the account information.

BUSINESS LOGIC 115

The last four requirements specify general conditions that must be met when
realizing the behavior of the account object. For example, when a client updates
an account, the client should be authorized to access that particular account,
updated account information should be written to persistent storage, and concur-
rent access to the account information to multiple clients should be prohibited.

Similar analysis and requirement definitions could be performed for other
objects. For example, an order object will have a set of general conditions on its
behavior that have a significant correlation to the behavior of an account object.
That is, a client needs to be authorized before updating or reading the status of an
order, order details need to be written to a persistent storage, and so on.

If you examine business objects in similar applications you will see that even
though the actual structure and behavior of the object is tied closely to the busi-
ness problem it is going to solve, many services that these business objects
provide follow specific patterns that are quite generic in nature.

5.1.1 Common Requirements of Business Objects

This section describes common requirements of business objects.

5.1.1.1 Maintain State

A business object often needs to maintain the state represented in its instance vari-
ables between the method invocations. The state can be either conversational or per-
sistent.

Consider a shopping cart object. The state of the shopping cart object repre-
sents the items and quantities of the items purchased by the client. The cart is ini-
tially empty and gains meaningful state when a user adds an item to the cart.
When a user adds another item to the cart, the cart should have both the items in it.
Similarly, when a user deletes an item from the cart, the cart should reflect the
change in its state. When a user exits the application, the cart object needs to be
reinitialized. When the object gains, maintains, and loses its state as a result of
repeated interactions with the same client we say the object maintains conversa-
tional state.

To understand persistent state, consider an account object. When a user
creates an account, the account information needs to be stored permanently so that
when the user exits the application and re-enters the application, the account
information can be presented to the user again. The state of an account object
needs to be maintained in persistent storage such as a database. Typically, the

116

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

business objects that operate on session-neutral data exhibit persistent state main-
tenance.

5.1.1.2 Operate on Shared Data

Another common characteristic of business objects is that they often operate on
shared data. In this case, measures must be taken to provide concurrency control and
appropriate levels of isolation of the shared data. An example of such a scenario
would be multiple users updating the same account information. If two users try to
update the same account at the same time, the business object should provide a
mechanism to keep the data in a consistent state.

5.1.1.3 Participate in Transactions

A transaction can be described as a set of tasks that need to be completed as a unit. If
one of the tasks fail, all the tasks in the unit will be rolled back. If all of them suc-
ceed, the transaction is said to be committed.

Business objects often need to participate in transactions. For example, order
placement needs to be transactional because of the set of tasks required to com-
plete an order—decrementing the quantity of the purchased item in the item
inventory, storing the order details, and sending an order confirmation to the user.
For the transaction to be completed, all of these tasks must succeed. If any one of
these tasks fail, work done by other tasks needs to be undone.

In many business operations, transactions may span more than one remote
data source. Such transactions—called distributed transactions—require special
protocols to ensure data integrity. In the sample application, order placement is a
distributed transaction because the inventory table and the order table reside in
different data sources.

5.1.1.4 Service a Large Number of Clients

A business object should be able to provide its services to a large number of clients

at the same time. This translates into a requirement for instance management algo-
rithms that give each client an impression that a dedicated business object is avail-
able to service its request. Without such a mechanism, the system will eventually

run out of resources and will not be able to service any more clients.

ENTERPRISE BEANS AS J2EE BUSINESS OBJECT417

5.1.1.5 Provide Remote Access to Data

A client should be able to remotely access the services offered by a business object.
This means that the business object should have some type of infrastructure to
support servicing clients over the network. This in turn implies that a business object

should be part of a distributed computing environment that takes care of fundamen-

tal issues in distributed systems such as location and failure transparency.

5.1.1.6 Control Access

The services offered by business objects often require some type of client authenti-
cation and authorization mechanism to allow only a certain set of clients to access
protected services. For example, an account business object needs to validate the
authenticity of the client before allowing it to update its account information. In
many enterprise scenarios, different levels of access control are needed. For exam-
ple, employees are allowed to view only their own salary objects, while a payroll
administrator can view as well as modify all salary objects.

5.1.1.7 Reusable

A common requirement of business objects is that they be reusable by different
components of the same application and/or by different applications. For example,
an application used by the payroll department to keep track of employees’ salary
may have two business objects: employee and salary. A salary business object may
use the services of an employee business object to get the grade level of an
employee. An application that tracks the employee vacation allowances may want to
use this employee object to get the name of the employee through the employee
number. In order for business objects to be able to be used by inter- and intra-appli-
cation components, they need to be developed in a standard way and run in an envi-
ronment that abides by these standards. If these standards are widely adopted by the
vendor community, an application can be assembled from off-the-shelf components
from different vendors. In addition to enabling rapid application development, this
approach helps developers avoid vendor lock-in.

5.2 Enterprise Beans as J2EE Business Objects

As we discussed in the previous section, business objects need to provide some
generic services to clients, such as support for transactions, security, and remote

118

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

access, These common services are very complex in nature and are outside the
domain of the business logic required to implement an application. To simplify
development, enterprise applications need a standard server-side infrastructure that
can provide such services.

The EJB tier of the J2EE platform provides a standard server-side distributed
component model that greatly simplifies the task of writing business logic. In the
EJB architecture, system experts provide the framework for delivering system-
level services and application domain experts provide the components that hold
only business-specific knowledge. The J2EE platform enables enterprise develop-
ers to concentrate on solving the problems of the enterprise instead of struggling
with system-level issues.

To use the services provided by the J2EE platform, business objects are
implemented by EJB components, enterprise beansThere are two primary
kinds of enterprise beans: entity beans and session beans. Session beans are
intended to be private resources used only by the client that created them. For this
reason, session beans, from the client’s perspective, appear anonymous. In con-
trast, every entity bean has a unique identity which is exposed as a primary key.
Later sections in this chapter discuss each type of enterprise bean in detail.

In addition to components, the EJB architecture defines three other entities:
servers, containers, and clients. Enterprise beans live inside EJB containers, which
provide life cycle management and a variety of other services. An EJB container
is part of an EJB server, which provides naming and directory services, email ser-
vices, and so on. When a client invokes an operation on an enterprise bean the call
is intercepted by its container. By interceding between clients and components at
the method call level, containers can manage services that propagate across calls
and components, and even across containers running on different servers and dif-
ferent machines. This mechanism simplifies development of both components and
clients.

5.2.1 Enterprise Beans and EJB Containers

The EJB architecture endows enterprise beans and EJB containers with a number of
unique features that enable portability and reusability:

» Enterprise bean instances are created and managed at runtime by a container.
If an enterprise bean uses only the services defined by the EJB specification,
the enterprise bean can be deployed in any compliant EJB container. Special-
ized containers can provide additional services beyond those defined by the

ENTERPRISE BEANS AS J2EE BUSINESS OBJECT419

EJB specification. An enterprise bean that depends on such a service can be de-
ployed only in a container that supports that service.

» The behavior of enterprise beans is not wholly contained in its implementation.
Service information, including transaction (described in Chapter 8) and secu-
rity (described in Chapter 9) information, is separate from the enterprise bean
implementation. This allows the service information to be customized during
application assembly and deployment. The behavior of an enterprise bean is
customized at deployment time by editing its deployment descriptor entries
(described in Chapter 7). This makes it possible to include an enterprise bean
in an assembled application without requiring source code changes or recom-
pilation.

« The Bean Provider defines a client view of an enterprise bean. The client view
is unaffected by the container and server in which the bean is deployed. This
ensures that both the beans and their clients can be deployed in multiple exe-
cution environments without changes or recompilation. The client view of an
enterprise bean is provided through two interfaces. These interfaces are imple-
mented by classes constructed by the container when a bean is deployed, based
on information provided by the bean. It is by implementing these interfaces
that the container can intercede in client operations on a bean and offer the cli-
ent a simplified view of the component. The following sections describe these
interfaces and classes: the home and remote interfaces, and enterprise bean
class.

5.2.1.1 Home Interface

The home interface provides methods for creating and removing enterprise beans.
This interface must extenthvax.EJB.EJBHome. The enterprise bean’s home inter-
face allows a client to do the following:

« Create new enterprise bean instance
* Remove an enterprise bean instance

» Get the meta-data for the enterprise bean throughd¥ex. ejb.EJBMetaData
interface. Theavax.ejb.EJBMetaData interface is provided to allow applica-
tion assembly tools to discover the meta-data information about the enterprise
bean at deployment time.

» Obtain a handle to the home interface, which provides the mechanism for per-

120

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

sistent enterprise beans. The home handle can be serialized and written to sta-
ble storage. Later, possibly in a different Java virtual machine, the handle can
be deserialized from stable storage and used to obtain a reference to the home
interface.

In addition, the home interface of an entity bean provides methods for finding
existing entity bean instances within the home. A client that knows the primary
key of an entity object can obtain a reference to the entity object by invoking the
findByPrimaryKey method on the entity bean’s home interface.

5.2.1.2 Remote Interface

The remote interface defines the client view of an enterprise bean—the set of busi-
ness methods available to the clients. This interface must extead. ejb.EIBOb-
ject. An EJBObject supports:

» The business methods of the object. Tigbject delegates invocation of a
business method to the enterprise bean instance.

The javax.ejb.EJBObject interface defines the methods that allow clients to
perform the following operations on a reference to an enterprise bean instance:

» Obtain the home interface
* Remove the enterprise bean instance
» Obtain a handle to the enterprise bean instance

» Obtain an entity bean instance’s primary key

5.2.1.3 Enterprise Bean Class

The enterprise bean class is the second part of the mechanism that allows for con-
tainer-managed services in the EJB architecture. It provides the actual implementa-
tion of the business methods of the bean. It is called by the container when the client
calls the corresponding methods listed in the remote interface. This class must
implement thejavax.ejb.EntityBean Of javax.ejb.SessionBean interface.

In addition to business methods, the remote interface and enterprise bean class
also share responsibility for two specialized categories of methods: create
methods and finder methods. The create methods provide ways to customize the

ENTITY BEANS 121

bean at the time it is created, and the finder methods provide ways to locate a
bean.

For eachcreate method listed in the home interface, the bean class imple-
ments the correspondingjbCreate method. For each finder method listed in
home interface, the bean class provides the correspomrdglimgndBy . . . method.

The enterprise bean class must also provide implementations of the methods listed
in the interface it extends. A developer can choose to provide empty implementa-
tions of any methods in the interface that aren’t required for the specific purposes
of a bean.

Figure 5.1 illustrates the implementation of the client view of an enterprise
bean.

EJB Container

Client enterprise bean 1

/

_-EJBObject

SessionBean
EJBHome

enterprise bean' 2
= EJBObject

EntityBean
EJBHome

Figure 5.1 Implementation of Client View of Enterprise Beans

The following two sections contain in-depth discussions of the properties and
uses of entity and session beans.

5.3 Entity Beans

An entity bean represents an object view of business data stored in persistent storage
or an existing application. The bean provides an object wrapper around the data to
simplify the task of accessing and manipulating it. This object interface lends itself

122

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

to software reuse. For example, an entity bean representing user account informa-
tion can be used by order management, user personalization, and marketing in a
uniform way.

An entity bean allows shared access from multiple clients and can live past the
duration of client’s session with the server. If the state of an entity bean is being
updated by a transaction at the time of server crash, the entity bean’s state is auto-
matically reset to the state of the last committed transaction.

5.3.1 Guidelines for Using Entity Beans

A Bean Provider can use the following entity bean characteristics as guidelines
when deciding whether to model a business object as an entity bean:

» Representing persistent data

If the state of a business object needs to be stored in a persistent storage
and its behavior primarily represents manipulation of data represented in its
state, then it should be modeled as entity bean.

However, it should be noted that every method call to an entity object via
the remote and home interface is potentially a remote call. Even if the calling
and called enterprise beans are located in the same Java virtual machine, the
call must go through the container, which must create copies of all parameters
that are passed through the interface by value. The container also checks secu-
rity and applies declarative transaction attributes on the inter-component calls.
Therefore modeling every object representing a row in the database as an
entity bean is not recommended. An entity bean is better suited to represent a
coarse-grained business object that provides more complex behavior than
only get and set methods for its fields.

» Providing concurrent access by multiple clients

When the state and behavior of a business object needs to be shared
among multiple clients, they should be modeled as entity beans. This kind of
business object needs to maintain state between method calls. However, this
state is not specific to a particular client but is representative of persistent state
of the business object, typically stored in a database. By modeling such busi-
ness objects as entity beans, a Bean Provider can rely on an EJB server to

ENTITY BEANS 123

ensure appropriate synchronization for entity beans as they are accessed con-
currently from multiple transactions.

* Representing a single logical record (row) of data

The business objects that typically operate on one logical record in the
database are excellent candidates to model as entity beans. In fact, entity
beans are designed to represent an individual (logical) record in the database.
Entity beans provide methods to locate, create, and manipulate one row at a
time.

 Providing robust, long-lived persistent data management

A business object that needs to live after a client’s session with the server
is over or that needs to be present when the server comes back after a crash,
should be modeled as an entity bean. Entity beans live even after a client’s
session with the server is over and can even survive server crashes. If the state
of an entity bean is being updated by a transaction at the time of server crash,
the entity bean’s state is automatically reset to the state of the last committed
transaction.

5.3.1.1 Example: A User Account Bean

The concept of a user account is central to all clients in many e-commerce applica-

tions. Multiple clients need to share behavior such as creating an account, verifying

an existing account, and updating account information. Updates to the state of an
account object need to be written to persistent storage and an account object lives
even when the client’s session with the server is over. Therefore, in the sample appli-
cation, an account object is modeled as entity bean.

To avoid expensive remote methods to get the value of account objects fields,
the sample application uses a value object (discussed in Section 5.5.2 on page
134) to represent account details. Only one remote call is required to retrieve the
value object and then a client’s request to query the state of an account object can
then be satisfied via locakt methods on this details object. Similarly, to avoid
fine-grainedset methods, the sample application uses a coarse-grained method to
update all account information via one remote call. Code Example 5.1 shows the
remote interface of theccount enterprise bean and the implementation of
AccountDetails.

public interface Account extends EJBObject {
pubTlic void changeContactInformation(ContactInformation info)

124 CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

throws RemoteException;
pubTic AccountDetails getAccountDetails()
throws RemoteException;

pubTlic class AccountDetails implements java.io.Serializable {
private String userld;
private String status;
private ContactInformation info;

public String getUserId() {
return userld;

Code Example 5.1 Account Remote Interface amttcountDetails Class

Like most entity beans, the account bean provides an object view of data
stored in a database and most of its code revolves around connecting to, accessing,
and updating database tables. The next section discusses options for implementing
data access logic for entity beans.

5.3.2 Persistence in Entity Beans

The protocol for transferring the state of an entity between the enterprise bean
instance and the underlying persistent store is referred to as object persistence. An
entity bean can implement persistence in the following ways:

 Directly implementing persistence in the enterprise bean class or in one or
more helper objects provided with the enterprise bean class (bean-managed
persistence)

» Delegating the handling of its persistence to its container (container-managed
persistence)

With bean-managed persistence, the Bean Provider writes database access
calls. The data access calls can be coded directly into the enterprise bean class, or
can be encapsulated in a data access component that is part of the entity bean. If

SESSION BEANS 125

data access calls are coded directly in the enterprise bean class, it may be more
difficult to adapt the entity component to work with a database that has a different
schema, or with a different type of database. Encapsulating data access calls in a
data access object makes it easier to adapt the enterprise bean’s data access to dif-
ferent schemas or different database types. The sample application uses separate
data access objects for implementing persistence. Data access objects are dis-
cussed in detail in Section 5.5.1 on page 130.

With container-managed persistence, the Bean Provider identifies the fields to
be stored to the database and the Container Provider’s tools generate database
access calls at deployment time. The type and structure of the data source is trans-
parent to the Bean Provider. The container tools can generate classes that use
JDBC or SQL/J to access the entity state in a relational database, classes that
implement access to a non-relational data source, or classes that implement func-
tion calls to existing enterprise applications. The bean state is defined indepen-
dently of how and where it will be stored and hence is more flexible across
applications. The disadvantage is that sophisticated tools must be used at deploy-
ment time to map the enterprise bean’s fields to a data source. These tools and
containers are typically specific to each data source.

When a container supports container-managed persistence, it simplifies the
task of writing entity beans because the container takes the responsibility of gen-
erating the code to access the data source. Bean developers should take advantage
of this feature and delegate the task of saving the state of an entity bean to the con-
tainer whenever possible. Some containers may not be capable of handling
complex state objects (for example, objects representing multiple joins). In such
cases, the Bean Provider may have to use bean-managed persistence.

5.4 Session Beans

Session beans are used to implement business objects that hold client-specific busi-
ness logic. The state of such a business object reflects its interaction with a particular
client and is not intended for general access. Therefore, a session bean typically exe-
cutes on behalf of a single client and cannot be shared among multiple clients. A
session bean is a logical extension of the client program that runs on the server and
contains information specific to the client. In contrast to entity beans, session beans
do not directly represent shared data in the database, although they can access and
update such data. The state of a session object is hon-persistent and need not be
written to the database.

126

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

A session bean is intended to be stateful. However, the Enterprise JavaBeans
specification allows stateless session beans as a way to provide server-side behav-
ior that doesn’t maintain any specific state. The next section discusses the proper-
ties and uses of both stateful and stateless session beans.

5.4.1 Stateful Session Beans

A stateful session bean contains conversational state on behalf of the client. A con-
versational state is defined as the session bean’s field values plus all objects reach-
able from the session bean’s fields. Stateful session beans do not directly represent
data in a persistent data store, but they can access and update data on behalf of the
client. As its name suggests, the lifetime of a stateful session bean is typically that of
its client.

5.4.1.1 Uses of Stateful Session Beans

A Bean Provider can use the following session bean characteristics as guidelines
when deciding whether to model a business object as a stateful session bean:

* Maintaining client-specific state

Stateful session beans are designed to maintain a conversational state on
behalf of a client, therefore business objects representing client-centric busi-
ness logic should be modeled as stateful session beans. Since stateful session
bean instances are tied to a client, system resources held by stateful session
beans cannot be shared among multiple clients.

» Representing non-persistent objects

Stateful session bean state is not stored in the persistent storage and can-
not be recreated after the client’s session with the server is over. Therefore,
business objects that are relatively short-lived and non-persistent should be
modeled as stateful session beans. In other words, a business object that does
not need to live after a client’s session with the server is over, or be present
when the server comes back after a crash, should be modeled as a session
bean.

» Representing work flow between business objects

The business objects that manage the interaction of various business
objects in a system are excellent candidates to be modeled as stateful session

SESSION BEANS 127

beans. Such objects usually exhibit both of the above characteristics, since
they are client specific and represent data-neutral non-persistent behavior.

5.4.1.2 Example: A Shopping Cart Bean

A shopping cart object represents the collection of products selected by a particular
user for purchase during a session. The state of the shopping cart object is specific to
a particular user session and need not be saved unless the user is ready to place an
order. The shopping cart object is short-lived. The data should not be shared, since it
represents a particular interaction with a particular user and is alive only for the
user’s session with the server. The sample application models the concept of shop-
ping cart as a stateful session bean.

As mentioned earlier, stateful session beans can also be used to model an
object that manages the interaction of various objects in the work flow on behalf
of a client. The sample application follows the MVC architecture. If the view (cli-
ent) needs to read the data (model) it does it by directly interacting with the data.
However, if the view needs to update the data, it uses the controller as a mediator.
The controller interacts with multiple objects representing data on behalf of the
view or user.

In the sample application, the controller is implemented as a stateful session
bean namedhoppingClientController. As shown in Code Example 5.2hop-
pingClientController is responsible for managing the life cycle of model objects
such as the shopping cart and account enterprise beans and processes business
events. For example, when a user places an os#ehpingClientController
handles the order event.

public interface ShoppingClientController extends EJBObject {
public Catalog getCatalog() throws RemoteException;
public ShoppingCart getShoppingCart() throws RemoteException;
pubTic Account getAccount() throws RemoteException;
public Collection getOrders() throws
RemoteException, FinderException;
public Order getOrder(int requestId) throws
RemoteException, FinderException;
// Returns a Tist of updated models
public Collection handleEvent(EStoreEvent se) throws

128

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

RemoteException, DuplicateAccountException;

Code Example 5.2 ShoppingClientController Remote Interface

5.4.2 Stateless Session Beans

Stateless session beans are designed strictly to provide server-side behavior. They
are anonymous in that they contain no user-specific data. In fact, the EJB architec-
ture provides ways for a single stateless session bean to serve the needs of many cli-
ents. This means that all stateless session bean instances are equivalent when they
are not involved in serving a client-invoked method. The term stateless means that it
does not have any state information for a specific client. However, stateless session
beans can have non-client specific state, for example, an open database connection.

5.4.2.1 Uses of Stateless Session Beans

A Bean Provider can use the following session bean characteristics as guidelines
when deciding whether to model a business object as a stateless session bean:

* Modeling reusable service objects

A business object that provides some generic service to all its clients can
be modeled as stateless session beans. Such an object does not need to main-
tain any client specific state information, so the same bean instance can be
reused to service other clients. For example, it would be appropriate to model
a business object that validates an employee ID against a database as a state-
less service.

* Providing high performance

A stateless session bean can be very efficient as it requires fewer system
resources by the virtue of being not tied to one client. Since stateless session
beans minimize the resources needed to support a large number of clients,
depending on the implementation of the EJB server, applications that use this
approach may scale better than those using stateful session beans. However,
this benefit may be offset by the increased complexity of the client application

SESSION BEANS 129

that uses the stateless session beans because the client has to perform the state
management functions.

Operating on multiple rows at a time

A business object that manipulates multiple rows in a database and repre-
sents a shared view of the data is an ideal stateless session bean. An example
of a such business object would be a catalog object that presents a list of vari-
ous products and categories. Since all users would be interested in such infor-
mation, the stateless session bean that represents it could easily be shared.

Providing procedural view of data

In a procedural view of data, methods of the business object do not oper-
ate on instance variables. Instead they behave like calls in a procedural lan-
guage. The method caller provides all the input and the method returns all
output to the caller. If a business object exhibits such functionality then it
should be modeled as a stateless session bean.

5.4.2.2 Example: A Catalog Bean

The sample application uses a stateless session beans to model a catalog object. A
catalog object represents different categories and products and provides browsing
and searching services to its clients. Both of the primary functions of the catalog,
browsing and searching, are generic services that are not tied to any particular client.
Also, the catalog object operates on multiple rows in the database at the same time
and provides a shared view of the data. Code Example 5.3 lists the services provided
by a catalog object:

public interface Catalog extends EJBObject {
public Collection getCategories()throws RemoteException;
public Collection getProducts(String categoryld,
int startIndex, int count)throws RemoteException;
public Product getProduct(String productld)
throws RemoteException;
public Collection getItems(String productld,int startIndex,
int count)throws RemoteException;
public Item getItem(String itemId)
throws RemoteException;
public Collection searchProducts(Collection keyWords,

130

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

int startIndex,int count)throws RemoteException;

}

Code Example 5.3 Catalog Remote Interface

Another example of a stateless session bean is the mailer object used to send
confirmation mail to clients after their order has been placed successfully. Mailer
provides a generic service that can be completed within a single method call with
its state is not tied to any particular client. Also, since the instances can be shared
among multiple clients, they are modeled as stateless session beans.

5.5 Design Guidelines

In addition to the guidelines discussed previously for choosing specific bean types,
there are other design choices that Application Component Providers must make
when developing objects for the EJB tier. These choices include what types of
objects should be enterprise beans, and what role an enterprise bean may play in a
group of collaborating components.

Since enterprise beans are remote objects that consume a significant amount
of system resources and network bandwidth, it is not appropriate to model all
business objects as enterprise beans. Only the business objects that need to be
accessed directly by a client need to be enterprise beans; other objects can be
modeled as data access objects, which encapsulate database access, and value
objects, which model fine-grained objects that are dependent on enterprise beans.

It may not be appropriate to give clients direct access to all enterprise beans
within an application. As a consequence, some enterprise beans may act as media-
tors of communication between clients and the EJB tier. A bean of this type can
encapsulate work flow specific to an application or can serve as an entry pointto a
hierarchy of information keyed to an attribute of the entry-point bean.

5.5.1 Data Access Objects

To encapsulate access to data, the sample applicationlaseaccess object$he
use of separate objects to access databases was driven by following requirements:

» Keep session bean code clear and simple

DESIGN GUIDELINES 131

» Ensure easier migration to container-managed persistence for entity beans
 Allow for cross-database and cross-schema portability

* Provide a mechanism that supports tools from different vendors

5.5.1.1 Clarifying Session Bean Implementations

Any session bean method that needs to access a database has a corresponding
method in the data access object that implements the actual logic of fetching or
updating data in the database. This makes the enterprise bean implementation much
cleaner and readable by conveying the business logic at a glance without being clut-
tered up with JDBC calls.

For example, consider tltatalog session bean. The business method
getProducts heed to return all the products for a category. Whengyefroducts
needs to operate on data residing in the database, it hands over control to a data
access object. The data access object formulates the query, fetches the result set,
and returns the data in the desired format to the calling method of the enterprise
bean.

In the sample application, the implementation of thealog session bean is
provided bycatalogElB, which inherits fromcatalogImpl1. The code forcata-
TogImpl.getProducts appears in Code Example 5.4; the code for the correspond-
ing data access object appears in Code Example 5.5.

public Collection getProducts(String categoryld,
int startIndex, int count) {
Connection con = getDBConnection();

try {
CatalogDAO dao = new CatalogDAO(con);
return dao.getProducts(categoryIld, startIndex, count);
} catch (SQLException se) {
throw new GeneralFailureException(se);
} finally {
try {
con.close();
} catch (Exception ex) {

132 CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

Code Example 5.4 CatalogImpl.getProducts

pubTlic Collection getProducts(String categoryld, int startIndex,
int count) throws SQLException {

String qstr =
"select itemid, listprice, unitcost, " +

"

"attrl, a.productid, name, descn +

"from item a, product b where +
"a.productid = b.productid and category =

nron "

+ order by name";

nmrn

+ + categoryld +

ArrayList al = new ArrayList();
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(qgstr);
HashMap table = new HashMap(Q);
// skip initial rows as specified by the startIndex parameter
while (startIndex-- > 0 && rs.next());
// Now get data as requested
while (count-- > 0 && rs.next()) {
int i = 1;
String itemid = rs.getString(i++).trimQ;
doubTle Tistprice = rs.getDouble(i++);
double unitcost rs.getDouble(i++);

Product product = null;

if (table.get(productid) == null) {
product = new Product(productid, name, descn);
table.put(productid, product);
al.add(product);

}
rs.close();
stmt.close();

DESIGN GUIDELINES 133

return al;

}

Code Example 5.5 CatalogDAO.getProducts

5.5.1.2 Migrating to Container-Managed Persistence

Apart from neater, more maintainable code, the use of data access objects provides
an easier migration path to container-managed persistence. To convert an entity
bean from bean-managed persistence to container-managed persistence you simply
need to discard corresponding the data access object along with references to it in
the entity bean’s code.

5.5.1.3 Database and Schema Portability

By encapsulating data access calls, data access objects allow adapting data access to
different schemas or even to a different database types. Data access objects for dif-
ferent schemas and databases can share a common interface enabling the Applica-
tion Assembler to choose the appropriate object from among several at assembly
time.

In the sample application we have used the flexibility provided by data access
objects to access different types of databases, namely Oracle, Sybase, and Cloud-
scape. In the order management module, a separate data access object is provided
for each vendor. This allows the same enterprise bean code to run on all databases.
The decision of which data access object to invoke is taken dynamically when a
connection to the database is made. A similar approach can be used to access data-
bases with different schemas.

5.5.1.4 Tool Compatibility

Data access objects fill a gap in the J2EE application architecture between responsi-
bilities of application developers and those of Server Providers. They represent an
excellent opportunity for the tool vendors to add value. Data access objects are a
type of class that can be easily generated by sophisticated tools. In the future,
custom data access objects, such as those in the sample application, will most likely
be replaced by sophisticated object-relational tools.

134

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

5.5.2 Value Objects

As mentioned earlier, because enterprise beans are remote objects, they consume
significant amount of system resources and network bandwidth to execute. There-
fore, before modeling a business object as an enterprise bean, you should determine
that there is a good case for doing so. For example, if a business object merely repre-
sents a structure to hold data fields, and the only behavior it provides are get and set
methods for the fields, then it would be wasteful of system resources to implement it
as an enterprise bean.

A better alternative would be to model it as a value objectalue objecis a
serializable Java object that can be passed by value to the client. A business
concept should be implemented as a value object when it is:

» Fine-grained, which means it only contains methods to get the values of fields.

» Dependent, which means its life cycle is completely controlled by another ob-
ject.

» Immutable, which means that its fields are not independently modifiable.

A client’s request for a value object can be fulfilled by the server more simply
than for an enterprise bean; the object is serialized and sent over the network to
the client where the object is deserialized. The object can then be used as a local
object. This conserves system resources by reducing the load on a remote object.
It also reduces network traffic as the method calls to get fields of the object are all
local.

In the sample application the details of an account are modeled as a value
object representing the state of a particular account in the database and providing
getter methods to query the state of this account. The client makes just one remote
call to executejetAccountDetails on the remote object account and gets back the
serializedAccountDetails object. The client can then query the state of this
account locally via the methods provided with the&ountDetails object. Simi-
larly, the state of an account object can be modified in just one remote call by
passing a&ontactInformation object to the remote method for updating contact
information.

5.5.2.1 Example: An Address Value Obiject

In the sample application, an address and credit card information are modeled as
value objects. The definition of thedress class is shown in Code Example 5.6.

DESIGN GUIDELINES 135

public class Address implements java.io.Serializable {
public Address (String streetNamel, String streetName2,
String city, String state, String zipCode, String country){
this.streetNamel = streetNamel;
this.streetName2 = streetName2;

}
public String getStreetNamel() {
return streetNamel;

private String streetNamel;
private String streetName2;

}

Code Example 5.6 Address

An Address does not exhibit complex behavior, but is merely a data structure
that contains only data fields. An address is fine-grained, having only get and set
methods. Also, it is a dependent object; it only has meaning if it is associated with
an account.

When making the object pass-by-value it is important to make it immutable to
reinforce the idea that the dependent object is not a remote object and changes to
its state will not be reflected on the server; in other words, it is just a copy and not
the remote reference. To make A&diress object immutable, all its instance data
is declared private and it only has methods to get fields. To change a pass-by-value
object the client must first remove it and then create a new object with the desired
field values.

5.5.3 Session Beans as a Facade to Entity Beans

A facade provides a unified interface to a set of interfaces. This section describes
when and how to use an session bean as a facade to entity beans.

Entity beans represent an object-oriented view of data and provide business
logic to manipulate this data. In an enterprise environment, entity beans often
need to be shared among different applications representing different work flows.
In such cases, use of application-specific stateful session beans to manage the

136

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

interaction of various entity beans provides a simpler interface to the client, by
giving the client a central point of entry. The client always interacts with this
session bean and is unaware of the existence of other entity beans in the system.

Stateful session beans are logical extensions of the client programs. Whether
to use one or many session bean facades depends on the types of clients the appli-
cation supports. Since the sample application has only one kind of client for the
application, namely the shopping client, the sample application uses a single state-
ful session bean calleghoppingSessionController. It's easy to imagine another
client that would provide administration functionality such as inventory and order
status monitoring. The work flow of such a client would be entirely different from
a shopping client. Therefore, defining another stateful session bean that encapsu-
lates this work flow would be advisable. However, creating a session bean for
every entity bean in the system would waste server resources and is not recom-
mended.

Where the client interacts with only a few entity beans in a relatively simple
way, the entity beans can be exposed directly. For example, in the sample applica-
tion the client that converts pending orders to XML (for use by business-to-busi-
ness transactions) interacts with the order entity bean directly.

5.5.4 Master-Detail Modeling Using Enterprise Beans

In a master-detail relationship, one object serves as a pointer to another. Typically
such a relationship is represented to the user as a list of items from which to select.
This list is called a master record and its contents are provided by the master object.
Selecting an item from this list leads to an expanded view of that item. The
expanded view is provided by a detail object.

A master-detail relationship is a one-to-many type relationship among data
sets. For example, if we have a set of customers and a set of orders placed by each
customer, a master-detail relationship is created by having customer number as a
common field between the two. An application can use this master-detail relation-
ship to enable users to navigate through the customer data set and see the detail
data for orders placed by the selected customer.

When modeling a master-detail relationship as enterprise beans, the guide-
lines for using entity or session beans still hold. The choice is not affected by the
master-detail relationship. However, the relationship is relevant when designing
the behavior of the master. For example, suppose the master object should be

SUMMARY 137

modeled as a session bean and the details object should be an entity bean. In this
case, the issue to be decided is how to implement the behavior of the master:

» Expose the underlying entity beans to its clients when the client wants the de-
tail object.

» Implement the logic of collecting the details in the master.

In analyzing various possible combinations of session beans, entity beans, or
value objects, to represent master and detail objects, these questions are relevant
only when the details are entity beans. For this case there are two possible sce-
narios:

« If the client modifies the detail entity object, then the master object needs to
expose the underlying entity object to the clients.

« If the client does not modify the detail entity object, then the master object can
have the necessary business logic to know which detail bean to access to con-
struct the logical master/detail object. The client should not be exposed to the
logic associated with accessing and aggregating the entity beans representing
the details.

5.6 Summary

There are a number of common services that distributed enterprise applications
require. These include maintaining state, operating on shared data, participating in
transactions, servicing a large number of clients, providing remote access to data,
and controlling access to data. The middle tier of enterprise computing has evolved
as the ideal place to provide these services. The J2EE platform promotes the Enter-
prise JavaBeans architecture as a way to provide the system services that most enter-
prise applications need. The EJB architecture frees enterprise application developers
from concerns about these services enabling them to concentrate on providing busi-
ness logic.

The Enterprise JavaBeans architecture provides various types of enterprise
beans to model business objects: entity beans, stateful session beans, and stateless
session beans. When choosing a particular enterprise bean type to model a busi-
ness concept, the choice depends on a number of factors such as the need to

138

CHAPTER S5 THE ENTERPRISE JAVABEANS TIER

provide robust data handling, the need to provide efficient behavior, and the need
to maintain client state during a user session.

An entity bean provides an object-aoriented view of relational data stored in a
database; a stateless session bean gives a procedural view of the data. An Applica-
tion Component Provider should use entity beans to model logical entities such as
individual records in a database. When implementing behavior to visit multiple
rows in a database and present a read-only view of data, stateless session beans
are the best choice. They are designed to provide generic services to multiple cli-
ents.

Some business concepts actually require more than one view of data. An
example would be a catalog that provides browsing and searching services as well
as mechanisms to update the product information. In such cases, you can use a
stateless session bean to operate on a product information as a whole and an entity
bean to provide access to a particular product.

Because enterprise beans are remote objects that consume significant amount
of system resources and network bandwidth, they are not appropriate for model-
ing all business objects. An Application Component Provider can use data access
objects to encapsulate database access and value objects to model objects that are
dependent on enterprise beans.

Also, it may not be appropriate to give clients direct access to all enterprise
beans used by an application. Some enterprise beans may act as mediators for
communication between clients and the EJB tier. Such beans can encapsulate
work flow specific to an application or can serve as an entry point to a hierarchy of
information.

About the Author

RAHUL SHARMA is a Staff Engineer with Sun Microsystems, where he is the lead
architect for the J2EE Connector architecture 1.0. Before this, Rahul has worked in the
areas of Java computing, Web technologies, distributed computing, CORBA, databases,
and object-oriented programming. Rahul received a degree in Computer Science from
Delhi University in India. He is presently pursuing his M.B.A. from Haas School of

Business, University of California at Berkeley.

CHAPTER6

The Enterprise Informatibn
System Tier

by Rahul Sharma

ENTERPRISEappIications require access to applications running on enterprise
information systems. These systems provide the information infrastructure for an
enterprise. Examples of enterprise information systems include enterprise resource
planning systems, mainframe transaction processing systems, relational database
management systems, and other legacy information systems. Enterprises run their
businesses using the information stored in these systems; the success of an enter-
prise critically depends on this information. An enterprise cannot afford to have an
application cause inconsistent data or compromise the integrity of data stored in
these systems. This leads to a requirement for ensuring transactional access to enter-
prise information systems from various applications.

The emergence of the e-business model has added another dimension to infor-
mation system access: enterprises want their information to be accessible over the
Web to their partners, suppliers, customers, and employees. Typically enterprises
develop Web-enabled applications that access and manage information stored in
their information systems. These enterprises can use J2EE applications to extend
the reach of their existing information systems and make them accessible over the
Web. Enterprises also develop new e-business applications. The sample applica-
tion described in this book is one example of this class of application.

This added dimension requires an enterprise to ensure secure access to its
enterprise information systems because any break in security can compromise
critical information. An increase in the number of relationships that an enterprise
has to establish with its suppliers, buyers, and partners leads to a requirement that

141

142

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

J2EE applications accessing enterprise information systems be scalable and
support a large number of clients.

This chapter describes the application programming model for accessing
enterprise information system resources from enterprise applications in a secure,
transactional, and scalable manner.

6.1 Enterprise Information System Capabilities and
Limitations

Some enterprise information systems provide advanced support for transaction and
security. For example, some systems support controlled access to their resources
through transactions. These systems can participate in transactions with others by
supporting two-phase commit protocol, managed by a transaction manager sup-
ported by a J2EE server. Other systems offer limited or almost no support for trans-
actional access. For example, a system may only support transactions that are
coordinated internally.

Legacy systems or applications that have been in existence for a long time
may impose specific technology and administrative restrictions. For example, it
may be difficult to create new user accounts in a legacy system or to extend this
system to support development of new applications. In this case, an Application
Component Provider has to live with what exists and enable access to such
systems under restrictions. This may be a very typical situation.

When developing an application to integrate enterprise information systems,
an Application Component Provider has to be aware of its functional and system
capabilities, and design application components taking into account possibilities
and limitations of the system. For example, application components should not be
developed and deployed so that they require transactions spanning multiple
resource managers if the J2EE server cannot really provide support for such trans-
actions due to the fact that the participating enterprise information system
resource managers do not support the two-phase commit protocol. In other cases,
application components may need to limit their security requirements due to con-
straints of the underlying system.

ENTERPRISE INFORMATION SYSTEM INTEGRATION SCENARIO443

6.2 Enterprise Information System Integration Scenarios

There are any number of configurations in which a J2EE application might be struc-
tured to access an enterprise information system. The following sections illustrate a
few typical enterprise information system integration scenarios.

6.2.1 An Internet E-Store Application

Company A has an e-store application based on the J2EE platform. This application
is composed of a set of enterprise beans, JSP pages, and servlets that collaborate to
provide the overall functionality of the application. The database stores data related
to product catalogs, shopping carts, customer registration and profiles, transaction
status and records, and order status.

The architecture of this application is illustrated in Figure 6.1.

Company A

Database

JSP Pages Enterprise
Web Serviets Beans

Browser
E-Store Application

J2EE Server

Figure 6.1 An Internet E-Store Application

A customer uses a Web browser to initiate an e-commerce transaction with the
e-store application. A customer browses the catalog, makes a selection of prod-
ucts, puts the product selection into a shopping cart, enters a user name and pass-
word to initiate a secure transaction, fills in order related information, and finally
places an order. In this scenario, the e-store application uses an existing database

144

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

that already contains product and inventory information to store all persistent
information about customers and their transactions.

6.2.2 An Intranet Human Resources Application

Company B has developed and deployed an employee self-service application based
on the J2EE platform. This application supports a Web interface to existing human
resources applications supported by the enterprise resource planning system from
vendor X and provides additional business processes that are customized to the
needs of company B.

Figure 6.2 illustrates an architecture for this application. The middle tier is
composed of enterprise beans and JSP pages that provide customization of busi-
ness processes and support a company standardized Web interface. This applica-
tion enables an employee (under the different roleBa@hger, HR manager, and
EmpTloyee) to perform various personnel management functions: personal informa-
tion management, payroll management, compensation management, benefits
administration, travel management, and cost planning.

The IT department of company B deploys this application and enterprise
resource planning system in a secure environment at a single physical location.
Access to the application is permitted only to employees of the organization based
on their roles and access privileges, and within the confines of the organization-
wide intranet.

Company B

HR
JSP Pages Enterprise Application
Web Servlets Beans -

Browser

HR Application System X

J2EE Server

Figure 6.2 An Intranet Human Resources Application

ENTERPRISE INFORMATION SYSTEM INTEGRATION SCENARIO445

6.2.3 A Distributed Purchasing Application

Company C has a distributed purchasing application. This application enables an
employee to use a Web-based interface to perform multiple purchasing transactions.
An employee can manage the whole procurement process, from creating a purchase
requisition to getting invoice approval. This application also integrates with the
existing financial applications in the enterprise for tracking financial aspects of the
procurement business processes.

Figure 6.3 illustrates an architecture for this application. The application as
developed and deployed on the J2EE platform, is composed of JSP pages, enter-
prise beans, and existing information systems. The enterprise beans integrate a
logistics application that provides integrated purchasing and inventory manage-
ment functions from vendor X and another that provides financial accounting
functions from vendor Y.

Logistics
Company C App%ication

JSP Pages Enterprise
Web Serviets Beans

Browser | T

Purchasing Application Financial
Application

System X

J2EE Server

System Y

Figure 6.3 A Distributed Purchasing Application

Company C is a large decentralized enterprise with geographically distributed
business units and departments. In this scenario, system X and system Y are
managed by different IT departments and have been deployed at secured data
centers in different geographic locations. The integrated purchasing application is
deployed at a location different from either system X or system Y.

System X and System Y are in different security domains; they use different
security technologies and have their own specific security policies and mecha-

146

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

nisms. The distributed purchasing application is deployed in a security domain
that is different from either that of system X or system Y.

6.3 Relational Database Management System Access

Application Component Providers use the JDBC 2.0 API for accessing relational
databases to manage persistent data for their applications. The JDBC API has two
parts: a client API for direct use by developers to access relational databases and a
standard contract between J2EE servers and JDBC drivers for supporting connec-
tion pooling and transactions. The latter contract is not directly used by the develop-
ers, it is used by J2EE server vendors to automatically provide pooling and
transaction services to J2EE components.

An Application Component Provider uses the JDBC client-level API to get a
database connection, to retrieve database records, to execute queries and stored
procedures and to perform other database functions. Even though the JDBC API
is quite simple, an Application Component Provider still experiences a learning
curve and intensive programming effort due to differences between relational and
object-oriented methodologies.

6.4 Other Enterprise Information System Access

An enterprise environment invariably includes enterprise information systems other
than relational database systems:

» Enterprise resource planning systems

» Mainframe transaction processing systems

» Legacy applications

Non-relational database systems

Currently, there is no standard architecture for integration of a J2EE server
with enterprise information systems; most enterprise information system vendors
and J2EE Server Providers use vendor-specific architectures to support enterprise
information system integration. For example, a J2EE Server Provider can special-
ize its container to support integration with an enterprise resource planning
system.

APPLICATION COMPONENT PROVIDER TASKS 147

A major disadvantage of developing enterprise information system integration
applications for deployment on specialized containers is that application compo-
nents become tied to mechanisms and programming models defined by the spe-
cialized container. As a result, such components are not portable across different
types of containers.

The J2EE Connector architecture (described in Section 6.10 on page 161) is a
standard architecture for the integration of J2EE products and applications with
heterogeneous enterprise information systems. This architecture is currently under
development and will be part of the next version of the J2EE platform. In this doc-
ument, we make no specific recommendations based on the Connector architec-
ture.

In the interim, an Application Component Provider can use vendor-specific
architectures to integrate with enterprise information systems. However, while
developing various types of application components we suggest following the
guidelines that are discussed in the subsequent sections in this chapter in order to
ensure that the migration path to the Connector architecture will be smooth.

6.5 Application Component Provider Tasks

The task of an Application Component Provider assumes different levels of com-
plexity and effort depending on whether the programming model used is based on
the J2EE application programming model or not. In either case, an Application
Component Provider has to write the business and application logic for the applica-
tion.

In the absence of J2EE platform support, the Component Provider faces sig-
nificant complexity when programming access to enterprise information system
resources (data and functions managed by an enterprise information system). This
complexity comes from dealing with security, transaction, and application pro-
gramming models that are specific to an enterprise information system. A Compo-
nent Provider has to manage transactions using a transaction demarcation API
specific to an enterprise information system, such as the transaction demarcation
API defined in thejava.sql.Connection interface in the JDBC 2.0 API. In the
application, the Application Component Provider has to explicitly code security
checks to restrict enterprise information system access to valid users.

Using the J2EE application programming model, an Application Component
Provider faces reduced complexity by relying on the Web and EJB containers to
handle transactions, security, and scalability related to enterprise information

148

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

system access. The Application Component Provider can focus on the task of
writing business and application logic and use a simple client-oriented API for
accessing the enterprise information system. The task of accessing enterprise
information system resources from the application code is made even easier
through the use of enterprise application development tools.

By letting J2EE containers manage transactions, security, and scalability,
Application Component Providers focus on what they do the best: writing busi-
ness and application logic. The J2EE platform vendors focus on their core
strengths: multiuser, secure, transactional, scalable implementations of J2EE plat-
form that enable different enterprise information systems to plug into the J2EE
platform. Together Application Component Providers and J2EE Platform Provid-
ers succeed in ensuring that enterprises can rely on J2EE applications to extend
their enterprise information systems without compromising the information stored
in these systems.

6.6 Application Programming Model

The J2EE application programming model for enterprise information system access
lays down a set of design choices, guidelines, and recommendations for Application
Component Providers. These guidelines enable an Application Component Provider
to develop an application based on its overall functional and system requirements.
The application programming model focuses on the following aspects:

» Accessing enterprise information system resources from components

 Using tools to simplify and reduce application development effort involved in
accessing enterprise information systems

» Getting connections to an enterprise information system and managing con-
nections

» Supporting the security requirements of an application

» Supporting the transactional requirements of an application

The following sections describe each of these aspects from the perspective of
relational database access using JDBC 2.0 API, with the exception of transactions,
which are discussed in Chapter 8. An important point to note is that the following
sections are not meant to be a programmer’s guide to using the JDBC API.

PROGRAMMING ACCESS TO DATA AND FUNCTIONS 149

6.7 Programming Access to Data and Functions

In an application that requires access to an enterprise information system, an Appli-
cation Component Provider is responsible for programming access to resources
managed by the enterprise information system, including tables, stored procedures,
business objects, and transaction programs. The Application Component Provider
also has to write the business and application logic when developing functionality of
applications that target enterprise information system.

The API for accessing an enterprise information system belongs to two cate-
gories: a client-level API to access data and execute functions (for example,
java.sql.PreparedStatement and java.sql.ResultSet in JDBC 2.0) and a
system-level API for getting connections and demarcating transactions (for exam-
ple,javax.sql.DataSource in JDBC 2.0).

In the J2EE programming model, a container assumes primary responsibility
for managing connection pooling, transactions, and security. The level of service
provided is based on the declarative specification of application requirements by
an Application Component Provider or Deployer. This leaves an Application
Component Provider to concentrate on programming access to data and functions
being managed by an enterprise information system.

6.7.1 Client API for Enterprise Information System Access

A client API for accessing data and functions can be difficult to understand and use
for one or more of the following reasons:

« The client API may be tied to a specific enterprise information system pro-
graming model.

» The client APl may not present object-oriented abstractions. For example, it
may require remote function calls to access business functions on an ERP sys-
tem.

« An Application Component Provider who is proficient with the JavaBeans
component model and visual application composition and development tools
may see any API that does not support such functionality as being difficult to
use.

« The lack of application development tool support for a specific client APl may
force Application Component Providers to hand-code all data and/or function
access.

150

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

These factors increase the need for tools to support end-to-end application develop-
ment. Application Component Providers also have to use additional programming
techniques to simplify enterprise information system integration.

6.7.2 Tools for Application Development

The J2EE programming model recognizes that Application Component Providers
will rely on enterprise development tools for simplifying development during enter-
prise information system integration. These tools will come from different vendors,
provide varied functionalities, and serve various steps in the application develop-
ment process. A number of these tools will be integrated together to form an end-to-
end development environment. The tools include:

Data and function mining tools, which enable Application Component Provid-
ers to look at the scope and structure of data and functions in an existing infor-
mation system.

Object-oriented analysis and design tools, which enable Application Compo-
nent Providers to design an application in terms of enterprise information sys-
tem functionality.

Application code generation tools, which generate higher level abstractions for
accessing data and functions. A mapping tool that bridges different program-
ming models, such as an object to relational mapping, will fall into this cate-
gory.

Application composition tools, which enable Application Component Provid-
ers to compose application components from generated abstractions (such as
those described in previous bullets). These tools will use the JavaBeans com-
ponent model to enhance ease of programming and composition.

Deployment tools, which are used by Application Component Providers and
Deployers to set transaction, security, and other deployment time require-
ments.

Since programming access to enterprise information system data and functions is a
complex application development task in itself, we recommend that application
development tools should be used to reduce the effort and complexity involved in
enterprise information system integration.

PROGRAMMING ACCESS TO DATA AND FUNCTIONS 151

6.7.3 Access Objects

A component can access data and functions in an enterprise information system in a
couple of ways, either directly by using the corresponding client API or indirectly
by abstracting the complexity and low-level details of enterprise information system
access APl into higher levelccess objectsAn Application Component Provider
comes across these access objects in different forms, scopes, and structure.

The use of access objects provides several advantages:

» An access object can adapt the low-level programming APl used for accessing
enterprise information system data and/or functions to an easy-to-use API that
can be designed to be consistent across various types of enterprise information
systems. For example, an access object may follow a design pattern that maps
function parameters to setter methods and return values to getter methods. The
Application Component Provider uses a function by first calling the appropri-
ate setter methods, then calling the method corresponding to the enterprise in-
formation system function, and finally calling the getter methods to retrieve the
results.

» A clear separation of concern between access objects and components will en-
able a component to be adapted to different enterprise information system re-
sources. For example, a component can use an access object to adapt its
persistent state management to a different database schema or to a different
type of database.

« Since access objects can be made composable through support for the Java-
Beans model, components can be composed out of access objects or can be
linked with generated access objects using application development tools. This
simplifies the application development effort.

Since access objects primarily provide a programming technique to simplify appli-
cation development through one or more of the above advantages, we recommend
that Application Component Providers consider using them anywhere they need to
access data or functions in an enterprise information system. In some cases tools
may be available to generate such access objects. In other cases they will need to be
hand-coded by Application Component Providers.

152 CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

6.7.3.1 Guidelines for Access Objects

Here are some guidelines to follow in developing access objects:

» An access object shouldn’t make assumptions about the environment in which
it will be deployed and used.

» An access object should be designed to be usable by different types of compo-
nents. For example, if an access object follows the set-execute-get design pat-
tern described previously, then its programming model should be consistent
across both enterprise beans and JSP pages.

» An access object shouldn’t define declarative transaction or security require-
ments of its own. It should follow the transaction and security management
model of the component that uses it.

+ All programming restrictions that apply to a component apply to the set of ac-
cess objects associated with it. For example, an enterprise bean isn't allowed
to start new threads, to terminate a running thread, or to use any thread syn-
chronization primitives. Therefore, access objects should conform to the same
restrictions.

6.7.3.2 Examples of Access Objects

Access objects can be used in a number of ways, as represented in the following
examples:

» Encapsulating functions

An access object can encapsulate one or more enterprise information sys-
tem functions, such as business functions or stored procedures. The following
code implements an access object that drives a purchase requisition business
process on an enterprise resource planning system by mapping purchasing
functions to method calls on a purchase function object.

PurchaseFunction pf = // instantiate access object for PurchaseFunc-
tion

// set fields for this purchase order

pf.setCustomer("Wombat Inc");

pf.setMaterial(...);

pf.setSalesOrganization(...);

CONNECTIONS 153

po.execute();
// now get the result of purchase requisition using getter methods

« Encapsulating persistent data

A data access object can encapsulate access to persistent data such as that
stored in a database management system. Data access objects can provide a
consistent API across different types of such systems. Data access objects
used by the sample application (see Section 5.5.1 on page 130) are used to
access order objects stored in different types of databases.

» Aggregating behaviors

An access object can aggregate access to other access objects, providing a
higher level abstraction of application functionality. For exampyrahase-
Order aggregated access object can drive its purchase requisition business
process through theurchaseFunction access object and use a data access
objectPurchaseData t0 maintain persistent attributes of the purchase order.

6.7.3.3 Usage Scenarios for Access Objects

A component can use access objects in different ways depending on the functional-
ity they offer. A couple of common ways to use access objects would be:

» Define a one-to-one association between components and access objects. That
is, each access object encapsulates the enterprise information system function-
ality required by a particular component. This usage scenario will typically be
used to enable Web access to enterprise information system resources being
encapsulated by an access object.

« Define components to aggregate the behavior of multiple access objects. This
will happen often where a component accesses multiple enterprise information
system resources or adds additional business logic to the functionality defined
by multiple enterprise information system resources.

6.8 Connections

Virtually all enterprise information systems are accessed via objects called connec-
tions. The following discussions provide pointers on efficient techniques for getting
and managing connections.

154

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

6.8.1 Establishing a Connection

A component is responsible for getting a connection to an enterprise information
system. Once a connection to the enterprise information system is established, the
component uses the connection to access enterprise information system resources.
After the component is finished, it closes the connection.

The specific steps in establishing a connection to an enterprise information
system are:

1. The Deployer configures a connection factory instance in the JINDI name
space. This connection factory instance is tied to the connection factory re-
guirements specified in the deployment descriptor by the Application Compo-
nent Provider.

2. A component looks up a connection factory from the JNDI name space. After
a successful lookup, the component calls a connection factory method to create
a connection to the enterprise information system.

3. The connection factory returns a connection instance. The component uses the
connection instance to access enterprise information system resources.

4. Having established a connection to the enterprise information system, the com-
ponent manages this connection and its life cycle.

5. Once the component is finished using the connection, it closes the connection
instance.

Code Example 6.1 illustrates how a component gets a connection to a relational
database using the JDBC 2.0 API.

public void getConnection(...) {
// obtain the initial INDI context
Context initctx = new InitialContext();

// Perform INDI lookup to obtain factory
javax.sql.DataSource ds =

(javax.sql.DataSource)initctx. Tookup(

"java:comp/env/jdbc/MyDatabase");

// Invoke factory to get a connection
java.sql.Connection cx = ds.getConnection();

CONNECTIONS 155

// Use the Connection to access the resource manager

Code Example 6.1 Establishing a Database Connection

6.8.2 Guidelines for Connection Management

If each component were to acquire an enterprise information system connection and
hold it until it gets removed, it would be difficult to scale up an application to
support thousands of users. Since holding on to an enterprise information system
connection across long-lived instances or transactions is expensive, components
should manage connections more efficiently. To avoid scaling problems, almost
every J2EE server should support connection pooling. However, an Application
Component Provider still needs to follow sound connection management practices.

When an application is migrated from a two-tier structure to a multitier com-
ponent-based structure, the issue of connection management becomes especially
important. For example, a two-tier JDBC application may share a single connec-
tion across an entire application. After migration to a component-based partition-
ing, the application will need to deal with shared connections across multiple
component instances.

This section provides guidelines for addressing application programming
model issues related to connections using a JDBC connection to a relational data-
base as an example.

6.8.2.1 Connection Life Cycle and Connection Pooling

A component can get a connection to a database in any client- or container-invoked
method. We recommend that components open and close their connections within a
single method, rather than holding connection state across methods. Only when the
design of an application requires components to share connections across compo-
nent instances or method invocations should connections be retained.

A component can retain a connection across methods at the cost of additional
system resources and added programming model complexity required to manage
the connection. One example might be a stateful session bean instance that retains
the results of queries and database access operations across methods. The session
bean gets a connection and starts a transaction through it. The transaction itself is
handled internally by database with no external transaction management. Since

156

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

the session bean wants to have this transaction span multiple methods, it must
keep the connection open across method invocations.

Ideally, containers should take care of connection sharing. But currently the
J2EE platform defines no standardized way of implementing connection sharing
across different containers. Until a connection sharing mechanism is standardized
for containers, a component can choose to do connection sharing through vendor-
specific mechanisms offered by different containers and JDBC drivers. This
comes at the cost of portability across containers.

6.8.2.2 Connection Management by Component Type

A J2EE application is typically composed of components of different types: JSP
pages, servlets, and enterprise beans. These component types vary in terms of
support for container-managed activation and passivation, execution of an instance
for multiple clients, sharing of an instance across multiple clients, long-lived nature,
and other factors. The Application Component Provider has to account for such dif-
ferences across component types when deciding on a connection management
model for an application. Here are a few examples that illustrate these differences.

A JSP page or servlet acquires and holds on to a JDBC connection in relation
to the life cycle of its HTTP session. It can handle multiple HTTP requests across
a single HTTP session from Web clients using the same JDBC connection.

A stateful session bean can share an open connection and its client-specific
query results across multiple methods. However stateless session beans are
designed to have no state specific to a client. So if stateless session beans share a
connection across methods, they are required to maintain no client-specific state
associated with the connection.

For entity beans, the EJB specification identifies methods that are allowed to
perform enterprise information system access through a connection. These
include ejbCreate, ejbPostCreate, ejbRemove, ejbFind, ejbActivate, ejblLoad,
ejbStore, and business methods from the remote interface. An entity bean cannot
access enterprise information systems from within ¢heentityContext and
unsetEntityContext methods because a container does not have a meaningful
transaction or security context when they are called.

6.8.2.3 Multiple Connections

Some JDBC drivers don't support multiple concurrent connections under a single
transaction. To be portable, components should avoid opening multiple concurrent

SECURITY 157

connections to a single database. However, multiple component instances can access
the same database using different connections.

6.9 Security

An enterprise has a critical dependency on its information systems for its business
activities. Loss or inaccuracy of information or unauthorized access to an enterprise
information system can be extremely costly. So, enterprises require that the security
of their enterprise information systems should never be compromised. Applications
need to provide access to enterprise information systems without creating security
threats to these valuable resources.

Enterprise applications should clearly establish the requirements and architec-
ture for secure enterprise information system integration environment. For exam-
ple, an application should require only the level of protection needed by the
enterprise: reducing the level of protection for less sensitive information or where
the system is less vulnerable to threats. The cost of implementing, administering,
and running a secure system should also be weighed against the security needs of
an application. This trade-off, based on the security benefits and cost, is difficult
to make for an enterprise application. However, this trade-off is important to make
for the security architecture for enterprise information system integration.

6.9.1 Security Architecture

A security architecture for enterprise information system integration should fulfill a
variety of requirements to ensure seamless support for distributed applications:

« Support a consistent end-to-end security architecture across Web, EJB, and en-
terprise information system tiers for applications based on the J2EE platform.

« Fit with the existing security environment and infrastructure supported by an
enterprise information system.

» Support authentication and authorization of users who are accessing enterprise
information systems.

» Be transparent to application componefilsis includes support for enabling
end-users to log on only once to the enterprise environment and access multi-
ple enterprise information systems.

158

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

» Enable applications to be portable across security environments that enforce
different security policies and support different mechanisms.

The relative importance of achieving these goals depends on the cost/benefit
trade-off for the security requirements. The more an architecture takes care of
these security requirements for the application, the easier the application develop-
ment effort.

6.9.2 Application Programming Model

While developing and deploying application components, an Application Compo-
nent Provider follows the security model defined for the corresponding J2EE com-
ponent—EJB, JSP, or servlet. We recommend the following application
programming model for all types of components:

» An Application Component Provider should specify security requirements for
an application declaratively in the deployment descriptor. The security re-
quirements include security roles, method permissions, and authentication ap-
proach for enterprise information system signon.

» A security-aware Application Component Provider can use a simple program-
matic interface to manage security at an application level. This programmatic
interface allows the Application Component Provider to make access control
decisions based on the security context (principal, role) associated with the
caller of a method and to do programmatic signon to an enterprise information
system (described in Section 6.9.3.2 on page 160).

» Other development roles—J2EE Server Provider, Deployer, System Adminis-
trator—should satisfy an application’s security requirements (as specified in
the deployment descriptor) in the operational environment.

6.9.3 Resource Signon

From a security perspective, the mechanism for getting a connection to a resource is
referred to asesource signonA user requests a connection to be established under
its security context. This security context includes various attributes, such as role,
access privileges, and authorization level for the user. All application-level invoca-
tions to the database using this connection are then provided through the security
context associated with the connection.

SECURITY 159

If the resource signon mechanism involves authentication of the user, then an
Application Component Provider has the following two choices:

* Allow the Deployer to set up the resource signon information. For example, the
Deployer sets the user name and password for establishing the database con-
nection. The container then takes the responsibility of managing the database
signon.

« Implement sign on to the database from the component code by providing ex-
plicit security information for the user requesting the connection.

We recommend that a component let the container manage resource signon.
This takes the burden of managing security information for the signon off of the
Application Component Provider. It also enables J2EE servers to provide addi-
tional useful security services, such as single signon across multiple enterprise
information systems and principal mapping across security domains.

Container-managed resource signon enables the Application Component Pro-
vider to avoid hard-coding security details in the component code. A component
with hard-coded security logic is less portable because it is difficult to deploy on
containers with different security policies and mechanisms. The following sec-
tions illustrate how to sign on using both approaches.

6.9.3.1 Container-Managed Signon

In this example, the Application Component Provider delegates the responsibility
of setting up and managing resource signon to the container. The Deployer sets up
the resource signon so that the user account for connecting to the database is always
eStoreUser. The Deployer also configures the user identification and authentication
information—user name and password—that is needed to autherficateuser

to the database.

As shown in Code Example 6.2, the component code invokes the connection
request method on thiavax.sql.DataSource With no security parameters. The
component instance relies on the container to do the signon to the database using
the security information configured by the Deployer. Code Example 6.3 contains
the corresponding connection factory reference deployment descriptor entry,
where theres-auth element specifies that signon is performed by the container.

// Obtain the initial INDI context
Context initctx = new InitialContext();

160 CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

// Perform INDI lookup to obtain connection factory
javax.sql.DataSource ds = (javax.sql.DataSource)initctx.lookup(
"java:comp/env/jdbc/MyDatabase");

// Invoke factory to obtain a connection. The security
// information is not given, and therefore it will be
// configured by the Deployer.

java.sql.Connection cx = ds.getConnection();

Code Example 6.2 Container-Managed Signon

<resource-ref>
<description>description</description>
<res-ref-name>jdbc/MyDatabase</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>

Code Example 6.3 Connection Factory Reference Element

6.9.3.2 Application-Managed Signon

In this example, the Application Component Provider performs a programmatic
signon to the database. The component passes explicit security information (user
name, password) to the connection request method @éthe. sq1.DataSource.

// Obtain the initial INDI context
Context initctx = new InitialContext();

// Perform INDI lookup to obtain factory
javax.sql.DataSource ds = (javax.sql.DataSource)initctx.lookup(
"java:comp/env/jdbc/MyDatabase");

// Get connection passing in the security information
java.sql.Connection cx = ds.getConnection("eStoreUser",

"password");

Code Example 6.4 Application-Managed Signon

J2EE CONNECTOR ARCHITECTURE 161

6.9.3.3 Authorization Model

An Application Component Provider relies on the container and enterprise informa-
tion system for authorizing access to enterprise information system data and func-
tions. The Application Component Provider specifies security requirements for
application components declaratively in a deployment descriptor. A set of security
roles and method permissions can be used to authorize access to methods on a com-
ponent. For example, an Application Component Provider declaratively specifies
thePurchaseManager role as the only security role that is granted permission to call
thepurchase method on @urchaseOrder enterprise bean. Thgrchase method in

turn drives its execution through an ERP Logistics application by issuing a purchase
requisition. So in effect, this application has authorized only end-users withthe
chaseManager role to do a purchase requisition. This is the recommended authoriza-
tion model.

An Application Component Provider can also programmatically control
access to enterprise information system data and functions based on the principal
or role associated with the client who initiated the operation. For example, the
EJB specification allows component code to invaj@CallerPrincipal and
isCallerInRole to get the caller's security context. An Application Component
Provider can use these two methods to perform security checks that cannot be
expressed declaratively in the deployment descriptor.

An application can also rely on an enterprise information system to do access
control based on the security context under which a connection to the enterprise
information system has been established. For example, if all users of an applica-
tion connect to the database d@sUser, then a database administrator can set
explicit permissions forbUser in the database security domain. The database
administrator can denybUser permission to execute certain stored procedures or
to access certain tables.

6.10 J2EE Connector Architecture

The J2EE Connector architecture is an APl under development to define a standard
for connecting the J2EE platform to heterogeneous enterprise information systems
such as enterprise resource planning, mainframe transaction processing, and data-
base systems. This API defines a set of scalable, secure, and transactional mecha-
nisms to support the integration of enterprise information systems with J2EE servers
and enterprise applications.

162

CHAPTER 6 THE ENTERPRISE INFORMATION SYSTEM TIER

The Connector architecture enables an enterprise information system vendor
to provide a standard connector for its enterprise information system. This con-
nector is plugged into a J2EE server to provide the underlying infrastructure for
integration with an enterprise information system. The J2EE server that is
extended to support the Connector architecture is then assured of connectivity to
multiple enterprise information systems. Likewise, an enterprise information
system vendor provides one standard connector that will plug into any J2EE
server supporting the Connector architecture.

The J2EE server and enterprise information system collaborate through the
connector to keep all system-level mechanisms—transactions, security, connec-
tion management—transparent to the application components. This enables an
application component developer to focus on the business and presentation logic
for the application components without getting involved in the system-level issues
related to enterprise information system integration. This leads to an easier and
faster cycle for the development of scalable, secure, and transactional enterprise
applications that require integration with multiple enterprise information systems.
The Connector architecture will be supported in the J2EE platform, version 1.3.

6.11 Summary

This chapter has described a set of design choices, guidelines, and recommendations
for integrating enterprise information systems into enterprise applications. These
guidelines enable an Application Component Provider to develop an enterprise
application based on its overall functional and system requirements for enterprise
information system integration. The focus has been on accessing enterprise informa-
tion system resources from the component, using tools to simplify and reduce appli-
cation development effort involved in accessing enterprise information systems,
getting and managing connections to enterprise information systems, and support-
ing the security requirements of an application.

The current version of the J2EE platform provides full support for database
systems through the JDBC API. In the next version of J2EE platform, the Connec-
tor architecture will support integration with enterprise information systems other
than database systems.

About the Author

I NDERJEET SINGHis a Staff Engineer with Sun Microsystems where he leads the
technical aspects of the J2EE Blueprints program. He also designed and implemented
the Web-caching and proxy-service module of the Java Web Server. In another incarna-
tion, he designed fault-tolerance software for large-scale distributed telecommunications
switching systems. Inderjeet holds an M.S. in Computer Science from Washington Uni-
versity at Saint Louis, and a B.Tech. in Computer Science and Engineering from Indian
Institute of Technology at Delhi.

CHAPTER ;

Packaging and Deploymént

by Inderjeet Singh

T HE J2EEplatform enables developers to create different parts of their applica-
tions as reusable components. The process of assembling components into modules
and modules into enterprise applications is called packaging. In good software
design, reusable components can be customized to the operational environment. The
process of installing and customizing an application in an operational environment
is called deployment. To enable customization, the components of an application
need to be configurable. However, application developers should not have to rein-
vent a configuration mechanism over and over again. They need a standard mecha-
nism that provides flexibility for configuration and supports tools to help the
process.

The J2EE platform provides facilities to make the packaging and deployment
process simple. It uses JAR files as the standard package for modules and applica-
tions, and XML-based deployment descriptors for customizing components and
applications. This chapter begins by providing an overview of the J2EE packing
and deployment process. It describes how to perform each stage in the process and
provides guidelines for each stage. It concludes by discussing requirements for
tools that support the deployment process.

7.1 Roles and Tasks

The J2EE packaging and deployment process involves three different development
roles: Application Component Providers, Application Assemblers, and Deployers.
The packaging and deployment tasks that each role performs are summarized in
Figure 7.1.

165

166 CHAPTER 7 PACKAGING AND DEPLOYMENT

Roles Tasks
= - N
Application gpecify component deployment descriptors.
Component h
L Provider Package components into modules.)
) N
L. Resolve dependencies between deployment
Application gescriptor elements in different modules.
Assembler
L Assemble modules into larger deployment units.)
~
Customize deployment descriptor elements for environment.
Deployer "
Install deployment units into server(s).
o J

Figure 7.1 J2EE Packaging and Deployment Tasks

Application Component Providers develop enterprise beans, HTML and JSP
pages, and their associated helper classes. They supply the structural information
of the deployment descriptor for each component. This information includes the
home and remote interfaces and implementation classes of enterprise beans, the
persistence mechanisms used, and the type of resources the components use,
information typically hard coded in the application and not configurable at
deployment time. Code Example 7.1 contains an excerpt from the sample applica-
tion's enterprise bean deployment descriptor:

<entity>
<display-name>TheAccount</display-name>
<ejb-name>TheAccount</ejb-name>
<home>com.sun.estore.account.ejb.AccountHome</home>
<remote>com.sun.estore.account.ejb.Account</remote>
<ejb-class>
com.sun.estore.account.ejb.AccountEJB
</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<resource-ref>
<description>description</description>
<res-ref-name>jdbc/EstoreDataSource</res-ref-name>

ROLES AND TASKS 167

<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</entity>

Code Example 7.1 Descriptor Elements for an Entity Bean

Application Assemblers provide information related to the application as a
whole. In the sample application, the Application Assembler configures the file
Main.jsp to handle requests coming to the URL namespatcantrol/*), the
error pages the application uses, its security constraints and roles, and so on. Code
Example 7.2 contains excerpts from the sample application’s Web deployment
descriptor:

<web-app>

<display-name>JavaPetStoreDemoWebTier</display-name>

<servilet>
<servlet-name>webTierEntryPoint</serviet-name>
<dispTlay-name>centrallsp</display-name>
<description>central point of entry for the Web app
</description>
<jsp-file>Main.jsp</jsp-file>

</serviet>

<servlet-mapping>
<servlet-name>webTierEntryPoint</servilet-name>
<url-pattern>/control/*</url-pattern>

</servlet-mapping>

<error-page>
<exception-type>java.lang.Exception</exception-type>
<location>/errorpage.jsp</location>

</error-page>

</web-app>

Code Example 7.2 Descriptor Elements for Web Application

168 CHAPTER 7 PACKAGING AND DEPLOYMENT

A Deployer is responsible for deploying J2EE components and applications into
an operational environment. Deployment typically involves two tasks:

1. Installation - The Deployer moves the media to the server, generates the addi-
tional container-specific classes and interfaces that enable the container to
manage the components at runtime, and installs the components and additional
classes and interfaces into the J2EE server.

2. Configuration - The Deployer resolves all the external dependencies declared
by the Application Component Provider and follows the application assembly
instructions defined by the Application Assembler. For example, the Deployer
is responsible for mapping the security roles defined by the Application As-
sembler to the user groups and accounts that exist in the operational environ-
ment into which the components and applications are deployed. In some cases,
a qualified Deployer may customize the business logic of the application’s
components at deployment time by using tools provided with a J2EE product.
For example, a Deployer may write application code that wraps an enterprise
bean’s business methods or customizes the appearance of a JSP page, for ex-
ample, by adding a company’s logo or other graphics to a login page.

7.2 Packaging J2EE Applications

A J2EE application is packaged as an Enterprise ARchive (EAR) file, a standard
Java JAR file with an .ear extension. The goal of this file format is to provide an
application deployment unit that is assured of being portable.

A J2EE application file contains one or more J2EE modules and a J2EE appli-
cation deployment descriptor. Therefore, creation of a J2EE application is a two-
step process. First, the Application Component Providers create the J2EE
modules: EJB, Web, and application client modules. Second, the Application
Assembler packages these modules together to create the J2EE application. In this
section, we will discuss the issues involved in both of these steps.

It is important to note that all J2EE modules are independently deployable
units. This enables component providers to create units of functionality without
having to implement full scale applications.

To assemble an application, an Application Assembler edits deployment
descriptors for the J2EE modules to link dependencies between components
within each archive and between components in different archives. All such
dependencies must be linked before deployment. For example, in the sample

PACKAGING J2EE APPLICATIONS 169

application, the Web components in the WAR file need to refehtppingCli-
entController, Catalog, Account, Order, and ShoppingCart enterprise beans
present in the EJB JAR file. The role of the Application Assembler is to make sure
that the description of the enterprise beans in the WAR file matches with their
description in the EJB JAR file.

Once the application assembly is complete, we recommend that the Applica-
tion Assemblers run J2EE verifier tools (one is provided with the J2EE SDK) on
the EAR file to ensure that its contents are well-formed. The verifiers perform a
number of static checks to ensure that the deployment descriptor and the archive
file contents are consistent with the EJB, Servlet, and J2EE specifications. While
verification is not a guarantee of correct behavior at runtime, it is useful for catch-
ing some errors early on.

The following sections discuss the different types of J2EE modules and give
some heuristic rules and practical tips on how best to package the different compo-
nent types into modules.

7.2.1 EJB Modules

An EJB module is the smallest deployable and usable unit of enterprise beans. An
EJB module is packaged and deployed as an EJB JAR file, a JAR file with a .jar
extension. It contains:

» Java class files for the enterprise beans and their remote and home interfaces.
If the bean is an entity bean, its primary key class must also be present in the
EJB module.

» Java class files for any classes and interfaces that the enterprise bean code de-
pends on that are not included with the J2EE platform. This may include su-
perclasses and superinterfaces and the classes and interfaces used as method
parameters, results, and exceptions.

« A EJB deployment descriptor that provides both the structural and application
assembly information for the enterprise beans in the EJB module. The applica-
tion assembly information is optional and is typically included only with as-
sembled applications.

An EJB JAR file differs from a standard JAR file in one key aspect: it is aug-
mented with a deployment descriptor that contains meta-information about one or
more enterprise beans.

170

CHAPTER 7 PACKAGING AND DEPLOYMENT

The EJB JAR file producer can create a client JAR file to be used by the

clients of the enterprise beans contained in the EJB JAR file. The client JAR file
consists of all the class files that a client program needs to use to access the enter-
prise beans that are contained in the EJB JAR file.

7.2.2 Packaging Components Into EJB Modules

A typical enterprise application will contain many enterprise beans. Some of these
enterprise beans could be off-the-shelf components while others may use third-party
libraries. The Application Assembler, therefore, has to choose from the following
packaging options:

1. Package each enterprise bean for an application in its own EJB module. In this

approach, each enterprise bean has its own deployment descriptor and is pack-
aged in one EJB module along with its dependent classes. One advantage of
this approach is the maximum reusability of each enterprise bean, by leaving
the Application Assembler free to pick and choose among these EJB modules
to compose additional J2EE applications. This option is recommended if your
enterprise beans are each highly reusable. In such a case, the Application As-
semblers will be able to reuse precisely those enterprise beans that they wish
to, and no more.

. Package all enterprise beans for an application in one EJB module. In this ap-

proach all enterprise beans and their dependent classes are packaged together
in one EJB module. This approach is the simplest to implement. The Applica-
tion Assembler does not have to specify references to the enterprise beans
present in this EJB module as unresolved. This makes the job of Application
Assemblers easier in the case when they wish to use all the enterprise beans.
Application Assemblers who only wish to use a subset of the enterprise beans
in the EJB module will still be able to do so, but may end up with a bloated
application. The Deployer in this case may have to deploy superfluous enter-
prise beans.

. Package all related (closely-coupled) enterprise beans for an application in one

EJB module. In this approach, all off-the-shelf components are used as is (that
is, in their own EJB modules). All in-house enterprise beans are grouped based
on their functional nature and put in one EJB module. For example, all enter-
prise beans related to account management can be put in one EJB module.

PACKAGING J2EE APPLICATIONS 171

Because its more modular, the third option is recommended for reasonably-
sized J2EE applications. It strikes the right balance between maximum reusability
(option 1) and maximum simplicity (option 2). It promotes the black-box use of
third-party components, which is especially important when such third-party com-
ponents that are digitally signed. Another value of the third option arises when a
J2EE server deploys each EJB module on a separate Java virtual machine for load
balancing. In such cases, the third option is most efficient since it groups closely-
coupled enterprise beans together, allowing many remote calls to be optimized to
local calls. Another advantage of option 3 is that it promotes reusability at the
functional level rather than at the enterprise bean level. For example, making a
singleAccount enterprise bean reusable is more difficult than providing a reusable
set of classes that provide account management functionality collectively. Logical
grouping also makes sense from a tool point of view. A deployment or assembly
tool may show the EJB module as a group under a single icon. The following dis-
cussions provide guidelines on grouping enterprise beans.

7.2.2.1 Grouping by Related Functionality

Once a group of enterprise beans is packaged into the same EJB module, they may
not be easily separated without knowing significant implementation details of each
enterprise bean. To reuse one bean from an EJB module, you would generally have
to deploy all of them. So, it makes good sense to package together a group of enter-
prise beans only if they will be commonly deployed and used together.

The utility classes used by a bean must be packaged into the EJB module of
that bean in order for the bean to function correctly at runtime. If you package
related beans together, you reduce the number of copies of utility classes which
would otherwise increase the virtual machine size of most J2EE servers and could
cause potential conflicts during upgrades.

EJB modules will commonly be displayed in a palette of reusable components
in a J2EE application assembly tool. Tools will commonly group together enter-
prise beans from the same EJB module in a user interface. For example, it makes
sense to group server-side components related to accounting functionality or spe-
cialized database functionality in a single code library or EJB module.

7.2.2.2 Grouping Interrelated Beans

Enterprise beans can call one another at runtime, and one enterprise bean can dele-
gate some of its functionality to another. Though some J2EE servers will support

172

CHAPTER 7 PACKAGING AND DEPLOYMENT

highly efficient cross-application dependencies, enterprise beans that depend on one
another should be grouped together in the same JAR file for both organizational and
performance reasons. Where beans call one another, the EJB module may be deliv-
ered preassembled, with all the enterprise bean cross-references resolved within the
same unit. This makes the tasks of both the Assembler and the Deployer much
easier. Locating an appropriate accounting bean for use by a teller bean across a
number of servers may prove tedious despite the best efforts and user interface wiz-
ardry of the authors of a J2EE deployment tool. Where one bean delegates to
another, many servers will partition deployed EJB modules across different process
and even machine boundaries. If a bean makes frequent calls on another bean, there
may be performance issues when they are run within separate address spaces.

7.2.2.3 Grouping for Circular References

When two enterprise beans refer to each other, the result is a circular dependency.
Neither bean can function without the other and so neither is reusable without the
other. In some cases redesign may eliminate these dependencies. When circular ref-
erences are necessary, you should also package the components together in the same
EJB module to ensure reusability.

7.2.2.4 Groupings with Common Security Profiles

While each EJB module allows a number of abstract security roles to be specified,
enterprise beans are often written with a discrete set of users in mind. Enterprise
beans that have the same security profile should be grouped together to reduce nego-
tiation of security role names across EJB modules.

7.2.3 Web Modules

A Web module is the smallest deployable and usable unit of Web resources. A Web
module is packaged and deployed as a Web ARchive (WAR) file, a JAR file with a
.war extension. It contains:

 Java class files for the servlets and the classes that they depend on, optionally
packaged as a library JAR file

» JSP pages and their helper Java classes

 Static documents (for example, HTML, images, sound files, and so on)

PACKAGING J2EE APPLICATIONS 173

» Applets and their class files

* A Web deployment descriptor

The WAR file format does not conform to all the requirements of the JAR
format because the classes in a WAR file are not usually loadable by a classloader
if the JAR is added to a classpath.

7.2.4 Packaging Components Into Web Modules

The Web module is the smallest indivisible unit of Web resources functionality that
Application Component Providers will supply to the Application Assembler. There-
fore, an Application Component Provider needs to choose how to package Web tier
components into Web modules. This section contains guidelines for doing so.

7.2.4.1 Cross-Dependent Servlets

Servlets may directly call each other via HTTP. The URL by which a servlet is
known on the J2EE platform depends on the J2EE application in which it was
deployed. For reasons of robustness, servlets that call one another should be
deployed together. It is therefore recommended that you put them in the same Web
module.

7.2.4.2 Cross-Linked Static Content

Since a WAR file is typically deployed under its own context root, cross-linked Web
pages must be packaged in a single Web module to avoid broken links. Moreover,
cross-linked HTML Web pages are typically reusable as a bundle, so it makes sense
to package them together.

7.2.4.3 Logical Grouping of Functionality

A Web module that has a clearly defined purpose is easier to reuse in different sce-
narios than one with less well-defined overall behavior. For example, a well-
designed Web module concerned purely with inventory management can be reused
in many e-commerce applications that need inventory management capability. Such
a module would be ideal for adding a Web-based interface for inventory manage-
ment to the sample application.

174

CHAPTER 7 PACKAGING AND DEPLOYMENT

7.2.5 Application Client Modules

Application client modules are packaged in JAR files with a .jar extension. Applica-
tion client modules contain:

» Java classes that implement the client

» An application client deployment descriptor

An application client will use a client JAR file created by the EJB JAR file
producer. The client JAR file consists of all the class files that a client program
needs to use to access the enterprise beans that are contained in an EJB module.

Figure 7.2 illustrates the various types of J2EE packages and how they can be
deployed. Although the figure only shows an independently deployed EJB
module, all three types of J2EE modules can be deployed independently.

7.3 Deployment Descriptors

A deployment descriptas an XML-based text file whose elements describe how
to assemble and deploy the unit into a specific environment. Each element con-
sists of a tag and a value expressed in the following synteag>value</tag>.
Usually deployment descriptors are automatically generated by deployment tools,
so you will not have to manage them directly. Deployment descriptor elements
contain behavioral information about components not included directly in code.
Their purpose is to tell the Deployer how to deploy an application, not tell the
server how to manage components at runtime.

There are different types of deployment descriptors: EJB deployment descrip-
tor described in the Enterprise JavaBeans specification, Web deployment descrip-
tor described in the Servlet specification, and application and application client
deployment descriptors described in the J2EE specification.

Deployment descriptors specify two kinds of information:

« Structural information describes the different components of the JAR file, their
relationship with each other, and their external dependencies. An Application
Assembler or Deployer risks breaking the functionality of the component if
this information is changed. Environment entries and resource requirements
are part of structural information.

» Assembly information describes how contents of a JAR file can be composed

DEPLOYMENT DESCRIPTORS 175

into a deployable unit. Assembly information is optional. Assembly informa-
tion can be changed without breaking the functionality of the contents, al-
though doing so may alter the behavior of the assembled application.

The remainder of this section describes how to specify the most commonly
used deployment descriptor elements.

ntBerprise ‘ J2EE Application
= EJB ;-
nterpriseq N
Bean &

nterprise
Bean

/Web
ding "
A N N Deployment
w'fb'(E Tool
/

Web

Application
Client

nterprise
Bean

nterprise
Bean

nterprise
Bean Key
@ Component

. Module

Figure 7.2 J2EE Packages

176

CHAPTER 7 PACKAGING AND DEPLOYMENT

7.3.1 Specifying Deployment Descriptor Elements

This section describes how to specify commonly used elements in the various

deployment descriptors. First we describe elements common to various J2EE com-
ponent types. Then we describe elements specific to enterprise beans, in particular,
the elements related to transactions and persistence. Finally we cover Web compo-
nent elements. For the definitions of each type of deployment descriptor, see the

J2EE, EJB, and servlet specifications.

7.3.1.1 Common Elements

This section describes the deployment descriptor elements common across the dif-
ferent J2EE component types. These include environment entries, references to
enterprise beans, references to connection factories, and security-related elements.

Naming Environment Entries

Naming environment entries allow customization of a component during deploy-
ment or assembly without the need to access or change the component’s source
code. The container implements the naming environment, and provides it to the
component instance through a JNDI naming context.

The Deployer must ensure that the values of all the environment entries
declared by a component are set to meaningful values. The Deployer can modify
values of environment entries that have been previously set by the Application
Component Provider and/or Application Assembler. The Deployer must set the
values of those environment entries for which no value has been specified. The
description elements provided by the Application Component Provider or Appli-
cation Assembler help the Deployer with this task.

Naming environment entries are specified with éhe-entry element. Code
Example 7.3 uses an environment entry to determine whether confirmation email
is sent when an order is processed. Code Example 7.4 shows how to set the value
of the environment entry.

public static boolean sendConfirmationMail() {
boolean boolVal = false;
try {
InitialContext ic = new InitialContext();
Boolean bool = (Boolean)
ic.Tookup("java:comp/env/sendConfirmationMail™);
if (bool != null) {

DEPLOYMENT DESCRIPTORS 177

boo1Val = bool.booleanValue();

}
} catch (NamingException ne) {

}

return boolval;

Code Example 7.3 Looking up a Naming Environment Entry

<env-entry>
<env-entry-name>sendConfirmationMail</env-entry-name>
<env-entry-type>java.lang.Boolean</env-entry-type>
<env-entry-value>false</env-entry-value>

</env-entry>

Code Example 7.4 Environment Entry Element

References to Enterprise Beans

There are two parts to the mechanism for establishing connections to enterprise
beans in a J2EE application: the Java language interface for accessing a bean and the
deployment descriptor declarations for identifying those references. The Applica-
tion Component Provider looks up the references in the source code of the referring
component using the Java interfaces, then identifies these references in the deploy-
ment descriptor when packaging the component. A Deployer binds enterprise bean
references to the enterprise beans’ homes in the target environment. The deployment
descriptor also allows an Application Assembler to link an enterprise bean reference
declared in one enterprise bean to other enterprise beans contained in the same EJB
module, or in other EJB modules in the same J2EE application unit. The link is an
instruction to the tools used by the Deployer that the enterprise bean reference must
be bound to the home of the specified enterprise bean.

Code Example 7.5 illustrates how a component obtains a reference to the
home interface of another enterprise bean. In the example, the Application Com-
ponent Provider of thehoppingClientControllerE]B assigned the environment
entrycart as the name to refer to the home of another enterprise be&p,ing-
CartHome. ShoppingClientControllerEJB calls a utility method getShopping-
CartHome, which performs a JNDI lookup ofart in the ejb subcontext of the

178 CHAPTER 7 PACKAGING AND DEPLOYMENT

environment naming contextava:comp/env. ShoppingClientControllerEJ]B
caches the reference to the home interface irc#te variable so that the lookup
need only be performed once.

pubTlic class ShoppingClientControllerEJB implements SessionBean {
pubTic ShoppingCart getShoppingCart() {
if (cart == null) {

try {

ShoppingCartHome cartHome =
EJBUti1.getShoppingCartHome();

cart = cartHome.create();

} catch (CreateException ce) {

}

return cart;

public static ShoppingCartHome getShoppingCartHome() {
try {
InitialContext initial = new InitialContext();
Object objref = initial.lookup("java:comp/env/ejb/cart");
return (ShoppingCartHome) PortableRemoteObject.
narrow(objref, ShoppingCartHome.class);
} catch (NamingException ne) {
throw new GeneralFailureException(ne);

Code Example 7.5 Locating a Home Interface

An Application Component Provider must use thi-ref element of the
deployment descriptor to declare all enterprise bean references. Similarly, the
deployment descriptor for a Web component must cortginref elements for the
enterprise beans that it uses. Such declarations allow the EJB module consumer
(that is, Application Assembler or Deployer) to discover all the enterprise beans
used by the components.

DEPLOYMENT DESCRIPTORS 179

Code Example 7.6 illustrates the declaration of an enterprise bean reference to
ShoppingCart in the deployment descriptor fehoppingClientController. Note
the ejb-ref-name element, which contains stringjb/cart used in the JNDI
lookup performed in Code Example 7.5

<session>
<dispTlay-name>TheShoppingClientController</display-name>
<ejb-name>TheShoppingClientController</ejb-name>
<home>com.sun.estore.control.ejb.
ShoppingClientControllerHome</home>
<remote>com.sun.estore.control.ejb.
ShoppingClientController</remote>
<ejb-class>com.sun.estore.control.ejb.
ShoppingClientControllerE]B</ejb-class>

<ejb-ref>
<ejb-ref-name>ejb/cart</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>
<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>
<ejb-Tink>TheCart</ejb-11ink>

</ejb-ref>

</session>

Code Example 7.6 Enterprise Bean Reference Element

An Application Assembler uses thejb-1ink element in the deployment
descriptor to link an enterprise bean reference to a target enterprise bean. The
ejb-1ink element is a subelement of théb-ref element. The value of thejb-

Tink element is the name of the target enterprise bean, that is, the name defined in
theejb-name element of the target enterprise bean. The target enterprise bean can

be in the same EJB module or in another EJB module in the same J2EE applica-

tion as the referencing enterprise bean. The Application Assembler needs to

ensure that the target enterprise bean is type compatible with the declared enter-
prise bean reference. This means that the target enterprise bean must be of the
type indicated in thejb-ref-type element, and that theome and remote ele-

180 CHAPTER 7 PACKAGING AND DEPLOYMENT

ments of the target enterprise bean must be type compatible withoifaeand
remote elements declared in the enterprise bean reference.

Theejb-T1ink element in Code Example 7.6 indicates that the enterprise bean
referencecart declared inShoppingClientController is linked to the enterprise
beanTheCart shown in Code Example 7.7.

<session>
<dispTlay-name>TheCart</display-name>
<ejb-name>TheCart</ejb-name>
<home>com.sun.estore.cart.ejb.ShoppingCartHome</home>
<remote>com.sun.estore.cart.ejb.ShoppingCart</remote>
<ejb-class>com.sun.estore.cart.ejb.ShoppingCartEJB</ejb-class>
<session-type>Stateful</session-type>
transaction-type>Container</transaction-type>

</session>

Code Example 7.7 Enterprise Bean Element

References to Connection Factories

A connection factory is an object used to create connections to a resource manager.
For example, an object that implements fa@ax.sql.DataSource interface is a
connection factory fofava.sql.Connection 0Objects which provide connections to
database management systems.

An Application Component Provider must obtain connections to resources as
follows:

» Declare a connection factory reference in the component’'s naming environ-
ment.

For each connection factory that is used by a component, an Application
Component Provider declares a connection factory reference in the deploy-
ment descriptor using thesource-ref element. This allows the EJB module
consumer (that is, Application Assembler or Deployer) to discover all the
connection factory references used by an enterprise bean. All connection fac-
tory references should be organized in the subcontexts of a component’s envi-
ronment, using a different subcontext for each resource manager type. For
example, all JIDBMataSource references might be declared in the
java:comp/env/jdbc subcontext (see Section 6.9.3.1 on page 159), and all
email sessions in thgava: comp/env/mail subcontext. Connection factory

DEPLOYMENT DESCRIPTORS 181

references are also used to refer to URL resources and JMS connections.

« Look up the connection factory object in the component’s naming environ-
ment using the JNDI interface.

« Invoke the appropriate method on the connection factory method to obtain a
connection to the resource. The factory method is specific to the resource type.
It is possible to obtain multiple connections by calling the factory object mul-
tiple times.

A Deployer binds connection factory references to actual connection factories
that are configured in the Container.

Code Example 7.8 illustrates the mail connection factory reference in the
entry for thevmailer enterprise bean.

<session>
<display-name>TheMailer</display-name>
<ejb-name>TheMailer</ejb-name>
<home>com.sun.estore.mail.ejb.MailerHome</home>
<remote>com.sun.estore.mail.ejb.Mailer</remote>

<resource-ref>
<res-ref-name>mail/MailSession</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</session>

Code Example 7.8 Connection Factory Reference Element

Note that the connection factory type must be compatible with the type
declared in thees-type element. The-es-auth subelement of theesource-ref
element specifies whether resource signon is managed by an application compo-
nent or its container. See Section 6.9.3 on page 158 for more information on
resource signon.

The Mailer enterprise bean callgailHelper to open a mail session. Code
Example 7.9 contains the code from thei1Helper class that requests a mail

182

CHAPTER 7 PACKAGING AND DEPLOYMENT

session object declared gsva:comp/env/mail/MailSession in the JNDI con-
text.

public void createAndSendMail(String to, String subject,
String htmlContents) {

try {
InitialContext ic = new InitialContext();
Session session = (Session) ic.
Tookup("java:comp/env/mail/MailSession™);
}

Code Example 7.9 Looking Up a Connection Factory

The Deployer must bind the connection factory references to the actual
resource factories configured in the target environment. A Deployer can use the
JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of
the connection factory. The Deployer also needs to provide any additional config-
uration information that the resource manager needs for opening and managing
the resource.

Security Elements

An Application Component Provider uses thecurity-role element to define
logical security roles that can be assumed by an authenticated principal. Code
Example 7.10 illustrates how the sample application definesyde_customer
security role.

<security-role>
<role-name>gold_customer</role-name>
</security-role>

Code Example 7.10 Security Role Element

The security-role-ref element is used to link a role name used by the
isCallerInRole method with a security role. In the sample application, this

DEPLOYMENT DESCRIPTORS 183

method is used by therder entity bean to enforce business rules based on
whether the user is a preferred customer.

Code Example 7.11 and Code Example 7.12 illustrate howséaerity-
role-ref element establishes a link between the staoi®p_cusToMER used by the
isCallerInRole method and the security role nam@dld_customer.

private int getBonusMiles() {
int miles = (totalPrice >= 100) ? 1000 : 500;
if (context.isCallerInRole("GOLD_CUSTOMER"))
miles += 1000;
return miles;

Code Example 7.11 Referencing a Security Role Name

<security-role-ref>
<role-name>GOLD_CUSTOMER</role-name>
<role-1link>gold_customer</role-Tink>

</security-role-ref>

Code Example 7.12 Linking a Security Role Name and Security Role

An Application Component Provider declaratively controls access to an enter-
prise bean’s methods by specifying thechod-permission element in the enter-
prise bean’s deployment descriptor. The component provider defines this element
to list the set of methods that can be accessed by each security role. The authoriza-
tion scenario described in Section 9.3.8 on page 232 illustratesnbitvgd-per-
mission elements affect the execution of enterprise bean methods.

7.3.1.2 Enterprise Bean Elements

The component-specific elements that must be specified for an enterprise bean are
those related to transactions and those related to persistence.

184

CHAPTER 7 PACKAGING AND DEPLOYMENT

Transaction Elements

Two transaction elements must be specified: whether the bean uses container- or
bean-managed transaction demarcation, and for container-managed demarcation,
the transaction attributes of the bean’s methods.

An Application Assembler must ensure that the methods of the deployed
enterprise beans with container-managed transaction demarcation have been
assigned a transaction attribute. If the transaction attributes have not been
assigned by the Application Component Provider, they must be assigned by the
Application Assembler. Code Example 7.13 illustrates how transaction attributes
are declared for anccount entity bean. Recall that entity beans can only use con-
tainer-managed transactions. Theéntainer-transaction element forAccount
specifies that when thenhangeContactInformation method is invoked, it must be
within the scope of a transaction. See Section 8.7.2.1 on page 205 for detailed
information about the values that a transaction attribute can take.

<container-transaction>
<method>
<ejb-name>TheAccount</ejb-name>
<method-intf>Remote</method-intf>
<method-name>changeContactInformation</method-name>
<method-params>
<method-param>com.sun.estore.util.
ContactInformation</method-param>
</method-params>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>

Code Example 7.13 Transaction Elements

Persistence Elements

The Application Component Provider must specify whether a bean manages its own
persistence or uses container-managed persistence. When a bean uses container-
managed persistence, the Application Component Provider must specify the fields
of the bean. Code Example 7.14 illustrates howAbeunt entity bean uses the
persistence-type element to declare that it will manage its own persistence.

DEPLOYMENT DESCRIPTORS 185

<entity>
<description>Account of a shopper</description>
<display-name>TheAccount</display-name>

<persistence-type>Bean</persistence-type>
</entity>

Code Example 7.14 Persistence Element

7.3.1.3 Web Component Elements

Some of the more commonly used Web component deployment descriptor elements
are discussed in this section.

Servlet

The one deployment descriptor element thaistbe specified for a Web component

is theservlet element, shown in Code Example 7.15. This element associates a
logical identifier Gervlet-name) with the name of the servlet class or the JSP file
associated with the component.

<servilet>
<servlet-name>webTierEntryPoint</servlet-name>
<display-name>centrallsp</display-name>
<jsp-file>Main.jsp</jsp-file>

</serviet>

Code Example 7.15 Servlet Element

Servlet Mapping

The serviet-mapping element specifies the URLs that the Web component is
aliased to handle. While the element is caledvlet-mapping, it is used to map
URLs to both servlets and JSP pages. Code Example 7.16 aliabesjsp to
handle all requests coming to the set of URt®itrol/*.

<servlet-mapping>
<servlet-name>webTierEntryPoint</servlet-name>

186

CHAPTER 7 PACKAGING AND DEPLOYMENT

<url-pattern>/control/*</url-pattern>
</serviet-mapping>

Code Example 7.16 Servlet Mapping Element

Error Pages

Theerror-page element can be used to invoke an error page automatically when
the Web application throws a Java language exception. Code Example 7.17 shows
how to enable the J2EE server to sefdorpage.jsp to the browser client if the

Web application ever throws any exception of the typea.lang.Exception Or its
subclass.

<error-page>
<exception-type>java.lang.Exception</exception-type>
<location>/errorpage.jsp</location>

</error-page>

Code Example 7.17 Error Page Element

Form-Based Authentication Configuration

Form-based authentication is the preferred mechanism for authenticating applica-
tion users in the J2EE platform. Code Example 7.18 illustrates how to configure a
Web application to activate form-based authentication when the Web server receives
a request for the URl/control/placeorder. The security-constraint element
specifies that the URI/control/placeorder is a protected resource. Thegin-

config element specifies that the URlormbasedloginscreen will be displayed

when an unauthenticated user tries to accesatrol/placeorder. This page
contains an HTML form that prompts for a user name and password.

<security-constraint>

<web-resource-collection>
<web-resource-name>MySecureBit@</web-resource-name>
<description>no description</description>
<url-pattern>/control/placeorder</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>

DEPLOYMENT TOOLS 187

<auth-constraint>
<description>no description</description>
<role-name>gold_customer</role-name>
<role-name>customer</role-name>
</auth-constraint>
<user-data-constraint>
<description>no description</description>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>
<login-config>
<auth-method>FORM</auth-method>
<realm-name>default</realm-name>
<form-login-config>
<form-login-page>formbasedloginscreen</form-1ogin-page>
<form-error-page>formbasedloginerrorscreen
</form-error-page>
</form-login-config>
</login-config>

Code Example 7.18 Form-Based Authentication Configuration

7.4 Deployment Tools

Although deployment can be performed directly by editing XML text files, the
process best handled by specialized tools. This section describes the actions that a
deployment tool performs and outlines requirements on packaging and development
tools. The requirements serve as recommendations to vendors of packaging and
deployment tools and determine what developers can expect from such tools.

7.4.1 Deployment Tool Actions

This section discusses what happens behind the scenes when a J2EE application is
deployed on a J2EE server. Since there can be many J2EE applications deployed on
the same J2EE server, the J2EE servers typically register each application under a
different identifier. The deployment of a J2EE application involves three different
types of components: enterprise beans, Web components, and application clients.
For each enterprise bean, the J2EE server must perform the following tasks:

188

CHAPTER 7 PACKAGING AND DEPLOYMENT

=

. Generate and compile the stubs and skeletons for the enterprise bean.

. Set up the security environment to host the enterprise bean according to its de-
ployment descriptor. This is needed so that the access to the methods of the en-
terprise bean can be regulated according to the security policy of the
application.

. Set up the transaction environment for the enterprise bean according to its de-
ployment descriptor. This is needed so that the calls to the methods of the en-
terprise bean happen in the correct transaction context.

. Register the enterprise bean, its environment properties, resources references,
and so on, in the JNDI name space.

. Create database tables for enterprise beans that use container-managed persis-
tence.

For each Web component, the J2EE server must perform the following tasks:

. Transfer the contents of the Web component underneath the document root of
the server. Since there can be more than one J2EE application installed, the
server may install each under a specific directory. For example, the J2EE SDK
installs each application under a context root specified at the deployment time.
The sample application is installed underdkeore directory.

. Initialize the security environment of the application. This involves configur-
ing the form-based login mechanism, role-to-principal mappings, and so on.

. Register environment properties, resource references, and EJB references in
the JNDI name space.

. Set up the environment for the Web application. For example, it performs the
alias mappings and configures the servlet context parameters.

. Precompile JSP pages as specified in the deployment descriptor.

The tool used to deploy an application client, and the mechanism used to install

the application client, is not specified by the J2EE specification. Very sophisticated

J2EE products may allow the application client to be deployed on a J2EE server and
automatically made available to some set of (usually intranet) clients. Other J2EE
products may require the J2EE application bundle containing the application client

to

be manually deployed and installed on each client machine. And yet another

approach would be for the deployment tool on the J2EE server to produce an instal-
lation package that could be taken to each client to install the application client.

DEPLOYMENT TOOLS 189

7.4.2 Deployment Tool Requirements

When considering the requirements on deployment tools, it is important to consider
the deployment process at two different times: during application development and
during production deployment. A developer’s deployment needs are different than
the needs of a Deployer installing a production application on a mission-critical
system. When an application is being developed, it must be deployed before it can
be tested. Developers want fast response times, and the ability to undeploy, rede-
ploy, and partially deploy applications easily and quickly. They will often make
minor changes to Java classes, and hence will not want to go through a lengthy
deployment process over and over again. They also need extensive debugging facili-
ties. Many Java development environments will contain a J2EE server optimized for
these purposes.

When deploying a production application on a mission-critical server, the pri-
orities are robustness, performance, and stability. Often, to avoid downtime and
unforeseen problems, the application is first brought up on parallel systems. The
foremost consideration of the Deployer is to be able to connect all legacy systems
to the newly developed application. A Deployer may also want detailed logging of
the deployment process.

The following sections explore packaging and deployment issues from a tools
perspective and point out differences, if any, in the light of the two different
deployment times.

7.4.2.1 Vendor-Specific Information

The J2EE platform specification specifies file formats for each of the three J2EE
component types and for a J2EE application itself. This specification defines how
such files must be structured to be correctly handled by a J2EE deployment tool. A
certain amount of information must be available to each container along with the
application code and deployment descriptor for proper runtime support of an appli-
cation. This information is usually related to bindings of the application in a vendor-
specific or environment specific setting. Here is a partial list of information the
deployment tool of the J2EE SDK solicits from the Deployer after consuming an
application EAR file:

« A JNDI name for each enterprise bean’s home interface
« A mapping of abstract security roles of the application to user and group hames

« JNDI lookup names and account information for all databases

190 CHAPTER 7 PACKAGING AND DEPLOYMENT

» JavaMail session configuration information

Note that these issues only come up at deployment time—they in no way
affect the ability to deploy an application on servers from different J2EE Product
Providers.

There are many ways to represent this information. The J2EE SDK represents
this information in an XML document held as a separate entry within the applica-
tion archive. Code Example 7.19 is an example of the XML document that repre-
sents runtime information for the sample application after the runtime bindings
have been made with the J2EE SDK:

<j2ee-ri-specific-information>
<server-name>localhost</server-name>
<rolemapping>
<role name="gold_customer">
<groups>
<group name="gold" />
</groups>
</role>
<role name="customer">
<principals>
<principal>
<name>j2ee</name>
</principal>
</principals>
<groups>
<group name="cust" />
</groups>
</role>
</rolemapping>
<enterprise-beans>
<ejb>
<ejb-name>TheAccount</ejb-name>
<jndi-name>estore/account</jndi-name>
<resource-ref>
<res-ref-name>jdbc/EstoreDataSource</res-ref-name>
<jndi-name>jdbc/EstoreDB</jndi-name>
<default-resource-principal>
<name>estoreuser</name>

DEPLOYMENT TOOLS 191

<password>estore</password>
</default-resource-principal>
</resource-ref>
</ejb>
</enterprise-beans>
</j2ee-ri-specific-information>

Code Example 7.19 Runtime Deployment Descriptor

Different J2EE product vendors will also need to add similar information in
the deployment process of a J2EE application. Vendors may find it useful to take
advantage of the attribute ID mechanism afforded by document type definitions to
link vendor-specific information to components and entities within a J2EE appli-
cation.

The output of a deployment tool should remain compliant with the J2EE spec-
ifications in order that it may be easily opened in other deployment tools even
when such extra information has been added. We recommend that the deployment
descriptors within an application remain as unchanged as possible to support this.
We also recommend that the tools preserve vendor-specific information added to
an application across sessions. This can be done by storing such information with
or inside the J2EE application file or using an IDE-like project structure.

EJB and Web modules are independently deployable units and hence any
deployment tools should be able to accept and deploy them. Although the archive
files may be augmented with vendor-specific information, we recommend that
other deployment tools be able to accept and deploy these augmented EJB and
Web modules and J2EE applications even though they may not understand a par-
ticular vendor’s runtime binding information. We recommend that the vendor-spe-
cific information that the deployment tool expects have reasonable fall-back
default options for this purpose.

7.4.2.2 Single Point of Entry for Deployment

A high-end mission-critical server often consists of multiple physical servers. Often
the number of Web containers is greater than the number of EJB containers. In such
cases, the Deployer to shouldn’t have to install applications individually on each
machine. We recommend that the deployment process has a single point of entry—
either a stand-alone deployment tool or the deployment component of a J2EE server.
For example, the J2EE SDK has a deployment tool that provides a single point of

192 CHAPTER 7 PACKAGING AND DEPLOYMENT

entry to the J2EE server. This central component then takes care of distributing
appropriate components on both the Web and the EJB containers.
This approach has following benefits:

« It simplifies the deployment process since the Deployer has to interact with
only one deployment tool. The Deployer also has a clear understanding of
when deployment is complete. The tool also handles determining which com-
ponents are required to be deployed on each machine.

* It provides a way to perform centralized logging and auditing.

* It provides better fault tolerance. Since the deployment tool has complete con-
trol over all application components on all servers, it can detect server failures
and handle them by dynamic load balancing. It can also detect when a server
comes back up and redeploy the application to bring it in sync. An added ad-
vantage is that the Deployer does not have to worry about load-balancing.

« It simplifies undeployment and upgrading.

7.4.2.3 Remotely Accessible Deployment

Deployers often need to deploy multiple applications on multiple J2EE servers. To
handle such scenarios more easily, the deployment tool should be remotely accessi-
ble as either a Web-based or client-server application. The deployment tool bundled
with the J2EE SDK takes a client-server approach, using RMI-IIOP to communicate
with the administration back-end of the J2EE server. The tool has the capability to
access multiple J2EE servers and deploy applications on them.

7.4.2.4 Undeployment Capability

In development-time deployment, it is critical to have undeployment capability for
quicker updating of new application components. In a high-end implementation, it
isn't acceptable to have to bring down the server to add or remove new software
applications, so that high-end servers will likely support dynamic deployment and
dynamic undeployment. Low-end J2EE servers may not need to support this capa-
bility.

For many J2EE servers, deploying a J2EE application may be an atomic pro-
cess, with no support for incremental deployment of J2EE application compo-
nents. However, at stages of the application development process, it may be
desirable to test portions of an application. This requires the ability to divide a

SUMMARY 193

component application into smaller units so that each can be deployed and re-
deployed without the wait associated with deploying a full scale application.

7.4.2.5 JNDI Name Space Management

Deployers will need to bind external references in a J2EE application to entities in
their environment. Examples of such references include databases and enterprise
beans in the system. Since binding happens through the JNDI name space, Con-
tainer Providers need to provide tools to create and manage the JNDI name space.
These tools also need to control the access to the INDI name space according to the
security policy of their environment.

7.4.2.6 Name Collision Management

Application Assemblers may use third-party enterprise beans, without control over
the names used for such enterprise beans. As a result, name collisions are bound to
occur. Packaging tools should automatically detect and handle such name collisions
by adjusting names through thejb-1ink element of the bean’s deployment
descriptors.

7.4.2.7 Deployment Descriptor Versioning

The lifetime of many enterprise applications may be measured in years and even
decades. An important goal of the J2EE platform is to provide compatibility even
when systems and application components are upgraded. Packaging and deploy-
ment tools need to ensure that they do not add anything that is against the general
direction of evolution of deployment descriptors. They also need to follow the ver-
sioning conventions described in the J2EE, EJB, and servlet specifications.

7.5 Summary

The J2EE platform provides facilities to make the deployment process simple. It
uses JAR files as the standard package for components and applications, and XML-
based deployment descriptors for customizing parameters. For the most part, the
facilities provided by the platform support simplified application development
through the use of tools that can read and write deployment descriptor files. These
tools present users with a more intuitive view of the structure of an application and
the capabilities of its components.

194

CHAPTER 7 PACKAGING AND DEPLOYMENT

The J2EE packaging and deployment process involves three different J2EE
roles: Application Component Provider, Application Assembler, and Deployer.

Application Component Providers specify component deployment descriptors
and package components into modules. Application Component Providers should
ensure that the Application Assembler and the Deployer can customize an enterprise
bean’s business logic via deployment descriptors rather than modifying source code.
When packaging components into modules, Application Component Providers
need to balance between the competing goals of reusability and simplicity.

Application Assemblers resolve dependencies between deployment descriptor
elements in different modules and assemble modules into larger deployment units.
Deployers customize deployment descriptor elements for environment in which
the application is deployed and install deployment units. The Deployer must
ensure that the values of all the environment entries declared by an enterprise bean
are set to meaningful values.

The packaging and deployment process is best handled by specialized tools.
Both Component Providers and Deployers need to deploy applications; however,
their deployment needs are different. Component Providers want fast response
times, and the ability to undeploy, redeploy, and partially deploy applications
easily and quickly. In production, the priorities are robustness, performance, and
stability. Deployment tools need to address both sets of requirements, as well as
J2EE goals such as portability and backwards compatibility.

About the Author

TONY NG is a Staff Engineer at Sun Microsystems. He is part of the J2EE Reference
Implementation team, where he leads the development of the J2EE Connector architec-
ture, distributed transaction, and database connection management in the reference
implementation. Tony also participated in the development of the J2EE programming
model and the Java Transaction Service. Formerly, he worked on Java Blend, an object-
relational database mapping product. Tony has a B.S. in Computer Science from the
University of Illinois at Urbana-Champaign and an M.S. in Electrical Engineering and
Computer Science from the Massachusetts Institute of Technology.

CHAPTER8

Transaction Management

by Tony Ng

T RANSACTIONSare a mechanism for simplifying the development of distributed
multiuser enterprise applications. By enforcing strict rules on an application’s
ability to access and update data, transactions ensure data integrity. A transactional
system ensures that a unit of work either fully completes or the work is fully rolled
back. Transactions free an application programmer from dealing with the complex
issues of failure recovery and multiuser programming.

The chapter begins with a general overview of transaction properties and
J2EE platform support for transactions. Then it describes the Java Transaction
API, the interface used by the J2EE platform to manage and coordinate transactions.
Finally, the chapter describes the J2EE transactional model available to the differ-
ent types of J2EE components and to enterprise information systems.

8.1 Properties of Transactions

All transactions share the properties of atomicity, consistency, isolation, and durabil-
ity. These properties are denoted by the acronym ACID.

Atomicity requires that all of the operations of a transaction are performed
successfully for the transaction to be considered complete. If all of a transaction’s
operations cannot be performed, then none of them may be performed.

Consistencyefers to data consistency. A transaction must transition the data
from one consistent state to another. The transaction must preserve the data’s
semantic and physical integrity.

Isolationrequires that each transaction appear to be the only transaction cur-
rently manipulating the data. Other transactions may run concurrently. However, a

197

198

CHAPTER 8 TRANSACTION MANAGEMENT

transaction should not see the intermediate data manipulations of other transac-
tions until and unless they successfully complete and commit their work. Because
of interdependencies among updates, a transaction might get an inconsistent view
of the database were it to see just a subset of another transaction’s updates. Isola-
tion protects a transaction from this sort of data inconsistency.

Durability means that updates made by committed transactions persist in the
database regardless of failures that occur after the commit operation and it also
ensures that databases can be recovered after a system or media failure.

8.2 J2EE Platform Transactions

Support for transactions is an essential element of the J2EE architecture. The J2EE
platform supports both programmatic and declarative transaction demarcation. The
component provider can use the Java Transaction APl to programmatically demar-
cate transaction boundaries in the component code. Declarative transaction demar-
cation is supported in enterprise beans, where transactions are started and completed
automatically by the enterprise bean’s container. In both cases, the burden of imple-
menting transaction management is on the J2EE platform. The J2EE server imple-
ments the necessary low-level transaction protocols, such as interactions between
transaction manager and JDBC database systems, transaction context propagation,
and optionally distributed two-phase commit. Currently, the J2EE platform only
supports flat transactions. A flat transaction cannot have any child (nested) transac-
tions.

The J2EE platform supports a transactional application that is comprised of a
combination of servlets and/or JSP pages accessing multiple enterprise beans
within a single transaction. Each component may acquire one or more connections
to access one or more shared resource managers. Currently, the J2EE platform is
only required to support access to a single JDBC database within a transaction
(multiple connections to the same database are allowed). It is not required to
support access to multiple JDBC databases within a single transaction. It is also
not required to support access to other types of enterprise information systems
such as enterprise resource planning systems. However, some products might
choose to provide these extra transactional capabilities. For example, the J2EE
SDK supports access to multiple JDBC databases in one transaction using the
two-phase commit protocol.

It is important for developers to understand and distinguish which transaction
capabilities are required and which are optional in a J2EE product. To write a truly

SCENARIOS 199

portable application, developers should only use features required by the J2EE
specification. For example, if a J2EE application needs to access multiple data-
bases under a single transaction, it will not run properly on a J2EE product that
does not support two-phase commit.

8.3 Scenarios

The following scenarios illustrate the use of transactions in a J2EE environment.

8.3.1 Accessing Multiple Databases

In Figure 8.1, a client invokes enterprise beaBeanx accesses databasesing a

JDBC connection. Then enterprise beasalls another enterprise beary accesses
database. The J2EE server and resource adapters for both database systems ensure
that updates to both databases are either all committed, or all rolled back.

J2EE Server

Client Qa-n X (e—a_n Y

Database A Database B
Figure 8.1 Accessing Multiple Databases in the Same Transaction

An Application Component Provider does not have to write extra code to
ensure transactional semantics. Enterprise beaasd Y access the database
systems using the JDBC client access API. Behind the scenes, the J2EE server
enlists the connections to both systems as part of the transaction. When the trans-
action is committed, the J2EE server and the resource managers perform a two-
phase commit protocol to ensure atomic update of the two systems.

200

CHAPTER 8 TRANSACTION MANAGEMENT

8.3.2 Accessing Multiple Enterprise Information Systems From
Multiple EJB Servers

In Figure 8.2, a client invokes the enterprise beamhich updates data in enterprise
information systemn, and then calls another enterprise beahat is installed in
another J2EE server. Enterprise beaperforms read-write access to enterprise
information systens.

J2EE Server J2EE Server

Client

C e
EIS A EISB
Figure 8.2 Accessing Multiple Enterprise Information Systems in the Same
Transaction

Whenx invokesy, the two J2EE servers cooperate to propagate the transaction
context fromx to v. This transaction context propagation is transparent to the
application code. At transaction commit time, the two J2EE servers use a distrib-
uted two-phase commit protocol to ensure that the two enterprise information
systems are updated under a single transaction.

8.4 JTA Transactions

A JTA transactioris a transaction managed and coordinated by the J2EE platform.
A J2EE product is required to support JTA transactions according to the transaction
requirements defined in the J2EE specification. A JTA transaction can span multiple
components and enterprise information systems. They are propagated automatically
between components and to enterprise information systems accessed by compo-
nents within that transaction. For example, a JTA transaction may be comprised of a

JTA TRANSACTIONS 201

servlet or JSP page accessing multiple enterprise beans, some of which access one
or more relational databases.

There are two ways to begin a JTA transaction. A component can begin a JTA
transaction using the JTfavax.transaction.UserTransaction interface. For an
enterprise bean, a JTA transaction might also be started automatically by the EJB
container if the bean uses container-managed transaction demarcation.

The main benefit of using JTA transactions is the ability to combine multiple
components and enterprise information system accesses into one single transac-
tion with little programming effort. For example, if a componartiegins a JTA
transaction and invokes a method of comporgnhe transaction will be propa-
gated transparently from componento B by the platform. Similarly, if compo-
nentA updates a table in a relational database, the update will automatically be
under the scope of the same transaction. No extra programming is required to
propagate transactions between multiple components and enterprise information
systems. In addition, enterprise beans using container-managed transaction
demarcation will not need to begin or commit transactions programmatically as
the demarcation is handled automatically by the EJB container.

It is recommend that an enterprise information system, such as a database, be
accessed within the scope of a JTA transaction. Accessing an enterprise informa-
tion system within a transaction provides some guarantee on the consistency and
integrity of the data. In addition, using a JTA transaction allows work performed
by multiple components through multiple enterprise information system connec-
tions to be grouped as an atomic unit. It also allows work performed on one or
more independent enterprise information systems to be grouped as an atomic unit
if the J2EE product supports two-phase commit.

8.4.1 JTA and JTS

JTA allows applications to access transaction management in a manner that is inde-
pendent of a specific implementation. JTA specifies standard Java interfaces
between a transaction manager and the parties involved in a distributed transaction
system: the transactional application, the J2EE server, and the manager that controls
access to the shared resources affected by the transactions.

JTS specifies the implementation of a transaction manager that supports JTA
and implements the Java mapping of the OMG Object Transaction Service (OTS)
1.1 specification at the level below the API. JTS propagates transactions using
IIOP. A JTS transaction manager provides the services and management functions

202

CHAPTER 8 TRANSACTION MANAGEMENT

required to support transaction demarcation, transactional resource management,
synchronization, and transaction context propagation.

An Application Component Provider uses the JigkrTransaction interface
to demarcate JTA transaction boundaries in components. The JTS
TransactionManager and XAResource interfaces are low-level APls between a
J2EE server and enterprise information system resource managers and are not
intended to be used by applications.

A J2EE platform might choose to use a JTS implementation to support the
transaction semantics defined in J2EE specification. An example is the J2EE
SDK. The JTS implementation is transparent to J2EE components. Components
should never interact directly with JTS. Instead, they should use the JTA
UserTransaction interface for transaction demarcation.

8.5 Transactions in Applets and Application Clients

The J2EE platform does not require transaction support in applets and application
clients, though like distributed transactions, a J2EE product might choose to provide
this capability for added value. So, whether applets and application clients can
directly access aserTransaction object depends on the capabilities provided by
the container. To ensure portability, applets and application clients should delegate
transactional work to enterprise beans.

8.6 Transactions in Web Components

A servlet or JSP page can use JNDI to lookugérTransaction object, then use
theuserTransaction interface to demarcation transactions. This is useful in a two-
tier application where a Web component needs to access enterprise information
systems under the scope of a JTA transaction.

Code Example 8.1 illustrates the use of the JTA interface to demarcate trans-
actions within a Web component:

Context ic = new InitialContext();
UserTransaction ut =

(UserTransaction) ic.lookup("java:comp/UserTransaction");
ut.beginQ;

TRANSACTIONS IN ENTERPRISE BEANS 203

// perform transactional work here
ut.commit();

Code Example 8.1 Web Component Using JTA Transactions

A Web component may only start a transaction inségvice method. A
transaction that is started by a servlet or JSP page must be completed before the
service method returns. In other words, transactions may not span Web requests.

There are many subtle and complex interactions between the use of JTA trans-
actions, threads, and JDBC connections. Web components should follow the
guidelines stated in the transaction management chapter of the J2EE specification:

« JTA transactions should be started and completed only from the thread in
which theservice method is called. If the Web component creates additional
threads for any purpose, these threads should not attempt to start JTA transac-
tions.

« JDBC connections may be acquired and released by a thread other than the
service method thread, but should not be shared between threads.

» JDBConnection objects should not be stored in static fields.

* For Web components implementifthgleThreadModel, JDBCConnection
objects may be stored in class instance fields.

* For Web components not implementsigigleThreadMode1, JDBCConnec-
tion objects should not be stored in class instance fields, and should be ac-
quired and released within the same invocation oféheice method.

In a multitier environment, servlets and JSP pages are mainly responsible for
the presentation of the application and dealing with browser interaction. In this
case, the use of JTA transactions in the Web tier is not recommended. Instead,
transactional work such as database access should be delegated to enterprise beans
in the EJB tier.

8.7 Transactions in Enterprise Beans

There are two types of transaction demarcation in enterprise beans: bean-managed
and container-managed. In container-managed transaction demarcation, six differ-

204 CHAPTER 8 TRANSACTION MANAGEMENT

ent transaction attributeskRequired, RequiresNew, NotSupported, Supports, Man-
datory, and Never—can be associated with an enterprise bean’s method. An
Application Component Provider or Assembler specifies the type of transaction
demarcation and transaction attributes for the methods of the enterprise beans in the
deployment descriptor. The use of deployment descriptors to specify transaction ele-
ments is discussed and illustrated in “Transaction Elements” on page 184.

This section discusses the types of transactions and the attributes of container-
managed transactions and then presents guidelines for choosing among the avail-
able options.

8.7.1 Bean-Managed Transaction Demarcation

With bean-managed transaction demarcation, an enterprise bean uses the
javax.transaction.UserTransaction interface to explicitly demarcate transaction
boundaries. Only session beans can choose to use bean-managed demarcation. An
entity bean must always use container-managed transaction demarcation.

The following code illustrates the use of JTA interface to demarcate transac-
tions in an enterprise bean with bean-managed transaction demarcation.

UserTransaction ut = ejbContext.getUserTransaction();
ut.beginQ);

// perform transactional work here

ut.coomit(Q);

Code Example 8.2 Enterprise Bean Using a JTA Transaction

8.7.2 Container-Managed Transaction Demarcation

For an enterprise bean with container-managed transaction demarcation, the EJB
container is responsible for managing transaction boundaries. The transaction
attribute for a method determines what the EJB container needs to do in terms of
transaction management. For example, if a method has a transaction attribute
RequiresNew, the EJB container will begin a new JTA transaction every time this
method is called and attempt to commit the transaction before the method returns.
The same transaction attribute can be specified for all the methods of an enterprise
bean or different attributes can be specified for each method of a bean. Refer to
Section 8.7.2.1 on page 205 for more information on transaction attributes.

TRANSACTIONS IN ENTERPRISE BEANS 205

Even in container-managed demarcation, an enterprise bean has some control
over the transaction. For example, an enterprise bean can choose to roll back a
transaction started by the container using the metw@ol1backOnly on the
SessionContext OF EntityContext Object.

There are several benefits of using container-managed transaction demarca-
tion:

» The transaction behavior of an enterprise bean is specified declaratively in-
stead of programmatically. This frees the Application Component Provider
from writing transaction demarcation code in the component.

« ltis less error-prone because the container handles transaction demarcation au-
tomatically.

« Itis easier to compose multiple enterprise beans to perform a certain task with
specific transaction behavior. An Application Assembler that understands the
application can customize the transaction attributes in the deployment descrip-
tor without code modification.

8.7.2.1 Transaction Attributes

A transaction attributes a value associated with a method of an enterprise bean that
uses container-managed transaction demarcation. In most cases, all methods of an
enterprise bean will have the same transaction attribute. For optimization purposes,
it is possible to have different attributes for different methods. For example, an
enterprise bean may have methods that don't need to be transactional.

A transaction attribute must be specified for the methods in the remote inter-
face of a session bean and for the methods in the remote and home interfaces of an
entity bean.

Required

If the transaction attribute iRequired, the container ensures that the enterprise
bean’s method will always be invoked with a JTA transaction. If the calling client is
associated with a JTA transaction, the enterprise bean method will be invoked in the
same transaction context. However, if a client is not associated with a transaction,
the container will automatically begin a new transaction and try to commit the trans-
action when the method completes.

206

CHAPTER 8 TRANSACTION MANAGEMENT

RequiresNew

If the transaction attribute B=quiresNew, the container always creates a new trans-
action before invoking the enterprise bean method and commits the transactions
when the method returns. If the calling client is associated with a transaction con-
text, the container suspends the association of the transaction context with the
current thread before starting the new transaction. When the method and the trans-
action complete, the container resumes the suspended transaction.

NotSupported

If the transaction attribute igotSupported, the transactional context of the calling
client is not propagated to the enterprise bean. If a client calls with a transaction
context, the container suspends the client’s transaction association before invoking
the enterprise bean’s method. After the method completes, the container resumes the
suspended transaction association.

Supports

It the transaction attribute &ipports, and the client is associated with a transaction
context, the context is propagated to the enterprise bean method, similar to the way
the container treats threquired case. If the client call is not associated with any
transaction context, the container behaves similarly tolthupported case. The
transaction context is not propagated to the enterprise bean method.

Mandatory

The transaction attribut®@andatory requires the container to invoke a bean’s
method in a client’s transaction context. If the client is not associated with a transac-
tion context when calling this method, the container throjssax.transac-
tion.TransactionRequiredException. If the calling client has a transaction
context, the case is treatedrRaguired by the container.

Never

The transaction attribut®ever requires that the enterprise bean method not be
called within a transaction context. If the client calls with a transaction context, the
container throws thgava.rmi.RemoteException. If the client is not associated with

any transaction context, the container invokes the method without initiating a trans-
action.

TRANSACTIONS IN ENTERPRISE BEANS 207

8.7.3 Transaction Guidelines

As mentioned previously, the recommended way to manage transactions is through
container-managed demarcation. Declarative transaction management provides one
of the major benefits of the J2EE platform, by freeing the Application Component
Provider from the burden of managing transactions. Furthermore, the transaction
characteristics of an application can be changed without code modification by
switching the transaction attributes. Transaction demarcation should be selected
with great care, by someone who understands the application well. Bean-managed
transaction demarcation is only for advanced users who want more control over the
work flow.

8.7.3.1 Transaction Attributes Guidelines

Most enterprise beans perform transactional work (for example, accessing a JDBC
database). The default choice for a transaction attribute shoukdds red. Using

this attribute ensures that the methods of an enterprise bean are invoked under a JTA
transaction. In addition, enterprise beans withriéwgii red transaction attribute can

be easily composed to perform work under the scope of a single JTA transaction.

The RequiresNew transaction attribute is useful when the bean method needs
to commit its results unconditionally, whether or not a transaction is already in
progress. An example of this requirement is a bean method that performs logging.
This bean method should be invoked wiéquiresNew transaction attribute so
that the logging records are created even if the calling client’s transaction is rolled
back.

The NotSupported transaction attribute can be used when the resource
manager responsible for the transaction is not supported by the J2EE product. For
example, if a bean method is invoking an operation on an enterprise resource plan-
ning system that is not integrated with the J2EE server, the server has no control
over that system’s transactions. In this case, it is best to set the transaction
attribute of the bean to beotSupported to clearly indicate that the enterprise
resource planning system is not accessed within a JTA transaction.

We do not recommend using the transaction attrisupeorts. An enterprise
bean with this attribute would have transactional behavior that differed depending
on whether the caller is associated with a transaction context, leading to possibly a
violation of the ACID rules for transactions.

The transaction attributesndatory andNever can be used when it is neces-
sary to verify the transaction association of the calling client. They reduce the

208

CHAPTER 8 TRANSACTION MANAGEMENT

composability of a component by putting constraints on the calling client’s trans-
action context.

8.8 Transactions in Enterprise Information Systems

Most enterprise information systems support some form of transactions. For exam-
ple, a typical JDBC database allows multiple SQL updates to be grouped in an
atomic transaction.

Components should always access an enterprise information system under the
scope of a transaction since this provides some guarantee on the integrity and con-
sistency of the underlying data. Such systems can be accessed under a JTA trans-
action or a resource manager (RM) local transaction.

8.8.1 JTA Transactions

When an enterprise information system is accessed under the scope of a JTA trans-
action, any updates performed on the system will commit or roll back depending on
the outcome of the JTA transaction. Multiple connections to information systems
can be opened and all updates through the connections will be atomic if they are
performed under the scope of a JTA transaction. The J2EE server is responsible for
coordinating and propagating transactions between the server and the enterprise
information system.

If the J2EE product supports multiple enterprise information systems in one
transaction, a J2EE application can access and perform updates on multiple enter-
prise information systems atomically, without extra programming effort, by
grouping all updates within a JTA transaction. Code Example 8.3 illustrates this
use:

InitialContext ic = new InitialContext("java:comp/env");
DataSource dbl = (DataSource) ic.lookup("OrdersDB");
DataSource db2 = (DataSource) ic.lookup("InventoryDB");
Connection conl = dbl.getConnection();

Connection con2 = db2.getConnection();

UserTransaction ut = ejbContext.getUserTransaction();
ut.beginQ);
// perform updates to OrdersDB using connection conl

TRANSACTIONS IN ENTERPRISE INFORMATION SYSTEM209

// perform updates to InventoryDB using connection con2
ut.commit(Q);

Code Example 8.3 Accessing Multiple Databases

8.8.2 Resource Manager Local Transactions

A resource manager local transactigor local transaction is a transaction specific

to a particular enterprise information system connection. A local transaction is
managed by the underlying enterprise information system resource manager. The
J2EE platform usually does not have control or knowledge about any local transac-
tions begun by components. Typically access to a transactional enterprise informa-
tion system will be under a local transaction if no JTA transaction has been initiated.
For example, if a servlet accesses a JDBC database without starting a JTA transac-
tion, the database access will be under the scope of a local transaction, specific to the
database.

Another scenario where enterprise information system access is under the
scope of a local transaction is when the enterprise information system is not sup-
ported by the J2EE platform. For example, a standard J2EE platform is not
required to support object-oriented databases. As a result, the platform would not
be able to propagate any JTA transactions to the object-oriented databases and any
access will be under local transactions.

8.8.3 Choosing Between JTA and Local Transactions

It is recommended that enterprise information systems, such as databases, be
accessed under the scope of a transaction. Accessing an enterprise information
system under a transaction provides some guarantee on the consistency and integ-
rity of the data.

We recommend that a component use JTA transactions whenever possible to
access enterprise information systems. Using a JTA transaction allows multiple
components accessing enterprise information systems to be grouped in a single
transaction without adding extra logic. If a component marks the transaction as
rollback only, all enterprise information system work will be rolled back automat-
ically. With local transactions, each enterprise information system accessed will
have to be committed or rolled back explicitly. In addition, components need extra
logic to deal with individual enterprise information system rollbacks or failures.

210

CHAPTER 8 TRANSACTION MANAGEMENT

8.8.4 Compensating Transactions

A compensating transactias a transaction or a group of operations that is used

to undo the effect of a previously committed transaction. In the case where multi-
ple access to enterprise information systems need to be grouped under a single
transaction, but not all of the systems support JTA transactions, it will be neces-
sary to define a compensating transaction for each enterprise information system
access that is under the scope of a local transaction.

Compensating transactions are useful if a component needs to access an enter-
prise information system that does not support JTA transactions or access an
enterprise information system that is not supported by a particular J2EE platform.
In both cases, the enterprise information system will be accessed under the scope
of a RM local transaction. If multiple enterprise information systems are involved,
this creates the challenge of having to group all the work to multiple enterprise
information systems into an atomic unit.

For example, suppose an application needs to perform an atomic operation
that involves updating three enterprise information systems: two JDBC databases
that supports JTA transactions and an enterprise resource planning system that
does not. The application would need to define a compensating transaction for the
update to the enterprise resource planning system. The approach is illustrated in
Code Example 8.4.

updateERPSystem();

try {
UserTransaction.begin(Q);
update]DBCDatabaseOne();
update]DBCDatabaseTwo();
UserTransaction.commit();

}

catch (RollbackException ex) {
undoUpdateERPSystem();

Code Example 8.4 Compensating Transaction

The methodsipdateERPSystem, updateIDBCDatabaseOne, andupdateIDBCDa-
tabaseTwo contain code to access and perform work on enterprise information

TRANSACTIONS IN ENTERPRISE INFORMATION SYSTEM211

systems. TheindoUpdateERPSystem method contains code to undo the effect of
updateERPSystem if the JTA transaction does not commit successfully.

This compensation logic should be encapsulated in a session enterprise bean
with a bean-managed transaction. If the enterprise information system access
logic is relatively simple, they can all reside in this bean. Otherwise, the enterprise
bean can invoke other enterprise beans to access the enterprise information
system. If an enterprise bean’s only responsibility is to access an enterprise infor-
mation system that does not support JTA transactions, its transaction attribute
should be set tolotSupported. This denotes that a JTA transaction will not be
used in the enterprise bean.

There are a few pitfalls regarding the use of compensating transactions:

* Itis not always possible to undo the effect of a committed transaction. Consid-
er Code Example 8.4. If the JTA transaction does not commit and for some rea-
son the methodndoUpdateERPSystem does not succeed, the data will be left in
an inconsistent state.

» Atomicity could also be broken if the server crashes when a compensating
transaction is used. For example, if the system crashes after the method
updateERPSystem, the updates to the two databases will not happen.

« Inconsistent data might be seen by concurrent enterprise information system
access. In this approach, non-JTA transactions are actually committed but may
be undone subsequently. In the previous example, a concurrent enterprise in-
formation system access might see the update to the enterprise resource plan-
ning system which might be rolled back later. In other words, it sees
uncommitted data.

An application that depends on compensating transactions must have extra
logic to deal with potential failures and inconsistencies. The extra work and pit-
falls of compensating transactions mean applications should avoid using them if
possible. Instead, JTA transactions should be used as they provide a simple and
safe way to achieve the ACID properties across multiple components and enter-
prise information systems.

212

CHAPTER 8 TRANSACTION MANAGEMENT

8.8.5 Isolation Level

An isolation leveldefines how concurrent transactions to an enterprise information
system are isolated from one another. Enterprise information systems usually
support the following the isolation levels:

* ReadCommitted: This level prevents a transaction from reading uncommitted
changes from other transactions.

* RepeatableRead: This level prevents a transaction from reading uncommitted
changes from other transactions. In addition, it ensures that reading the same
data multiple times will receive the same value even if another transaction
modifies the data.

* Serializable: This level prevents a transaction from reading uncommitted
changes from other transactions and ensures that reading the same data multi-
ple times will receive the same value even if another transaction modifies the
data. In addition, it ensures that if a query retrieves a result set based on a pred-
icate condition and another transaction inserts data that satisfy the predicate
condition, re-execution of the query will return the same result set.

Isolation level and concurrency are closely related. A lower isolation level
typically allows greater concurrency, at the expense of more complicated logic to
deal with potential data inconsistencies. A useful guideline is to use the highest
isolation level provided by enterprise information systems that gives acceptable
performance.

For consistency, all enterprise information systems accessed by a J2EE appli-
cation should use the same isolation level. Currently, the J2EE specification does
not define a standard way to set isolation levels when an enterprise information
system is accessed under JTA transactions. If a J2EE product does not provide a
way to configure the isolation level, the enterprise information system default iso-
lation level will be used. For most relational databases, the default isolation level
iS ReadCommi tted.

We recommend that you not change the isolation level within a transaction,
especially if some work has already been done. Some enterprise information
systems will force a commit if you attempt to change the isolation level.

SUMMARY 213

8.9 Summary

This chapter provides the guidelines for using transactions on the J2EE platform.
It describes the J2EE transactional model available to each J2EE component type—
application clients, JSP pages and servlets, and enterprise beans—and enterprise
information systems.

The J2EE platform provides powerful support for writing transactional appli-
cations. It contains the Java Transaction API, which allows applications to access
transactions in a manner that is independent of specific implementations and a
means for declaratively specifying the transactional needs of an application. These
capabilities shift the burden of transaction management from J2EE Application
Component Providers to J2EE product vendors. Application Component Provid-
ers can thus focus on specifying the desired transaction behavior, and rely on a
J2EE product to implement the behavior.

About the Author

RON MONZILLO is a Senior Staff Engineer at Sun Microsystems where he is the
J2EE security specification lead. Prior to joining Sun, Ron worked for the Open Group
where he contributed to the evolution of the Distributed Computing Environment. Ron
has also worked for BBN, where he developed Network Management systems, and as a
Principal Investigator for the MITRE Corporation where he researched fault-tolerant
distributed database systems and multi-processor architectures. Ron received an M.S. in
Computer Science from the University of Connecticut and a B.S. in Biology from Bates

College.

CHAPTER9

Securitil

by Ron Monzillo

I N an enterprise computing environment, failure, compromise, or lack of availabil-
ity of computing resources can jeopardize the viability of the enterprise. An organi-
zation must take steps to identify threats to security. Once they are identified, steps
should be taken to reduce these threats.

It is unreasonable to assume that J2EE products, and hence J2EE applications,
can displace existing enterprise security infrastructures. The J2EE application
programming model attempts to leverage existing security services rather than
require new services or mechanisms.

This discussion begins with a review of some security concepts and mecha-
nisms. We describe the security concerns and characteristics of enterprise applica-
tions and explore the application of J2EE security mechanisms to the design,
implementation, and deployment of secure enterprise applications.

9.1 Security Threats and Mechanisms

Threats to enterprise-critical assets fall into a few general categories:

Disclosure of confidential information

Modification or destruction of information

Misappropriation of protected resources

Compromise of accountability

Misappropriation that compromises availability

215

216

CHAPTER9 SECURITY

Depending on the environment in which an enterprise application operates,
these threats may manifest themselves in different forms. For example, in a tradi-
tional single system environment, a threat of disclosure might manifest itself in
the vulnerability of information kept in files. In a distributed environment with
multiple servers and clients, a threat of disclosure might also result from expo-
sures occurring as the result of networking.

Although not all threats can or need be eliminated, there are many circum-
stances where exposure can be reduced to an acceptable level through the use of
the following security mechanisms: authentication, authorization, signing,
encryption, and auditing. The following sections describe J2EE platform security
mechanisms and indicate how the mechanisms are used to support security poli-
cies in an operational environment.

9.2 Authentication

In distributed component computinguthenticationis the mechanism by which
callers and service providers prove to one another that they are acting on behalf of
specific users or systems. When the proof is bidirectional, we refer tanituasal
authenticationAuthentication establishes the call identities and proves that the par-
ticipants are authentic instances of these identities. An entity that participates in a
call without establishing and/or proving an identity (that asonymously is
calledunauthenticated

When calls are made from a clieptogram being run by a user, the caller
identity is likely to be that of theiser When the caller is aapplication compo-
nentacting as an intermediary in a call chain originating with some user, the iden-
tity may be associated with that of the user, in which case the component would
be impersonatingthe user. Alternatively, one application component may call
another with an identity of its own and unrelated to that of its caller.

Authentication is often achieved in two phases. First, service-independent
authentication requiring knowledge of some secret is performed to establish an
authentication contexthat encapsulates the identity and is able to fabricate
authenticators(proofs of identity. Then, the authentication context is used to
authenticate with other (called or calling) entities. Controlling access to the
authentication context, and thus the ability to authenticate as the associated iden-

AUTHENTICATION 217

tity, becomes the basis of authentication. Among the possible policies and mecha-
nisms for controlling access to an authentication context are:

» Once the user performs an initial authentication, the processes the user starts
inherit access to the authentication context.

* When a component is authenticated, access to the authentication context may
be available to other related or trusted components, such as those that are part
of the same application.

* When a component is expectedrtpersonatets caller, the caller magele-
gateits authentication context to the called component.

9.2.1 Protection Domains

Some entities may communicate without requiring authenticatiomraiection
domainis a set of entities that are assumed or known to trust each Btttéres in
such a domain need not be authenticated to one another.

Figure 9.1 illustrates that authentication is only required for interactions that
cross the boundary of a protection domain. When a component interacts with
components in the same protection domain, no constraint is placed on the identity
that it can associate with its call. The caller n@gpagatethe caller’s identity, or
choosean identity based on knowledge of authorization constraints imposed by
the called component, since the caller’s abilityclaim an identity is based on
trust, not authentication. If the concept of protection domains is employed to
avoid the need for authentication, there must be a means to establish the bound-
aries of protection domains, so that trust in unproven identities does not cross
these boundaries. Entities that are universally trusting of all other entities should
not be trusted as a member of any protection domain.

In the J2EE architecture, a container provides an authentication boundary
between external callers and the components it hosts. The boundaries of protec-
tion domains don'’t always align with those of containers. Containers enforce the
boundaries, and implementations are likely to support protection domains that
span containers. However, a container is not required to host components from
different protection domains, although an implementation may choose to do so.

218

CHAPTER9 SECURITY

Universally Trusting

Protection M Protection
Domain Domain

Authenication
or Anonymous

Trust Trust

Figure 9.1 Protection Domain

Forinboundcalls, it is the container’s responsibility to make an authentic rep-
resentation of the caller identity available to the component in the formcoé-a
dential An X.509 certificate and a Kerberos service ticket are examples of
credentials. A passport or a driver’s licence are analogous artifacts used in person-
to-person interactions.

Foroutboundcalls, the container is responsible for establishing the identity of
the calling component. In general, it is the job of the container to provide bidirec-
tional authentication functionality to enforce the protection domain boundaries of
the deployed applications.

Without proof of component identity, the interacting containers must deter-
mine if there is sufficient inter-container trust to accept the container-provided
representations of component identity. In some environments, trust may simply be
presumed, in others it may be more explicitly evaluated based on inter-container
authentication and possibly the comparison of container identities to lists of
trusted identities. If a required proof of identity is not provided, and in the absence
of a sufficient inter-container trust relationship, a container should reject or
abandon a call.

Figure 9.2 illustrates these authentication concepts in two scenarios: an
authenticated user scenario and an unauthenticated user scenario.

AUTHENTICATION 219

y

Intermediate
Authentication Caller Propagation

Caller Server

Secret

User Credential

(=)
= ©
©
“
User
Authentication
e I hInitial Context
uthentication
‘ Mutual Is
.. Recommended & (53
.. & 0.
®

Caller Intermediate
Delegation Caller Impersonation

User Credential
Authenticator

DDDD Intermediate Server
nauthenticated \IRZLE Propagation

Anonymous Credential Anonymous Credential

Figure 9.2 Authentication Scenarios

User Credential
Authenticator
Delegation Token

The authenticated user invokes a calling component that employs the user’s
authentication context to prove its identity to an intermediate component. When
the called component makes a call it propagates the identity of its caller. The prop-
agated identity is unproven, and so will be accepted only if the targets trust the
caller, that is, if they reside in the same protection domain. The figure also differ-
entiates identity propagation from delegation and subsequent impersonation. In
propagation, the service providers bear the burden of determining whether they
should accept propagated identities as authentic. In delegation, the user provides
the called component with access to its authentication context, enabling the called

220

CHAPTER9 SECURITY

component to impersonate the user in subsequent calls. Impersonation requires
the user to trust the impersonator to act in its behalf. The lower portion of the
figure depicts the propagation of an unauthenticated user identity in the form of an
anonymous credential. An anonymous credential is the one form of unproven
identity that may be propagated independent of trust.

9.2.2 Authentication Mechanisms

In a typical J2EE application, a user would go through a client container to interact
with enterprise resources in the Web or EJB tiers. Resources available to the user
may be protected or unprotected. Protected resources are distinguished by the pres-
ence ofauthorization rulegsee Section 9.3 on page 225) that restrict access to some
subset of nhon-anonymous identities. To access a protected resource, a user must
present a non-anonymous credential such that its identity can be evaluated against
the resource authorization policy. In the absence of a trust relationship between the
client and resource containers, the credential must be accompanied by an authenti-
cator that confirms its validity. This section describes the various authentication
mechanisms supported by the J2EE platform and how to configure them.

9.2.2.1 Web Tier Authentication

An Application Component Provider can designate that a collection of Web
resources (Web components, HTML documents, image files, compressed archives,
and so on) is protected by specifying an authorization constraint (described in
Section 9.3.7.1 on page 230) for the collection. When an anonymous user tries to
access a protected Web resource, the Web container will prompt the user for a pass-
word to authenticate with the Web container. The request will not be accepted by the
Web container until the user identity has been proven to the Web container and
shown to be one of the identities granted permission to access the resource. Caller
authentication performed on the first access to a protected resource islaajled
authentication.

When a user tries to access a protected Web-tier resource, the Web container
activates the authentication mechanism defined in the application’s deployment
descriptor. J2EE Web containers must support three authentication mechanisms:
HTTP basic authentication, form-based authentication, and HTTPS mutual authen-
tication, and are encouraged to support HTTP digest authentication.

In basic authenticatiorthe Web server authenticates a principal using the user
name and password obtained from the Web clientdigrest authenticatiom Web

AUTHENTICATION 221

client authenticates to a Web server by sending the server a message digest along its
HTTP request message. The digest is computed by employing a one-way hash algo-
rithm to a concatenation of the HTTP request message and the client’s password.
The digest is typically much smaller than the HTTP request, and doesn’t contain the
password.

Form-based authenticatiolets developers customize the authentication user
interface presented by an HTTP browser. Like HTTP basic authentication, form-
based authentication is not secure, since the content of the user dialog is sent as
plain text, and the target server is not authenticated.

In single-signon environments, discretion must be exercised in customizing
an application’s authentication interface. It may be preferable to provide a single
enterprise-wide custom user authentication interface, rather than implementing a
set of application-specific interfaces.

With mutual authenticationthe client and server use X.509 certificates to
establish their identity. Mutual authentication occurs over a channel protected by
SSL. Hybrid mechanisms featuring either HTTP basic authentication, form-based
authentication, or HTTP digest authentication over SSL are also supported.

Authentication Configuration

An authentication mechanism is configured usingigin-config element of the

Web component deployment descriptor. Code Example 9.1, Code Example 9.2, and
Code Example 9.3 illustrate the declaration of each type of authentication mecha-
nism.

<web-app>
<login-config>
<auth-method>BASIC|DIGEST</auth-method>
<realm-name>jpets</realm-name>
</login-config>
</web-app>

Code Example 9.1 HTTP Basic and Digest Authentication Configuration

<web-app>
<login-config>
<auth-method>FORM</auth-method>
<form-login-config>

222 CHAPTER9 SECURITY

<form-login-page>1ogin.jsp</form-login-page>
<form-error-page>error.jsp</form-error-page>
</form-Togin-config>
</login-config>
</web-app>

Code Example 9.2 Form-Based Authentication Configuration

<web-app>
<login-config>
<auth-method>CLIENT-CERT</auth-method>
</login-config>
</web-app>

Code Example 9.3 Client Certificate Authentication Configuration

Hybrid Authentication

In both HTTP basic and form-based authentication, passwords are not protected for
confidentiality. This vulnerability can be overcome by running these authentication
protocols over an SSL-protected session, which ensures that all message content,
including the client authenticators, are protected for confidentiality. Code Example
9.4 demonstrates how to configure HTTP basic authentication over SSL using the
transport-guarantee element. Form-based authentication over SSL is configured

in the same way.

<web-app>
<security-constraint>

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>
</security-constraint>
</web-app>

Code Example 9.4 SSL Hybrid Authentication Mechanism

AUTHENTICATION 223

9.2.2.2 EJB Tier Authentication

The J2EE 1.2 platform specification doesn'’t require interoperable caller authentica-
tion at the EJB container. Also, network firewall technology may prevent direct
Internet interaction (via RMI) between client containers and enterprise beans. One
way that an EJB container can protect access to enterprise beans is to entrust the
Web container to vouch for the identity of users accessing the beans via protected
Web components. As illustrated in Figure 9.3, such configurations use the Web con-
tainer to enforce protection domain boundaries for Web components and the enter-
prise beans that they call.

Web Container EJB Container
Client

Container ZEnterprise

1
A Bean
@Iet/ ZEnterprise

— Authentication JSP Page
Authentication L .
Context | /En/terprise
Bean

Figure 9.3 Typical J2EE Application Configuration

9.2.3 Authentication Call Patterns

In a multitier, multicomponent application, certain call patterns should be avoided
for security reasons. For example, an application that calls protected EJB resources
from unprotected Web resources can run into problems, because the Web tier's lazy
authentication paradigm doesn't require user authentication except when the user
attempts to access a protected resource. While the protection requirement can be
moved to the EJB tier, care must be taken to ensure that users who are capable of
authenticating can do so. With lazy authentication, a user who wants to visit a pro-
tected EJB resource must have visited a protected Web resource. One way to ensure
this would be to front every protected EJB resource with a protected Web resource.
Another approach would be to link to a protected Web resource (perhaps appearing
as an authenticate button) on every Web resource that calls EJB resources. This
approach gives the user the option of authenticating (by visiting the protected Web
resource linked behind the button) prior to accessing an EJB resource, especially
after having been denied access by the EJB resource through an unprotected page.

224

CHAPTER9 SECURITY

When an application is deployed with a hybrid authentication mechanism, the
Deployer must ensure that tR@ansport-guarantee element of each protected
Web resource is set ftmNFIDENTIAL. Otherwise, the client authenticator won't be
fully protected.

9.2.3.1 Enterprise Information System Tier Authentication

In integrating with enterprise information systems, J2EE components may use dif-
ferent security mechanisms and operate in different protection domains than the
resources they access. In these cases, the calling container can be configured to
manage the authentication to the resource for the calling component. This form of
authentication is calledontainer-managed resource manager signdhe J2EE
architecture also recognizes that some components require an ability to manage the
specification of caller identity, and the production of a suitable authenticator
directly. For these applications, the J2EE architecture provides a means for an appli-
cation component to engage in what is callagdplication-managed resource
manager signonApplication-managed resource manager signon is used when
manipulating the authentication details is a fundamental aspect of the component’s
functionality.

The resource-ref elements of a component’s deployment descriptor
(described in greater detail in Section 9.3 on page 225) declares the resources used
by the component. The subelemesé-auth specifies the type of signon authenti-
cation. Components can use ti®Context.getCallerPrincipal andHttpServ-
letRequest.getUserPrincipal methods to obtain the identity of their caller. The
component may map the caller identity to a new identity and/or authentication
secret as required by the target enterprise information system.

With container-managed resource manager signon, the container would
perform theprincipal mappingon behalf of the calling component. Container-
managed principal mapping isn’t explicitly defined in any of the J2EE specifica-
tions. Whether it is performed by the container or embedded in the caller, the
mapping of caller identity to an identity and authentication secret capable of
accessing resources in the enterprise information system tier should be modeled
as a protected resource, and secured by appropriate authorization rules (see
Section 9.3.6 on page 229).

The Connector architecture discussed in Section 6.10 on page 161 offers a
standard API for application-managed resource manager signon. The Connector
provided API will ensure portability of components that authenticate with enter-
prise information systems.

AUTHORIZATION 225

9.2.4 Auto-Registration

Many e-commerce applications are designed to make it as easy as possible for a user
to become a customer. In contrast to typical computer user authentication environ-
ments, where a user must wait for an administrator to set up the user’s account,
many e-commerce applications enable users to set up their own accounts without
administrative intervention. Frequently the user is required to provide his or her
identity and location, agree to some contractual obligations, provide credit card
information for payment, and establish a password to protect the account.

Once the registration dialog is complete, the user can access the protected
resources of the site. In the future, client certificates will replace the identity and
password elements of the registration to improve the accountability of the authenti-
cation. This transition will also relieve users from the risks they assume when they
reuse a single password with multiple vendors as their own form of single signon.
Mechanisms to support auto-registration are not specified by the J2EE platform and
are thus specific to the container implementation.

Web resources that provide the user interface for auto-registration must be
protected. This is accomplished by setting th@nsport-guarantee of these
resources tQONFIDENTIAL.

9.2.5 Exposing Authentication Boundaries with References

The Application Component Provider is responsible for declaring references made
by each component to other J2EE components and to external resources. These dec-
larations are made in the deployment descriptor. In addition to their role in locating
services, such declarations serve to inform the Deployer of all the places in the
application where authentication may be necessary. Enterprise bean references are
declared usingejb-ref elements. Enterprise information system references are
declared withresource-ref elements. In both cases, the declarations are made in
the scope of the calling component, and the collection of declared references serves
to expose the application’s inter-component/resource call tree.

9.3 Authorization

Authorizationmechanisms limit interactions with resources to collections of users
or systems for the purpose of enforcing integrity, confidentiality, or availability
constraints. Such mechanisms allow only authentic caller identities to access com-
ponents. Mechanisms provided by the J2SE platform can be used to control access

226

CHAPTER9 SECURITY

to code based on identity properties, such as the location and signer of the calling
code. In the J2EE distributed component programming model, additional authoriza-
tion mechanisms are required to limit access to called components based on who is
usingthe calling code. As mentioned in the section on authentication, caller identity
can be established by selecting from the set of authentication contexts available to
the calling code. Alternatively, the caller may propagate the identity of its caller,
select an arbitrary identity, or make the call anonymously.

In all cases, a credential is made available to the called component. The cre-
dential contains information describing the caller through its identity attributes. In
the case of anonymous callers, a special credential is used. These attributes
uniquely identify the caller in the context of the authority that issued the creden-
tial. Depending on the type of credential, it may also contain other attributes
which define shared authorization properties (for example, group memberships)
that distinguish collections of related credentials. The identity attributes and
shared authorization attributes appearing in the credential are referred to together
as the caller'ssecurity attributesin the J2SE platform, the identity attributes of
the code used by the caller may also be included in the caller’'s security attributes.
Access to the called component is determined by comparing the caller’s security
attributes with those required to access the called component.

In the J2EE architecture, a container serves as an authorization boundary
between callers and the components it hosts. The authorization boundary exists
inside the container’s authentication boundary, so that authorization is considered
in the context of successful authentication. For inbound calls, the container com-
pares security attributes from the caller’s credential with the access control rules
for the target component. If the rules are satisfied, the call is allowed. Otherwise,
the call is rejected.

There are two fundamental approaches to defining access controlaybedsil-
ities and permissions The capabilities approach focuses on what a caller can do.
The permissions approach focuses on who can do something. The J2EE application
programming model focuses on permissions. In the J2EE architecture, the job of the
Deployer is to map the permission model of the application to the capabilities of
users in the operational environment.

9.3.1 Declarative Authorization

The container-enforced access control rules associated with a J2EE application are
established by the Deployer. The Deployer uses a deployment tool to map an appli-
cation permission model (typically) supplied by the Application Assembler to

AUTHORIZATION 227

policy and mechanisms that are specific to the operational environment. The appli-
cation permission model is contained in a deployment descriptor.

The deployment descriptor defines logical privileges cadlecurity rolesand
associates them with components to define the privileges required to be granted
permission to access components. The Deployer assigns these logical privileges to
specific callers to establish the capabilities of users in the runtime environment.
Callers are assigned logical privileges based on the values of their security
attributes. For example, a Deployer might map a security role to a security group
in the operational environment such that any caller whose security attributes indi-
cate that it is a member of the group would be assigned the privilege represented
by the role. As another example, a Deployer might map a security role to a list
containing one or more principal identities in the operational environment such
that a caller authenticated as one of these identities would be assigned the privi-
lege represented by the role.

The EJB container grants permission to access a method only to callers that
have at least one of the privileges associated with the method. Security roles also
protect Web resource collections, that is, a URL pattern and an associated HTTP
method, such aseT. The Web container enforces authorization requirements
similar to those for an EJB container. When a resource has no associated security
role, permission to access the resource will be granted to all.

In both tiers, access control policy is defined at deployment time, rather than
application development. The Deployer can modify the policy provided by the
Application Assembler. The Deployer refines the privileges required to access the
components, and defines the correspondence between the security attributes pre-
sented by callers and the container privileges. In any container, the mapping from
security attributes to privileges is scoped to the application, so that the mapping
applied to the components of one application may be different from that of
another application.

9.3.2 Programmatic Authorization

A J2EE container makes access control decisions before dispatching method calls to
a component. As a result, the logic or state of a component doesn't affect the access
decisions. However, a component can use two methlidsontext.isCallerIn-

RoTe (for use by enterprise bean code) andpServietRequest.isUserInRole (for

use by Web components), to perform finer-grained access control. A component
uses these methods to determine whether a caller has been granted a privilege

228

CHAPTER9 SECURITY

selected by the component based on the parameters of the call, the internal state of
the component, or other factors such as the time of the call.

The Application Component Provider of a component that calls one of these
functions must declare the complete set of distiadkName values used in all of
its calls. These declarations appear in the deployment descriptescasity-
role-ref elements. Eachecurity-role-ref element links a privilege name
embedded in the application as-@leName to a security role. It is ultimately the
Deployer who establishes the link between the privilege names embedded in the
application and the security roles defined in the deployment descriptor. The link
between privilege names and security roles may differ for components in the same
application.

9.3.3 Declarative Versus Programmatic Authorization

There is a trade-off between the external access control policy configured by the
Deployer and the internal policy embedded in the application by the Component
Provider. The former is more flexible after the application has been written. The
latter provides more flexibility, in the form of functionality, while the application is
being written. The former is transparent and completely comprehensible. The latter
is buried in the application such that it may only be completely understood by the
those who developed the application. These trade-offs should be considered in
choosing the authorization model for particular components and methods.

9.3.4 Isolation

When designing the access control rules for protected resources, take care to ensure
that the authorization policy is consistently enforced across all the paths by which
the resource may be accessed. When method-level access control rules are applied
to a component, care must be taken that a less protected method does not serve to
undermine the policy enforced by a more rigorously protected method. Such consid-
erations are most significant when component state is shared by disparately pro-
tected methods. The simplifying rule of thumb is to apply the same access control
rules to all the methods of a component, and to partition an application as necessary
to enforce this guideline unless there’s some specific need to architect an application
otherwise.

AUTHORIZATION 229

9.3.5 Identity Selection

When setting an application’s access control policy, the Application Component
Provider bases policy decisions on assumptions about the call identities selected by
the application callers. When a call passes through intermediary components, the
caller identity at the destination component may depend on the identity selection
decisions made by the intermediaries. The destination component may assume that
caller identities have been propagated along the call chain such that the identity of
its caller will be that of the caller who initiated the chain. In other cases, the called
component must assume that one or more of the callers in its call path will employ
an identity selection policy other than identity propagation. The Application Assem-
bler is responsible for communicating these assumptions to the Deployer, while the
Deployer configures the caller identity selection for inter-component calls. Unless
the Deployer has other instructions from the Application Assembler, they should
assume that each caller will propagate the identity of the caller’s identity.

9.3.6 Encapsulation for Access Control

The component model of an application may be used to impose authorization
boundaries around what might otherwise be unprotected resources. This can be
done by using accessor components to implement the authorization barrier. If acces-
sor components are used to create an authorization boundary, access control can
either be done externally by the container, or internally by the component, or both.

An accessor component may encapsulate the mapping to an authentication
context suitable for interacting with an external resource. Considered in the
context of principal mapping for the purpose of authenticating and gaining access
to enterprise information system resources, encapsulation for access control can
be used to control who is authorized to access a mapping. Depending on the form
of the mapping, the authorization rules may be more or less complex. For exam-
ple, if all access to a resource is performed via a single conceptually omnipotent
enterprise information system tier identity, then the J2EE application can imple-
ment secure access to the resource by limiting who can access the accessor. If the
mapping of authentication context is many-to-many, then the authorization config-
uration of the accessor may need to define which of a collection of mappings are
accessible to the caller, and which should be assumed by default (if the caller does
not assert which mapping it requires).

230

CHAPTER9 SECURITY

9.3.7 Controlling Access to J2EE Resources

In a typical J2EE application, a client would go through its container to interact with
enterprise resources in the Web or EJB tiers. Resources available to the user may be
protected or unprotected. Protected resources are distinguished by the presence of
authorization rules defined in deployment descriptors that restrict access to some
subset of non-anonymous identities. To access a protected resource, a user must
present a non-anonymous credential such that its identity can be evaluated against
the resource authorization policy. In other words, caller authentication is required
any time a caller tries to access a protected component.

9.3.7.1 Controlling Access to Web Resources

To control access to a Web resource, an Application Component Provider or Appli-
cation Assembler specifies security-constraint element with anauth-con-
straint subelement in the Web deployment descriptor. Code Example 9.5
illustrates the definition of a protected resource in a Web component deployment
descriptor. The descriptor specifies that the URbntrol/placeorder can only be
accessed by users acting in the roleustomer.

<security-constraint>
<web-resource-collection>
<web-resource-name>placeorder</web-resource-name>
<url-pattern>/control/placeorder</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>customer</role-name>
</auth-constraint>
</security-constraint>

Code Example 9.5 Web Resource Authorization Configuration

9.3.7.2 Controlling Access to Enterprise Beans

An Application Component Provider or Application Assembler that has defined
security roles for an enterprise bean can also specify the methods of the remote and
home interface that each security role is allowed to invoke. This is done in the form

AUTHORIZATION 231

of method-permission elements. Ultimately, it is the assignment of users to roles
that determines if a resource is protected. When the roles required to access the
enterprise bean are assigned only to authenticated users, the bean is protected.
Code Example 9.6 contains two styles of method specifications. The first
refers to all of the remote and home interface methods of an enterprise bean. The
second is used for referring to a specific method of the remote or home interface
of an enterprise bean. If there are multiple methods with the same overloaded
name, this style refers to all of the overloaded methods. Method specifications can
be further qualified with parameter names for methods with an overloaded name.

<method-permission>
<role-name>admin</role-name>
<method>
<ejb-name>TheOrder</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>

<method-permission>
<role-name>customer</role-name>
<method>
<ejb-name>TheOrder</ejb-name>
<method-name>getDetails</method-name>
</method>
<method>

</method-permission>

Code Example 9.6 Enterprise Bean Authorization Configuration

9.3.7.3 Unprotected Resources

Many applications feature unprotected Web-tier content, available to any caller
without authentication. Some applications also feature unprotected enterprise beans.
For example, the sample application (see Section 10.11 on page 301) allows anony-
mous, unauthenticated users to access certain EJB resources. In either tier, unpro-
tected resources are characterized by the absence of a requirement that their caller
be authenticated. In the Web tier, unrestricted access is provided simply by leaving

232

CHAPTER9 SECURITY

out an authentication rule. In the EJB tier, unrestricted access is accomplished by
mapping at least one role which is permitted access to the resource to the universal
set of users independent of authentication.

9.3.8 Example

To understand how each application, and each component within an application can
apply its own authorization requirements, consider the following examples.

One application is assembled from two enterprise beans, EJB 1 and EJB 2,
each with one method. Each method callgallerIinRole with the role name
MANAGER. The deployment descriptor includesécurity-role-ref element for
the call toisCallerInRole in each enterprise bean. Thecurity-role-ref for
EJB 1 links MANAGER to the role good-managers and the security-role-ref
element for EJB 2 linkKsVANAGER to the role bad-managers. The deployment
descriptor defines two method-permission elements, one establishes that the role
employees can access all methods of EJB 1 and the other does the same for EJB 2.
The deployment descriptor has&curity-role elementsemployees, good-man-
agers, andbad-managers. The Deployer assigns User 1 to role@sloyees and
good-managers and assigns User 2 to rolegloyees andbad-managers.

A second application, with one enterprise bean EJB 3, is also deployed in the
container. EJB 3 also makes a callit@allerInRole With the role nam®ANAGER.

The deployment descriptor for this second application contaiegwrity-role-

ref element that linK$IANAGER to the rolegood-managers. Similarly, the deploy-
ment descriptor defines omethod-permission element that establishes that the
role employees can access all the methods of EJB 3. The deployment descriptor
has 2 role elementamployees andgood-managers. The Deployer assigns User 2

to rolesemployees andgood-managers.

Figure 9.4 illustrates the configuration of method permissions as a relation-
ship between roles and methods. It also illustrates the mapping of caller security
attributes to roles, and the link between privilege names embedded in the applica-
tion and roles.

Table 9.1 lists the authorization decisions that occur when different users ini-
tiate method calls on these enterprise beans. For example, when User 1 initiates a
method call on EJB 2's method, the container dispatches the call because the
method-permission element specifies the security roke®loyees andgood-man-
agers, and the Deployer has assigned User 1 to the former security role.However,
theisCallerInRole (MANAGER) method returns false, because taeurity-role-
ref element for EJB 2 link®ANAGER to the security rol@ad-managers, which is

AUTHORIZATION 233

not satisfied for User 1. When User 1 invokes a method on EJB 3, the call isn't
even dispatched, because User 1 isn't assigned to any security roles.

Application 1

EJB 1 Method

EJB 2 Method

i

Manager

Manager

Figure 9.4 Authorization Scenario

Table 9.1 Authorization Decisions

Application 2

Security Roles Allowed to Access Methods

EJB 3
Method

Call Call Dispatched? isCallerinRole?
Userl-EJB1 yes true
User1-EJB?2 yes false
Userl-EJB3 no never called
User2-EJB1 yes false

234

CHAPTER9 SECURITY

Table 9.1 Authorization Decisions (continued)

Call Call Dispatched? isCallerinRole?
User2-EJB 2 yes true
User2-EJB3 yes true

9.4 Protecting Messages

In a distributed computing system, a significant amount of information is transmit-
ted through networks in the form of messages. Message content is subject to three
main types of attacks. Messages might be intercepted and modified for the purpose
of changing the affects they have on their recipients. Messages might be captured
and reused one or more times for the benefit of another party. Messages might be
monitored by an eavesdropper in an effort to capture information that would not oth-
erwise be available. Such attacks can be minimized by using integrity and confiden-
tiality mechanisms.

9.4.1 Integrity Mechanisms

Integrity mechanismensure that communication between entities is not being tam-
pered with by another party, especially one that can intercept and modify their com-
munications. Integrity mechanisms can also be used to ensure that messages can
only be used once.

Message integrity is ensured by attachingnessage signatut® a message.
The message signature is calculated by using a one-way hash algorithm to convert
the message contents into a typically smaller, fixed lengglssage digeshat is
then signed(that is, cryptographically enciphered, typically using a public key
mechanisi A message signature ensures that modification of the message by
anyone other than the caller will be detectable by the receiver. Although there are
always things a sender can do (including publishing its private authentication
keys) to compromise a receiver’s ability to hold it accountable for a received mes-
sage, both parties to the communication would be wise to select an integrity
mechanism that appends a message confounder (typically a sequence humber and
a timestamp) to the message before the digest. The purpose of the confounder is to
make the message authenticator useful only once. This prevents a malicious recip-
ient from claiming that it received a message more times than it did or from

PROTECTING MESSAGES 235

reusing an intercepted message for its own purpose. In exchange for these
receiver-side limitations, a measure of accountability is transferred to the sender.

In the J2EE architecture, a container serves as an authentication boundary
between callers and the components it hosts. Information may flow in both direc-
tions on a call (that is, a call may have input, output, or input and output parame-
ters). The Deployer is responsible for configuring containers to safeguard
interactions between components. A Deployer must configure the containers
involved in a call to implement integrity mechanisms either because the call will
traverse open or unprotected networks, or because the call will be made between
components that do not trust each other. The latter is necessary to ensure that mes-
sages can only be used once, and to reduce the plausibility of arguments made by
either of the communicants that they did not send the messages claimed to have
been received. When integrity mechanisms are configured by the Deployer, the
calling container must compute and attach a message signature to the call request,
and verify the correspondence between the call response and the message signa-
ture attached to the call response. The called container must verify the correspon-
dence between the call request and the attached message sighature, and compute
and attach a message signature to the call response. If either of the verifications
fails, the call should be abandoned, and the caller notified (for example, by excep-
tion) of the failure.

The performance cost associated with applying integrity protection to all
message communication is as much a property of the operational environment as
it is a consequence of the cost of the protection. One way to safeguard the integ-
rity of application messages without unnecessarily limiting the space of opera-
tional environments, is to capture application-specific knowledge identifying
which messages must be integrity protected. The place to capture this information
is in the application’s deployment descriptor.

9.4.2 Confidentiality Mechanisms

Confidentiality mechanismensure that communication between entities is kept pri-
vate. Privacy is achieved by encrypting the message contents. Because symmetric
(that is, shared secret) encryption mechanisms are generally much less expensive (in
terms of compute resources) than are asymmetric (that is, public key) mechanisms,
it is quite common for an asymmetric mechanism to be used to secure the exchange
of a symmetric encryption key, which is then used to encrypt the message contents.
The Deployer is responsible for configuring containers to apply confidential-
ity mechanisms to ensure that sensitive information is not disclosed to third par-

236

CHAPTER9 SECURITY

ties. Despite the improved performance of the shared secret mechanisms, the costs
of message encryption are significant, and should be expected to have an adverse
effect on performance when confidentiality mechanisms are applied where they
are not needed. The Application Assembler should supply the Deployer with
information on which method calls of which components feature parameters or
return values that should be protected for confidentiality. The Deployer then must
configure the containers involved in a call to employ a confidentiality mechanism
whenever one of the method calls identified by the Application Assembler will
traverse open or unprotected networks. In addition to applying confidentiality
mechanisms where appropriate, the Deployer should configure containers to reject
call requests or responses with message content that should be protected but isn’'t
protected. Message integrity is typically verified as a side effect of confidentiality.

9.4.3 Identifying Sensitive Components

We recommend that the Application Assembler identify the components whose
method calls feature parameters or return values that should be protected for integ-
rity and/or confidentiality. The deployment descriptor is used to convey this infor-
mation. For enterprise beans, this would be done deskription subelement
(most likely of amethod-permission element). For servlets and JSP pages, this
would be done in theransport-guarantee subelement of th@ser-data-con-
straint subelement of &ecurity-constraint. In cases where a component’s
interactions with an external resource are known to carry sensitive information,
these sensitivities should be described indke:ription subelement of the corre-
spondingresource-ref.

9.4.4 Ensuring Confidentiality of Web Resources

In addition to understanding how to configure Web transport guarantees, it is impor-
tant to understand the properties of HTTP methods, and the effects these properties
have when a link is followed from one Web resource to another. When a resource
contains links to other resources, the nature of the links determines how the protec-
tion context of the current resource affects the protection of requests made to the
linked resources.

When a link isabsolute(that is, the URL begins withttps:// or http://),
the HTTP client container will ignore the context of the current resource and
access the linked resource based on the nature of the absolute URL. If the URL of
the link begins withhttps://, a protected transport will be established with the

AUDITING 237

server before the request is sent. If the URL of the link begins with://, the
request will be attempted over an insecure transport. When the lialaisve, the
HTTP client container will protect an access to a linked resource based on
whether the resource in which the link occurs was protected.

The application developer should consider these link properties most care-
fully when a linked request must carry confidential data back to the server. There
are a few choices available to ensure security in such cases. For example, an appli-
cation developer might choose to use secure absolute links to ensure the transport
protection of requests that carry confidential data. This would solve the security
problem, at the expense of constraining the application to a very specific naming
environment.

Another option, assuming that an application opts for portability and uses rel-
ative links, is for the Deployer to configure the application so that wherever there
is a confidential interaction from one resource to another, both are deployed with a
confidential transport guarantee. This approach will ensure that an HTTP client
container will not send a request to a protected resource without protecting it.

As arelated point, theosT method is favored over the&eT method for deliver-
ing confidential request data, since data sentceiaappears in both client- and
server-side logs.

9.5 Auditing

Auditing is the practice of capturing a record of security-related events for the
purpose of being able to hold users or systems accountable for their actions. A
common misunderstanding of the value of auditing is evident when auditing is used
solely to determine whether security mechanisms are serving to limit access to a
system. When security is breached, it is usually much more important to know who
has been allowed access than who has not. Only by knowing who has interacted
with the system do we have a chance of determining who should be held account-
able for a breach of security. Moreover, auditing can only be used to evaluate the
effective security of a system when there is a clear understanding of what is audited
and what is not.

The Deployer is responsible for configuring the security mechanisms that will
be applied by the enterprise containers. Each of the configured mechanisms may
be thought of as a constraint that the containers will attempt to enforce on interac-
tions between components. It should be possible for the Deployer or System
Administrator to review the security constraints established for the platform, and

238 CHAPTER9 SECURITY

to associate an audit behavior with each constraint so that the container will audit
one of the following:

» All evaluations where the constraint was satisfied
« All evaluations where it was not satisfied
 All evaluations independent of outcome

* No evaluations

It would also be prudent to audit all changes (resulting from deployment or
subsequent administration) to the audit configuration or the constraints being
enforced by the platform. Audit records must be protected so that attackers cannot
escape accountability for their actions by expunging incriminating records or
changing their content.

The J2EE programming model aims to shift the burden of auditing away from
developers and integrators to those who are responsible for application deploy-
ment and management. Therefore, although not currently mandated by the J2EE
specification, we recommend that J2EE containers provide auditing functionality
that facilitates the evaluation of container-enforced security policy.

9.6 Summary

A primary goal of the J2EE platform is to relieve the application developer from the
details of security mechanisms and facilitate the secure deployment of an applica-
tion in diverse environments. The J2EE platform addresses this goal by defining a
clear separation of responsibility between those who develop application compo-
nents, those who assemble components into applications, and those who configure
applications for use in a specific environment. By allowing the Component Provider
and Application Assembler to specify which parts of an application require security,
then letting the Deployer select the specific security mechanisms used for that pro-
tection at deployment time, deployment descriptors provide a means outside of code
for the developer to communicate these needs to the Deployer. They also enable
container-specific tools to give the Deployer easier ways to engage the security con-
straints recommended by the developer.

SUMMARY 239

An Application Component Provider identifies all of the security dependen-
cies embedded in a component including:

* The names of all the role names used by the component in cBxl0er-
InRole OrisUserInRole

* References to all of the external resources accessed by the component

» References to all the inter-component calls made by the component

An Application Component Provider may also provide a method permission
model, along with information that identifies the sensitivity with respect to
privacy of the information exchanged in particular calls.

An Application Assembler combines one or more components into an appli-
cation package and then rationalizes the external view of security provided by the
individual components to produce a consistent security view for the application as
awhole. The objective of the Application Assembler is to provide this information
so that it can inform the actions of a Deployer.

A Deployer is responsible for taking the security view of the application pro-
vided by the Application Assembler and using it to secure the application in a spe-
cific operational environment. The Deployer uses a platform-specific deployment
tool to map the view provided by the assembler to the policies and mechanisms
that are specific to the operational environment. The security mechanisms config-
ured by the Deployer are implemented by containers on behalf of the components
hosted in the containers.

J2EE security mechanisms combine the concepts of container hosting, plus
the declarative specification of application security requirements, with the avail-
ability of application-embedded mechanisms. This provides a powerful model for
secure, interoperable, distributed component computing.

About the Author

STEPHANIE BODOFFis a staff writer at Sun Microsystems. She has been involved
with object-oriented enterprise software since graduating from Columbia University
with an M.S. in electrical engineering. For several years she worked as a software engi-
neer on distributed computing and telecommunications systems and object-oriented
software development methods. During that period she co-auttipgett-Oriented
Software Development: The Fusion Methd®rentice Hall. For the past 4 years
Stephanie has concentrated on technical writing, documenting object-oriented data-
bases, application servers, and enterprise application development methods.

ABHISHEK CHAUHAN has been working on the design of scalable network services
and distributed programs. At Sun Microsystems, Abhishek was involved in the evolution
of the J2EE programming model from its inception. He pioneered work on Web access
optimization techniques and implementation of the Java Web Server. He worked on the
JavaServer Pages specification and Sun’s JavaServer Pages implementations.

Abhishek was one of the founders and a lead architect at Vxtreme, where he
worked on the design of its streaming server. Vxtreme was acquired by Microsoft in
1997. In a former life, Abhishek worked at Microsoft on the Office Visual Basic
scripting engine. He has an M.S. from the University of Wisconsin at Madison and a
Bachelor’s degree from the Indian Institute of Technology at Delhi.

CHAPTER 10

The Sample Applicatién

by Stephanie Bodoff
and Abhishek Chauhan

TO conclude this discussion of the J2EE programming model, this chapter pro-
vides an in-depth description of a multitier Web application, an e-commerce Web
site. We review the entire process of developing this application from specification
to design to implementation, illustrating many of the principles discussed in the
earlier chapters.

The first section describes some scenarios in which the sample application is
used. Although the sample application supports administration and business-to-
business interactions as well as shopping interactions, this chapter focuses mainly
on shopping interactions.

The discussion then turns to the architecture of the sample application: the
partitioning of functionality into modules, the assignment of functionality to tiers,
and object decomposition within tiers. The architecture of the sample application
conforms to the Model-View-Controller architecture. We describe the motivation
for using this architecture and how each of these concepts is realized in the imple-
mentation of the sample application.

Finally, this chapter describes how the sample application uses the deploy-
ment, transaction, and security capabilities of the J2EE platform to simplify com-
ponent development and provide richer functionality.

10.1 Application Functionality

The sample application models a typical e-commerce application, an online pet
store. E-commerce sites like this are among the most common Web applications.

241

242

CHAPTER 10 THE SAMPLE APPLICATION

The application interface is presented to its customers through a Web site and a cus-
tomer interacts with the application using a Web browser. Other potential users of
the application include administrators responsible for maintaining inventory and
performing other managerial tasks, and associated businesses such as suppliers.
Each class of users would have access to specific categories of functionality, and
each would interact with it through a specific user interface mechanism.

Like a typical e-commerce site, the pet store presents the customer with a
catalog of products. The customer selects items of interest and places them in a
shopping cart. When the customer has selected the desired items and indicates
readiness to buy what is in the shopping cart, the sample application displays a bill
of sale: a list of all selected items, a quantity for each item, the price of each item,
and the total cost. The customer can revise or cancel the order. When the customer
is ready to accept the order, the customer provides a credit card number to cover
the costs and supplies a shipping address.

10.1.1 Scenarios

The following scenarios demonstrate a few key ways the pet store application could
be used by describing a user’s view of interactions with the system. By walking
through these scenarios, you'll gain a better understanding of the requirements as
well as the interactions that happeithin the system.

The sample application could support three very different kind of scenarios.
First, there is the shopping interface described earlier, that allows shoppers to buy
items online. Second, there is an administration interface for carrying out store
administration activities. Finally, there is a business-to-business interface through
which the store can interact with suppliers. The scenarios in this section demon-
strate all three types of interaction, while the remainder of this chapter focuses
mainly on the shopping interactions.

10.1.1.1 Shopping Scenario

The primary function of the sample application is to provide an interface where cus-
tomers can browse through and purchase items. This shopping interaction typically

APPLICATION FUNCTIONALITY 243

starts with the customer’s visit to the application home page and ends when the cus-
tomer orders from the site:

1. A customer connects to the application, by pointing the browser to the URL for
the application’s home page. This allows the customer to browse through the
catalog or search for products through some search interface.

2. At any point during the whole interaction, the customer can sign into the appli-
cation by providing an account identifier and a password. When the customer
signs in, the application can recall information about the customer such as a
preferred shipping address and billing information, buying preferences, and so
on. Customers who don’t have an account can create one at any time by pro-
viding an account identifier, customer name, password and some other person-
al details.

3. The customer browses through the catalog. The customer can select a category
to see a list of all the products in that category. For example, the customer can
select the categomgats to view all cats that the pet store sells. Alternatively,
the customer can search for products using one or more keywords describing
the product. For example searching with keywaressian andmammal might
bring a list of Persian dogs and cats.

4. The customer selects a particular product in the list. Now, the application dis-
plays detailed information about the selected product. The description and im-
age of the product is shown along with pricing information. When there are
several variants of the same product, each variant is shown as a separate item.
For example, when showing details about an African parakeet, the items could
be large male African parakeet, small female African parakeet, and so on.

5. The customer decides to purchase a particular item and clicks a button to add
the item to the shopping cart. The customer may continue shopping, adding
more items to the shopping cart. As the customer browses through the catalog,
the application remembers all the items placed in the cart. The customer can
recall the shopping cart at any time during the interaction to review or revise
the contents of the cart.

6. The customer can choose to order the items in the shopping cart at any time.
This is called checking out. A checkout button is presented along with the
shopping cart. If the customer is not signed in, the application brings up a sig-
nin/signup screen. Here the customer can sign in, or set up a new account, if
they don’t have one. After the customer is signed in, order processing contin-
ues as before.

7. When the customer asks to check out, the application presents a summary of

244

CHAPTER 10 THE SAMPLE APPLICATION

all items that would be ordered along with their costs. At this point the custom-
er must confirm the order.

. When the customer confirms the order, the application begins to gather ship-

ping and billing information for the order. First it presents a form, where the
customer can enter shipping information. If the customer is signed into the ap-
plication at this time, the form comes up filled in with the customer’s preferred
shipping address.

. When the customer enters the shipping address, the customer is asked to enter

billing information, including credit card details and a billing address. If the
customer is signed in, the application recalls these details and the forms are re-
turned filled in.

10. Finally the customer confirms the order and the application accepts the order

for delivery. A receipt including a unique order number and other order details
is presented to the customer. The application validates credit card and other in-
formation, updates its inventory database, and optionally sends a confirmation
message via email.

This is a fairly typical shopping scenario. Some variations are possible, espe-

cially in the way the catalog is presented to the customer. For instance, the appli-
cation could provide specialized lists of items such as best-sellers, or discounts on
certain items. There may also be variations in order processing, such as reducing
the steps for making an order when the customer is already signed in. The applica-
tion developer needs to design the application to support these variations, as well
as others that might arise as the application evolves.

Although this scenario presents the application from a single customer’s point

of view, the pet store application needs to simultaneously support a large number
of shoppers.

10.1.1.2 Administration Scenario

The pet store application does most of the administrative work of managing orders,
creating new accounts, and other details without manual intervention. However,
there are some tasks where manual intervention is desirable or required. These are
often administration tasks, such as managing the inventory, reestablishing forgotten
customer passwords, rolling back orders, handling returned merchandise, and pro-
cessing and shipping of orders.

The administration interface of the pet store application could use a Visual

Basic client running in a Microsoft desktop application such as Microsoft Excel.

APPLICATION FUNCTIONALITY 245

The application must be designed to support more than one administrator simulta-
neously using the administration interface.

The administration scenario models inventory management, where an admin-
istrator updates inventory when new shipments come in:

1. The administrator starts up the shopping client application. When the client
starts, it asks the administrator to sign on to the system using a user name and
password. The administrator enters information for one of the accounts that has
administration privileges.

2. The client application then presents a list of products in the catalog, perhaps in
order by category, with the product details such as description and name also
shown.

3. The administrator clicks a product to see the items as well as their inventory
status. For any item displayed, the administrator can modify the inventory sta-
tus.

4. The administrator clicks an update button, causing the changes to inventory
status to be committed to the inventory database.

10.1.1.3 Business-to-Business Scenario

Businesses often have a need to interact with other businesses through their custom
applications. For example, a retailer needs to work with suppliers to procure inven-
tory, with shipping agencies for managing shipments, and with billing agencies for
handling its billing needs. In fact, significant pieces of the application such as inven-
tory control could themselves be off-loaded to a separate business.

It would be desirable to have some of these interactions be automated. When
businesses are tightly coordinated, perhaps under the same ownership or adminis-
tration, these interactions could lmosely-coupledin such interactions, busi-
nesses expose their entities and data to each other. However, most of the time it is
desirable to keep the businesdessely-coupled Here businesses interact by
passing asynchronous messages to each other. This messaging approach also
models the real world more closely, where businesses work together by sending
faxes and packages, and so on, to each other.

246 CHAPTER 10 THE SAMPLE APPLICATION

An interaction between the pet store and one of its suppliers would illustrate a
loosely-coupled business interaction. A typical scenario might be:

1. A customer places an order. This causes the inventory to fall below a pre-es-
tablished low water mark, triggering the application to initiate an order to ob-
tain more items from the supplier. This process happens asynchronously and
does not interfere with the transaction being performed by the customer.

2. The application sends a purchase request message to the supplier. A typical
purchase request message could say, “Send 100 male African parakeets.”

3. At some later time, the supplier sends a message in response to the request. If
the supplier does not have enough parakeets to fill the order, the message might
say, “Can't fulfill request. Have 20 parakeets available.”

4. The application, upon receipt of the message, might send another request for a
smaller quantity. The message might say, “Send 20 male African parakeets.”

5. The supplier initiates delivery of the shipment, and sends a message back to
the application. This message might say, “Request completed. 20 parakeets
shipped. Shipment number is 1234.”

The interaction between the store and supplier is depicted in a timing diagram
in Figure 10.1.

Send 100 Parakeets 7)
Inventory
Low

Failed: 20 Available

Store Supplier

Send 20 Parakeets

Sent 20 Parakeets

Figure 10.1 A Store-Supplier Business-to-Business Interaction

APPLICATION FUNCTIONALITY 247

One thing to observe about this scenario that it is asynchronous. The action is
initiated when a customer places an order. However, it proceeds without blocking
the customer’s interaction. Also note that neither the store nor the supplier is
blocked waiting for the other to respond. While the procurement is in progress,
the store’s application and the supplier's system carry on with their activities as
usual.

10.1.2 Functional Specification

With a clear understanding of the kind of scenarios in which the application would
be used, let’s create an initial specification of the user interface of the application.
This section presents a sketch of the main user interface of an application that sup-
ports the shopping interactions. It is possible to create a similar sketch for a user
interface for administration interactions. Business interactions typically do not
require a user interface. As mentioned earlier, the remainder of this chapter focuses
on the shopping functionality of the application.

Upon arriving at the main page of the online pet store, a customer would
expect some of the following features:

» Asetoflinks or navigation bars on each page that provide quick access to com-
mon navigational tasks.

» An organized view of the site’s contents through a categorized catalog.

» A search mechanism to provide a way to locate items based on keyword de-
scriptions. Other types of quick access could be in terms of popular items or
new additions.

» A master viewf the catalog that lists items of interest. This could be the result
of the customer navigating through a catalog category or the outcome of a key-
word search.

» A detail viewthat describes the details of a particular item. Shoppers click on
an item in the master view to zoom in on details, including a description, a pic-
ture, the price, a link to the supplier's URL, and so on.

» A shopping cart view that lets customers review the contents of their shopping
cart. The cart allows the customer to modify quantities of items in the cart, in-
cluding removing items from the cart altogether.

» A checkout or bill-of-sales view that displays the total order cost and allows
the customer to enter billing and shipping information. The customer will want

248

CHAPTER 10 THE SAMPLE APPLICATION

assurance that order details including shipping and credit card information are
transferred securely and accountably. The interaction must be authenticated to
positively identify the customer for the purposes of accountability and encrypt-
ed through HTTPS to protect the privacy of the information the customer pro-
vides.

» Areceipt view to provide confirmation of the purchase through a unique order
identifier or other mechanism to track the newly placed order and review de-
tails of the order.

In addition to these user interface requirements, the application must also
support some security requirements. We address these in Section 10.11 on
page 301.

10.2 Application Architecture

This section describes the architecture of the pet store application; exploring the par-
titioning of functionality into modules, the assignment of functionality to tiers, and
object decomposition within the tiers.

10.2.1 Application Modules

This discussion reviews the shopping interaction scenario once again, this time iden-
tifying actions within the application as it runs on the server. This replay is used to
explore ways to divide the application into modules based on similar or related func-
tionality. Dividing the problem in this manner reduces the dependency between
modules, allowing them to be developed somewhat independently. Identifying the
interface between modules enables some of the modules to be provided by third-
party component providers, or subcontracted to specialists in a particular area of
functionality.

Here’s the scenario once again, with the various behaviors organized by mod-
ules:

1. A user connects to the application. If the user logs inuger account module
maintains user account information. It creates new user accounts and manages
these accounts. Accounts include such information as user name, password,
and account ID.

2. Theproduct catalog moduleeturns a list of products. The product catalog

APPLICATION ARCHITECTURE 249

module searches the product database for a list of possible matches to the
search criteria and renders the products for the user.

3. The user views a specific product. The product catalog module also returns de-
tailed information about the selected product, including pricing information. It
optionally can check thimventory moduléor availability information, such as
quantity in stock.

4. The user selects an item for purchase. $hepping client modulereates a
shopping cart for the user for the duration of the user’s session.

5. The user chooses the checkout option and commits to buying the iterar-The
der processing modulmanages this interaction.

6. The application determines whether the user is logged in and if not, calls the
user account module to set up a new user account. Otherwise it instructs the
user account module to extract account information such as credit card and
shipping information.

7. The application then authenticates the user and validates the credit card and
shipping information.

8. The application lets the user revise or cancel the order. If the user accepts the
order, the order processing logic logs the order, notifiesrthentory module
to update the inventory database, and sends a confirmation message by email.

This time, the run-through of the scenario has identified the following
modules and their responsibilities:

« User account module: The application tracks user account information. This
includes a user identifier and password and various types (billing and email ad-
dresses, phone number, and so on) of contact information. The application
saves user account information to a database so that it spans sessions.

» Product catalog module: The application allows the user to search for products
or services and be able to display details of individual products. The product
catalog includes descriptions of individual items.

» Order processing module: The application performs order processing. Order
processing occurs when the user performs the check-out process and buys the
items in the shopping cart.

» Messaging module: The application sends confirmation messages.

* Inventory module: The application maintains information on the number of

250 CHAPTER 10 THE SAMPLE APPLICATION

each type of product in stock.

» Control module: The application allows users to browse the product catalog
and add selected items to a shopping cart. At any time, the user can modify
items in the shopping cart, add new items, or remove items already placed in
the cart.

Figure 10.2 shows the interrelationship of the modules in the sample applica-
tion.

-
User Product

Product
Interface Product List Catalog DB

Product Details

Browser

Checkout
Inventory

Shopping Cart

:

I Per User

I Per Session CO!
I Item Existing Acct
i Item

§i1ipping

Order
Processing

Figure 10.2 Functional Modules for the Sample Application

This modular decomposition of the pet store application is reflected in the subpack-
ages of the sample application’s top-level packagesun.estore:

* account: User account

* cart: shopping cart

* catalog: product catalog

e control: controls

APPLICATION ARCHITECTURE 251

* inventory: product inventory
* mail: email messaging
* order: order processing

e util: utility classes

10.2.2 Application Design

Partitioning the application into logical modules is the first step in subdividing the
overall problem. The next step is to begin the process of object-oriented design of
the application, identifying units of business logic, data, and presentation logic and
modeling each of them as a software object.

The process starts by identifying the options and approaches available at the
highest level. Once these choices are clear and the decisions and design principles
are established, the rest of the design will be simplified by leveraging these overall
principles.

One of the first decisions to make concerns the tiers that the application uses.
The J2EE platform is designed for multitier applications, and offers a lot of flexi-
bility in choosing how to distribute application functionality across the tiers. In a
Web-enabled application, such as the sample application, some tiers are always
present: the client tier provided by the browser, the Web tier provided by the
server and the enterprise information system or database tier which holds persis-
tent application data. The first choice to make is whether the Web tier accesses the
enterprise information system resources directly, or goes through an EJB tier. The
decision depends on the functionality, complexity, and scalability requirements of
the application. Since such requirements can change as the application evolves,
one goal for the design is to make it amenable to migration to an EJB-centric
approach.

After deciding what tiers constitute the application, the next decision is how
to distribute application functionality across these tiers. This division is closely
linked to how the application is divided into objects at the highest level and repre-
sents one of the most important decisions when designing enterprise applications.
Some clear and simple guidelines to help with making this decision are addressed
in the following discussions.

252

CHAPTER 10 THE SAMPLE APPLICATION

10.2.2.1 Application Tiers

In a Web-centric design, the Web tier communicates directly with the enterprise
information system resources that hold application data. In this approach, the Web
tier is responsible for almost all of the application functionality. It must take care of
dynamic content generation and presentation and handling of user requests. It must
implement core application functionality such as order processing and enforce busi-
ness rules defined by the application. Finally, the components running in the Web
tier must also manage transactions and connection pooling for data access. Because
it must handle so many functions, Web-centric application software has a tendency
to become monolithic. As a result, unless special efforts are taken, it does not scale
well with increasing software complexity.

In an EJB-centric design, enterprise beans running on EJB servers encapsulate
the enterprise information system resources and the core application logic. The
Web tier communicates with the EJB tier instead of directly accessing the enter-
prise information system resources. This approach moves most of the core appli-
cation functionality to the EJB tier, using the Web tier only as a front end for
receiving client Web requests and for presenting HTML responses to the client.

The principal advantage of this approach is that enterprise beans have access
to a broad set of enterprise-level services. Because of these services, managing
transaction and security aspects of the application is easier. The EJB container
provides a highly structured environment for the components that allows a devel-
oper to focus entirely on the application domain issues, while the EJB container
takes care of system-level details. These standardized container-provided services
also translate into better software reliability. The EJB architecture supports a pro-
gramming discipline that promotes encapsulation and componentization, resulting
in software that stays manageable as applications grow more complex.

The Web-centric approach is better for getting the application off to a quick
start, while EJB-centric approach becomes more desirable when building a large
scale application where code and performance scalability are prime factors. While
the Web-centric approach may be more prevalent, with many applications imple-
mented using it, it has limitations when building large scale, complex applica-
tions.

The ideal solution is an approach that benefits from the strengths of both
approaches. The sample application demonstrates an approach that started out
simple and small, but kept the option of growth open. Its extensible design started
as Web-centric and migrated to an EJB-centric architecture. While most of its
modules are implemented with an EJB-centric design, the catalog module uses the

APPLICATION ARCHITECTURE 253

Web-centric model. Strategies for migrating components from Web-centric to
EJB-centric designs are described in detail in Section 4.7.1 on page 108.

Note that the discussion that follows describes a sample application design
that evolves from Web-centric to EJB-centric. The actual code of the sample
application reflects the final result of that migration. We have preserved the state
of the catalog module before migration to provide an indication of how the migra-
tion was performed.

10.2.2.2 Application Objects

The next issue to address in developing the overall application architecture is how to
subdivide the application into objects and how to the assign these objects to tiers.
This process is referred to as object decomposition. While most of the objects are
consigned to one tier or another, there are some that serve to connect the tiers and
will need to span tiers, and their design needs to take this into account.

This discussion focuses primarily on large scale, complex applications.
Smaller applications can probably get away with less rigorous treatment, but
object design really becomes important as applications grow more complex. Large
scale development of object-oriented software requires frameworks. It is impor-
tant to have a framework, so that every time the design requires two objects to
interact, a developer does not have to come up with a whole new notion of how the
interaction works out.

This section looks at the issues to keep in mind when doing the object decom-
position, and present techniques that we used in the sample application to deter-
mine an effective decomposition.

Design Goals

Consider the kind of goals that need to be addressed in object decomposition. Each
of these considerations identifies criteria to use to divide the application. The frame-
work must enable:

» Reuse of software designs and code

« Identification of the responsibility of each object. The division into objects
must ensure that the responsibilities of each object—what the object represents
and what it must accomplish—are easily and unambiguously identified.

254 CHAPTER 10 THE SAMPLE APPLICATION

While these requirements apply to object-oriented design in general, they
become even more important for multitier enterprise applications. Our additional
objectives were:

» Separate stable code from more volatile code. All parts of an enterprise appli-
cation are not equally stable. The parts that deal with presentation and user in-
terface change more often. The business rules and database schemas employed
in the application have a much lower propensity to change. The overall archi-
tecture should separate stable portions of the application from parts that are
more volatile.

 Divide development effort along skill lines. The people that comprise an enter-
prise development team typically represent a very diverse set of skills. There
are HTML layout and graphics designers, programmers, application domain
experts, and enterprise information system resource access specialists, among
others. The decomposition should result in a set of objects that can be assigned
to various subteams based on their particular skills. This division of labor al-
lows work on each object to proceed in parallel.

» Ease migration from Web-centric to EJB-centric design. As mentioned earlier,
the sample application starts out as a Web-centric application and migrates to
being EJB-centric.

We have described these considerations from the point of view of a high-level
division. However they are equally applicable even when we are working on iden-
tifying objects at a finer level. We will keep coming back to these considerations
as we need to make choices about object decomposition.

MVC Architecture

When applying the considerations discussed above to the sample application, the
first lines of division start becoming clear. At the highest level, the application
divides into three logical categories of objects. These are objects that deglevith
sentationaspects of the application, objects that deal withhhsinessules and

data, and objects that accept and interpret user requestsoatrdl the business
objects to fulfill these request.

The look and feel of the application interface changes often, its behavior
changes less frequently, and business data and rules are relatively stable. Thus
objects responsible for control are often more stable than presentation objects
while business rules and data are generally the most stable of all.

THE VIEW 255

The implementation of presentation objects is typically handled by graphics
designers, HTML and JSP technology experts, and application administrators
after the application has been deployed. Control-related objects are implemented
by application developers. Business rules and data objects are implemented by
developers, domain experts, and database experts.

The presentation logic of a user interface can be handled by the Web tier or
the client. In the Web tier, JSP pages are used to dynamically generate HTML for
consumption by a browser. A stand-alone client, such as the one described in the
administration scenario in Section 10.1.1.2 on page 244, provides its own presen-
tation. Control-related objects are present in each tier to enable coordination of
actions across tiers. Objects that model business data and rules live in the EJB tier
in an EJB-centric approach, and in the Web tier when using a Web-centric
approach.

As discussed in several chapters in this book, the MVC architecture can be
easily applied to enterprise applications. The presentation, business, and control
categories map respectively, to the view, model, and controller concepts defined in
the MVC architecture. The following sections take a detailed look at the design,
implementation, and interactions of the sample application objects that constitute
the view, model, and controller.

10.3 The View

The view determines the presentation of the user interface of an application. In the
sample application, the implementation of the view is contained completely in the
Web tier. In the sample application, three kinds of components work together to
implement the view: JSP pages, JSP custom tags, and JavaBeans components.

JSP pages are used for dynamic generation of HTML responses. Custom tags
make it easier for JSP pages to use JavaBeans components when the underlying
model is complex. Custom tags can also help encapsulate presentation logic and
make it modular and more reusable.

JavaBeans components represent the contract between JSP pages and the
model. JSP pages rely on these beans to read model data to be rendered to HTML,
while elsewhere in the system, the model and controller coordinate to keep the
JavaBeans components up to date.

This section describes the JSP pages and custom tags that implement the view.
Because the classes that implement JavaBeans components are intimately tied to
their corresponding model classes, the discussion of the implementation of Java-

256 CHAPTER 10 THE SAMPLE APPLICATION

Beans components and model classes is deferred until after the discussion of the
model.

10.3.1 Shopping Interaction Interface

The shopping scenario described in Section 10.1.1.1 on page 242 and the server-side
scenario in Section 10.2.1 on page 248 provide a behavioral specification for the
shopping interaction interface. This section translates this specification into the set
of views that the customer sees when interacting with the pet store application.

10.3.1.1 Screens

The user interface for the shopping interaction consists of a set of scresoeeh

is the total content delivered to the browser when the user requests an application
URL. In other words, a screen is what customers see when they navigate to one of
our application’s URLs. A screen can be composed of several components each con-
tributing a different part of its content.

The specification includes some notion of the kind of screens the application
displays to the customer and the dialogs it carries on with them. Taking this
process further, results in the specification of a complete set of screens, each with
a unigue name.The significance of the names will become clear later when the dis-
cussion turns to how the controller selects a view for each response. The following
list identifies what model information jpresentsand whatuser gesturest can
generate.

e Name:MAIN_SCREEN, DEFAULT_SCREEN

This is the home page of the application. It displays a list of all product
categories in the catalog, suchmsgs. The customer can click on any cate-
gory to browse through a master view of products that belong in that category.

e Name:CATEGORY_SCREEN

This screen displays a master view of all products that belong to a partic-
ular category. For each product it shows the product ID and its name. The cus-
tomer can click on the name of any product on display to see further details of
the product.

e Name:SEARCH_SCREEN

This screen displays the results of a search. Searching the catalog is inte-

THE VIEW 257

gral part of the application, and a search interface is displayed as part of every
page. When the customer requests a search, the results are shown using the
search screen. This screen is similar to theEGORY_SCREEN in that it dis-

plays a master view of the list of products that result from a search.

Name:PRODUCT_SCREEN

This screen displays information about a particular product. Each product
can be offered for sale in several configurations. We call each of thesaman
This screen lists inventory status for each item offered. The customer can
click on any item in inventory to see further details about it.

Name:PRODUCT_DETAILS_SCREEN

This screen displays detailed information about a particular product item,
including a description of the item and its image and the number of items in
the inventory. It also provides an Add button. Clicking this button adds the
product currently being shown to the shopping cart and displays the resulting
shopping cart.

Name:CART_SCREEN

This screen displays the contents of the customer’s shopping cart. For
each item in the shopping cart, it includes a brief description of the item and
its quantity. The customer can change the quantity of each item and delete
items from the cart. This screen includes an update button to update the cart
according to the changes made by the customer. It also has a checkout button.
Clicking the checkout button initiates the process of placing an order.

Name:CHECKOUT_SCREEN

This screen displays the final unmodifiable contents of the customer’s
shopping cart once again and asks the customer to confirm everything before
placing the order. A customer confirms the order by clicking the place order
button.

Name:PLACEORDER_SCREEN

This screen displays a form where the customer can fill in details neces-
sary to place the order. A customer places the order by clicking the submit

258

CHAPTER 10 THE SAMPLE APPLICATION

button.

* Name:COMMIT_ORDER_SCREEN

This screen displays the receipt after an order has been confirmed and
committed. It shows a unique order identifier so that the customer can track
the order later on. It also shows a complete list of items ordered, the total price
and shipping charges if any, as well as shipping and billing information.

* Name:SIGNIN_SCREEN

This screen displays a customer name and password, allowing the cus-
tomer to sign into the application. The submit button initiates the signin pro-
cess.

* Name:SIGNUP_SCREEN

This screen displays a form allowing a new customer to sign up and regis-
ter themselves with the application. Once registered the customer can conve-
niently recall personal information each time they place an order.

This completes the initial set of screens that are presented to the customer
during the course of a shopping interaction with the application. As the applica-
tion evolves, more screens may be added and existing screens modified.

10.3.1.2 Graphical Design

Since we already identified the major screens in the application and the data that
needs to be shown as part of each screen, we can now involve graphic design and
HTML specialists to create the layout, look, and feel of each of the screens.

There are two parts to this design: design of the custom content of each screen
and design of a common template which remains consistent with each of the
screens. The preceding scenarios have identified the data that needs to go into
each of the screens as well as the dynamic portions of the template.

The artist needs an idea of the size and shape of each of the data element that
needs to be shown in each of the screens. They can make good progress with the
graphical design at this point using storyboarding techniques, even without an
actual implementation of the rest of the application available to them. This is one
major advantage of decoupling the design of the user interface from the rest of the
application.

THE VIEW 259

The contractwith the graphic design artists is just how the application makes
the modeldata required for each screen available to the screen. As we shall see
later in this section, this is where the JavaServer Pages technology comes into

play.

10.3.2 JSP Pages

The JSP pages provided by the pet store application use a generic template mecha-
nism and application-specific JavaBeans components. This section describes the
template mechanism and discusses several example JSP pages. The JavaBeans com-
ponents are discussed in Section 10.5 on page 278. General guidelines on how to
use JSP technology can be found in Chapter 4.

10.3.2.1 A Template Mechanism

While sketching out the shopping interaction interface of the application, it is clear
that there are elements that we want to be part of each screen. Some of these are:

» The application logo and tag line.
» The search interface with a search text field and a search button.
« A help button to get information about the application.

» A show shopping cart button that provides immediate access to the shopping
cart from any screen.

A signin/signout status button that changes state based on whether the custom-
eris signed in. If they are signed in, they are presented with a sign out button.
If they are not signed in, they see a sign in button.

» Copyright notices and miscellaneous status information at the bottom of each
page.

Among the elements that change on each page are the body and the title.
Other elements, such as keywords and meta-headers, may also change with each
screen as well.

To add headers and footers to every JSP page, the designer could create
header and footer JSP files and have each JSP page include these at appropriate
places. Such a technique is illustrated in Code Example 10.1.

260

CHAPTER 10 THE SAMPLE APPLICATION

<%@ include file="header.jsp" %>
content of this screen
<%@ include file="footer.jsp" %>

Code Example 10.1 Templating Using JSP Include Statements

However, this approach runs into several limitations if we try to make the tem-
plate more elaborate, using HTML tables, side bar, and so on. The header and
footer files would have to be constructed and formatted properly to make sure the
body appears where intended. For instance, correct HTML requires opening
HTML tags in the header and a closing HTML tag in the footer so that the body
can be enclosed between them. This requires either hand-coded HTML or special-
ized authoring tools to ensure correct design and correct HTML. The problem
becomes compounded if we want more than just one contiguous chunk of HTML
to change on each screen. For instance, each screen might want to provide its own
HTML title as well as custom content. These features require a more flexible
screen layout mechanism.

A template mechanism provides a way to separate the common elements that
are part of each screen from the elements that change with each screen. Putting all
the common elements together into one file makes it easier to maintain and
enforce a consistent look and feel in all the screens. It also makes development of
individual screens easier since the designer can focus on portions of a screen that
are specific to that screen while the template takes care of the rest.

This section reviews the design and implementation of the sample applica-
tion's screen template mechanism. The concept of a presentation template can be
applied to almost any Web application in one form or another. The sample appli-
cation’s template mechanism is designed so that you can easily adapt it to other
applications.

The template itself is a JSP page, with place holders for the parts that need to
change with each screen. Each of these place holders is referred pauasreeter
of the template. For example, a simple template could include a title text parame-
ter for the top of the generated screen and a body parameter to refer to a JSP page
for the custom content of the screen.

Once you have a template, you can generate different presentation screens
from it simply by passing it different parameters. This process is cal&dntia-

THE VIEW 261

tion of the template. A specific screen is completely characterized by identifying
the template page, and the parameters to pass to the template. The set of parame-
ters that completely defines a screen is callesti@en definitioWhile a large
application could use multiple templates; the pet store application uses a single
template for all its screens. However, the mechanism it uses is designed to support
multiple templates.

From the templating mechanism’s point of view@aeernis the instantiation of
a template according to its screen definition. Figure 10.3 illustrates the relation-
ship between a template, a screen definition, and the resulting presentation screen.

//§;;;;:;;;hﬂﬁonsjsp ///”"—7
t

title = “Welcome” emplate.jsp MAIN_SCREEN
body = “index.jsp”

Figure 10.3 Defining a Screen in Terms of a Template and Its Parameters

Code Example 10.2 shows the contentsteifiplate.jsp, the template file
used in the sample application.

<%@ page errorPage="errorpage.jsp" %>

<%@ page import="com.sun.estore.control.Web.ScreenNames" %>
<%@ taglib uri="WEB-INF/tlds/taglib.t1d" prefix="j2ee" %>
<%@ include file="ScreenDefinitions.jsp" %>

<HTML >
<head>
<title>
<j2ee:insert template="template"
parameter="HTML Title" />
</title>
</head>

<body bgcolor="white">
<j2ee:insert template="template" parameter="HTML Banner" />
<j2ee:insert template="template"
parameter="HTML TopIndex" />
<j2ee:insert template="template" parameter="HTML Body" />

262

CHAPTER 10 THE SAMPLE APPLICATION

</body>
</HTML >

Code Example 10.2 template.jsp

The template is instantiated by forwarding to or dynamically including the
template.jsp page. Forwarding is performed using thep:forward standard
action or by calling th&orward method of &equestDispatcher; inclusion is per-
formed using aninclude directive or standard action or by calling theclude
method of &RequestDispatcher.

An appropriate screen definition must be set up in the request scope before
invoking template.jsp. JSP pages can access objects in request, session, and
application scopes. Since a screen is presented in the context of a specific URL
request from the user, the appropriate screen definition needs to be set in the
request scope before the template file is invoked. The other possible JSP scopes,
session and application, are broader—they’re more appropriate for setting general
site and user-specific portions of the template.

The following examples show howtemplate.jsp works. It uses the
j2ee:insert custom tag to identify place holders in the template. This tag is
responsible for extracting the screen definition from the request scope and insert-
ing it into the page. Code Example 10.3 contains the implementation of the
insert tag.

public class InsertTag extends TagSupport {
private boolean directInclude = false;
private String parameter = null;
private String templateName = null;
private Template template = null;
private TemplateParameter templateParam = null;

public void setTemplate(String templateName){

this.templateName = templateName;

pubTlic void setParameter(String parameter) {
this.parameter = parameter;

THE VIEW

public int doStartTag() {
try {
if (templateName != null){
template = (Template)pageContext.getRequest().
getAttribute("template");
}
} catch (NullPointerException e){

if (parameter != null && template != null)
templateParam = (TemplateParameter)template.
getParam(parameter);
if (templateParam != null)
directInclude = templateParam.isDirect();
return SKIP_BODY;

public int doEndTag() throws JspTagException {
try {
pageContext.getOut().flush(Q);
} catch (Exception e){

}
try {
if (directInclude && templateParam != null) {
pageContext.getOut().
println(templateParam.getValue());
} else if (templateParam != null) {
if (templateParam.getValue() !'= null)
pageContext.getRequest().
getRequestDispatcher(templateParam.
getValue()) .include(pageContext.
getRequest(),
pageContext.getResponse());
}
} catch (Throwable ex) {

263

264

CHAPTER 10 THE SAMPLE APPLICATION

return EVAL_PAGE;

3

Code Example 10.3 Insert Tag Implementation

Theinsert tag gets values of the parameters passed to it. The parameters are
automatically set by the JSP runtime environment and the tag focuses on inserting
the appropriate parameters into the response. Parameters can be direct or indirect.
Direct parameters are inserted as-is into the response stream. Indirect parameters
are treated as the name of a JSP file, and that file is dynamically included into the
response stream. This makes it possible to pass the title of a page as text using a
direct parameter, and the body as the name of a JSP file to include using an indi-
rect parameter.

10.3.2.2 View Selection

In a Web application, each screen presented to the user can be considered as a differ-
ent view. However, unlike the classic MVC architecture, all these views share the
same controller. There needs to be a mechanism that allows the controller to choose
a particular view to render in response to a user request. In the sample application,
the controller makes this selection by specifying the screen ID of the screen to
present as the response. This screen ID is mapped to a screen definition, then the
template is instantiated.

Recall that the filecemplate. jsp defines the template for the sample applica-
tion. This file includes another filscreenDefinitions.jsp, which defines all the
screens of the sample application. When the controller invokes the template file at
request time, it sets the appropriate screen definition in the request scope. The
template file passes this information to the screen definitions file which then
returns the appropriate screen definition for the request.

One goal in structuring template and screen definition files is to facilitate
internationalization (discussed in Section 4.5 on page 88). This is achieved by
separating text content from Java code. Since screen definitions that contain direct
and indirect parameters are candidates for internationalization, we want to keep
ScreenDefinitions.jsp devoid of Java technology code. We achieve this through
the use of JSP custom tags. Code Example 10.4 contains an excerstfam-
Definitions.jsp, Which usescreen andParameter custom tags to pass text and
the contents of files to the response.

THE VIEW 265

<%@ page import="com.sun.estore.control.Web.ScreenNames" %>
<jsp:useBean
id="screenManager"
class="com.sun.estore.control.Web.ScreenFlowManager"
scope="session"/>

<j2ee:CreateTemplate template="template"
screen="<%=screenManager.getCurrentScreen(request)%>">
<j2ee:Screen screen="<%=ScreenNames .MAIN_SCREEN%>">
<j2ee:Parameter parameter="HTML Title"
value="Welcome to Java Pet Store Demo" direct="true"/>
<j2ee:Parameter parameter="HTML Banner"
value="/banner.jsp" direct="false"/>
<j2ee:Parameter parameter="HTML Body"
value="/index.jsp" direct="false"/>
</j2ee:Screen>
<j2ee:Screen screen="<%=ScreenNames.SIGN_IN_SUCCESS_SCREEN%>'>

</j2ee:Screen>
</j2ee:CreateTemplate>

Code Example 10.4 ScreenDefinitions.jsp

When it is included at request time by the template flereenDefini-
tions.jsp USeSScreenFlowManager, a component of the controller, to identify the
view that the controller wishes to select. The nested custom tags arrange for that
screen’s definition to be set into the request scope when this file invoked.

In summary, the JSP pagesmplate.jsp andScreenDefinitions.jsp work
together to create the page viewed by the user. Figure 10.4 depicts the process of
view selection and instantiation in the sample application.

266 CHAPTER 10 THE SAMPLE APPLICATION

(@ screen-id < EE T
p—— \ from ScreenFlowManager
Screen Definition

Screen Definition

P
View Sent
to User

Screen Definition Serepm
Definition

Screen Definition

template.jsp

Screen Definition

ScreenDefinitions.jsp

Figure 10.4 View Selection and Instantiation

10.3.3 Examples

For the most part, the sample application’s presentation JSP pages use fairly
straightforward JSP elements. This section examines three example presentation
JSP pages: the home screen pdgeex. jsp), the products-by-category page-4-
ductcategory.jsp), and the shopping cart pagart.jsp).

10.3.3.1 Home Screen

The home screen of the Java Pet Store Demo application is shown in Figure 10.5.
The JSP source used to generate the screen, contained in theléite;jsp,

appears in Code Example 10.5. The screen is composed of the banner that appears

in all the Java Pet Store Demo screens, a list of the product categoiiesn(-

dex. jsp) supported by the application, and an imagenwap4sh. jsp) of the cat-

egories. The banner does not appear explicitly, because it is constructed by the

template described in Section 10.3.2.1 on page 259.

THE VIEW

Reptiles

Lisards, Turbles, saokes

Cats

various Breeds, Exobic varieties

Birds

Exobic Vazickies

Figure 10.5 Home Screen

<table border="0" cellspacing="0" width="600" >
<tr>
<td>
<%@ include file="sideindex.jsp"%>
</td>
<td bgcolor="white" height="300">
<%@ include file="splash.jsp" %>
</td>
</tr>
</table>
</HTML >

Code Example 10.5 index.jsp

10.3.3.2 Product Category Screen

The screen that lists all the products in a category is shown in Figure 10.6.
The JSP source used to generate the screen, contained in grediletcat-

267

egory.jsp, appears in Code Example 10.6. In this code sample, the first statement

sets thecatalog variable to point to an instance of the JavaBeans compaaent

alogWebImpl. This component is used to retrieve the catalog entries for a particu-

268

CHAPTER 10 THE SAMPLE APPLICATION

lar product category. The category is retrieved from the impheiuest object
with the getParameter("category_id") method. Once the category and its prod-
ucts are retrieved, JSP scriptlets are used to generate the table of products.

Fish Dogs| Reptiles |Cats | Birds

K9-CW-01 Chihuahua

K9-DL-01 Dalmation
K9-RT-02 Labrador Retriever
K9-PO-02 FPoodle

Figure 10.6 Product Category Screen

<jsp:useBean
id="catalog"
type="com.sun.estore.catalog.model.CatalogModel"
class="com.sun.estore.catalog.web.CatalogWebImpl"
scope="application"/>

<%
String key = request.getParameter("category_id");
Category category = null;
if (key !'= null) category = catalog.getCategory(key);
if (category != null) {

Collection products = null;

products = catalog.getProducts(key, 0, 20);
%>
<p>
<%= category.getDescription()%>
<p>

<table border="0" bgcolor="#336666">
<tr background="../images/bkg-topbar.gif">
<th>Category ID</th>

THE VIEW 269

<th>Category Name</th>
</tr>

<%
Iterator it = null;
if (products != null) it =products.iterator();
while (it.hasNext()) {
Product product = (Product)it.next();
%>
<tr bgcolor="#eeebcc">
<td><%= product.getId() %></td>
<td>
<a href="product?product_id=<%= product.getId() %>">
<%= product.getName()%>
</td>
</tr>

<% } %>
</table>
<%
} else {
// Category was not found:
%>
<p>
Unable to Locate Category ID <%= key
%>

<% } %>

Code Example 10.6 productcategory.jsp

10.3.3.3 Shopping Cart Screen

The screen that displays the contents of a user’s shopping cart is shown in Figure
10.7.

The JSP source used to generate the screen, contained in therfilgsp,
appears in Code Example 10.7 and Code Example 10.8. In this code sample, the
first statement sets thart variable to point to an instance of the JavaBeans com-
ponentshoppingCartWebImpl. This component is used by the shopping cart table.

270

CHAPTER 10 THE SAMPLE APPLICATION

The include statement towards the middle of the code sample (begins ¥éh “
include”) causes the page to include the shopping cart table (illustrated in Code
Example 10.8). The page also contains a button that accepts a modification to the
shopping cart, and a link to a checkout page.

Fish Dogs| Reptiles | Cats | Birds

Shopping Cart:

EST-25 Adult Female Labrador Retriever yes $325.29 I $325.29

EST-19 AdultMale Finch ves $15.50 =2 $31.00

Figure 10.7 Shopping Cart Screen

<jsp:useBean
id="cart"
class="com.sun.estore.cart.Web.ShoppingCartWebImpl"
scope="session"

<%
cart.init(session);

%>

</jsp:useBean>

<p>

<%

if (cart.getSize() > @) {

%>

Shopping Cart:
<p>

<form action="cart">

<input type="hidden" name="action" value="updateCart">

<table bgcolor="white">

<tr>
<td>
<%@ include file="changeable_carttable.jsp" %>

THE VIEW 271

</td>
<td>
<input type="image" border="0" src="../images/cart-up-
date.gif" name="update">
</td>
</tr>
</tabTle>
</form>
<img src="../images/button_checkout.gif"
alt="Proceed To Checkout" border="0">

<%
} else {
// The cart is empty

%>

Shopping Cart is empty.
<% } %>

Code Example 10.7 cart.jsp

Code Example 10.8 uses JSP scripting capabilities to display all the rows in
the shopping cart. The page retrieves shopping cart items froratitecompo-
nent set by the enclosing pagert.jsp. The page also includes a button that
allows a user to delete an item from the shopping cart.

<table bgcolor="#336666">

<tr background="../images/bkg-topbar.gif" border="0">
<th><!-- for the remove column --></th>

<th>Item ID</th>
<th>Product Name</th>
<th>In Stock</th>
<th>Unit Price</th>
<th>Quantity</th>
<th>Total Cost</th>
</tr>

272 CHAPTER 10 THE SAMPLE APPLICATION

<%--
% Loop through each item in the shopping cart. The current item is
% available to the jsp block within the Toop as "item"

--%>

<%
Iterator it = cart.getItems();
while (it != null) && it.hasNext()) {
CartItem item = (CartItem)it.next();
%>

<tr bgcolor="#eeebcc">
<td>

<a href="cart?action=removeltem&itemId=<%=1item.get-
ItemId()%>"><img src="../images/button_remove.gif" border="0"
alt="Remove Item From Shopping Cart">

</td>

<td><%= item.getItemId() %></td>

<td>
<a href="productdetails?item_id=<%=item.getItemId()%>">
<%=1tem.getAttribute()%> <%=1item.getName()%>

</td>

<td><%=(inventory.getInventory(item.getItemId())

>= jtem.getQuantity()) ? "yes" : "Back Ordered"%></td>
<td><%=]SPUti1.formatCurrency(item.getUnitCost())%></td>
<td><input name="1itemQuantity_<%=1item.getItemId()%>"

type="text"

size="4"

value="<%=1tem.getQuantity(O)%>">
</td>
<td><%=JSPUti1.formatCurrency(item.getTotalCost())%></td>
</tr>

<% } // end for loop %>

THE MODEL 273

<tr background="../images/bkg-topbar.gif">
<td></td>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>
<%=JSPUti1.formatCurrency(cart.getTotalCost())%
</td>
</tr>
</table>

Code Example 10.8 changeable_carttable.jsp

10.4 The Model

In this section we focus our attention on the state that needs to be maintained by the
application. One can think of the back-end of an application as a collection of state

with some rules on how the state changes in response to user interactions. This
section explains how the sample application maintains state in the J2EE platform

and persistent data in database tables.

10.4.1 State in the J2EE Platform

Typically, the customer will use a number of features of the pet store during a single
visit (such as requesting product information and placing items in a shopping cart),
resulting in numerous requests during the client session. While the application does
not need to store this information in a database, this information must be somehow
tracked to maintain a meaningful dialog between the customer and the application.

There is state associated with both the user interface and the business logic. In
general, the sample application must maintain the following state:

* The user identity: Typically, the user account module maintains the user iden-
tify, which includes the user’s login ID and certain security credentials.

« The search cursor and catalog position: The catalog module maintains the cur-
sor’s position within the current search and within the catalog hierarchy.

274

CHAPTER 10 THE SAMPLE APPLICATION

* The items in the shopping cart: The shopping cart module maintains the list of
items placed in the customer’s shopping cart.

» Order information: When the customer confirms the order, the shopping cart
passes this information the order information—billing address, shipping ad-
dress, and payment method—to the order management module, which eventu-
ally stores it to a database.

The J2EE platform provides several choices for storing the application state.
An application can store state in the Web tier using the state maintenance capabil-
ities of servlets, which include th&rTPSession and ServietContext Objects as
well as JavaBeans components. In the EJB tier, state can be maintained using
enterprise beans. Also, session state for an application can be divided between
these tiers. The decision of where each object representing application state is
stored depends on the lifetime and scope of the object. The following sections
identify each state component, its lifetime requirements, and discuss why it
should be stored using a particular mechanism.

The Web tier maintains state required by JSP pages in JavaBeans components.
These JavaBeans components are managed by a classMeak@Manager that
uses both aRttpSession and aServietContext to maintain handles to the Java-
Beans componentsiodeiManager is discussed further in Section 10.6.8.1 on
page 294. Beans that are specific to a client are maintained by an HTTP session
object. Beans that can be shared by all clients are maintained as an attribute of the
servlet generated fromain. jsp.

The JavaBeans components contain copies of the state maintained by corre-
sponding model objects which are maintained in the EJB tier. When designing
objects in the EJB tier to maintain state, the developer must answer two questions:

* What is the appropriate granularity for the objects? Not every business object
should be modelled as an enterprise bean. Since every method call to an enter-
prise bean is potentially a remote call, the overhead of an inter-component call
is likely to be prohibitive for interactions with fine-grained objects. Therefore,
the sample application makes extensive use of helper objects, which are non-
remote, serializable objects that mirror their respective enterprise beans.

* What type of enterprise bean should | use? An application can use either ses-
sion beans or entity beans to maintain state. For a non-transactional object, a
session bean is the simplest way to maintain session state for a short period of
time because it leverages the EJB container’s ability to manage session bean

THE MODEL 275

state. Using entity beans to maintain state provides transactional support for
storing the state data in the database. While there is overhead in making the ob-
jecttransactional, the object reference could persist for as long as needed, even
beyond the scope of a single session. For example, an object reference can be
stored in a cookie on the browser to be retrieved and used even weeks later.
The sample application has examples of using both session and entity beans to
store session state.

10.4.1.1 Using Enterprise Beans to Maintain Session State

This section describes how different types of enterprise beans are used to represent
objects in the sample application. General guidelines for how to use enterprise
beans can be found in Chapter 5.

Stateless Session Beans

A stateless session bean does not contain state for a specific client. However, the
instance variables of a stateless session bean can contain state across method calls.
Examples of such state include an open database connection and a cache of data
retrieved from that connection. Stateless session beans are never written out to sec-
ondary storage. As a consequence, stateless beans usually offer better performance
than stateful beans.

The sample application uses stateless session beans for objects containing
more than one database row. In particular, because stateless session beans provide
high performance, stateless session beans are a good choice to provide a fast
access to data derived from multiple database rows. In the pet store application,
theCatalog stateless session bean functions as a cache that is built up over time.

Stateful Session Beans

A stateful session bean exists during a single client session and can maintain infor-
mation specific to a client between invocations of methods. The sample application
represents the contents of a client’s shopping cart witrstaepingCart Stateful
session bean.

Entity Beans

The sample application uses entity beans to provide an object view of individual
rows in a database. The sample application includes three such bheanst,
Inventory, andorder, to represent individual rows in the corresponding tables.

276

CHAPTER 10 THE SAMPLE APPLICATION

10.4.1.2 Helper Objects

It is not appropriate to model all objects in the EJB tier as enterprise beans. There-
fore, the sample application uses helper objects that are subordinate to their respec-
tive enterprise beans for a number of purposes. The different types of helper objects
are: data access objects and value objects. The use of helper objects is discussed in
detail in Section 5.5 on page 130.

Data Access Objects

A data access object is used to encapsulate access to databases. Data access objects
can encapsulate access to more than one database, more than one table within one
database, and different types of databases. The sample application uses data access
objects for all these purposes.

The sample application uses the abstract data acces®e@sBA0 to access
three tablesgrder, orderstatus, andlineitem, when an order is created, read, or
updated. The sample application contains three subclasseés;DAOOracle,
OrderDAOSybase, and OrderDAOCS, that are used to access Oracle, Sybase, and
Cloudscape databases.

Value Objects

A value object is a business object that can be passed by value as a serializable Java
object. A business concept should be implemented as a value object when it is fine-
grained, dependent, and immutable. The sample application uses two types of value
objects: dependent objects and details objects.

An object is a dependent object of another object if its life cycle is completely
managed by that object and if it can only be accessed indirectly through that
object. Examples of dependent objects in the sample applicationiiétess and
CreditCard.

A value object can also be used to encapsulate an entire remote object. Such
objects allow a client to retrieve the value of a remote object in one remote call.
The sample application contains details objects for each enterprise bean. Code
Example 10.9 illustrates an account entity bean and its corresponding details
object. In keeping with its purposggcountModel’s methods only enable retrieval
of the values in the fields of its bean, whilecount itself provides a method for
setting a value and a coarse-grained methgekDetails) that returns an
AccountModeT.

THE MODEL 277

public interface Account extends EJBObject {
public AccountModel getDetails() throws RemoteException;
pubTlic void changeContactInformation(ContactInformation info)
throws RemoteException;

public class AccountModel implements java.io.Serializable {
private String userlId;
private String status;
private ContactInformation info;

public String getUserId() {
return userld;

}
public ContactInformation getContactInformation() {
return info;

Code Example 10.9 Account andAccountMode]

10.4.2 Persistent Data

The sample application maintains persistent data in database tables, organized
according to the functional areas of the application. Figure 10.8 illustrates the data-
base schema.

The application uses this database schema to maintain accounts and track
orders for products. Thus, there are three areas for which data must be maintained:
product, account, and order information. Th@duct, category, anditem tables
represent the business’s product catalog. Each item has an associated entry in the
inventory table that represents the inventory for that product. ddweunt table
maintains customer account information, one record per customer, with informa-
tion such as customer name, password, and customer address. Finally, there is an
orders table with one record per order, for information such as ship-to address,
bill-to address, total price of the order, and payment (credit card name, expiration
date, type) information. Therders table is linked tOlineitem andorderstatus
tables. Each item in an order is stored in a separatiei tem record, which con-

278 CHAPTER 10 THE SAMPLE APPLICATION

tains the quantity ordered and price and a separederstatus record, which
contains a reference to the item and the status of the order.

orderstatus

lineitem

product : supplier

inventory

category

FK = Foreign Key

Figure 10.8 Database Tables and Relationships

10.5 Implementation

In the implementation of the view, JSP pages rely on JavaBeans components to
mirror model data. These components are nagsed;jectwWebImpl (WhereESob-

ject are the e-store objectmventory, Account, Cart, andorder). As Code
Example 10.10 illustrates;sobjectWebImpl extendsSeESobjectModel and imple-
ments a listener interface so that views can be notified of changes to their corre-
sponding models. For example, whenaagountWebImpl is created, it adds itself to

the list of listeners interested in updates to the account model. When an account
model changes, the manager of the view objects invokgs#fe rmupdate method

on all views that have registered as listeners of the account model. See Section
10.6.8 on page 294 for further discussion of model-view synchronization.

IMPLEMENTATION 279

public class AccountWebImpl extends AccountModel
implements ModelUpdatelListener {
private ModelManager mm;
private Account acctEjb;

public AccountWebImpl(ModeTManager mm) {
super(null, null, null);
this.mm = mm;
mm.addListener (JNDINames . ACCOUNT_EJBHOME, this);

public void performUpdate() {
if (acctEjb == null) {
acctEjb = mm.getAccountEIBQ);
3
try {
if (acctEjb !'= null) copy(acctEjb.getDetails());
} catch (RemoteException re) {
throw new GeneralFailureException(re);

Code Example 10.10\ccountWebImpT

The model is implemented by enterprise beans napdesliect. These beans
are supported by data access classes napsebliectDA0 and details classes
namedesobjectModel. As described in “Value Objects” on page 276, a client can
retrieve the contents of an enterprise bean with one remote call that returns a
details object.

JavaBeans components and details classes share aspects of their implementa-
tion (that is, theEsobjectModel classes), because thEsobjectModel classes
capture the essential information required to represent e-store business objects in
any tier.

The implementation of the catalog does not follow the pattern just described
because it implemented in both a Web-centric and EJB-centric fashion. The Web-
centric design is used for high performance since the catalog is read-only and the
most frequently accessed object in the system. Thus the Web-centric JavaBeans

280

CHAPTER 10 THE SAMPLE APPLICATION

componentCatalogwWebImpl accesses the data access clagsilogbAo directly
instead of calling an enterprise bean.

Since the shopping cart enterprise bean needs access to the catalog and cannot
access the Web-tier catalog it uses a catalog enterprise bean. Note that high per-
formance is not as crucial in this case as compared to the earlier case but access to
the catalog is still read-only.

The implementation of the catalog functionality is essentially the same in both
cases, So bottatalogwebImpl andCatalogE]B extendCatalogImpl Which imple-
ments the&atalogModel interface.

The relationships between the sample application business objects—view
classes in the Web tier, model classes (and their respective helper classes) in the
EJB tier, and database tables in the enterprise information system tier—are shown
in Figure 10.9.

Web Tier ~ EJBTier _ EIS Tier)
Session Entity Data Access
Stateful
Account - Account Account account
Cart — hopping Ca -I
Order Order Order orders
orderstatus
Stateless lineitem
Catalog
Catalog “Catalog category
product
item
\Inventory Flnventory s==kInventory inventory g

Figure 10.9 Sample Application Business Objects

10.6 The Controller

The sample application must reflect the state of a user’s interaction with the applica-
tion and the current values of persistent data in the user interface. Following the
MVC architecture, this functionality is implemented within the controller. In the
sample application, the controller is split between the Web tier and the EJB tier. In
this section we will discuss the implementation of the controller for the shopping
interaction in the sample application.

The controller is responsible for coordinating the model and view. As
described in Section 10.2 on page 248, the view depends on the controller for

THE CONTROLLER 281

screen selection. The model depends on the controller for making state changes to
the model. The controller must accept user gestures from the view, translate them
into business events based on the behavior of the application, and process these
events. The processing of an event involves invoking methods of the model to
cause the desired state changes. Finally, the controller selects the screen shown in
response to the request that was processed.

Since the controller must coordinate both the view and the data, it straddles
the Web and EJB tiers. Some components of the controller are hosted by the Web
tier and facilitate communication with the view, while others are hosted by the
EJB tier and control the model.

In the Web tier, the controller consists of several components:

e Main.jsp receives and processes HTTP requests.. jsp callsScreenFlow-
Manager, Which is responsible for selecting the next screen to be shown to the
client after the completion of the current request.

* RequestProcessor provides the glue in the Web tier for holding the application
components together. It contains logic that needs to be executed for each request.
RequestProcessor collaborates with two classes:

+ RequestToEventProcessor translates HTTP requests into business events
that the rest of the application can operate on. Events are represented by the
classeStoreEvent and its subclass&atalogEvent, LoginEvent, Ac-
countEvent, CartEvent, andorderEvent.

+ ShoppingClientControllerWebImpl (SCCWI) provides a Web-tier proxy for
ShoppingClientController. It delegates all methods to its EJB tier counter-
part.

In the EJB tier, the controller ShoppingClientController (SCC), which pro-
vides the view with read-only access to the model and handles business events.
ShoppingClientController collaborates wittstateMachine, an object that con-
trols the creation and removal of enterprise beans and handles events to modify
those objects passed to it by the controller in the Web tier.

Figure 10.10 illustrates the interactions that occur between the collaborating
controller objects when an HTTP request is handled. The servlet generated from
Main.jsp receives all HTTP requests. It passes the requesiditestProcessor,
which coordinates all handling of the requesiquestProcessor US€SRequest-
ToEventTranslator to translate the HTTP request into a business eventest-
Processor then passes the event $@oppingClientControllerWebImpl1, Which

282

CHAPTER 10 THE SAMPLE APPLICATION

forwards the event tshoppingClientController, the controller in the EJB tier.
ShoppingClientController delegates the handling of the business event to
StateMachine. StateMachine changes the state of the model in response to the busi-
ness event or command and then retrieves a list of model objects that have changed
as aresult of handling the business event fMae1UpdateManager (MUM). Finally,
RequestProcessor notifies all registered views of model changes.

Main RequestToEventTrans ModelManager StateMachine A
processRequest(req)
event=prc Request(req)
handleEvent(event)
* handleEvent(event)
* handleiven‘t(event)
updateModelList=getUpdatedModels(event)
notifyListe‘.1 ars(updatixodelList)
_ Requestl;rocessor iy SCE:WI B SéC B MOM y

Figure 10.10Controller Object Interaction Diagram (Part 1)

Figure 10.11 shows what happens aftefuestProcessor.processRequest
returns.Main.jsp forwards the initial request taemplate.jsp. The template
includes ScreenbDefinitions.jsp, Which usesScreenFlowManager to map the
screen to a JSP page.

In the following sections, we will discuss the implementation of each of these
components in more detail.

10.6.1 Main

A front component is a component to which all requests for application URLs
are delivered. The front componenkin.jsp, processes these requests and dele-
gates the generation of the response to the template page.

THE CONTROLLER

Main ScreenDefinitions
forward(req, resp)

include

screen=getCurrentScreen(req)

template ScreenFlowManager

|

Figure 10.11Controller Object Interaction Diagram (Part 2)

Code Example 10.11 showain.jsp. The highlighted lines in the example

283

indicate these two stepgain.jsp delegates all of the request processing tasks to

RequestProcessor. The response is generated by forwardingdplate. jsp. An

interesting detail to note here is thatin. jsp stores references to the request pro-

cessor and other session-specific beans in the HTTP session object.

<jsp:useBean id="modelManager"
class="com.sun.estore.control.Web.ModelManager"
scope="session">

<% modelManager.init(config.getServietContext(), session); %>

</jsp:useBean>

<jsp:useBean id="rp"
class="com.sun.estore.control.Web.RequestProcessor"
scope="session">
<% rp.init(config.getServletContext(), session); %>
</jsp:useBean>

<%
try {
rp.processRequest(request);

request.setAttribute("selectedURL" , request.getPathInfo());

} catch (MissingFormDataException mi){
request.setAttribute("missingformdata”, mi);
request.setAttribute("selectedURL", "/missingformdata");

284 CHAPTER 10 THE SAMPLE APPLICATION

} catch (DuplicateAccountException du){
request.setAttribute("selectedURL", "/duplicateaccount");

getServietConfig() .getServietContext()
.getRequestDispatcher("/template.jsp™)
.forward(request, response);
%>

Code Example 10.1Main.jsp

10.6.2 RequestProcessor

RequestProcessor contains logic that gets executed for each request. For example,
when a customer tries to access a feature that requires skgguestProcessor
checks to detect whether the customer is logged in.

Code Example 10.12 presents an excerpt fRequestProcessor, simplified
to illustrate the key aspects of its behavior.

public class RequestProcessor {

private ShoppingClientControllerWebImpl scc;

private ModelManager mm;

private ModelUpdateNotifier mun;

private RequestToEventTranslator eventTranslator;

private SecurityAdapter securityAdapter;

public void init(...) {
mm = (ModelManager)session.getAttribute("modeTManager™");
mun = mm;

scc = new ShoppingClientControllerWebImpl(session);

eventTranslator =
new RequestToEventTranslator(this, mm);

}
public void processRequest(HttpServletRequest req) {

checkForWebServerLogin(req);
EStoreEvent event = eventTranslator.processRequest(req);
if (event != null) {

THE CONTROLLER 285

ColTlection updatedModelList = scc.handleEvent(event);
mun.notifylListeners(updatedModelList);

}

Code Example 10.1ZequestProcessor

This excerpt demonstrates the core responsibilitieRegfiestProcessor
including:

« Initializing the client sessiomequestProcessor instantiates an object that im-
plementsshoppingClientController and related application objects when a
new session is initiated.

» Detecting when the user logs into the server using form-based authentication
and generating a login business event when this happens.

« Computing the business event to generate based erithRequest that came
in, with the help of th@equestToEventTranslator.

« Raising a business event by invokimgnd1eEvent on theShoppingClientCon-
troller’s Web implementation.

» Gathering the outcome of the event processing. In parti®étrestProces-
sor passes the business event and its outcome twthka@Manager so the mod-
el change notifications can be processed by the view components (see Section
10.6.8 on page 294).

10.6.3 RequestToEventTranslator

RequestToEventTranslator iS responsible for taking an HTTP-specific request and
converting it into a business event that is not tied to the specifics of the HTTP
protocol.

Application objects that include HTTP-specific functionality are not easy to
reuse. By removing HTTP protocol-specific details from the request as early as
possible, by turning it into a business event, the sample application ensures that all
components that deal with business events would be completely reusable with
non-HTTP clients. For example, thgxateMachine that implements command

286

CHAPTER 10 THE SAMPLE APPLICATION

processing logic for the sample application could be easily used as-is by a stand-
alone Java client.

The two standard HTTP requests that can be processed by the translator are
GET and POST. It is relatively straightforward to mapeT requests to business
events. HoweverrosT requests, which represent form submission in the sample
application, require the request processor to validate the form data as part of gen-
erating the business event. The processor needs to keep track of the values entered
in the form so that the presentation screen can show where the error occurred
when the form data is invalid. When the form data is valid, the processor must
encapsulate the form parameters in an application-specific business event.

Code Example 10.13 presents excerpts fRequestToEventTranslator. The
highlighted lines indicate where the translator parses HTTP request parameters
and converts them to objects to be used in business events.

pubTlic class RequestToEventTranslator {
private ModelManager mm;
public EStoreEvent processRequest(HttpServietRequest req)
throws EStoreEventException, MissingFormDataException {
String selectedUr1 = req.getPathInfo();
EStoreEvent event = null;
if (selectedUrl.equals(ScreenNames.CATALOG_URL)) {
event = createCatalogEvent(req);
else if (selectedUrl.equals(ScreenNames.CART_URL)) {
mm.getCartModel();
event = createCartEvent(req);
} else if ...
return event;

private EStoreEvent createCatalogEvent(HttpServletRequest req) {
CatalogEvent event = null;
String[] category = req.getParameterValues(CATEGORY_ID);
if (category != null) {
event = new CatalogEvent(
CatalogEvent.BROWSING_EVENT, category[0]);
}

return event;

THE CONTROLLER 287

private CartEvent createCartEvent(HttpServletRequest request) {
String action = request.getParameter('"action");
if (action.equals("purchaseItem™)) {
return createPurchaseltemEvent(request);
} else if (action.equals("removeItem")) {
return createRemoveItemEvent(request);
} else if (action.equals("updateCart")) {
return createUpdateCartEvent(request);

Code Example 10.13RequestToEventTranslator

10.6.4 ShoppingClientControllerWeblmpl

ShoppingClientControllerWebImpl iS & proxy object that calls methods on the EJB
tier controller ShoppingClientController. ShoppingClientControllerWebImpl
exposes a read-only interface to the model, so that the view can render the model
as needed. Keeping this interface read-only minimizes dependencies between the
view and the model, to prevent inadvertent modification of the model by the view
outside the scope of the business rules encapsulated in the application.

Code Example 10.14 contains an excerpt fréfoppingClientController-
webImpl. Notice that all the methods shoppingClientController are synchro-
nized so that concurrent requestsStmppingClientController are serialized.
This is done because an EJB container will throw an exception if a request is made
to a session bean while it is servicing another request.

public class ShoppingClientControllerWebImpl
{
private com....ejb.ShoppingClientController sccEjb;
private HttpSession session;
pubTlic ShoppingClientControllerWebImpl(HttpSession session) {
this.session = session;
ModelManager mm =
(Mode1Manager)session.getAttribute("modelManager");
sccEjb = mm.getSCCEIBQ);
}
public synchronized AccountModel getAccount() {

288 CHAPTER 10 THE SAMPLE APPLICATION

return sccEjb.getAccount() .getDetails();

pubTic synchronized Collection handleEvent(EStoreEvent ese) {
return sccEjb.handleEvent(ese);

}

public synchronized void remove() {
sccEjb.remove();

Code Example 10.14hoppingClientControllerWebImpl

10.6.5 ShoppingClientController

ShoppingClientController manages the life cycle of model objects such as the
shopping cart and account enterprise beans and processes business events. It dele-
gates the processing of business events imtih@leEvent method toStateMa-

chine. ShoppingClientController is also responsible for the life cycle of
StateMachine. ShoppingClientController iS implemented byshoppingClient-
ControllerE]B, illustrated in Code Example 10.15.

pubTlic class ShoppingClientControllerEJB implements SessionBean {
private StateMachine sm;
private ShoppingCart cart;
String userId;
Account acct;

pubTic Account getAccount() {
if (acct == null) {
createAccountEJB(Q);
}

return acct;

pubTlic ShoppingCart getShoppingCart() {
if (cart == null) {
try {
ShoppingCartHome cartHome =

THE CONTROLLER 289

EJBUti1.getShoppingCartHome();
cart = cartHome.create();
} catch (CreateException ce) {
throw new EJBException(ce);

}
return cart;
}
public void ejbCreate() {
sm = new StateMachine(this);
}
public Collection getOrders() throws FinderException {
Collection orders = null;
if (userId !'= null) {
OrderHome home = EJBUtil.getOrderHome();
orders = home.findUserOrders(userId);
}
return orders;
}
public Collection handleEvent(EStoreEvent ese)
throws EStoreEventException {
try {
return (sm.handleEvent(ese));
} catch (RemoteException re) {
throw new EJBException (re);

Code Example 10.15hoppingClientControllerEJB

10.6.6 StateMachine

StateMachine implements the core command processing business logic of the
application. It is responsible for changing the state of the models in response to a
business event or commarsaateMachine consists of methods that handle each of

the different business events that the sample application can respond to. One such
method is highlighted in Code Example 10.16.

290 CHAPTER 10 THE SAMPLE APPLICATION

public class StateMachine {
private ShoppingClientControllerEJB sccejb;
private ModelUpdateManager mum;
private HashMap orderTable;
public StateMachine(ShoppingClientControllerEJB sccejb) {
this.sccejb = sccejb;
this.mum = new ModelUpdateManager();
}
public Collection handleEvent(EStoreEvent ese)
throws RemoteException, EStoreEventException {
if (ese instanceof CartEvent) {
handleCartEvent((CartEvent)ese);
} else if (ese instanceof AccountEvent) {
handleAccountEvent ((AccountEvent)ese);
} else if (ese instanceof OrderEvent) {
handleOrderEvent((OrderEvent)ese);
} else if (ese instanceof LoginEvent) {
Togin((LoginEvent)ese);
} else if (ese instanceof LogoutEvent) {
Togout();
}
return (mum.getUpdatedModels(ese));
}
private void handleCartEvent(CartEvent ce)
throws RemoteException {
ShoppingCart cart = sccejb.getShoppingCart();
switch (ce.getActionType()) {

case CartEvent.UPDATE_ITEM :{
Collection itemIds = ce.getItemIds();
Iterator it = itemIds.iterator();
whiTe (it.hasNext()){
String itemId = (String)it.next();
int quantity = ce.getItemQty(itemId);
if (quantity > 0){
cart.updateItemQty(itemId, quantity);
} else {
cart.deleteItem(itemId);

THE CONTROLLER 291

Code Example 10.1&tateMachine

StateMachine has both read and write access to all of the model objects so
that it can coordinate event processing across multiple model objects. For exam-
ple, whenstateMachine handles an order event, it interacts with the inventory
bean to debit the quantity of the purchased item, the order bean to insert the order
details, and the mailer bean to send confirmation email to the user. These func-
tions are performed by the method illustrated in Code Example 10.17. High-
lighted lines indicate where enterprise beans are retrieved or created.

private Order createOrder(OrderEvent oe) throws RemoteException {
ShoppingCart cart = sccejb.getShoppingCart();
Order order = null;
String userld = sccejb.getAccount().getDetails().getUserId();
try {
InventoryHome inventHome = EJBUtil.getInventoryHome();
Iterator ci = ((ShoppingCartModel)cart.getDetails()).
getItems();
ArrayList TineItems = new ArrayList(Q);
int 1ineNo = 0;
double total = 0;
while (ci.hasNext()) {
TineNo++;
CartItem cartItem = (CartItem) ci.next();
LineItem 1i = new LineItem(cartItem.getItemId(),
cartItem.getQuantity(),cartItem.getUnitCost(),
TineNo);
TineItems.add(11);
total += cartItem.getUnitCost() * cartItem.getQuantity();

292 CHAPTER 10 THE SAMPLE APPLICATION

for (Iterator it = TlineItems.iterator(); it.hasNext();){
LineItem LI = (LineItem)it.next();
Inventory inventRef =
inventHome. findByPrimaryKey(LI.getItemNo());
inventRef.updateQuantity(LI.getQty());

OrderHome home = EJBUtil.getOrderHome();
order = home.create(lineltems,
oe.getShippingAddress(),
oe.getBillingAddress(),

total);
// put the requestId and the orderId in a table to match up Tlater
if (orderTable == null) orderTable = new HashMap();

orderTable.put(oe.getRequestId() + ,
order.getDetails().getOrderId() +"");

// empty shopping cart
cart.empty(Q);

if (INDIUtil.sendConfirmationMail()) {
// send order confirmation mail.
Mailer mailer = EJBUtil.createMailerEJBQ);
mailer.sendOrderConfirmationMail(order.getDetails().
getOrderId());
}
} catch (DupTlicateKeyException dke) {

} catch (CreateException ce) {
throw new EJBException(ce);
} catch (FinderException fe) {
throw new EJBException(fe);

THE CONTROLLER 293

return order;

Code Example 10.1AtateMachine.createOrder

10.6.7 ScreenFlowManager

ScreenFlowManager is responsible for selecting a screen to present to the user as the
outcome of their request. The mapping from a requested URL to a response screen
is not one to one. In fact, the response that depends not only on the request itself, but
also on the state of the application data model and the outcome of request process-
ing within the application. In other words, the flow manager keeps a state machine
that captures the flow of screens in the applicatgreenFlowManager looks at
the request and the state of the model and computes the screen to be returned.
Code Example 10.18 shows hos¢reenFlowManager maps many of the
request URLSs directly into response screens. For some of the requests, such as the
VALIDATE_BILLING_INFO_URL, the code inspects the model to decide which of two
possible screens to present.

public class ScreenFlowManager {

public int getCurrentScreen(HttpServletRequest req) {
String selectedUrl =
(String)req.getAttribute("selectedURL");
int nextScreen = ScreenNames.DEFAULT_SCREEN;
if (selectedUrl == null) {
// do nothing. show the default screen.

} else if (selectedUrl.equals(ScreenNames.CATALOG_URL)) {
nextScreen = ScreenNames.CATALOG_SCREEN;

} else if (selectedUrl.equals(
ScreenNames.VALIDATE_BILLING_INFORMATION_URL)) {
if (req.getSession()
.getAttribute("shippingAddressRequired™) != null) {
boolean addrReqd = req.getSession()
.getAttribute("addrReqd") .equals("true");
if (addrReqd)

294

CHAPTER 10 THE SAMPLE APPLICATION

nextScreen = ScreenNames.ENTER_SHIPPING_INFO;
else
nextScreen = ScreenNames.CONFIRM_SHIPPING_INFO;

return nextScreen;

Code Example 10.1&creenFlowManager

10.6.8 Model-View Synchronization

Following the MVC architecture, views implemented by JSP pages and JavaBeans
components present data owned by their associated models implemented as enter-
prise beans. In the sample application, each Web-tier JavaBeans component serves
as the view, with corresponding EJB-tier classes representing the model. Whenever
a model changes, it notifies interested views so that the views can update its presen-
tation of the model.

In the sample application, the notification process is managebhdsiup-
dateManager andModelManager. ModelUpdateManager is responsible for convert-
ing a business event, suchmasountEvent, to a list of names of models that have
changed due to this evembdeTManager uses this list to notify all views that have
registered interest in the changed models to fetch the models’ data.

The functions ofMode1Manager andModelUpdateManager and their interac-
tions with controller objects are described in the following sections.

10.6.8.1 Model Manager

Mode1Manager extendsModelUpdateNotifier, Which provides methods for adding
listeners of model change events and causing listeners (that is, views) to perform an
update when a change event is receivede1Manager adds methods that create and
return instances of view classes.

Code Example 10.19 presents excerpts fMadeIManager. Note thatMode-
Manager maintains references to both SarvletContext and anHttpSession.
These objects in turn contain references to view objects (highlighted in the exam-
ple). View objects specific to a client (for examphecountModel) are maintained

THE CONTROLLER 295

by an HTTP session object. View objects that can be shared by all clients (for
example,CatalogModel) are maintained as an attribute of the servlet generated
fromMain.jsp.

public class ModelManager extends ModelUpdateNotifier {
private ServletContext context;
private HttpSession session;
private ShoppingClientController sccEjb = null;
private ShoppingCart cartEjb = null;
private Account acctEjb = null;

public void init(ServletContext context,
HttpSession session) {
this.session = session;
this.context = context;
getAccountModel () ;

public CatalogModel getCatalogModel() {
CatalogModel catalog = (CatalogModel)
context.getAttribute(WebKeys.CatalogModelKey);
if (catalog == null) {
catalog = new CatalogWebImpl1(Q);
context.setAttribute(WebKeys.CatalogModelKey, catalog);
}

return catalog;

pubTlic AccountModel getAccountModel () {
AccountModel acct = (AccountModel)
session.getAttribute(WebKeys.AccountModelKey);
if (acct == null) {
acct = new AccountWebImpl(this);
session.setAttribute(WebKeys.AccountModelKey, acct);
}

return acct;

296 CHAPTER 10 THE SAMPLE APPLICATION

Code Example 10.1%0de1Manager

10.6.8.2 ModelUpdateManager

ModelUpdateManager iS responsible for converting afstore event to a list of
names of models that have changed due to this event. Code Example 10.20 presents
excerpts fromiodelUpdateManager.

pubTlic class ModelUpdateManager {

pubTlic Collection getUpdatedModels(EStoreEvent ese)
throws RemoteException {
ArrayList modellList = new ArrayList();

if (ese instanceof CartEvent) {
modelList.add(IJNDINames.CART_EJBHOME) ;

} else if (ese instanceof AccountEvent) {
modelList.add(IJNDINames.ACCOUNT_EJBHOME) ;

} else if (ese instanceof OrderEvent) {
modelList.add(IJNDINames.ORDER_EJBHOME) ;
modelList.add(IJNDINames.INVENTORY_EJBHOME) ;
modelList.add(IJNDINames.CART_EJBHOME) ;

} else if (ese instanceof LoginEvent) {
modeTList.add(IJNDINames.ACCOUNT_EJBHOME) ;

}

return modelList;

Code Example 10.20odeTUpdateManager

10.7 MVC Summary

Figure 10.12 summarizes the references between the view, model, and controller
classes.

MVC SUMMARY 297

N
e Web Tier
Main.jsp

RequestToEventTranslator

template.jsp

ShoppingClientController
ScreenDefinitions.jsp [l RequestProcessor Weblmpl

ScreenFlowManager ModelManager

XXX.JSP

View

XXX = Catalog, Inventory, ServletContext HTTPSession
Account, Cart, Order

EJB Tier
J g ModelUpdateManager

StateMachine

ShoppingClientController
Enterprise Bean

o y

Figure 10.120bject Reference Diagram

298 CHAPTER 10 THE SAMPLE APPLICATION

10.8 Stateless Services

The sample application uses stateless session beans for shared service objects. For
example, in an e-commerce application, you might want to send order confirmation
mail to customers on successful completion of an order. Such a service can be
shared by all clients of the application. The sample applicatiofer service

objects are stateless session beans.

10.8.1 Example: A Mailer Bean

When a client places an order, an order event is passe@ipingClientControl-
ler. Although thehandleEvent method is defined bghoppingClientController,
ShoppingClientController delegates its implementation to a helper class hamed
StateMachine. StateMachine interacts withInventory, Order, andMailer enter-
prise beans to debit the quantity of the purchased item, insert the order details, and
finally send the confirmation email to the client.

The last thing thattateMachine does in thecreateOrder method is to send
an order confirmation message. It does this by first creadiriger stateless
session bean and then invoking theiler.sendOrderConfirmationMail method
(shown in Code Example 10.21). Thigthod uses the order ID to obtain the
information needed for the confirmation message fromaer and Account
entity beans. Thevailer then invokes thecreateAndSendMail method of its
helper clasgiailHelper.

pubTlic void sendOrderConfirmationMail(int orderId)
throws RemoteException {
OrderDetails orderDetails = null;
try {
OrderHome orderHome = EJBUti1l.getOrderHome();
Order order = orderHome.findByPrimaryKey(orderId);
orderDetails = order.getOrderDetails();
} catch (FinderException fe) {

return;
}
String userId = orderDetails.getUserId();
AccountDetails acctDetails = null;
try {
AccountHome acctHome = EJBUti1.getAccountHome();

STATELESS SERVICES 299

Account acct = acctHome.findByPrimaryKey(userId);
acctDetails = acct.getAccountDetails();
} catch (FinderException fe) {

}

String subject = "Your order# "+orderld;
String HTML Contents =
"This message is a confirmation of your order# "
+ orderId + ". Please save it for your records.";
getMailHelper() .createAndSendMail(acctDetails.
getEmail(), subject, HTML Contents);
}

Code Example 10.2Mailer.sendOrderConfirmationMai]l

Code Example 10.22 illustrates th@eateAndSendMail method ofMail-
Helper. This method looks up a mail session in the JNDI namespace, creates a
MIME message, sets the mail headers, collects the contents of the message into a
string, and then sends the message.

public void createAndSendMail(String to,
String subject, String HTML Contents) {

try {
InitialContext ic = new InitialContext();
Session session = (Session) ic.
Tookup (IJNDI Names.MAIL_SESSION);

// construct the message

Message msg = new MimeMessage(session);

msg.setFrom();

msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse(to, false));

msg.setSubject(subject);

collect(subject, htmlContents, msg);

msg.setHeader("X-Mailer", "JavaMailer');

msg.setSentDate(new Date());

// send the message

Transport.send(msg);

300

CHAPTER 10 THE SAMPLE APPLICATION

} catch (Exception e) {

}

Code Example 10.2Mai THelper.createAndSendMai 1

10.9 Deployment

Much of the behavior of the sample application is determined by information speci-
fied in its deployment descriptorsistore_ejb.xml, estore_ejbruntime.xml,
estore_war.xml, andestore_warruntime.xml. Elements specified in these deploy-
ment descriptors are discussed in detail in Section 7.1 on page 165 and Section 7.3
on page 174.

10.10 Transactions

The sample application’s persistent data is stored in two datab&s@seData-

Source andInventoryDataSource. TheeStoreDataSource database holds informa-

tion about accounts and orders. ThaventoryDataSource database holds
information about products, product categories, and the inventory of each product.
When an order is placedhoppingClientController must access both databases.
The sample application uses J2EE SDK support for distributed transactions to
reduce the inventory of ordered products and add a new entry to the order table in an
atomic operation. Note that a J2EE product is not required to support access to
multiple JDBC databases within a single transaction. However, some J2EE prod-
ucts might choose to provide these extra transactional capabilities.

Recall thatshoppingClientController delegates the implementation of order
processing to a helper class nansedteMachine. StateMachine is responsible for
maintaining consistency among the database tables represented by the enterprise
beans that it calls. WhestateMachine handles an order event it invokes the
methodcreateorder illustrated in Code Example 10.17. For each beaateMa-
chine gets a reference to the home interface and then creates an instance of the
beansStateMachine loops through the list of items in the order, finds the appropri-
ate inventory item, and updates theventory table for that item. Simply creating

SECURITY 301

an instance of therder bean causes an entry to be added toottter, 1ineitem,
andorderstatus tables.

Note that neither th&tateMachine.createOrder nor individual bean opera-
tions explicitly invoke transactions, becauSkoppingClientController uses
container-managed transactions. As a result, all database operations invoked by
ShoppingClientController are automatically wrapped in a transaction by the
container. The transaction context is automatically propagated to any enterprise
beans thatShoppingClientController invokes (in this caselnventory and
Order).

10.11 Security

This section describes the sample application’s security requirements and discusses
the ways these requirements are addressed using the J2EE security framework.

10.11.1 Requirements

The pet store application is designed to be deployed on the Internet. Like many
Web-based e-commerce applications, it allows anyone to interact with and use the
application. Any user, regardless of whether they're a registered customer, can point
a browser at the start URL of the application and browse through the catalog,
viewing items, prices, inventory status, and so on. We calltiteisicking and this
class of usersrekickers

A new customer casign upusing a form presented by the application. Once
a customer has signed up, the customersign in by providing a user name and
password to the application. Only customers who have signed in are allowed to
place orders and view order status. When an order is placed, the payment details,
including the credit card number, must be transmitted in a secure manner.

Some users of the pet store application may receive special treatment. For
example, a frequent shopper mapreferred customemble to receive discounts
or awards not available to normal customer. Another class of special user might be
system administrators, with unlimited access to information on the site. For exam-
ple, they might be able to fetch a list of all orders placed after a certain date.

302 CHAPTER 10 THE SAMPLE APPLICATION

These high-level functional requirements translate into the following security
requirements:

» User Authentication

Users of the pet store application can be either authenticated or unauthen-
ticated. The user must be authenticated to access a protected resource. The
application should be able to identify, differentiate, and be able to make
access control decisions based on this distinction.

There should be a way to associate each authenticated user with one or
more categories. For example, ugecould be recognized as a customer,
while userm could be recognized as a preferred customer.

e Authorization

The application associates permissions with resources such as Web pages
or enterprise bean methods. Examples of the kind of authorization constraints
the application should allow:

- Anyone (authenticated or not), to see the URbkntrol1/product, or invoke
thegetProducts method oftatalog

- All authenticated users to see the URkbntrol/placeorder
- Only preferred users to see the URlontrol/discounts

» Confidentiality

Some user information, such as a credit card number, must be transmitted
confidentially to the application.

» User Administration

The sample application has its own set of users. This set of users grows
when new users add themselves using a Web-based interface. Note that other
applications, such as those developed for in-house use within an enterprise
assume and use the set of users defined in the operational environment. The
sample application does not depend on the operational environment to get its
set of users.

SECURITY 303

10.11.2 Implementation

The pet store application uses many features of the J2EE platform to address its
security requirements in a simple and transparent manner. By design, security in the
J2EE platform is mostly declarative. In some places however, we make security
decisions in our components programmatically, because we needed to make authori-
zation decisions based on the content or state of the object.

10.11.2.1 User Authentication

A J2EE application must be capable of authenticating users that access the applica-
tion from a variety of clients. This section describes how the pet store application
authenticates users of the shopping interaction Web client, how it could authenticate
users of an administration application client, and how it handles unauthenticated
users.

Web Client Authentication

Most of the interactions with the sample application occur through the Web-based
interface. Form-based authentication, one of the standard authentication mecha-
nisms in the J2EE architecture, is used to authenticate these interactions.

In form-based authentication, a Web container designates an application-spe-
cific page containing an HTML form for logging in. The sample application uses
the pag€login.jsp as this page. This page contains an HTML form that prompts
for a user name and password and is displayed when the user tries to access a
resource that has been designated as being protected. The sample application also
uses form-based authentication to enable:

» Explicit signin

The sample application allows users to explicitly sign in by clicking the
sign-in link in the user interface. The sign-in link points/td gnin which is a
dummy URL that is inaccessible to unauthenticated users.

When the user clicks sign-in, the application attempts to take them to the
signin.jsp page, which is denied since the page is protected. As a result, the
login.jsp form is shown instead.

Note that we cannot simply make the sign-in link pointit@in.jsp
because an authorization failure must occur for the form-based authentication

304

CHAPTER 10 THE SAMPLE APPLICATION

mechanism to be activated.

Informing the user about failed authentication

The sample application retries the protected resource after authentication
through form-based authentication irrespective of the outcome of authentica-
tion. If authentication failed, th&ogin.jsp form will be shown to the user
again. At this point, it is desirable to do two things: first, make sure that the
form comes back already filled with the values that were posted in the last try,
and second, inform the user somewhere in the form that authentication failed
the first time.

Form-based authentication does not provide a portable way to return the
form to the user with the values posted in the failed try. Pt&r to the form
is handled by the Web container, and never returned to the form.

Informing the user that signon failed is easier to accomplish. To do so, the
login.jsp page uses a session-scoped bean (see Code Example 10.23) stored
each time the form is accessed. If this timelsseto the current time, and the
current request is unauthenticated, then the sample application prints a mes-
sage indicating that the login failed earlier. A requestdgin.jsp would
always be unauthenticated, unless there is an application programming error.
The only situation wheréogin.jsp is shown should be when the request is
unauthenticated. Using a similar mechanism, it is also possible to go to an
error page after a fixed number of retries.

<jsp:useBean id="Tast_login" class="...">

<% if (last_login.getTime() - currentTime < ... { %>
Login failed, try again<p>
<% } %>

Code Example 10.23ogin.jsp

» Abandoning signin

Sometimes théogin. jsp page comes up because the user tried to access
a protected resource. If the user does not have an account and needs to create
one, the application should abandon the login process and start user signup
instead.

The pet store application’®gin.jsp page has an additional button called
New User, to let new users sign up before they attempt to sign in.

The J2EE platform maintains information about the state of the signin in

SECURITY 305

theHttpSession and times it out when the login attempt is abandoned.

« Treating newly created users as signed in

When a new usegigns upthey should be treated agyned infor the dura-
tion of that session. This is the case for the sample application, which man-
ages its own set of users. However, in the J2EE architecture, this is not the
case. The only way users can sign in is through form-based authentication.
Since form-based authentication is not invoked when a user signs up, they still
need to explicitly sign in in order to be treated as an authenticated user.

The sample application uses a non-portable, private API provided by the
J2EE SDK to achieve the desired results.

« Detecting user login

The form-based authentication mechanism is designed to be transparent.
However there are cases where we want to be aware dirsheequest that
the user makes after they have signed in. For example, in the sample applica-
tion, the fetching and caching of user profile information is triggered when the
user logs in.

Since theposT to the login form is processed by the platform, there is no
direct way of doing this. We use the code shown in Code Example 10.24.
RequestProcessor detects when the user logs in and firesginEvent which
can then be handled to get the desired effect.

private void checkForWebServerLogin(HttpServiletRequest req) {
if ((req.getUserPrincipal() !'= null) &&
Ireq.getUserPrincipal () .getName() .equals("guest") &&
Imm.getAccountModel () .isLoggedIn()) {
EStoreEvent loginEvent = null;
loginEvent = eventTranslator.createlLoginEvent(req);

Code Example 10.24rriggering the Login Event

Let’s look at the condition being tested. We first check if the principal is
set on the current call. If it is, it means that some user is currently logged in.
Next we check if our account bean knows about iadéountBean.1isLogge-
dIn returns false, it means that the account bean is not aware of the login yet.
This is exactly the condition when we want to trigger the login event. Once

306 CHAPTER 10 THE SAMPLE APPLICATION

the login event is processetcount.isLoggedIn would return true.

Application Client Authentication

In the J2EE platform, stand-alone clients are authenticated by an application client
container. The application client may authenticate its user in a number of ways. The
techniques used are platform-dependent and not under control of the application
client. The application client container may integrate with the platform’s authentica-
tion system, providing a single signon capability. The application client container
may authenticate the user when the application is started. The application client con-
tainer may use lazy authentication, only authenticating the user when it needs to
access a protected resource. The J2EE specification does not describe the technique
used to authenticate the user.

The J2EE SDK generates a client JAR filwhen enterprise beans are
deployed. This library contains stub classes for accessing enterprise beans as well
as a mechanism provided by the J2EE SDK for handling authentication to an EJB
server.

Handling Unauthenticated Users

The sample application allows for anonymous, unauthenticated users to access the
application and browse selected features of the pet store. Even in such cases, calls to
the EJB tier must specify a valid principal; the EJB container rejects all calls without

a security principal. That is, if the user invokes a feature that tries to call the EJB tier
without authentication, the EJB container will not let the call go through.

However, since the Web interface needs to support anonymous, unauthenti-
cated users, the J2EE platform defines a mechanism to do so. The responsibility
for ensuring that unauthenticated calls are made using some principal is delegated
to the EJBclientcontainer. In the sample application, the Web container performs
this role by:

« Associating the credentials ofspecialuser calledyuest® to an unauthenticat-

! This is specific to the J2EE SDK. Other J2EE products may provide other mechanisms to
create client JAR files.

2 We callitguest here. It may be called different things in different implementations. The
important thing to note however is that it is different from any valid user of the system
and is treated specially at deployment.

SECURITY 307

ed user when an EJB method is invoked.

» Treating unauthenticated users as follows:

- ThegetUserPrincipal method of the servilet API returasi1 for such
users.

- The form-based or other authentication mechanism will be activated when a
protected Web resource is accessed.

10.11.2.2 Authorization

Sample application security is specified in terms of the security toelemer and
gold_customer.

* A customer is a registered user of the application. Users irxibeomer role
can place orders and complete purchases. In the current release of the sample
application, the default usgzee is in thecustomer role.

» A gold_customer is a customer with special privileges. Additional awards are
available to them. In the current release of the sample application, all users that
sign up are assigned to thel d_customer role.

By default, the J2EE SDK assigns thaYONE role to an enterprise bean
method. Theyuest user, which is anonymous and unauthenticated, is assigned to
the ANYONE role.

In the sample application, access to the URtsntrol/signin (described in
Section 10.11.2.1 on page 303) afwdntrol/placeorder is restricted to the roles
customer and gold_customer. The security-constraint declaration for/con-
trol/signin is shown in Code Example 10.25.

<security-constraint>
<web-resource-collection>

<url-pattern>/control/signin</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>
</web-resource-collection>
<auth-constraint>
<description>no description</description>
<role-name>gold_customer</role-name>

308

CHAPTER 10 THE SAMPLE APPLICATION

<role-name>customer</role-name>
</auth-constraint>

</security-constraint>

Code Example 10.255ecurity Constraint Declaration

In the current release, the sample application does not limit enterprise bean
method invocation to specific security roles.

10.11.2.3 Confidentiality

Confidentiality constraints are specified at deployment time by settingrties -
port-guarantee element in the Web component’s deployment descriptaote1 -
DENTIAL. In the current release, the sample application doesn't demonstrate
confidentiality mechanisms.

10.11.2.4 User Administration

Many applications will need to perform two tasks that aren’t handled by the J2EE
platform: managing user profile information (other than security credentials and
attributes) and adding new users to the system dynamically.

Maintaining User Profiles

In addition to keeping security credentials, the sample application needs other infor-
mation about the user’s preferences and personalization. The J2EE security frame-
work will keep the security credentials, such as the user name and password, as well
as attributes such as the set of roles that the user belongs to. The sample application
needs another mechanism to maintain additional information for a user.

To do so, it maintains a separate relational table for user profile information.
This table is called theccounts table, and is accessed through tleeount enter-
prise bean. The user name is unique for each sample customer, and we use it as a
key to the accounts database. Code Example 10.26 shows hoyetitd1er-
Principal method is used to retrieve theerid of the user making the current
enterprise bean method call. The value returned from this method is used as a key
to retrieve profile information for the user.

SECURITY 309

pubTlic Account getAccount() {
if (acct == null) {
try {
String userld = sc.getCallerPrincipal().getName();
AccountHome home = EJBUtil.getAccountHome();
acct = home.findByPrimaryKey(userId);
} catch (FinderException fe) {

} catch (RemoteException re) {
throw new EJBException (re);

}

return acct;

Code Example 10.26hoppingClientControllerE]B.getAccount

Adding New Users

The J2EE platform does not standardize a mechanism to add users dynamically to
applications. Any application that requires this feature needs to do so in a non-porta-
ble, container-specific manner.

In such a situation, it makes sense to isolate all the non-portable code in one
place. This small piece of platform-specific code can later be replaced if the appli-
cation needs to be ported to a different container implementation.

The J2EE SDK provides a container-specific API for managing users based
on the concept of realms. A realm is a collection of users under the same authenti-
cation policy. An application can provide its own realm and plug it into the J2EE
SDK for the container to use for authentication, or it can use realm API methods
suchadduser, on the existing default J2EE realm.

The sample application uses the default J2EE realm. It useaddwser
method of the realm to add new users while processingj thep. jsp form.

In addition to specifying the user name and password of the user being added,
we also need to specify the roles that this new user can assume. This is achieved
through theadduser method, which takes an array of roles as an argument.

310 CHAPTER 10 THE SAMPLE APPLICATION

10.11.2.5 Programmatic Security

The J2EE platform encourages the use of declarative security. However there are
places where one needs to make access control decisions based on the current state
of the system. Such decisions must be made by programmatically encoding their
rules in the application.

The J2EE platform allows the application to identify the principal making the
call as well as the role that the caller is in, in both the Web and EJB tiers. The
sample application uses these facilities as follows.

Web Tier

In the Web tier, the sample application usesgkeUserPrincipal and theisUse-
rInRole methods as follows:

* getUserPrincipal: This method is used to get the ID of the user that connects
to the application. This user ID could be used in the template to print the user
ID in the banner as part of a welcome message. Another way that the sample
application uses this information is to determine if a user is logged in. Code
Example 10.24 illustrates this use.

* isUserInRole: Inthe current release, the sample application doesn’t use this
method. This method could be used in the template in order to show a different
icon based on whether the user is a preferred or a regular customer. Addition-
ally, there might be special items that we only show to preferred customers.
Thus the catalog can be filtered based on the result returned from calling this
method with thejo1d_customer role.

EJB Tier

In the EJB tier, the sample application ugesCallerPrincipal andisCallerIn-
Role methods as follows:

* getCallerPrincipal: This method is used to get the caller key to be able to ac-
cess profile information associated with the principal associated with the call.

* isCallerInRole: This method is used by the order processing module to en-
force award rules based on whether the customer is a preferred customer. Code
Example 10.27 illustrates the useietallerInRole.

SECURITY 311

private int getBonusMiles() {
int miles = (totalPrice >= 100) ? 1000 : 500;
if (context.isCallerInRole("GOLD_CUSTOMER™))
miles += 1000;
return miles;

Code Example 10.20rderEJB.getBonusMiles

Notice the use of the embedded role natoep_cUSTOMER. When role names
are embedded in the code, the Application Component Provider needs to identify
these roles in a deployment descriptor so that the Deployer can ensure that they
are mapped correctly when the application is deployed. Code Example 10.28
shows the portions of the sample application deployment descriptor where this
happens.

<security-role-ref>
<role-name>GOLD_CUSTOMER</role-name>
<role-1ink>gold_customer</role-T1ink>

</security-role-ref>

<assembly-descriptor>
<security-role>
<role-name>gold_customer</role-name>
</security-role>

</assembly-descriptor>
Code Example 10.28eployment Descriptor Element for Embedded Roles
In this excerpt from the deployment descriptor, the Application Component
Provider declares the use@fLD_CUSTOMER in the application using theecurity-

role-ref element. The Deployer must ensure that this role is linked to the
gold_customer security role.

312

CHAPTER 10 THE SAMPLE APPLICATION

10.12 Summary

This chapter illustrates the J2EE programming model in the context of an in-depth
description of a multitier Web application: the pet store e-commerce application.

The functionality of the sample application was determined using a scenario-
driven approach. Walks through scenarios illustrated the requirements for the user
interaction as well as the interactions that happithin the system. Analysis of
the sample application identified three very different kinds of interactions: a shop-
ping interface that allows shoppers to buy items online, an administration inter-
face for carrying out store administration activities, and a business-to-business
interface through which the store can interact with suppliers. The discussions in
this chapter focused mainly on the shopping interactions.

The architecture of the sample application partitions its functionality into mod-
ules, assigns functionality to tiers, and decomposes the modules into specific objects
to represent the behavior and data of the application. The principles guiding the
architecture include reuse of software designs and code, separation of stable from
volatile code, object decomposition along skill lines, and ease of migration from a
Web-centric to EJB-centric model.

The sample application adapts the Model-View-Controller architecture to the
domain of enterprise applications. The model represents the application data and
the business rules that govern access and modification of this data. The view
renders the contents of a model. It accesses data from the model and specifies how
that data should be presented. The controller defines application behavior; it inter-
prets user gestures and maps them into actions to be performed by the model. In a
stand-alone GUI client, these user gestures could be button clicks or menu selec-
tions. In a Web application, they appear@s and posT HTTP requests to the
Web tier. Based on the user gesture and the outcome of the model commands, the
controller selects a view to be rendered as part of the response to this user request.

The J2EE platform provides system services that simplify the work that appli-
cation objects need to perform. The sample application uses the Java 2 SDK,
Enterprise Edition support for distributed transactions across multiple JDBC data-
bases. In addition, it uses deployment and security capabilities of the J2EE plat-
form to support customers with different profiles.

Afterword

THIS book has presented an overview of application design and development
with the Java 2 Platform, Enterprise Edition. It's goal has been to introduce enter-
prise developers to the concepts and technology used in designing applications for
the J2EE platform, and to give a practical example of a typical enterprise applica-
tion.

While this book explores many of the key decisions to be made in the applica-
tion development process, it is necessarily limited in scope. The J2EE Blueprints
program is intended to expand on this effort. It's goal is to provide developers
using the J2EE platform with ongoing help in designing applications that best use
the architecture and features of the platform.

The J2EE Blueprints program will include a Web site, additional publications
in various venues, and ultimately, additional books in the Addison-Wesley Java
Series. For the latest information on designing enterprise applications with the
Java 2 Platform, Enterprise Edition, be sure to regularly check the J2EE Blue-
prints Web site aittp://java.sun.com/j2ee/blueprints.

Your comments on this book and your requests for coverage of additional
topics are important to the success of the J2EE Blueprints program. Please send
your feedback tg2eeblueprints-feedback@sun.com.

313

314 AFTERWORD

Glossary

access controlThe methods by which interactions with resources are limited to
collections of users or programs for the purpose of enforcing integrity, confi-
dentiality, or availability constraints.

ACID The acronym for the four properties guaranteed by transactions: atomicity,
consistency, isolation, and durability.

activation The process of transferring an enterprise bean from secondary storage
to memory. (Sepassivation)

applet A component that typically executes in a Web browser, but can execute in a
variety of other applications or devices that support the applet programming
model.

applet container A container that includes support for the applet programming
model.

Application Component Provider A vendor that provides the Java classes that
implement components’ methods, JSP page definitions, and any required
deployment descriptors.

Application Assembler A person that combines components and modules into
deployable application units.

application client A first-tier client component that executes in its own Java vir-
tual machine. Application clients have access to some (JNDI, JDBC, RMI-
[IOP, JMS) J2EE platform APIs.

application client container A container that supports application client compo-
nents.

application client module A software unit that consists of one or more classes
and an application client deployment descriptor.

authentication The process by which an entity proves to another entity that it is
acting on behalf of a specific identity. The J2EE platform requires three types
of authentication: basic, form-based, and mutual, and supports digest authen-
tication.

315

316

GLOSSARY

authorization Seeaccess contral

authorization constraint An authorization rule that determines who is permitted
to access a Web resource collection.

basic authentication An authentication mechanism in which a Web server
authenticates an entity with a user name and password obtained using the Web
client’s built-in authentication mechanism.

bean-managed persistenc&Vhen the transfer of data between an entity bean
instance’s variables and the underlying resource manager is managed by the
entity bean.

bean-managed transactionWhen an enterprise bean defines the boundaries of
the transaction.

business logicThe code that implements the functionality of an application. In the
Enterprise JavaBeans model, this logic is implemented by the methods of an
enterprise bean.

business methodA method of an enterprise bean that implements the business
logic or rules of an application.

callback methodsMethods in a component called by the container to notify the
component of important events in its life cycle.

caller Same asaller principal .

caller principal The principal that identifies the invoker of the enterprise bean
method.

client certificate authentication An authentication mechanism in which a client
uses a X.509 certificate to establish its identity.

commit The point in a transaction when all updates to any resources involved in
the transaction are made permanent.

componentAn application-level software unit supported by a container. Compo-
nents are configurable at deployment time. The J2EE platform defines four
types of components: enterprise beans, Web components, applets, and appli-
cation clients.

component contract The contract between a component and its container. The
contract includes: life cycle management of the component, a context inter-

GLOSSARY 317

face that the instance uses to obtain various information and services from its
container, and a list of services that every container must provide for its com-
ponents.

connectionSeeresource manager connection
connection factory Seeresource manager connection factory

connector A standard extension mechanism for containers to provide connectiv-
ity to enterprise information systems. A connector is specific to an enterprise
information system and consists of a resource adapter and application devel-
opment tools for enterprise information system connectivity. The resource
adapter is plugged in to a container through its support for system-level con-
tracts defined in the connector architecture.

Connector architecture An architecture for integration of J2EE products with
enterprise information systems. There are two parts to this architecture: a
resource adapter provided by an enterprise information system vendor and the
J2EE product that allows this resource adapter to plug in. This architecture
defines a set of contracts that a resource adapter has to support to plug in to a
J2EE product, for example, transactions, security, and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to components. Each type of container (EJB, Web, JSP,
servlet, applet, and application client) also provides component-specific ser-
vices.

container-managed persistenc&Vhen transfer of data between an entity bean’s
variables and the underlying resource manager is managed by the enterprise
bean’s container.

container-managed transactionWhen an EJB container defines the boundaries
of a transaction. An entity bean must use container-managed transactions.

context attribute An object bound into the context associated with a servlet.

conversational stateThe field values of a session bean plus the transitive closure
of the objects reachable from the bean’s fields. The transitive closure of a bean
is defined in terms of the serialization protocol for the Java programming lan-
guage, that is, the fields that would be stored by serializing the bean instance.

CORBA Common Object Request Broker Architecture. A language independent,
distributed object model specified by the Object Management Group.

318

GLOSSARY

create methodA method defined in the home interface and invoked by a client to
create an enterprise bean.

credentials The information describing the security attributes of a principal.

CTS Compatibility Test Suite. A suite of compatibility tests for verifying that a
J2EE product complies with the J2EE platform specification.

delegation An act whereby one principal authorizes another principal to use its
identity or privileges with some restrictions.

Deployer A person who installs modules and J2EE applications into an opera-
tional environment.

deployment The process whereby software is installed into an operational envi-
ronment.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor
directs a deployment tool to deploy a module or application with specific con-
tainer options and describes specific configuration requirements that a
Deployer must resolve.

digest authentication An authentication mechanism in which a Web client

authenticates to a Web server by sending the server a message digest along its

HTTP request message. The digest is computed by employing a one-way hash
algorithm to a concatenation of the HTTP request message and the client’'s
password. The digest is typically much smaller than the HTTP request, and
doesn’t contain the password.

distributed application An application made up of distinct components running
in separate runtime environments, usually on different platforms connected
via a network. Typical distributed applications are two-tier (client-server),
three-tier (client-middleware-server), and multitier (client-multiple middle-
ware-multiple servers).

DOM Document Object Model. A tree of objects with interfaces for traversing
the tree and writing an XML version of it, as defined by the W3C specifica-
tion.

DTD Document Type Definition. A description of the structure and properties of a
class of XML files.

GLOSSARY 319

EAR file A JAR archive that contains a J2EE application.
EJB™ SeeEnterprise JavaBeans

EJB container A container that implements the EJB component contract of the
J2EE architecture. This contract specifies a runtime environment for enter-
prise beans that includes security, concurrency, life cycle management, trans-
action, deployment, naming, and other services. An EJB container is provided
by an EJB or J2EE server.

EJB Container Provider A vendor that supplies an EJB container.

EJB context An object that allows an enterprise bean to invoke services provided
by the container and to obtain the information about the caller of a client-
invoked method.

EJB home object An object that provides the life cycle operations (create,
remove, find) for an enterprise bean. The class for the EJB home object is
generated by the container’'s deployment tools. The EJB home object imple-
ments the enterprise bean’s home interface. The client references an EJB
home obiject to perform life cycle operations on an EJB object. The client uses
JNDI to locate an EJB home object.

EJB JAR file A JAR archive that contains an EJB module.

EJB module A software unit that consists of one or more enterprise beans and an
EJB deployment descriptor.

EJB object An object whose class implements the enterprise bean’s remote inter-
face. A client never references an enterprise bean instance directly; a client
always references an EJB object. The class of an EJB object is generated by
the container’s deployment tools.

EJB server Software provides services to an EJB container. For example, an EJB
container typically relies on a transaction manager that is part of the EJB
server to perform the two-phase commit across all the participating resource
managers. The J2EE architecture assumes that an EJB container is hosted by
an EJB server from the same vendor, so does not specify the contract between
these two entities. An EJB server may host one or more EJB containers.

EJB Server Provider A vendor that supplies an EJB server.

320

GLOSSARY

enterprise beanA component that implements a business task or business entity
and resides in an EJB container; either an entity bean or a session bean.

enterprise information system The applications that comprise an enterprise’s
existing system for handling company-wide information. These applications
provide an information infrastructure for an enterprise. An enterprise informa-
tion system offers a well defined set of services to its clients. These services
are exposed to clients as local and/or remote interfaces. Examples of enter-
prise information systems include: enterprise resource planning systems,
mainframe transaction processing systems, and legacy database systems.

enterprise information system resourceAn entity that provides enterprise infor-
mation system-specific functionality to its clients. Examples are: a record or
set of records in a database system, a business object in an enterprise resource
planning system, and a transaction program in a transaction processing sys-
tem.

Enterprise Bean Provider An application programmer who produces enterprise
bean classes, remote and home interfaces, and deployment descriptor files,
and packages them in an EJB .jar file.

Enterprise JavaBeans" (EJB™) A component architecture for the development
and deployment of object-oriented, distributed, enterprise-level applications.
Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and secure.

entity bean An enterprise bean that represents persistent data maintained in a
database. An entity bean can manage its own persistence or it can delegate
this function to its container. An entity bean is identified by a primary key. If
the container in which an entity bean is hosted crashes, the entity bean, its pri-
mary key, and any remote references survive the crash.

finder method A method defined in the home interface and invoked by a client to
locate an entity bean.

form-based authentication An authentication mechanism in which a Web con-
tainer provides an application-specific form for logging in.

group A collection of principals within a given security policy domain.

handle An object that identifies an enterprise bean. A client may serialize the han-
dle, and then later deserialize it to obtain a reference to the enterprise bean.

GLOSSARY 321

home interfaceOne of two interfaces for an enterprise bean. The home interface
defines zero or more methods for creating and removing an enterprise bean.
For session beans, the home interface defines create and remove methods,
while for entity beans, the home interface defines create, finder, and remove
methods.

home handleAn object that can be used to obtain a reference of the home inter-
face. A home handle can be serialized and written to stable storage and deseri-
alized to obtain the reference.

HTML Hypertext Markup Language. A markup language for hypertext docu-
ments on the Internet. HTML enables the embedding of images, sounds,
video streams, form fields, references to other objects with URLs and basic
text formatting.

HTTP Hypertext Transfer Protocol. The Internet protocol used to fetch hypertext
objects from remote hosts. HTTP messages consist of requests from client to
server and responses from server to client.

HTTPS HTTP layered over the SSL protocol.

impersonation An act whereby one entity assumes the identity and privileges of
another entity without restrictions and without any indication visible to the
recipients of the impersonator’s calls that delegation has taken place. Imper-
sonation is a case of simple delegation.

IDL Interface Definition Language. A language used to define interfaces to
remote CORBA objects. The interfaces are independent of operating systems
and programming languages.

IIOP Internet Inter-ORB Protocol. A protocol used for communication between
CORBA object request brokers.

initialization parameter A parameter that initializes the context associated with
a servlet.

ISV Independent Software Vendor.
J2EE™ Java 2, Enterprise Edition.
J2ME™ Java 2, Micro Edition.
J2SE™ Java 2, Standard Edition.

322

GLOSSARY

J2EE application Any deployable unit of J2EE functionality. This can be a single
module or a group of modules packaged into an .ear file with a J2EE applica-
tion deployment descriptor. J2EE applications are typically engineered to be
distributed across multiple computing tiers.

J2EE product An implementation that conforms to the J2EE platform specifica-
tion.

J2EE Product Provider A vendor that supplies a J2EE product.

J2EE serverThe runtime portion of a J2EE product. A J2EE server provides Web
and/or EJB containers.

JAR Java ARchive A platform-independent file format that permits many files to
be aggregated into one file.

Java™ 2 Platform, Standard Edition (J2SE platform) The core Java technol-
ogy platform.

Java™ 2 Platform, Enterprise Edition (J2EE platform) An environment for
developing and deploying enterprise applications. The J2EE platform consists
of a set of services, application programming interfaces (APIs), and protocols
that provide the functionality for developing multitiered, Web-based applica-
tions.

Java™ 2 SDK, Enterprise Edition (J2EE SDK) Sun’s implementation of the
J2EE platform. This implementation provides an operational definition of the
J2EE platform.

Java™ Message Service (JMSAN API for using enterprise messaging systems
such as IBM MQ Series, TIBCO Rendezvous, and so on.

Java Naming and Directory Interface™ (JNDI) An API that provides naming
and directory functionality.

Java™ Transaction API (JTA) An API that allows applications and J2EE serv-
ers to access transactions.

Java™ Transaction Service (JTS)Specifies the implementation of a transaction
manager which supports JTA and implements the Java mapping of the OMG
Object Transaction Service (OTS) 1.1 specification at the level below the API.

GLOSSARY 323

JavaBeans" componentA Java class that can be manipulated in a visual builder
tool and composed into applications. A JavaBeans component must adhere to
certain property and event interface conventions.

Java IDL A technology that provides CORBA interoperability and connectivity
capabilities for the J2EE platform. These capabilities enable J2EE applica-
tions to invoke operations on remote network services using the OMG IDL
and IIOP.

JavaMail™ An API for sending and receiving email.

JavaServer Page®' (JSP) An extensible Web technology that uses template
data, custom elements, scripting languages, and server-side Java objects to
return dynamic content to a client. Typically the template data is HTML or
XML elements, and in many cases the client is a Web browser.

JDBC™ An API for database-independent connectivity between the J2EE plat-
form and a wide range of data sources.

JMS Seelava Message Service
JNDI SeeJava Naming and Directory Interface
JSP SeeJavaServer Pages

JSP actionA JSP element that can act on implicit objects and other server-side
objects or can define new scripting variables. Actions follow the XML syntax
for elements with a start tag, a body and an end tag; if the body is empty it can
also use the empty tag syntax. The tag must use a prefix.

JSP action, customAn action described in a portable manner by a tag library
descriptor and a collection of Java classes and imported into a JSP page by a
taglib directive. A custom action is invoked when a JSP page usestam
tag.

JSP action, standardAn action that is defined in the JSP specification and is
always available to a JSP file without being imported.

JSP application A stand-alone Web application, written using the JavaServer
Pages technology, that can contain JSP pages, servlets, HTML files, images,
applets, and JavaBeans components.

JSP containerA container that provides the same services as a servlet container
and an engine that interprets and processes JSP pages into a servlet.

324

GLOSSARY

JSP container, distributed A JSP container that can run a Web application that is
tagged as distributable and is spread across multiple Java virtual machines
that might be running on different hosts.

JSP declarationA JSP scripting element that declares methods, variables, or both
in a JSP file.

JSP directive A JSP element that gives an instruction to the JSP container and is
interpreted at translation time.

JSP elementA portion of a JSP page that is recognized by a JSP translator. An
element can be a directive, an action, or a scripting element.

JSP expressionA scripting element that contains a valid scripting language
expression that is evaluated, converted to a String, and placed into the implicit
out Object.

JSP file A file that contains a JSP page. In the Servlet 2.2 specification, a JSP file
must have a .jsp extension.

JSP pageA text-based document using fixed template data and JSP elements that
describes how to process a request to create a response.

JSP scripting elementA JSP declaration, scriptlet, or expression, whose tag syn-
tax is defined by the JSP specification, and whose content is written according
to the scripting language used in the JSP page. The JSP specification
describes the syntax and semantics for the case where the language page
attribute is "java".

JSP scriptlet A JSP scripting element containing any code fragment that is valid
in the scripting language used in the JSP page. The JSP specification
describes what is a valid scriptlet for the case where the language page
attribute is "java".

JSP tagA piece of text between a left angle bracket and a right angle bracket that
is used in a JSP file as part of a JSP element. The tag is distinguishable as
markup, as opposed to data, because it is surrounded by angle brackets.

JSP tag library A collection of custom tags identifying custom actions described
via a tag library descriptor and Java classes.

JTA Seelava Transaction API.

JTS Seelava Transaction Service

GLOSSARY 325

method permissionAn authorization rule that determines who is permitted to
execute one or more enterprise bean methods.

module A software unit that consists of one or more J2EE components of the
same container type and one deployment descriptor of that type. There are
three types of modules: EJB, Web, and application client. Modules can be
deployed as stand-alone units or assembled into an application.

mutual authentication An authentication mechanism employed by two parties
for the purpose of proving each other’s identity to one another.

ORB Object Request Broker. A library than enables CORBA obijects to locate and
communicate with one another.

OS principal A principal native to the operating system on which the J2EE plat-
form is executing.

OTS Object Transaction Service. A definition of the interfaces that permit
CORBA objects to participate in transactions.

naming context A set of associations between distinct, atomic people-friendly
identifiers and objects.

naming environment A mechanism that allows a component to be customized
without the need to access or change the component’s source code. A con-
tainer implements the component’s naming environment, and provides it to
the component as a JNDI naming context. Each component names and
accesses its environment entries using;jthe : comp/env JNDI context. The
environment entries are declaratively specified in the component’s deploy-
ment descriptor.

passivation The process of transferring an enterprise bean from memory to sec-
ondary storage. (Sextivation.)

persistenceThe protocol for transferring the state of an entity bean between its
instance variables and an underlying database.

POA Portable Object Adapter. A CORBA standard for building server-side appli-
cations that are portable across heterogeneous ORBs.

principal The identity assigned to an user as a result of authentication.

privilege A security attribute that does not have the property of uniqueness and
that may be shared by many principals.

326

GLOSSARY

primary key An object that uniquely identifies an entity bean within a home.

realm Seesecurity policy domain. Also, a string, passed as part of an HTTP
request during basic authentication, that defines a protection space. The pro-
tected resources on a server can be partitioned into a set of protection spaces,
each with its own authentication scheme and/or authorization database.

re-entrant entity bean An entity bean that can handle multiple simultaneous,
interleaved, or nested invocations which will not interfere with each other.

Reference ImplementationSeelava 2 SDK, Enterprise Edition

remote interface One of two interfaces for an enterprise bean. The remote inter-
face defines the business methods callable by a client.

remove methodMethod defined in the home interface and invoked by a client to
destroy an enterprise bean.

resource adapterA system-level software driver that is used by an EJB container
or an application client to connect to an enterprise information system. A
resource adapter is typically specific to an enterprise information system. It is
available as a library and is used within the address space of the server or cli-
ent using it. A resource adapter plugs in to a container. The application com-
ponents deployed on the container then use the client APl (exposed by
adapter) or tool generated high-level abstractions to access the underlying
enterprise information system. The resource adapter and EJB container col-
laborate to provide the underlying mechanisms—transactions, security, and
connection pooling—for connectivity to the enterprise information system.

resource managerProvides access to a set of shared resources. A resource man-
ager participates in transactions that are externally controlled and coordinated
by a transaction manager. A resource manager is typically in different address
space or on a different machine from the clients that access it. Note: An enter-
prise information system is referred to as resource manager when it is men-
tioned in the context of resource and transaction management.

resource manager connection object that represents a session with a resource
manager.

resource manager connection factoryAn object used for creating a resource
manager connection.

GLOSSARY 327

RMI Remote Method Invocation. A technology that allows an object running in
one Java virtual machine to invoke methods on an object running in a different
Java virtual machine.

RMI-IIOP A version of RMI implemented to use the CORBA IIOP protocol.
RMI over IIOP provides interoperability with CORBA objects implemented
in any language if all the remote interfaces are originally defined as RMI
interfaces.

role (development) The function performed by a party in the development and
deployment phases of an application developed using J2EE technology. The
roles are: Application Component Provider, Application Assembler,
Deployer, J2EE Product Provider, EJB Container Provider, EJB Server Pro-
vider, Web Container Provider, Web Server Provider, Tool Provider, and Sys-
tem Administrator.

role (security) An abstract logical grouping of users that is defined by the Appli-
cation Assembler. When an application is deployed, the roles are mapped to
security identities, such as principals or groups, in the operational environ-
ment.

role mapping The process of assaociating the groups and/or principals recognized
by the container to security roles specified in the deployment descriptor. Secu-
rity roles have to be mapped by the Deployer before the component is
installed in the server.

rollback The point in a transaction when all updates to any resources involved in
the transaction are reversed.

SAX Simple API for XML. An event-driven, serial-access mechanism for access-
ing XML documents.

security attributes A set of properties associated with a principal. Security
attributes can be associated with a principal by an authentication protocol and/
or by a J2EE Product Provider.

security constraint A declarative way to annotate the intended protection of Web
content. A security constraint consists of a Web resource collection, an autho-
rization constraint, and a user data constraint.

security contextAn object that encapsulates the shared state information regard-
ing security between two entities.

328 GLOSSARY

security permissionA mechanism, defined by J2SE, used by the J2EE platform
to express the programming restrictions imposed on Application Component
Providers.

security permission setThe minimum set of security permissions that a J2EE
Product Provider must provide for the execution of each component type.

security policy domain A scope over which security policies are defined and
enforced by a security administrator. A security policy domain has a collec-
tion of users (or principals), uses a well defined authentication protocol(s) for
authenticating users (or principals), and may have groups to simplify setting
of security policies.

security role Seerole (security).

security technology domainA scope over which the same security mechanism is
used to enforce a security policy. Multiple security policy domains can exist
within a single technology domain.

security view The set of security roles defined by the Application Assembler.
server principal The OS principal that the server is executing as.

servlet A Java program that extends the functionality of a Web server, generating
dynamic content and interacting with Web clients using a request-response
paradigm.

servlet container A container that provides the network services over which
requests and responses are sent, decodes requests, and formats responses. All
servlet containers must support HTTP as a protocol for requests and
responses, but may also support additional request-response protocols such as
HTTPS.

servlet container, distributed A servlet container that can run a Web application
that is tagged as distributable and that executes across multiple Java virtual
machines running on the same host or on different hosts.

servlet context An object that contains a servlet's view of the Web application
within which the servlet is running. Using the context, a servlet can log
events, obtain URL references to resources, and set and store attributes that
other servlets in the context can use.

GLOSSARY 329

servlet mappingDefines an association between a URL pattern and a servlet. The
mapping is used to map requests to servlets.

sessionAn object used by a servlet to track a user’s interaction with a Web appli-
cation across multiple HTTP requests.

session bearAn enterprise bean that is created by a client and that usually exists
only for the duration of a single client-server session. A session bean per-
forms operations, such as calculations or accessing a database, for the client.
While a session bean may be transactional, it is not recoverable should a sys-
tem crash occur. Session bean objects can be either stateless or they can main-
tain conversational state across methods and transactions. If a session bean
maintains state, then the EJB container manages this state if the object must
be removed from memory. However, the session bean object itself must man-
age its own persistent data.

SSL Secure Socket Layer. A security protocol that provides privacy over the Inter-
net. The protocol allows client-server applications to communicate in a way
that cannot be eavesdropped or tampered with. Servers are always authenti-
cated and clients are optionally authenticated.

SQL Structured Query Language. The standardized relational database language
for defining database objects and manipulating data.

SQL/J A set of standards that includes specifications for embedding SQL state-
ments in methods in the Java programming language and specifications for
calling Java static methods as SQL stored procedures and user-defined func-
tions. An SQL checker can detects errors in static SQL statements at program
development time, rather than at execution time as with a JDBC driver.

stateful session bea\ session bean with a conversational state.

stateless session beah session bean with no conversational state. All instances
of a stateless session bean are identical.

System Administrator The person responsible for configuring and administering
the enterprise’s computers, networks, and software systems.

transaction An atomic unit of work that modifies data. A transaction encloses one
or more program statements, all of which either complete or roll back. Trans-
actions enable multiple users to access the same data concurrently.

330

GLOSSARY

transaction attribute A value specified in an enterprise bean’s deployment
descriptor that is used by the EJB container to control the transaction scope
when the enterprise bean’s methods are invoked. A transaction attribute can
have the following valuesRequired, RequiresNew, Supports, NotSupported,
Mandatory, Never.

transaction isolation levelThe degree to which the intermediate state of the data
being modified by a transaction is visible to other concurrent transactions and
data being modified by other transactions is visible to it.

transaction managerProvides the services and management functions required
to support transaction demarcation, transactional resource management, syn-
chronization, and transaction context propagation.

Tool Provider An organization or software vendor that provides tools used for the
development, packaging, and deployment of J2EE applications.

URI Uniform Resource Identifier. A compact string of characters for identifying
an abstract or physical resource. A URI is either a URL or a URN. URLs and
URNSs are concrete entities that actually exist; A URI is an abstract superclass.

URL Uniform Resource Locator. A standard for writing a textual reference to an
arbitrary piece of data in the World Wide Web. A URL looks like "protocol://
host/localinfo" where "protocol" specifies a protocol for fetching the object
(such as HTTP or FTP), "host" specifies the Internet name of the targeted
host, and "localinfo" is a string (often a file name) passed to the protocol han-
dler on the remote host.

URL path The URL passed by a HTTP request to invoke a servlet. The URL con-
sists of the Context Path + Servlet Path + Pathinfo, where Context Path is the
path prefix associated with a servlet context that this servlet is a part of. If this
context is the default context rooted at the base of the Web server's URL
namespace, the path prefix will be an empty string. Otherwise, the path prefix
starts wih a / character but does not endlwi / character. Servlet Path is the
path section that directly corresponds to the mapping which activated this
request. This path starts with a / character. Pathinfo is the part of the request
path that is not part of the Context Path or the Servlet Path.

URN Uniform Resource Name. A unique identifier that identifies an entity, but
doesn't tell where it is located. A system can use a URN to look up an entity

GLOSSARY 331

locally before trying to find it on the Web. It also allows the Web location to
change, while still allowing the entity to be found.

user data constraint Indicates how data between a client and a Web container
should be protected. The protection can be the prevention of tampering with
the data or prevention of eavesdropping on the data.

WAR file A JAR archive that contains a Web module.

Web application An application written for the Internet, including those built
with Java technologies such as JavaServer Pages and servlets, as well as those
built with non-Java technologies such as CGI and Perl.

Web application, distributable A Web application that uses J2EE technology
written so that it can be deployed in a Web container distributed across multi-
ple Java virtual machines running on the same host or different hosts. The
deployment descriptor for such an application usesdtt¥@ributable ele-
ment.

Web componentA component that provides services in response to requests;
either a servlet or a JSP page.

Web container An entity that implements the Web component contract of the
J2EE architecture. This contract specifies a runtime environment for Web
components that includes security, concurrency, life cycle management, trans-
action, deployment, and other services. A Web container provides the same
services as a JSP container and a federated view of the J2EE platform APIs. A
Web container is provided by a Web or J2EE server.

Web container, distributed A Web container that can run a Web application that
is tagged as distributable and that executes across multiple Java virtual
machines running on the same host or on different hosts.

Web Container Provider A vendor that supplies a Web container.

Web module A unit that consists of one or more Web components and a Web
deployment descriptor.

Web resource collectionA list of URL patterns and HTTP methods that describe
a set of resources to be protected.

Web server Software that provides services to access the Internet, an intranet, or
an extranet. A Web server hosts Web sites, provides support for HTTP and

332 GLOSSARY

other protocols, and executes server-side programs (such as CGlI scripts or
servlets) that perform certain functions. In the J2EE architecture, a Web
server provides services to a Web container. For example, a Web container
typically relies on a Web server to provide HTTP message handling. The
J2EE architecture assumes that a Web container is hosted by a Web server
from the same vendor, so does not specify the contract between these two
entities. A Web server may host one or more Web containers.

Web Server Provider A vendor that supplies a Web server.

XML eXtensible Markup Language. A markup language that allows you to define
the tags (markup) needed to identify the data and text in XML documents.
J2EE deployment descriptors are expressed in XML.

Index

A

applets 26
accessing dserTransaction 35
deploying 58
security 59
session management 59
transactions 202
application clients 19, 26
accessing dserTransaction 35
client of EJB tier 61
client of Web tier 60
deployment 188
transactions 202
application scenarios14
business-to-business 20
multitier 16
sample application 242-247
stand-alone client 18
Web-centric 19
archive files
EAR 168
EJB JAR 169
JAR 46
WAR 172
auditing 237
authentication 37-38, 216
basic 38, 220
call patterns 223
client certificate 38
configuration 221
context 216
delegating 217
digest 38, 220
EIS resource 224
application-managed 224
container-managed 224
form-based 38, 221
configuration 186
sample application 303
lazy 220
mechanisms 220

mutual 216, 221
role of references 225
sample application 303—306
scenarios 218

authenticators 216

authorization 37, 39, 225
consistency across components 228
declarative versus programmatic 228
enterprise information systems 161
example 232
programmatic 227

auto-registration 225

B

basic authentication
See authentication, basic.
business logicl14
business objectd13
controlling access to 117
implemented by enterprise beans 118
maintaining state 115
operating on shared data 116
participation in transactions 116
remote accessibility 117
requirements of 115-117
reusability 117
servicing multiple clients 116

C

CGl 77
class files46
client certificate authentication
See authentication, client certificate.
client tier 6
clients
EIS. See enterprise information systems,
clients.
EJB. See EJB clients.

333

334 INDEX

impact of deployment mechanisms 52 clarifying session bean implementa-
impact of host platform 52 tions 131
impact of network service 50 example 131
impact of programming language 53 generated by tools 133
impact of security constraints 51 providing database portability 133
operating environment 50 sample application 276
overview 53 dependent objectsl 34, 276
supporting multiple types 68 deployment descriptors33, 174
types 54 application 34
Visual Basic application client 34
See Visual Basic clients. auth-constraint element 230
Web. See Web clients. common elements 176
Common Gateway Interface77 component 34
components25 container-transaction element 184
applets 26 EJB 34
application clients 26 ejb-link element 179
EJB 28 ejb-name element 179
enterprise beans 28 ejb-ref element 178, 225
portability 10 ejb-ref-name element 179
Web 26 ejb-ref-type element 179
confidentiality mechanisms235 env-entry element 176
connection factory reference< 80 error-page element 186
data source 159 login-config element 186, 221
mail session 181 method-permission element 39, 183, 232
connections persistence-type element 184
See enterprise information systems, res-auth element 159, 181, 224
connections. resource-ref element 180, 224-225
Connector architecture 41, 161 res-type element 181
containers 26 sample application 300
applet 26 security-constraint element 186, 230
APIs 29 security-role element 182
application client 26 security-role-ref element 182, 228
APIs 29 servlet element 185
EJB 28 servlet-mapping element 185
APIs 29 transport-guarantee element 222, 308
JSP 27 versioning 193
platform configuration 8 Web 34
servlet 27 deployment tools
Web 27 features
APIs 29 name collision management 193
credentials 218 name space management 193

remote accessibility 192
single point of entry 191

D undeployment capability 192
vendor-specific information 189
data access object330, 276 requirements 187

as migration path to container-managed digest authentication
persistence 133 See authentication, digest.

dynamic content generators
Active Server Pages 67
CGl scripts 77
JSP pages 78
servlets 77

E

EAR files 168
EJB clients 18, 61
advantages 63
deployment 62
disadvantages 64
protocols 61
security 63
transactions 62
EJB components
See enterprise beans.
EJB containers118
EJB JAR files 169
EJB tier 6
EJBHome 119
EJBObject 120
email
sending from enterprise bean 298
enterprise applications
development challenges 3
enhancing application developer
productivity 3

ensuring choice in servers, tools, and

components 5
ensuring scalability 4
integrating with information

systems 5
maintaining security 5

enterprise beans28, 118
accessing dserTransaction 35
appropriate uses of 130
as COM objects 65
class 120
client view 119

implementation 121
create methods 120
deployment 187
EntityBean 120
finder methods 120

INDEX

home interface 119
operations 119
implementing business objects 118
instances
creating 119
obtaining handles to 120
removing 119
master-detail relationships
implementing the master 137
modeling 136
obtaining a handle to home interface 119
packaging into EJB JAR files 170
by related functionality 171
by security profile 172
interrelated 172
with circular dependencies 172
portability 118
protected 223
protecting 231
references 177-180
remote interface 120
operations 120
sample application 275
See also entity beans.
See also session beans.
service information decoupled from
implementation 119
SessionBean 120
transaction attributes
See transaction attributes.
transactions 203-207
types 28, 118

enterprise information system tier6
enterprise information systems141

access objects 151
examples 152
guidelines 152
scenarios 153

accessing 146

authorization 161

capabilities 142

client API 149

clients 67

connections
establishing 154
life cycle 155
managing 155
managing by component type 156

335

INDEX

Connector architecture 161
integration
role of tools 150
security architecture 157
integration scenarios 143
distributed purchasing applica-
tion 145
employee self-service applica-
tion 144
e-store application 143
limitations 142
relational databases
accessing with JDBC 146
multiple concurrent connections 156
resource signon 158
application-managed 160
container-managed 159
transactions
JTA 208
resource manager local 209
using 208
Enterprise JavaBeans (EJB)
architecture 28, 118
See also enterprise beans.
entity beans28, 121
bean-managed persistence 124
characteristics 122
container-managed persistence 125
example 123
instances
finding 120
obtaining primary key 120
lifetime 122
persistence 124
sample application 275
state after system crash 122
error pages
invoking automatically 186

F

form-based authentication
See authentication, form-based.
front components80-81

H

HTML 45, 55
HTTP 42
properties 55

identity selection229
IDL 43
id1j compiler 43
image files46
impersonation 216
integrity mechanisms234
internationalization 88
data handling 89
data input 89
data storage 90
locale-independent data format-
ting 90

J

J2EE applications34, 168
deployment tasks 187
EJB-centric 96
packaging and deployment activities 165
scenarios
See application scenarios.
supporting multiple types of clients 68
Web-centric 96
J2EE Blueprints
program 313
programming model 2
J2EE Compatibility Test Suite 9
J2EE Developer’'s Guidexix
J2EE environment6
J2EE platform 6
as complement to EJB architecture 9
benefits 10
choice in servers, tools, and
components 13
enhanced application development
productivity 11
integration with enterprise
information systems 12

scalability 12

simplified security model 14
communication technologies 41
component technologies 25
data formats 45
database API 40
deployment services 33
email API 45
Internet protocols 42
messaging API 44
messaging technologies 44
naming and directory API 40
naming services 33
OMG protocols 43
remote object method invocation API 42
role of containers 7
saving application state 274
security services 37
service technologies 39
Standard Extension APIs 29
support for business logic 9
support for component portability 10
support for multiple client types 8
transaction API 40
transaction services 35

J2EE roles30

Application Assembler 31
Application Component Provider 31
Deployer 32
J2EE Product Provider 31

packaging and deployment tasks 165-168

System Administrator 32
Tool Provider 32
J2EE SDK9
J2EE specificationsxix, 9
JAF (JavaBeans Activation Framework)45
JAR files 46
Java IDL 43
Java Message Service (JMS)4
Java Naming and Directory Interface
(JNDI) 40
Java Remote Method Protocol (JRMP}2
Java Transaction API (JTA) 40, 201
Java Transaction Service (JTSYO0, 201
JavaBeans Activation Framework (JAF)45
JavaBeans components, in JSP pag8é
JavaMail 45

INDEX

JavaServer Pages (JSP) technolo@7, 78
See also JSP pages.
JDBC 40
JMS (Java Message Service)d
JNDI (Java Naming and Directory
Interface) 40
JRMP (Java Remote Method Protocoly2
JSP page®7, 78
as front components 81
as presentation components 82
custom tags 8687
designing 85
error pages 186
expressions 88
JavaBeans components 86
locale-specific 94-96
page directive 88, 95
presentation components
sample application 266
scriptlets 88
tag libraries 86
taglib directive 86
templates 83
sample application 260
versus servlets 85
JTA (Java Transaction API) 40
JTA transactions
See transactions, JTA.
JTS (Java Transaction Service¥0

L

locales88

localization 89

localized content
delivering 92
list resource bundles 92-94
locale-specific JSP pages 94-96

M

message digest234
message signature234
messages
ensuring privacy of 235
preventing tampering 234

337

338 INDEX

security threats 234
messaging
point-to-point 44
publish-subscribe 44
middle tier 6
modules
application client 34
packaging 174
EJB 34
contents 169
packaging 169
J2EE 34
types 34
Web 34
contents 172
packaging 172
mutual authentication
See authentication, mutual.
MVC architecture 21
Controller 22
in EJB-centric applications 104-107
multiple clients 69
sample application
See sample application,
Controller.
in EJB-centric applications 103
Model 21
in EJB-centric applications 104
multiple clients 68
sample application 273-278
sample application 21, 254-255
Model-View synchronization 294
support for mutiple types of clients 68
View 22
in EJB-centric applications 104
multiple clients 69
sample application 255-273

N

naming contexts33
environment 33, 178

naming environments33
entries 176

naming subcontexts33
ejb 33, 177
jdbc 33, 180

mail 180

P

portability
affected by use of transactions 199
component 10
enterprise bean 118
presentation components30, 82
principal mapping 224
principals 37
protection domains217

R

references
connection factory 180
data source 159
mail session 181
enterprise bean 177-180
resources
protected 230
unprotected 231
RMI 42
rmic compiler 43
RMI-IIOP 43

S

sample application
adding users 309
Controller 280-283
EJB tier 281
implementation 282—296
interaction between objects 281
ModelManager 294
ModelUpdateManager 296
RequestProcessor 284
RequestToEventTrans-
Tlator 285
ScreenFlowManager 293
ShoppingClientController-
EJB 288
ShoppingClientController-
WebImpl 287

StateMachine 289
Web tier 281
data access objects 276
deployment descriptors 300
design goals 253
email, sending from enterprise bean 298
enterprise beans 275
enterprise requirements 15
entity beans 275
functional specification 247
functionality 242
HTTPSession 274
JSP pages
cart.jsp 269
index.jsp 266
Main.jsp 283
presentation components 266
productcategory.jsp 267
ScreenDefinitions.jsp 264
template 260
template.jsp 261-264
insert tag 262, 264
Model 273-278
Model-View synchronization 294
modules 248, 250
MVC architecture 21, 254-255
obtaining xviii
persistent data 277
relationships between business objects 280
saving state 273
scenarios 242
administration 245
business-to-business 246
shopping 242
screens 256-258
home 266
product category 267
selecting 264
shopping cart 269
security APIs 310
use in EJB tier 310
use in Web tier 310
security implementation
authentication 303-306
confidentiality 308
handling unauthenticated users 306
user administration 308-309
security requirements

INDEX

authorization 302
confidentiality 302
user administration 302
user authentication 302
ServletContext 274
session beans
stateful 275
stateless 275
signing in 301
signing up 301
stateless services 298
transactions 300
user interface
shopping interaction 256-258
user profiles, maintaining 308
View 255-273

security

accessor components 229
attacks on messages 234
attributes 226
capabilities 226
declarative 38
mechanisms 216
auditing 237
authentication 216
authorization 225
confidentiality 235
integrity 234
mutual authentication 216
See also authentication.
See also authorization.
permissions 226
principal mapping 224
programmatic 38
protection domains 217
roles 39, 227
mapping to group identities 227
mapping to principal identities 227
sample application 307
sample application 301-311
threats to 215

servlets26, 77

as front components 81

as presentation components 82
limitations of embedded HTML 79
used to extend Web server 85
used to generate binary data 84
versus JSP pages 85

339

INDEX

session beang8, 125
as facade to entity beans 135
stateful 126
characteristics 126
example 127
lifetime 126
sample application 275
stateless 128
characteristics 128
example 129
sample application 275
SSL42

T

TCP/IP 42
tiers
client 6
EJB 6
enterprise information system 6
middle 6
Web 6
transaction attributes 205
assigning 184
for entity beans 205
for session beans 205
guidelines 207
Mandatory 206
Never 206
NotSupported 206
Required 205
RequiresNew 206
Supports 206
transactions 35, 197
ACID properties 197
applets 202
application clients 202
attributes
See transaction attributes.
compensating 210
pitfalls 211
creating 35
demarcation
bean-managed 37, 204
container-managed 37, 204
benefits of 205

U

guidelines 207
enterprise beans 36, 203-207
setRol1backOnly 205
enterprise informations systems 208
isolation level 212
guidelines 212
J2EE platform
characteristics 198
scenarios 199
J2EE SDK 198
JTA 35, 200
benefits 201
properties 197
atomicity 197
consistency 197
durability 198
isolation 197
resource manager local 35, 209
Web components 36, 202

UserTransaction

V

accessing 35
from applets 35
from application clients 35
from enterprise beans 35
from Web components 36

value objects134, 276

Visu

W

example 134
immutability 135
properties 134

used to conserve system resources 134

al Basic clients19, 65
limitations 66

WAR files 172
Web applications 75

types 96

Web clients

INDEX 341

applets 58 cross-dependent servlets 173
See also applets. cross-linked static content 173

browsers 58 roles 80

content format 55 using transactions 202

plug-ins 59 Web containers76

stand-alone 60 Web resources220
Java 60 confidentiality across absolute links 236
non-Java 61 confidentiality across relative links 237

transport protocols 55 protected 220

types 57 protecting 230

Web components26, 75 Web tier 6

accessing #serTransaction 36
as front components 80-81

as presentation components 80, 82 X
deployment 188
limitations on transactions 36 XML 17, 20, 46, 56

packaging into WAR files 173 guidelines 57

	Foreword
	Preface
	Introduction
	1.1 Challenges of Enterprise Application Development
	1.1.1 Programming Productivity
	1.1.2 Response to Demand
	1.1.3 Integration with Existing Systems
	1.1.4 Freedom to Choose
	1.1.5 Maintaining Security

	1.2 The Platform for Enterprise Solutions
	1.2.1 J2EE Platform Overview
	1.2.1.1 Multitier Model
	1.2.1.2 Container-Based Component Management
	1.2.1.3 Support for Client Components
	1.2.1.4 Support for Business Logic Components
	1.2.1.5 Support for the J2EE Standard

	1.2.2 J2EE Platform Benefits
	1.2.2.1 Simplified Architecture and Development
	1.2.2.2 Scales Easily
	1.2.2.3 Integrating Existing Enterprise Information Systems
	1.2.2.4 Choice of Servers, Tools, and Components
	1.2.2.5 Simplified, Unified Security Model

	1.3 J2EE Application Scenarios
	1.3.1 Multitier Application Scenario
	1.3.2 Stand-Alone Client Scenario
	1.3.3 Web-Centric Application Scenario
	1.3.4 Business-to-Business Scenario
	1.3.5 A Note on the MVC Architecture

	1.4 Summary

	J2EE Platform Technologies
	2.1 Component Technologies
	2.1.1 Applets and Application Clients
	2.1.2 Web Components
	2.1.2.1 Servlets
	2.1.2.2 JavaServer Pages Technology
	2.1.2.3 Web Component Containers

	2.1.3 Enterprise JavaBeans Components
	2.1.3.1 Session Beans
	2.1.3.2 Entity Beans
	2.1.3.3 EJB Component Containers

	2.1.4 Components, Containers, and Services

	2.2 Platform Roles
	2.2.1 J2EE Product Provider
	2.2.2 Application Component Provider
	2.2.3 Application Assembler
	2.2.4 Deployer
	2.2.5 System Administrator
	2.2.6 Tool Provider

	2.3 Platform Services
	2.3.1 Naming Services
	2.3.2 Deployment Services
	2.3.2.1 Deployment Units
	2.3.2.2 Platform Roles in the Deployment Process

	2.3.3 Transaction Services
	2.3.3.1 Accessing Transactions
	2.3.3.2 Web Component Transactions
	Transaction Propagation
	State Isolation

	2.3.3.3 Enterprise Bean Transactions

	2.3.4 Security Services
	2.3.4.1 Security Methodologies
	2.3.4.2 Authentication
	2.3.4.3 Authorization

	2.4 Service Technologies
	2.4.1 JDBC API
	2.4.2 Java Transaction API and Service
	2.4.3 Java Naming and Directory Interface
	2.4.4 Connector Architecture

	2.5 Communication Technologies
	2.5.1 Internet Protocols
	2.5.2 Remote Method Invocation Protocols
	2.5.3 Object Management Group Protocols
	2.5.3.1 Java IDL
	2.5.3.2 RMI-IIOP

	2.5.4 Messaging Technologies
	2.5.4.1 Java Message Service
	2.5.4.2 JavaMail
	JavaBeans Activation Framework

	2.5.5 Data Formats

	2.6 Summary

	The Client Tier
	3.1 Requirements and Constraints
	3.1.1 Operating Environment
	3.1.1.1 Network Service
	3.1.1.2 Security and Firewalls

	3.1.2 Deployment
	3.1.3 Implementation
	3.1.3.1 Platform
	3.1.3.2 Programming Language

	3.2 Overview of Client Options
	3.3 Web Clients
	3.3.1 Protocols
	3.3.2 Content Format
	3.3.2.1 HTML
	3.3.2.2 XML

	3.3.3 Types of Web Clients
	3.3.3.1 Web Browsers
	3.3.3.2 Java Applets
	Deployment
	Security
	Session Management

	3.3.3.3 Browser Plug-ins
	3.3.3.4 Stand-Alone Web Clients
	Java Clients and the Swing API
	Non-Java Clients

	3.4 EJB Clients
	3.4.1 Protocols and Facilities
	3.4.1.1 The Client Container
	3.4.1.2 Deployment
	3.4.1.3 Transactions
	3.4.1.4 Security

	3.4.2 Strengths and Weaknesses
	3.4.3 Types of EJB Clients
	3.4.3.1 Java Technology Clients
	Multitier Clients

	3.4.3.2 Non-Java Clients
	Accessing Enterprise Beans as COM Objects
	Limitations
	When to Use COM Clients
	Active Server Pages

	3.5 Enterprise Information System Clients
	3.6 Designing for Multiple Types of Client
	3.6.1 Model
	3.6.2 View
	3.6.3 Controller
	3.6.3.1 Interpreting User Gestures
	3.6.3.2 Selecting the View
	3.6.3.3 Example: The Sample Application Controller

	3.7 Summary

	The Web Tier
	4.1 Web Applications and Web Containers
	4.2 Dynamic Content Creation
	4.2.1 Common Gateway Interface
	4.2.2 Servlets
	4.2.3 JavaServer Pages Technology

	4.3 Servlets and JSP Pages
	4.3.1 Web Component Roles
	4.3.1.1 Front Components
	4.3.1.2 Presentation Components
	Presentation Component Templates

	4.3.2 Servlets
	4.3.2.1 Generating Binary Data
	4.3.2.2 Extending a Web Server’s Functionality

	4.3.3 JSP Pages Versus Servlets

	4.4 JSP Page Design
	4.4.1 JavaBeans Components
	4.4.2 Custom Tags
	4.4.3 Using Scriptlets and Expressions

	4.5 Internationalization and Localization
	4.5.1 Internationalization
	4.5.1.1 Data Input
	4.5.1.2 Data Storage
	4.5.1.3 Enabling Locale-Independent Data Formatting

	4.5.2 Localization
	4.5.2.1 Delivering Localized Content
	4.5.2.2 Localized Messages
	Localized Content in JSP Pages

	4.6 Application Designs
	4.6.1 Applications with Basic JSP Pages and Servlets
	4.6.2 Applications with Modular Components
	4.6.2.1 Modular Components in a JSP Page
	4.6.2.2 Processing Requests with Modular Components
	4.6.2.3 Displaying Personalized Content

	4.6.3 EJB-Centric Applications
	4.6.3.1 Model
	4.6.3.2 View
	4.6.3.3 Controller
	Controller Components

	4.7 Application Migration
	4.7.1 Migrating a Web-Centric Application to Use Enterprise Beans
	4.7.1.1 Centralize Application Control Using an MVC Architecture
	4.7.1.2 Create Enterprise Beans
	4.7.1.3 Move Application Logic to Enterprise Beans
	4.7.1.4 Modify JavaBeans Components
	4.7.1.5 Minimize Display Logic in JSP Pages

	4.8 Summary

	The Enterprise JavaBeans Tier
	5.1 Business Logic
	5.1.1 Common Requirements of Business Objects
	5.1.1.1 Maintain State
	5.1.1.2 Operate on Shared Data
	5.1.1.3 Participate in Transactions
	5.1.1.4 Service a Large Number of Clients
	5.1.1.5 Provide Remote Access to Data
	5.1.1.6 Control Access
	5.1.1.7 Reusable

	5.2 Enterprise Beans as J2EE Business Objects
	5.2.1 Enterprise Beans and EJB Containers
	5.2.1.1 Home Interface
	5.2.1.2 Remote Interface
	5.2.1.3 Enterprise Bean Class

	5.3 Entity Beans
	5.3.1 Guidelines for Using Entity Beans
	5.3.1.1 Example: A User Account Bean

	5.3.2 Persistence in Entity Beans

	5.4 Session Beans
	5.4.1 Stateful Session Beans
	5.4.1.1 Uses of Stateful Session Beans
	5.4.1.2 Example: A Shopping Cart Bean

	5.4.2 Stateless Session Beans
	5.4.2.1 Uses of Stateless Session Beans
	5.4.2.2 Example: A Catalog Bean

	5.5 Design Guidelines
	5.5.1 Data Access Objects
	5.5.1.1 Clarifying Session Bean Implementations
	5.5.1.2 Migrating to Container-Managed Persistence
	5.5.1.3 Database and Schema Portability
	5.5.1.4 Tool Compatibility

	5.5.2 Value Objects
	5.5.2.1 Example: An Address Value Object

	5.5.3 Session Beans as a Facade to Entity Beans
	5.5.4 Master-Detail Modeling Using Enterprise Beans

	5.6 Summary

	The Enterprise Information System Tier
	6.1 Enterprise Information System Capabilities and Limitations
	6.2 Enterprise Information System Integration Scenarios
	6.2.1 An Internet E-Store Application
	6.2.2 An Intranet Human Resources Application
	6.2.3 A Distributed Purchasing Application

	6.3 Relational Database Management System Access
	6.4 Other Enterprise Information System Access
	6.5 Application Component Provider Tasks
	6.6 Application Programming Model
	6.7 Programming Access to Data and Functions
	6.7.1 Client API for Enterprise Information System Access
	6.7.2 Tools for Application Development
	6.7.3 Access Objects
	6.7.3.1 Guidelines for Access Objects
	6.7.3.2 Examples of Access Objects
	6.7.3.3 Usage Scenarios for Access Objects

	6.8 Connections
	6.8.1 Establishing a Connection
	6.8.2 Guidelines for Connection Management
	6.8.2.1 Connection Life Cycle and Connection Pooling
	6.8.2.2 Connection Management by Component Type
	6.8.2.3 Multiple Connections

	6.9 Security
	6.9.1 Security Architecture
	6.9.2 Application Programming Model
	6.9.3 Resource Signon
	6.9.3.1 Container-Managed Signon
	6.9.3.2 Application-Managed Signon
	6.9.3.3 Authorization Model

	6.10 J2EE Connector Architecture
	6.11 Summary

	Packaging and Deployment
	7.1 Roles and Tasks
	7.2 Packaging J2EE Applications
	7.2.1 EJB Modules
	7.2.2 Packaging Components Into EJB Modules
	7.2.2.1 Grouping by Related Functionality
	7.2.2.2 Grouping Interrelated Beans
	7.2.2.3 Grouping for Circular References
	7.2.2.4 Groupings with Common Security Profiles

	7.2.3 Web Modules
	7.2.4 Packaging Components Into Web Modules
	7.2.4.1 Cross-Dependent Servlets
	7.2.4.2 Cross-Linked Static Content
	7.2.4.3 Logical Grouping of Functionality

	7.2.5 Application Client Modules

	7.3 Deployment Descriptors
	7.3.1 Specifying Deployment Descriptor Elements
	7.3.1.1 Common Elements
	Naming Environment Entries
	References to Enterprise Beans
	References to Connection Factories
	Security Elements

	7.3.1.2 Enterprise Bean Elements
	Transaction Elements
	Persistence Elements

	7.3.1.3 Web Component Elements
	Servlet
	Servlet Mapping
	Error Pages
	Form-Based Authentication Configuration

	7.4 Deployment Tools
	7.4.1 Deployment Tool Actions
	7.4.2 Deployment Tool Requirements
	7.4.2.1 Vendor-Specific Information
	7.4.2.2 Single Point of Entry for Deployment
	7.4.2.3 Remotely Accessible Deployment
	7.4.2.4 Undeployment Capability
	7.4.2.5 JNDI Name Space Management
	7.4.2.6 Name Collision Management
	7.4.2.7 Deployment Descriptor Versioning

	7.5 Summary

	Transaction Management
	8.1 Properties of Transactions
	8.2 J2EE Platform Transactions
	8.3 Scenarios
	8.3.1 Accessing Multiple Databases
	8.3.2 Accessing Multiple Enterprise Information Systems From Multiple EJB Servers

	8.4 JTA Transactions
	8.4.1 JTA and JTS

	8.5 Transactions in Applets and Application Clients
	8.6 Transactions in Web Components
	8.7 Transactions in Enterprise Beans
	8.7.1 Bean-Managed Transaction Demarcation
	8.7.2 Container-Managed Transaction Demarcation
	8.7.2.1 Transaction Attributes
	Required
	RequiresNew
	NotSupported
	Supports
	Mandatory
	Never

	8.7.3 Transaction Guidelines
	8.7.3.1 Transaction Attributes Guidelines

	8.8 Transactions in Enterprise Information Systems
	8.8.1 JTA Transactions
	8.8.2 Resource Manager Local Transactions
	8.8.3 Choosing Between JTA and Local Transactions
	8.8.4 Compensating Transactions
	8.8.5 Isolation Level

	8.9 Summary

	Security
	9.1 Security Threats and Mechanisms
	9.2 Authentication
	9.2.1 Protection Domains
	9.2.2 Authentication Mechanisms
	9.2.2.1 Web Tier Authentication
	Authentication Configuration
	Hybrid Authentication

	9.2.2.2 EJB Tier Authentication

	9.2.3 Authentication Call Patterns
	9.2.3.1 Enterprise Information System Tier Authentication

	9.2.4 Auto-Registration
	9.2.5 Exposing Authentication Boundaries with References

	9.3 Authorization
	9.3.1 Declarative Authorization
	9.3.2 Programmatic Authorization
	9.3.3 Declarative Versus Programmatic Authorization
	9.3.4 Isolation
	9.3.5 Identity Selection
	9.3.6 Encapsulation for Access Control
	9.3.7 Controlling Access to J2EE Resources
	9.3.7.1 Controlling Access to Web Resources
	9.3.7.2 Controlling Access to Enterprise Beans
	9.3.7.3 Unprotected Resources

	9.3.8 Example

	9.4 Protecting Messages
	9.4.1 Integrity Mechanisms
	9.4.2 Confidentiality Mechanisms
	9.4.3 Identifying Sensitive Components
	9.4.4 Ensuring Confidentiality of Web Resources

	9.5 Auditing
	9.6 Summary

	The Sample Application
	10.1 Application Functionality
	10.1.1 Scenarios
	10.1.1.1 Shopping Scenario
	10.1.1.2 Administration Scenario
	10.1.1.3 Business-to-Business Scenario

	10.1.2 Functional Specification

	10.2 Application Architecture
	10.2.1 Application Modules
	10.2.2 Application Design
	10.2.2.1 Application Tiers
	10.2.2.2 Application Objects
	Design Goals
	MVC Architecture

	10.3 The View
	10.3.1 Shopping Interaction Interface
	10.3.1.1 Screens
	10.3.1.2 Graphical Design

	10.3.2 JSP Pages
	10.3.2.1 A Template Mechanism
	10.3.2.2 View Selection

	10.3.3 Examples
	10.3.3.1 Home Screen
	10.3.3.2 Product Category Screen
	10.3.3.3 Shopping Cart Screen

	10.4 The Model
	10.4.1 State in the J2EE Platform
	10.4.1.1 Using Enterprise Beans to Maintain Session State
	Stateless Session Beans
	Stateful Session Beans
	Entity Beans

	10.4.1.2 Helper Objects
	Data Access Objects
	Value Objects

	10.4.2 Persistent Data

	10.5 Implementation
	10.6 The Controller
	10.6.1 Main
	10.6.2 RequestProcessor
	10.6.3 RequestToEventTranslator
	10.6.4 ShoppingClientControllerWebImpl
	10.6.5 ShoppingClientController
	10.6.6 StateMachine
	10.6.7 ScreenFlowManager
	10.6.8 Model-View Synchronization
	10.6.8.1 Model Manager
	10.6.8.2 ModelUpdateManager

	10.7 MVC Summary
	10.8 Stateless Services
	10.8.1 Example: A Mailer Bean

	10.9 Deployment
	10.10 Transactions
	10.11 Security
	10.11.1 Requirements
	10.11.2 Implementation
	10.11.2.1 User Authentication
	Web Client Authentication
	Application Client Authentication
	Handling Unauthenticated Users

	10.11.2.2 Authorization
	10.11.2.3 Confidentiality
	10.11.2.4 User Administration
	Maintaining User Profiles
	Adding New Users

	10.11.2.5 Programmatic Security
	Web Tier
	EJB Tier

	10.12 Summary

	Afterword
	Glossary
	Index

