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Preface

The amount of Internet traffic transmitted over optical telecommunication
networks has seen an enormous surge over the last decade. This process is
likely to continue considering the demand for a greater variety of services
and faster download rates. One central issue of modern optical telecommuni-
cation is its security. Current communication security protection schemes are
based on the mathematical complexity of specific encoding protocols. Any of
them can, in principle, be deciphered when a sufficient computational power
becomes available. There exists one particular scheme that is not vulnerable
to such scenario — the one-time pad protocol. It is based on the condition
of sharing secret random key material between two parties and using it for
encrypting their information exchange. However, such random key material
can be used only once and then must be discarded to ensure absolute secu-
rity. This requires the key to be constantly refilled in such a way that only
two legitimate users will possess identical sets of random key numbers. It is
of the utmost importance to make sure that nobody else has gained access
to the key material during refill procedures. This is where the use of special
properties of the quantum state of light — the photon — offers a solution to
the problem. Such basic principles of quantum theory as the no-cloning the-
orem have enabled researchers to implement a totally secure quantum key
distribution (QKD). Secure distribution of random key material using quan-
tum state of light constitutes the essence of a recently emerged area of physics
and technology — quantum cryptography.

In 2005, quantum mechanics and quantum theory of light celebrated their
100th anniversary of successfully describing basic properties of matter and
its interaction with electromagnetic radiation. Basic quantum principles out-
lined in earlier days have paved the way for the development of novel tech-
niques for information manipulation that is based on the physical principles
of correlation, superposition, and entanglement. Quantum information pro-
cessing uses nonclassical properties of a quantum system in a superposition
state (qubit) as the physical carrier of information. This is in contrast with
conventional description, which is based on the use of discrete classical de-
terministic bits. This nonclassical manipulation of information has created
the possibility of constructing extremely efficient quantum computers op-
erating on thousands of qubits at a time. This challenging and far-reaching
goal still requires a great deal of theoretical and experimental research efforts
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to develop quantum hardware resistant to decoherence and designing novel
algorithms to serve as quantum software.

In the meantime, quantum information processing applications dealing
with only a few qubits have been developed during the last decade and have
been moving from the university and government research labs into the area
of industrial research and development. Quantum cryptography that is based
on the use of only one or two qubits can serve as a success story of practi-
cal quantum information processing. Several small businesses have already
started offering practical point-to-point quantum key distribution devices
covering short and medium distances thus developing a novel market for
this disruptive technology. The first public quantum key distribution net-
work that connects multiple users over commercial fibers in a metropolitan
area has been operational for more than a year. Its constant development and
expansion creates a solid foundation for heterogeneous architecture similar
to the initial stages of Internet development.

This book aims at delivering a general overview of scientific foundations,
theoretical and experimental results, and specific technological and engineer-
ing developments in quantum communication and cryptography demon-
strated to date in university and government research laboratories around
the world. The book is intended to serve as an introduction to the area of
quantum information and, in particular, quantum communication and cryp-
tography. The book is oriented towards graduate students in physics and
engineering programs, research scientists, telecommunication engineers, and
anybody who is enthusiastic about the power of quantum mechanics and
who would be excited to learn about the emerging area of quantum optical
communication.

The book opens with a brief history of conventional communication en-
coding and the appearance of quantum cryptography. Several fascinating ex-
periments illustrating quantum information processing with entangled pho-
tons ranging from long-distance quantum key distribution in fiber to quantum
teleportation of unknown state of light have been presented. These research
efforts set a solid foundation for practical use of optical entanglement in
quantum communication. Long-distance open-air quantum key distribution
experiments have demonstrated the feasibility of extending quantum com-
munication from the ground to a satellite and in between satellites in free
space. The architecture of a currently operational metropolitan QKD net-
work serving as the first heterogeneous quantum cryptography test-bed is
described in detail. It is followed by the detailed theoretical analysis of prac-
tically meaningful security bounds. Several quantum communication pro-
tocols using continuous variables of nonclassical states of light are also pre-
sented. More complex applications of entangled states with few optical qubits
are also described establishing building blocks for constructing linear-optical
quantum computers and developing schemes for noise-immune quantum
communications. This book was written by a group of physicists, engineers,
and industrial scientists who are recognized leaders in the field of practical
quantum information processing and quantum communication. References
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provided at the end of each chapter could be used as a guide for more detailed
investigation of specific technical and scientific problems associated with this
rapidly growing and very exciting area of science and technology.

I hope you enjoy reading the book.

Alexander V. Sergienko
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Institute for Experimental Physics
University of Vienna
Vienna, Austria

Warwick P. Bowen
Department of Physics
Australian National University
Canberra, Australia

Artur Ekert
Department of Applied

Mathematics and Theoretical
Physics

University of Cambridge
Cambridge, United Kingdom

Chip Elliott
BBN Technologies
Cambridge, Massachusetts

Alessandro Fedrizzi
Institute for Experimental

Physics
University of Vienna
Vienna, Austria

James D. Franson
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland

Sara Gasparoni
Institute for Experimental Physics
University of Vienna
Vienna, Austria

Gerald Gilbert
Quantum Information Science

Group, MITRE
Eatontown, New Jersey

Nicolas Gisin
Group of Applied Physics
University of Geneva
Geneva, Switzerland

P.M. Gorman
QinetiQ
Malvern, United Kingdom

M. Halder
Ludwig Maximilians University

Munich
Munich, Germany
Group of Applied Physics
University of Geneva
Geneva, Switzerland

M. Hamrick
Quantum Information Science

Group, MITRE
Eatontown, New Jersey

xi



P1: Sanjay

Bahill.cls DK5859˙C000 October 10, 2005 18:5

S. Iblisdir
Group of Applied Physics
University of Geneva
Geneva, Switzerland

B.C. Jacobs
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland

Thomas D. Jennewein
Institute for Quantum Optics and

Quantum Information
Austrian Academy of Sciences
Vienna, Austria

Natalia Korolkova
Friedrich Alexander University

of Erlangen-Nürnberg
Erlangen, Germany

School of Physics and Astronomy
University of St. Andrews
St. Andrews, Scotland

Christian Kurtsiefer
Ludwig Maximilians University

Munich
Munich, Germany

National University of Singapore
Singapore

Ping Koy Lam
Department of Physics
Australian National University
Canberra, Australia

Andrew Matheson Lance
Department of Physics
Australian National University
Canberra, Australia

Gerd Leuchs
Friedrich Alexander University

of Erlangen-Nürnberg
Erlangen, Germany

Michael Lindenthal
Institute for Experimental Physics
University of Vienna
Vienna, Austria

S. Lorenz
Friedrich Alexander University

of Erlangen-Nürnberg
Erlangen, Germany

N. Lütkenhaus
Friedrich Alexander University

of Erlangen-Nürnberg
Erlangen, Germany

Gabriel Molina-Terriza
Institute for Experimental Physics
University of Vienna
Vienna, Austria

T.B. Pittman
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland

Andreas Poppe
Institute for Experimental Physics
University of Vienna
Vienna, Austria

Timothy C. Ralph
Department of Physics
University of Queensland
Brisbane, Australia

John G. Rarity
Department of Electrical and

Electronic Engineering
University of Bristol
Bristol, United Kingdom

Kevin Resch
Institute for Experimental Physics
University of Vienna
Vienna, Austria

Bahaa E.A. Saleh
Quantum Imaging Laboratory
Department of Electrical and

Computer Engineering
Department of Physics
Boston University
Boston, Massachusetts

xii



P1: Sanjay

Bahill.cls DK5859˙C000 October 10, 2005 18:5

Barry C. Sanders
Department of Physics

and Astronomy
University of Calgary
Calgary, Alberta, Canada

Alexander V. Sergienko
Quantum Imaging Laboratory
Department of Electrical and

Computer Engineering
Department of Physics
Boston University
Boston, Massachusetts

Thomas Symul
Department of Physics
Australian National

University
Canberra, Australia

P.R. Tapster
QinetiQ
Malvern, United Kingdom

Malvin C. Teich
Quantum Imaging Laboratory
Department of Electrical and

Computer Engineering
Department of Physics
Boston University
Boston, Massachusetts

F.J. Thayer
Quantum Information Science

Group, MITRE
Eatontown, New Jersey

W. Tittel
Group of Applied Physics
University of Geneva
Geneva, Switzerland

Rupert Ursin
Institute for Experimental

Physics
University of Vienna
Vienna, Austria

Philip Walther
Institute for Experimental

Physics
University of Vienna
Vienna, Austria

Zachary D. Walton
Quantum Imaging Laboratory
Department of Electrical and

Computer Engineering
Department of Physics
Boston University
Boston, Massachusetts

Harald Weinfurter
Ludwig Maximilians University

Munich
Munich, Germany

Max-Planck-Institute for Quantum
Optics

Garching, Germany

P. Zarda
Ludwig Maximilians University

Munich
Munich, Germany

Max-Planck-Institute for Quantum
Optics

Garching, Germany

H. Zbinden
Group of Applied Physics
University of Geneva
Geneva, Switzerland

Anton Zeilinger
Institute for Experimental Physics
University of Vienna
Vienna, Austria

Institute for Quantum Optics and
Quantum Information

Austrian Academy of Sciences
Vienna, Austria

xiii



P1: Sanjay

Bahill.cls DK5859˙C000 October 10, 2005 18:5

xiv



P1: Sanjay

Bahill.cls DK5859˙C000 October 10, 2005 18:5

Contents

Chapter 1 Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A. Ekert

Chapter 2 Quantum Communications with Optical Fibers . . . . . . . . . . . 17
N. Gisin, S. Iblisdir, W. Tittel, and H. Zbinden

Chapter 3 Advanced Quantum Communications Experiments
with Entangled Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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chapter 1

Quantum Cryptography

A. Ekert
University of Cambridge
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Few persons can be made to believe that it is not quite an easy thing to
invent a method of secret writing which shall baffle investigation. Yet it
may be roundly asserted that human ingenuity cannot concoct a cipher
which human ingenuity cannot resolve . . .

— Edgar Alan Poe, “A Few Words on Secret Writing,” 1841

Abstract
Quantum cryptography offers new methods of secure communication. Un-
like traditional classical cryptography, which employs various mathematical
techniques to restrict eavesdroppers from learning the contents of encrypted
messages, quantum cryptography is focused on the physics of information.
The process of sending and storing information is always carried out by phys-
ical means, for example photons in optical fibers or electrons in electric cur-
rent. Eavesdropping can be viewed as measurements on a physical object — in

1
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2 Quantum Communications and Cryptography

this case the carrier of the information. What the eavesdropper can measure,
and how, depends exclusively on the laws of physics. Using quantum phe-
nomena, we can design and implement a communication system that can
always detect eavesdropping. This is because measurements on the quantum
carrier of information disturb it and so leave traces. What follows is a brief
overview of the quest for constructing unbreakable ciphers, from classical to
quantum.

1.1 Classical Origins
Human desire to communicate secretly is at least as old as writing itself and
goes back to the beginnings of civilization. Methods of secret communication
were developed by many ancient societies, including those of Mesopotamia,
Egypt, India, China, and Japan, but details regarding the origins of cryptology,
i.e., the science and art of secure communication, remain unknown.

We know that it was the Spartans, the most warlike of the Greeks, who
pioneered cryptography in Europe. Around 400 B.C. they employed a device
known as the scytale (Figure 1.1). The device, used for communication be-
tween military commanders, consisted of a tapered baton around which was
wrapped a spiral strip of parchment or leather containing the message. Words
were then written lengthwise along the baton, one letter on each revolution
of the strip. When unwrapped, the letters of the message appeared scrambled

Figure 1.1 Scytale (top) and Alberti’s disk (bottom) were the first cryptographic
devices implementing permutations and substitutions, respectively.
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Chapter 1: Quantum Cryptography 3

and the parchment was sent on its way. The receiver wrapped the parchment
around another baton of the same shape and the original message reappeared.

In his correspondence, Julius Caesar allegedly used a simple letter sub-
stitution method. Each letter of Caesar’s message was replaced by the letter
that followed it alphabetically by three places. The letter A was replaced by
D, the letter B by E, and so on. For example, the English word COLD after the
Caesar substitution appears as FROG. This method is still called the Caesar
cipher, regardless of the size of the shift used for the substitution.

These two simple examples already contain the two basic methods of en-
cryption which are still employed by cryptographers today, namely, transpo-
sition and substitution. In transposition (scytale) the letters of the plaintext, the
technical term for the message to be transmitted, are rearranged by a special
permutation. In substitution (Caesar’s cipher) the letters of the plaintext are
replaced by other letters, numbers or arbitrary symbols. The two techniques
can be combined to produce more complex ciphers.

Simple substitution ciphers are easy to break. For example, the Caesar
cipher with 25 letters admits any shift between 1 and 25, so it has 25 possible
substitutions (or 26 if you allow the zero shift). One can easily try them all,
one by one. The most general form of one-to-one substitution, not restricted
to the shifts, can generate

26! or 403, 291, 461, 126, 605, 635, 584, 000, 000 (1.1)

possible substitutions. And yet, ciphers based on one-to-one substitutions,
also known as monoalphabetic ciphers, can be easily broken by frequency
analysis. The method was proposed by the ninth-century polymath from
Baghdad, Al-Kindi (800–873 A.D.), often called the philosopher of the Arabs.

Al-Kindi noticed that if a letter in a message is replaced with a different
letter or symbol then the new letter will take on all the characteristics of the
original one. A simple substitution cipher cannot disguise certain features of
the message, such as the relative frequencies of the different characters. Take
the English language: the letter E is the most common letter, accounting for
12.7% of all letters, followed by T (9.0%), then A (8.2%) and so on. This means
that if E is replaced by a symbol X, then X will account for roughly 13% of
symbols in the concealed message, thus one can work out that X actually
represents E. Then we look for the second most frequent character in the
concealed message and identify it with the letter T, and so on. If the concealed
message is sufficiently long then it is possible to reveal its content simply by
analyzing the frequency of the characters.

1.2 Le Chiffre Indéchiffrable
In the fifteenth and sixteenth centuries, monoalphabetic ciphers were grad-
ually replaced by more sophisticated methods. At the time, Europe, Italy in
particular, was a place of turmoil, intrigue, and struggle for political and finan-
cial power, and the cloak-and-dagger atmosphere was ideal for cryptography
to flourish.
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In the 1460s Leone Battista Alberti (1404–1472), better known as an archi-
tect, invented a device based on two concentric discs that simplified the use
of Caesar ciphers. The substitution, i.e., the relative shift of the two alphabets,
is determined by the relative rotation of the two disks (Figure 1.1).

Rumor has it that Alberti also considered changing the substitution within
one message by turning the inner disc in his device. It is believed that this is
how he discovered the so-called polyalphabetic ciphers, which are based on
superpositions of Caesar ciphers with different shifts. For example, the first
letter in the message can be shifted by 7, the second letter by 14, the third by
19, the fourth again by 7, the fifth by 14, the sixth by 19, and so on repeating the
shifts 7, 14, 19 throughout the whole message. The sequence of numbers — in
this example 7, 14, 19 — is usually referred to as a cryptographic key. Using
this particular key we transform the message SELL into its concealed version,
which reads ZSES.

As said, the message to be concealed is called the plaintext; the opera-
tion of disguising it is known as encryption. The encrypted plaintext is called
the ciphertext or cryptogram. Our example illustrates the departure from a
simple substitution; the repeated L in the plaintext SELL is enciphered differ-
ently in each case. Similarly, the two S’s, in the ciphertext represent different
letters in the plaintext: the first S corresponds to the letter E and the second
to the letter L. This makes the straightforward frequency analysis of char-
acters in ciphertexts obsolete. Indeed, polyalphabetic ciphers invented by
the main contributors to the field at the time, such as Johannes Trithemius
(1462–1516), Blaise de Vigenre (1523–1596), and Giovanni Battista Della Porta
(1535–1615), were considered unbreakable for at least another 200 years.
Indeed, Vigenre himself confidently dubbed his invention “le chiffre
indéchiffrable” — the unbreakable cipher.

1.3 Not So Unbreakable
The first description of a systematic method of breaking polyalphabetic ci-
phers was published in 1863 by the Prussian colonel Friedrich Wilhelm Kasiski
(1805–1881), but, according to some sources (for example, Simon Singh,
The Code Book), Charles Babbage (1791–1871) had worked out the same method
in private sometime in the 1850s.

The basic idea of breaking polyalphabetic ciphers is based on the obser-
vation that if we use N different substitutions in a periodic fashion then every
Nth character in the cryptogram is enciphered with the same monoalphabetic
cipher. In this case we have to find N, the length of the key and apply fre-
quency analysis to subcryptograms composed of every Nth character of the
cryptogram.

But how do we find N? We look for repeated sequences in the ciphertext.
If a sequence of letters in the plaintext is repeated at a distance which is a mul-
tiple of N, then the corresponding ciphertext sequence is also repeated. For
example, for N = 3, with the 7, 14, 19 shifts, we encipher TOBEORNOTTOBE
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as ACULCVUCMACUL:

T O B E O R N O T T O B E
A C U L C V U C M A C U L

The repeated sequence ACUL is a giveaway. The repetition appears at
a distance 9; thus we can infer that possible values of N are 9 or 3 or 1. We
can then apply frequency analysis to the whole cryptogram, to every third
character and to every ninth character; one of them will reveal the plaintext.
This trial and error approach becomes more difficult for large values of N,
i.e., for very long keys.

In the 1920s, electromechanical technology transformed the original
Alberti’s disks into rotor machines in which an encrypting sequence with
an extremely long period of substitutions could be generated, by rotating a
sequence of rotors. Probably the most famous of them is the Enigma machine,
patented by Arthur Scherbius in 1918.

A notable achievement of cryptanalysis was the breaking of the Enigma
in 1933. In the winter of 1932, Marian Rejewski, a 27-year-old cryptanalyst
working in the Cipher Bureau of the Polish Intelligence Service in Warsaw,
mathematically determined the wiring of the Enigma’s first rotor. From then
on, Poland was able to read thousands of German messages encrypted by
the Enigma machine. In July 1939 Poles passed the Enigma secret to French
and British cryptanalysts. After Hitler invaded Poland and France, the effort
of breaking Enigma ciphers continued at Bletchley Park in England. A large
Victorian mansion in the center of the park (now a museum) housed the
Government Code and Cypher School and was the scene of many spectacular
advances in modern cryptanalysis.

1.4 Truly Unbreakable?
Despite its long history, cryptography only became part of mathematics and
information theory in the late 1940s, mainly as a result of the work of Claude
Shannon (1916–2001) of Bell Laboratories in New Jersey. Shannon showed
that truly unbreakable ciphers do exist and, in fact, they had been known
for over 30 years. They were devised in 1918 by an American Telephone
and Telegraph engineer Gilbert Vernam and Major Joseph Mauborgne of the
U.S. Army Signal Corps. They are called one-time pads or Vernam ciphers
(Figure 1.2).

Both the original design of the one-time pad and the modern version
of it are based on the binary alphabet. The plaintext is converted to a se-
quence of 0’s and 1’s, using some publicly known rule. The key is another
sequence of 0’s and 1’s of the same length. Each bit of the plaintext is then com-
bined with the respective bit of the key, according to the rules of addition in
base 2:

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0. (1.2)
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Figure 1.2 One-time pad.

The key is a random sequence of 0’s and 1’s, and therefore the resulting cryp-
togram, the plaintext plus the key, is also random and completely scrambled
unless one knows the key. The plaintext can be recovered by adding (in base
2 again) the cryptogram and the key.

In the example above (shown in Figure 1.2), the sender, traditionally called
Alice, adds each bit of the plaintext (01011100) to the corresponding bit of the
key (11001010) obtaining the cryptogram (10010110), which is then transmit-
ted to the receiver, traditionally called Bob. Both Alice and Bob must have
exact copies of the key beforehand; Alice needs the key to encrypt the plain-
text, Bob needs the key to recover the plaintext from the cryptogram. An
eavesdropper, called Eve, who has intercepted the cryptogram and knows
the general method of encryption but not the key, will not be able to infer
anything useful about the original message. Indeed, Shannon proved that if
the key is secret, the same length as the message, truly random, and never
reused, then the one-time pad is unbreakable. Thus we do have unbreakable
ciphers.

1.5 Key Distribution Problem
There is, however, a snag. All one-time pads suffer from a serious practical
drawback, known as the key distribution problem. Potential users have to
agree secretly and in advance on the key, a long, random sequence of 0’s
and 1’s. Once they have done this, they can use the key for enciphering and
deciphering, and the resulting cryptograms can be transmitted publicly, for
example, broadcasted by radio, posted on the Internet, or printed in a news-
paper, without compromising the security of the messages. But the key itself
must be established between the sender and the receiver by means of a secure
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channel — for example, a secure telephone line, or via a private meeting or
hand delivery by a trusted courier.

Such a secure channel is usually available only at certain times and under
certain circumstances. So users far apart, in order to guarantee perfect secu-
rity of subsequent cryptocommunication, have to carry around with them
an enormous amount of secret and meaningless information (cryptographic
keys), equal in volume to all the messages they might later wish to send. This
is, to say the least, not very convenient.

Furthermore, even if a secure channel is available, this security can never
be truly guaranteed. A fundamental problem remains because, in principle,
any classical private channel can be monitored passively, without the sender
or receiver knowing that the eavesdropping has taken place. This is because
classical physics — the theory of ordinary-scale bodies and phenomena such
as paper documents, magnetic tapes, and radio signals — allows all physical
properties of an object to be measured without disturbing those properties.
Since all information, including cryptographic keys, is encoded in measur-
able physical properties of some object or signal, classical theory leaves open
the possibility of passive eavesdropping, because in principle it allows the
eavesdropper to measure physical properties without disturbing them. This
is not the case in quantum theory, which forms the basis for quantum cryp-
tography. However, before we venture into quantum physics, let us mention
in passing a beautiful mathematical approach to solving the key distribution
problem.

The 1970s brought a clever mathematical discovery in the shape of “public-
key” systems. The two main public-key cryptography techniques in use today
are the Diffie–Hellman key exchange protocol [13] and the RSA encryption
system (named after the three inventors, Ron Rivest, Adi Shamir, and Leonard
Adleman) [24]. They were discovered in the academic community in 1976 and
1978, respectively. However, it was widely rumored that these techniques
were known to British government agencies prior to these dates, although
this was not officially confirmed until recently. In fact, the techniques were
first discovered at the British Government Communication Headquarters in
the early 1970s by James Ellis, who called them nonsecret encryption. In 1973,
building on Ellis’ idea, C. Cocks designed what we now call RSA, and in
1974 M. Williamson proposed what is essentially known today as the Diffie–
Hellman key exchange protocol.

In the public-key systems, users do not need to agree on a secret key be-
fore they send the message. They work on the principle of a safe with two
keys, one public key to lock it, and another private one to open it. Every-
one has a key to lock the safe but only one person has a key that will open
it again, so anyone can put a message in the safe but only one person can
take it out. The systems avoid the key distribution problem but unfortunately
their security depends on unproven mathematical assumptions. For example,
RSA — probably the most popular public-key cryptosystem — derives its se-
curity from the difficulty of factoring large numbers. This means that if math-
ematicians or computer scientists come up with fast and clever procedures
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for factoring, the whole privacy and discretion of public-key cryptosystems
could vanish overnight.

Indeed, we know that quantum computers can, at least in principle, effi-
ciently factor large integers [19]. Thus in one sense public-key cryptosystems
are already insecure: any RSA-encrypted message that is recorded today will
become readable moments after the first quantum computer is switched on,
and therefore RSA cannot be used for securely transmitting any information
that will still need to be secret on that happy day. Admittedly, that day is
probably decades away, but can anyone prove, or give any reliable assurance,
that it is? Confidence in the slowness of technological progress is all that the
security of the RSA system now rests on.

1.6 Local Realism and Eavesdropping
We shall now leave mathematics and enter the world of quantum physics.
Physicists view key distribution as a physical process associated with sending
information from one place to another. From this perspective, eavesdropping
is a set of measurements performed on carriers of information. In order to
avoid detection, an eavesdropper wants to learn about the value of a physical
property that encodes information without disturbing it. Is such a passive
measurement always possible?

In 1935, Albert Einstein together with Boris Podolsky and Nathan Rosen
(EPR) published a paper in which they outlined how a “proper” fundamental
theory of nature should look [15]. The EPR program required completeness
(“In a complete theory there is an element corresponding to each element of
reality.”) and locality (“The real factual situation of the system A is indepen-
dent of what is done with the system B, which is spatially separated from the
former.”) and defined the element of physical reality as “If, without in any
way disturbing a system, we can predict with certainty the value of a physical
quantity, then there exists an element of physical reality corresponding to this
physical quantity.” In other words, if we can know the value of some phys-
ical property without “touching” the system in any way, then the property
must be physically real, i.e., it must have a determinate value, even before we
measure it.

This world view is known as “local realism” and it implies possibilities
of perfect eavesdropping. Indeed, this is exactly what the EPR definition of
the element of reality means in the cryptographic context.

Einstein and his colleagues considered a thought experiment, on two en-
tangled particles, that showed that quantum states cannot in all situations be
complete descriptions of physical reality. The EPR argument, as subsequently
modified by David Bohm [9], goes as follows. Imagine the singlet-spin state
of two spin 1

2 particles

| �〉 = 1√
2

(| ↑〉 | ↓〉 − | ↓〉 | ↑〉) , (1.3)

where the single particle kets | ↑〉 and | ↓〉 denote spin up and spin down with
respect to some chosen direction. This state is spherically symmetric, and the
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choice of direction does not matter. The two particles, which we label Aand B,
are emitted from a source and fly apart. After they are sufficiently separated
so that they do not interact with each other, we can predict with certainity the
x component of spin of particle A by measuring the x component of spin of
particle B. Each measurement on B, in 1

2 h̄ units, can yield two results, +1 (spin
up) and −1 (spin down) and reveals the value of the x component of A. This is
because the total spin of the two particles is zero, and the spin components of
the two particles must have opposite values. The measurement performed on
particle B does not disturb particle A (by locality) so the x component of spin
is an element of reality according to the EPR criterion. By the same argument
and by the spherical symmetry of state | �〉 the y, z, or indeed any other spin
components are also elements of reality. Therefore all the spin components
must have predetermined values +1 or −1.

Local realism has experimental consequences. Consider two pairs of spin
components, A1 and A2 pertaining to the particle A, and B1 and B2 pertaining
to the particle B. A1, A2, B1, and B2 all have simultaneous definite values,
either +1 or −1. Hence the quantity

Q = A1(B1 − B2) + A2(B1 + B2) (1.4)

can have two different values, either −2 or +2, and consequently,

−2 ≤ 〈Q〉 ≤ 2, (1.5)

where 〈Q〉 stands for the average value of Q. This inequality is known as the
Bell inequality [3] or more precisely as the CHSH inequality [11].

Both quantum-mechanical predictions and experiments show that for
two particles in the singlet state, 〈AB〉 = −�a · �b, �a and �b are the unit vectors
specifying the directions of the spin components of particles A and B, re-
spectively. This leads to a violation of the CHSH inequality (Equation (1.5)).
For if we choose �ai and �b j in the x–y plane, perpendicular to the trajectory
of the particles emitted from the source, and characterized by the azimuthal
angles φa

1 = 0, φa
2 = 1

2π , and φb
1 = 1

4π, φb
2 = 3

4π then 〈Q〉 = −2
√

2. Local realism
is refuted, which opens possibilities of constructing key distribution schemes
that will always detect eavesdropping.

Please note that any theory that refutes local realism, be it quantum or
post-quantum, opens such possibilities. Even if quantum mechanics is refuted
sometime in the future and a new physical theory is conjectured, as long as the
new theory refutes local realism, possibilities for post-quantum cryptography
are wide open.

1.7 Quantum Key Distribution
1.7.1 Entanglement-Based Protocols
Let us take advantage of the CHSH inequality within the quantum the-
ory. The key distribution is performed via a quantum channel that consists
of a source that emits pairs of spin 1

2 particles in the singlet state as in
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Equation (1.3). The particles fly apart along the z-axis toward the two le-
gitimate users of the channel, Alice and Bob, who, after the particles have
separated, perform measurements and register spin components along one
of three directions, given by unit vectors �ai and �b j (i, j = 1, 2, 3), respectively,
for Alice and Bob. For simplicity, both �ai and �b j vectors lie in the x–y plane,
perpendicular to the trajectory of the particles, and are characterized by az-
imuthal angles: φa

1 = 0, φa
2 = 1

4π, φa
3 = 1

2π and φb
1 = 1

4π, φb
2 = 1

2π, φb
3 = 3

4π . Su-
perscripts a and b refer to Alice’s and Bob’s analyzers, respectively, and the
angle is measured from the vertical x-axis. The users choose the orientation
of the analyzers randomly and independently for each pair of incoming par-
ticles. Each measurement can yield two results, +1 (spin up) and −1 (spin
down) and can reveal one bit of information.

After the transmission has taken place, Alice and Bob can announce in
public the orientations of the analyzers they have chosen for each particular
measurement and divide the measurements into two separate groups: a first
group for which they used different orientations of the analyzers and a sec-
ond group for which they used the same orientation of the analyzers. They
discard all measurements in which either or both of them failed to register a
particle at all. Subsequently Alice and Bob can reveal publicly the results they
obtained, but within the first group of measurements only. This allows them
to establish the value of 〈Q〉, which if the particles were not directly or indi-
rectly “disturbed” should be very close to −2

√
2. This assures the legitimate

users that the results they obtained within the second group of measure-
ments are anticorrelated and can be converted into a secret string of bits —
the key.

An eavesdropper, Eve, cannot elicit any information from the particles
while in transit from the source to the legitimate users, simply because there
is no information encoded there. The information “comes into being” only
after the legitimate users perform measurements and communicate in public
afterwards. Eve may try to substitute her own prepared data for Alice and
Bob to misguide them, but as she does not know which orientation of the
analyzers will be chosen for a given pair of particles, there is no good strategy
to escape being detected. In this case her intervention will be equivalent to
introducing elements of physical reality to the spin components and will lower
〈Q〉 below its “quantum” value.

1.7.2 Prepare and Measure Protocols
Instead of tuning into an external source of entangled particles, Alice and
Bob may also rely on the Heisenberg uncertainty principle. Suppose a spin 1

2
particle is prepared in one of the four states, say spin up and down along the
vertical x-axis (| ↑〉, | ↓〉) and spin up and down along the horizontal y-axis
(| →〉, | ←〉). Then the two x states | ↑〉 and | ↓〉 can be distinguished by one
measurement and the two y states | →〉 and | ←〉 by another measurement.
The measurement that can distinguish between the two x states will give a
completely random outcome, when applied to distinguish between the two y
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states and vice versa. If, for each incoming particle, the receiver performing the
measurement is not told in advance which type of spin (x or y) was prepared
by the sender, then the receiver is completely lost and unable to determine
the spin value. This can be used for the key distribution.

Alice and Bob agree on the bit encoding, e.g., | ↑〉 = 0 = | →〉, | ↓〉 = 1 =
| ←〉, and Alice repeatedly prepares one of the four quantum states, choos-
ing randomly out of | ↑〉, | ↓〉, | →〉, and | ←〉. She then sends it to Bob, who
randomly chooses to measure either the x or the y spin component. After com-
pleting all the measurements, Alice and Bob discuss their data in public so
that anybody can listen, including their adversary Eve. Bob tells Alice which
spin component he measured for each incoming particle and she tells him
“what should have been measured.” Alice does not disclose which particular
state she prepared, and Bob does not reveal the outcome of the measurement,
so the actual values of bits are still secret. Alice and Bob then discard those
results in which Bob failed to detect a particle and those for which he made
measurements of the wrong type. They then compare a large subset of the re-
maining data. Provided no eavesdropping has taken place, the result should
be a shared secret that can be interpreted by both Alice and Bob as a binary
key.

But let us suppose there is an eavesdropper, Eve. Eve does not know
in advance which state will be chosen by Alice to encode a given bit. If she
measures this bit and resends it to Bob, this may create errors in Bob’s readings.
Therefore in order to complete the key distribution Alice and Bob have to test
their data for discrepancies. They compare in public some randomly selected
readings and estimate the error rate; if they find many discrepancies, they have
reason to suspect eavesdropping and should start the whole key distribution
from scratch. If the error rate is negligibly small, they know that the data not
disclosed in the public comparison form a secret key. No matter how complex
and subtle is the advanced technology and computing power available to the
eavesdropper, the “quantum noise” caused inevitably by each act of tapping
will expose each attempt to gain even partial information about the key.

1.8 Security Proofs
Admittedly the key distribution procedures described above are somewhat
idealized. The problem is that there is in principle no way of distinguishing
noise due to an eavesdropper from innocent noise due to spurious interac-
tions with the environment, some of which are presumably always present.
All good quantum key distribution protocols must be operable in the pres-
ence of noise that may or may not result from eavesdropping. The protocols
must specify for which values of measurable parameters Alice and Bob can
establish a secret key and provide a physically implementable procedure that
generates such a key. The design of the procedure must take into account that
an eavesdropper may have access to unlimited quantum computing power.

The best way to analyze eavesdropping in the system is to adopt the
entanglement-based protocol and the scenario that is most favorable for
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eavesdropping, namely that Eve herself is allowed to prepare and deliver
all the pairs that Alice and Bob will subsequently use to establish a key. This
way we take the most conservative view, which attributes all disturbance
in the channel to eavesdropping, even though most of it (if not all) may be
due to innocent environmental noise. This approach also applies to the pre-
pare and measure protocols because they can be viewed as special cases of
entanglement-based protocols, e.g., the source of entangled particles can be
given either to Alice or to Bob. It is prudent to assume that Eve has dispro-
portional technological advantage over Alice and Bob. She may have access
to unlimited computational power, including quantum computers; she may
monitor all the public communication between Alice and Bob in which they
reveal their measurement choices and exchange further information in order
to correct errors in their shared key and to amplify its privacy. In contrast,
Alice and Bob can only perform measurements on individual qubits and
communicate classically over a public channel. They do not have quantum
computers, or any sophisticated quantum technology, apart from the ability
to establish a transmission over a quantum channel.

The search for good security criteria under such stringent conditions led to
early studies of quantum eavesdropping [17,28] and finally to the first proof
of the security of key distribution [12]. The original proof showed that the
entanglement-based key distributions are indeed secure and noise-tolerant
against an adversary with unlimited computing power as long as Alice and
Bob can implement quantum privacy amplification. In principle, quantum
privacy amplification allows us to establish a secure key over any distance,
using entanglement swapping [29] in a chain of quantum repeaters [2,14].
However, this procedure, which distills pure entangled states from corrupted
mixed states of two qubits, requires a small-scale quantum computation. Sub-
sequent proofs by Inamori [21] and Ben-Or [4] showed that Alice and Bob can
also distill a secret key from partially entangled particles using only classical
error correction and classical privacy amplification [6,7].

Quantum privacy amplification was also used by Lo and Chau to
prove the security of the prepare and measure protocols over an arbitrary
distance [22]. A concurrent proof by Mayers showed that the protocol can
be secure without Alice and Bob having to rely on the use of quantum com-
puters [23]. The same conclusion, but using different techniques, was subse-
quently reached by Biham et al. [8]. Although the two proofs did not require
quantum privacy amplification, they were rather complex. A nice fusion of
quantum privacy amplification and error correction was proposed by Shor
and Preskill, who formulated a relatively simple proof of the security of the
BB84 [5] protocol based on virtual quantum error correction [25]. They showed
that a protocol that employs quantum error-correcting code to prevent Eve
from becoming entangled with qubits that are used to generate the key re-
duces to the BB84 augmented by classical error correction and classical pri-
vacy amplification. This proof has been further extended by Gottesman and
Lo [20] for two-way public communication to allow for a higher bit error rate
in BB84 and by Tamaki et al. [26] to proof the security of the B92 protocol.
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More recently, another simple proof of the BB84, which employs results from
quantum communication complexity, has been provided by Ben-Or [4] and
a general proof based on bounds on the performance of quantum memories
has been proposed by Christandl et al. [30].

Let us also mention in passing that apart from the scenario that favors
Eve, i.e., Eve has access to quantum computers while Alice and Bob do not,
there are interesting connections regarding the criteria for the key distillation
in commensurate cases, i.e., when Alice, Bob, and Eve have access to the same
technology, be it classical or quantum [18,10,1].

1.9 Concluding Remarks
Quantum cryptography was discovered independently in the U.S. and Eu-
rope. The first one to propose it was Stephen Wiesner, then at Columbia Uni-
versity in New York, who, in the early 1970s introduced the concept of quan-
tum conjugate coding [27]. He showed how to store or transmit two messages
by encoding them in two “conjugate observables” such as linear and circular
polarization of light, so that either, but not both, of which may be received
and decoded. He illustrated his idea with a design of unforgeable bank notes.
A decade later, building upon this work, Charles H. Bennett of the IBM T. J.
Watson Research Center and Gilles Brassard of the Université de Montreal,
proposed a method for secure communication based on Wiesner’s conjugate
observables [5]. However, these ideas remained by and large unknown to
physicists and crytologists. In 1990, independently and initially unaware of
the earlier work, the current author, then a Ph.D. student at the University
of Oxford, discovered and developed a different approach to quantum cryp-
tography based on peculiar quantum correlations known as quantum entan-
glement [16]. Since then, quantum cryptography has evolved into a thriving
experimental area and is quickly becoming a commercial proposition.

This brief overview has only scratched the surface of the many activities
that are presently being pursued under the heading of quantum cryptogra-
phy. It is focused solely on the development of theoretical concepts that led
to creating unbreakable quantum ciphers. The experimental developments,
although equally fascinating, are left to the other contributors to this book. I
have also omitted many interesting topics in quantum cryptography that go
beyond the key distribution problem. Let me stop here hoping that even the
simplest outline of quantum key distribution has enough interesting physics
to keep you entertained for a while.
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Abstract
This chapter reviews experimental and theoretical achievements of the Group
of Applied Physics (GAP) at University of Geneva in the domain of quan-
tum communication. All work presented can be motivated by the goal to
render experimental quantum key distribution simple and robust, and to
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devise means to extend the maximum transmission distance in spite of tech-
nical imperfections like lack of single-photon sources, lossy quantum chan-
nels and non-perfect detectors. In detail, we present an auto-aligning “plug
& play” system for quantum key distribution based on faint laser pulses,
two entanglement-based systems, teleportation in quantum relay configura-
tion and finally entanglement swapping. All experiments take advantage of
photons at telecommunication wavelengths and optical fibers, and use time-
bin encoding which enables us to demonstrate the different protocols over
distances of a few kilometers to several tens of kilometers. In addition, we
developed a new protocol for quantum key distribution which also enables
extending the maximum transmission distance in spite of so-called photon
number splitting eavesdropper attacks and non-ideal faint laser pulses in-
stead of true single photons.

2.1 A Geneva-Biased Introduction
Quantum communication is the natural follow-up of classical communication
into the era of quantum technologies. Accordingly, its natural wavelengths are
the same as those used in today’s fiber optics communication. However, most
groups opted for shorter wavelengths, because they originate from academic
research in quantum optics, which traditionally uses visible or near-infrared
light. Additionally, until recently, detectors sensitive to single photons existed
only at those shorter wavelengths, roughly below 1µm. In contrast to most
groups, in Geneva we originate from a research group dealing with classical
telecom physics. Hence, when we started our activities in quantum commu-
nication, we decided to go for the telecom wavelengths (see Figure 2.1). This
implied from the very beginning the development of single-photon detectors
at these (at the time) exotic wavelengths. The next step was to choose the
appropriate degree of freedom to encode quantum information. We opted for
a solution that we believe is better adapted to optical fibers though at first
sight less obvious than polarization: the time-bins (see Section 2.2).

Our group is also known for having introduced Faraday mirrors into the
field of quantum communication. It should be stressed that such mirrors have
been invented by Professor M. Martinelli from Milan [1]. In Geneva, we first
used them for a fiber-based sensor [2], a development that turned out to be
much less successful than our activity on quantum cryptography. Actually,
the main outcome of this sensor project has been the idea of using Faraday
mirrors in quantum communication [82]. The nonreciprocal Faraday effect is
also used in many other crucial components in quantum optics experiments:
isolators and circulators are based on this effect.

In the following pages, we review first the concept of time-bins, in Sec-
tion 2.2. Next, pseudo-single photon quantum cryptography is presented in
Section 2.3, followed by two-photon quantum cryptography (which includes
tests of Bell inequalities as a natural child), in Section 2.4. Finally, in Section
2.5.3 we briefly comment on three- and four-photon applications: quantum
teleportation, entanglement swapping and quantum relays.
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Figure 2.1 First quantum cryptography experiment outside the lab, in 1995, at the
Swisscom telecommunication center. (From A. Muller et al., Europhys. Lett. 33(5), 335–
339, 1996.)

Let us emphasize that more specific reviews exist, for instance and among
others, on time-bit qubits and related experiments in [6], on quantum cryp-
tography in [7], on quantum cryptography and entanglement in [8], and on
Bell inequalities and useful entanglement in [9].

2.2 Time-Bin Qubits and Higher
Dimensions

The fundamental constituent underlying most quantum communication pro-
tocols is the qubit. As a quantum analogue of a classical bit, a qubit is simply a
two-level quantum system. The quantum information carried by a qubit is its
state, which is, according to quantum mechanics, described by a normalized
vector in C2. If we let {|0〉, |1〉} denote an orthonormal basis of C2, the state of
a qubit reads a0|0〉 + a1|1〉. Also, quantum mechanics prescribes that vectors
that are identical up to a global phase factor essentially describe the same
state. Thus the general state of a qubit can be written as

|ψ〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ|1〉, (2.1)

where φ ∈ [0 : 2π ], and θ ∈ [0 : π ]. A nice feature of this parametrization is that
it allows us to represent conveniently all (pure) qubit states on the surface of a
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Figure 2.2 The Poincaré sphere representation of qubit states.

sphere, the so-called Poincaré sphere (see Figure 2.2). Any couple of antipodal
points of this sphere corresponds to an orthonormal basis.

There are many physical systems whose degrees of freedom can imple-
ment a qubit. Quantum dots [10] or electronic levels of atoms in cavities QED
[11] are examples of such systems. For quantum communication, though, the
most natural candidate is provided by photons, because they are relatively
immune to decoherence when compared to other implementations, and be-
cause we generally do not need to make them interact much. Polarization is
often used to encode photonic qubits. Here we will describe an encoding that
is particularly well-suited for our purposes: the so-called time-bin qubits [6].

To prepare a time-bin qubit, one processes a short one-photon pulse at one
input port of an unbalanced interferometer [83] (see the left part of Figure 2.3).
One then gets a superposition of a state where one photon is in the lower arm
of the interferometer with a state where one photon is in the upper arm of
the interferometer. If the path length difference between the two arms chosen
is much larger than the spread of the pulse, it is possible to use a switch to
process on the same fiber the part of the pulse corresponding to the short path
and the part corresponding to the long path. Now |0〉 represents a one-photon
state localized in the late time-bin and |1〉 a one-photon state localized in the
early time-bin, as depicted in the middle of Figure 2.3. So, we see that by
tuning the phase and the coupling of the (left) interferometer, we can prepare
any (pure) qubit state.

As shown in the right part of Figure 2.3, we can use a similar interferome-
ter to perform measurements on a qubit. With the help of the switch, the first
time-bin is sent to the long arm and the second time-bin to the short one. The
path length difference between the two arms of this interferometer is chosen
to annihilate the time difference between the two time-bins, and make them
arrive simultaneously at the variable coupler. A photon is then detected by
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switchswitch
variable coupler variable coupler

Figure 2.3 Setup used to prepare and analyze time-bin qubit states.

one of two detectors, D0 or D1. Upon tuning the coupling and the phase shift
of the right interferometer of Figure 2.3, we thus can perform any simple qubit
measurement.

We now turn to the issue of generalizing the above scheme and consider
qudits, that is, d-dimensional quantum systems. In the context of quantum
information processing, these higher-dimensional systems are interesting to
consider: in quantum key distribution, for example, such systems carry in-
trinsically more information than qubits and are more resilient to noise [12].
Another example is nonlocality tests: it has been possible to construct Bell
inequalities for qudits for which the required detector efficiencies are signifi-
cantly lower than for qubits [13].

It is trivial to extend the two schemes we have described to the case of
qudits. One just adds as many arms to the interferometer as the dimension
of the system one wants to prepare. Again, a variable coupler distributes the
impinging one-photon state among the d arms, with a weight amplitude c j

for the j th arm, resulting in a state that is a superposition of states with one
photon in each arm. The path length difference between any two arms is
much larger than the pulse spread. On each arm j , a phase shift φ j is applied.
Finally, a switch is used to direct the d parts of this state onto the same fiber.
The state we get reads �d

j=1c j eiφ j | j〉, where | j〉 denotes a state of one photon
lying in the time-bin j . First results along the above lines can be found in [14–
16]. Note that all projective Von Neumann measurements can, in principle,
be implemented using this approach.

Let us now see how entangled states can be produced using a nonlinear
crystal in which spontaneous parametric down conversion (SPDC) occurs. In
SPDC, the impinging photon, called the pump photon, is (probabilistically)
converted into two photons called signal and idler. Thus if the pump photon
is in a superposition state of two time-bins (Equation (2.1)), the two-photon
state emerging from the crystal will be

|�〉 = cos
θ

2
|0, 0〉 + eiφ sin

θ

2
|1, 1〉, (2.2)
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Figure 2.4 Setup used to prepare and analyze time-bin entangled qubit states.

where |0, 0〉 denotes a state in which two photons (one signal photon and
one idler photon) are in the time-bin 0, and |1, 1〉 denotes a state where two
photons are in the time-bin 1.

These (bipartite) entangled states can be analyzed using the setup shown
in Figure 2.4. Again, if the two analyzing interferometers have the same path
length difference as the interferometer located before the crystal, it is possible
(using adequate phase shifters and couplers) to measure each qubit on any
basis and thus detect entanglement and/or nonlocality. Considering maxi-
mally entangled states, for example (cos(θ/2) = 1/

√
2), the coincidence count

rate between Alice and Bob detectors as a function of the phases φ , α, β is
given by Rc(φ , α, β) = 1 + cos(α + β − φ). These rates Rc(φ , α, β) cannot be
explained by any local hidden variable theory [17] and are a typical signature
of the nonlocal character of the state (Equation (2.2)). Finally, we note that,
again, the scheme depicted in Figure 2.4 generalizes to the case of qudits;
adding more arms to the interferometer before the crystal allows the creation
of entangled time-bin qudit states. And these states can be analyzed by Alice
and Bob using switches, passive optical elements, and photodetectors.

To conclude this section, let us (briefly) comment on experimental issues
regarding the schemes we have described. For simplicity’s sake, we will re-
strict ourselves to qubits and consider only the Figures 2.3 and 2.4. Our first
comment concerns the source. We do not have (to date) single photon sources
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useful for long distance communications. Therefore, one rather uses a source
that emits short pulses in a weak coherent state |φ〉 = |φ0〉 + |φ1〉 + |φ2〉, where
|φ0〉, |φ1〉, |φ2〉 denote the zero-photon, one-photon and two-photon contribu-
tion to φ respectively. If the source is weak enough, the two-photon contri-
bution can be neglected. Then, most of the time, no detector clicks. But if one
detector has clicked [84], the process which has occurred is exactly the one
that would have happened, had we had a genuine single-photon source. Our
second comment is about the use of optical switches. In practice, such de-
vices are quite lossy. Therefore, one can replace them with passive couplers.
There are then three possible arrival times for the photon, according to the
possible combinations of paths through the two interferometers. If eventu-
ally one photon is detected in the central time window, such variable couplers
behave as ideal optical switches. To summarize these two comments, we can
say that an ideal scheme can be replaced with a nonideal one at the price of
postselection. In addition, note that the detection of a photon in the left or
right satellite peak corresponds to a projection onto the early (|1〉) or late (|0〉)
time-bin, respectively. The use of a passive coupler in the analyzer does not
therefore engender additional losses, but guarantees a passive and random
selection of the measurement basis.

2.3 Faint Laser Quantum Cryptography:
The Plug & Play Configuration

2.3.1 Basics of Faint Laser Quantum
Key Distribution

Quantum communication is about sending qubits from Alice to Bob. Quan-
tum cryptography (or better, quantum key distribution (QKD)) is about estab-
lishing a secret key (a string of random, secret bits) between Alice and Bob [7].
It exploits a fundamental principle of quantum mechanics, which is that one
cannot completely determine an unknown quantum state without disturbing
it [85]. The idea is that Alice and Bob can see whether the exchanged key has
been eavesdropped by checking to see if it has been disturbed. For this pur-
pose the qubits, in practice photons, must be sent and measured according
to a suitable protocol, the most widely known and applied being the BB84
protocol [18]. In this protocol, Alice sends, for example, photons with four dif-
ferent linear polarization states, of 0 or 90 and 45 or 135 degrees, respectively.
These are the four states indicated on the equator of the Poincaré sphere of
Figure 2.2, the states on the poles representing right and left circularly po-
larized light, respectively (note that from the discussion held in the previ-
ous section, Alice could as well use time-bins; see the next section). Bob
cannot distinguish unambiguously between the four different states, how-
ever, he is measuring randomly along one of the two measurement bases
(0/90 or 45/145 degrees) and gets a conclusive result in half of the cases.
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An eavesdropper Eve cannot, exactly like Bob, obtain every time a conclusive
result, as the basis used is unknown. Therefore a simple intercept-and-resend
strategy, in which Eve measures the incoming photon and sends a new one
to Bob (prepared according to the measurement result), will fail. Indeed, half
the time Eve will use a noncompatible basis, and the reemitted photon will
introduce errors in the key of Alice and Bob. Hence, by checking the errors
in the key, Alice and Bob are able to reveal the presence of an eavesdropper.
This fact can be shown to hold for any eavesdropping strategy, as perfectly
elaborated as it might be; see [7] and references therein. Only after the key
exchange do Alice and Bob tell each other which basis they used for each pho-
ton. They can establish a sifted key by attributing to each polarization state
a bit value (0 or 1), keeping events with compatible bases and discarding
the others. They correct the errors that were introduced by the imperfect key
exchange and apply a procedure called privacy amplification, which allows
them to eliminate the information that Eve might have acquired (supposing
her action is at the origin of the detected error). It can be shown that Alice
and Bob can distill a random, perfectly secret key as long as the error rate
is smaller than 11% (respectively 15%, depending on the assumptions one
wants to make on a potential eavesdropper) [7]. However, the efficiency of
the distillation becomes very small for error rates above 10%.

In the original papers introducing the idea, quantum cryptography is nat-
urally based on single photons. However, true single photon sources are very
difficult to realize experimentally. In fact, only a few QKD experiments with
single photons have been reported up to now [19,20]. In addition, presently
available sources are not yet suitable for (fiber) QKD — their wavelengths
are not adapted to fiber telecommunications. Therefore, today’s QKD setups,
which have been successfully tested and are ready to be commercialized, are
based on faint laser pulses. In addition, a couple of rather proof-of-principle
experiments using photon-pairs have been performed (see Section 2.4).

Faint laser pulses are light pulses with a Poisson distributed number
of photons and an average number of photons well below 1. Their creation
is very simple but there are two disadvantages. First, since most faint laser
pulses contain in fact zero photons, the bit rate and the signal-to-noise ratio
are considerably reduced. Second, since some faint laser pulses contain two
or more photons, there is some opportunity for eavesdropping, see [73], the
discussion held in Section 2.5.2, and Chapter 6 of this book. However, it can be
shown that faint pulse QKD can be mathematically secure over distances up
to 100 km with present technology [86]. In particular, we recently presented
a new protocol [21,22] that can increase the range and bit rate of secure faint
laser QKD.

2.3.2 A Practical Realization: The Plug & Play
Configuration

The principles of QKD we have explained use polarized photons. The first
experiment through 30 cm [23] of air used several states of polarization as



P1: Naresh
Bahill.cls DK5859˙C002 September 21, 2005 13:50

Chapter 2: Quantum Communications with Optical Fibers 25

Figure 2.5 Self-aligned plug & play system (L: laser diode, APD: avalanche pho-
todiode, BS: beam splitter, C: circulator, PM j : phase modulator, PBS: polarizing
beam splitter, DL: optical delay line, FM: Faraday mirror, D: classical detector).

well as the latest free space experiments over more than 20 km [24]. For long
distance QKD through optical fibers, however, polarization is probably not
the appropriate choice. Polarization is not maintained in optical fibers [87].
Therefore, polarization-based QKD through a long optical fiber link asks for a
permanent compensation for the rapidly changing evolution of the polariza-
tion state in the fiber. In contrast, as seen in Section 2.2, any arbitrary time-bin
qubit can be created and measured using interferometers. Indeed, one of
the first QKD experiments in optical fibers used essentially the setup shown
in Figure 2.3 [25,88]. In such a setup, one difficulty is to stabilize the arm
length difference in both interferometers down to a fraction of a wavelength
during the whole key exchange. However, by folding the interferometer of
Figure 2.3 and sending light pulses back and forth, it is possible to design
an auto-compensating interferometer [4,26]. Since no continuous alignment
is required this design is also called plug & play configuration.

Let us have a closer look at the plug & play setup (see Figure 2.5) [27]. A
strong laser pulse (@1550 nm) emitted at Bob’s (L) is separated at a first 50/50
beam splitter (BS). The two pulses impinge on the input ports of a polarization
beam splitter (PBS) after having traveled through a short arm and a long arm,
including a phase modulator (PMB) and a 50 ns delay line (DL), respectively.
All fibers and optical elements at Bob’s are polarization maintaining. The lin-
ear polarization is turned by 90 degrees in the short arm, so the two pulses
exit Bob’s setup by the same port of the PBS. The pulses travel down to Alice,
are reflected on a Faraday mirror (FM), are attenuated well below an average
photon number per pulse of 1 (VA), and come back orthogonally polarized
[89]. In turn, both pulses now take the other path at Bob’s and arrive at the
same time at the BS, where they interfere. Since the two pulses take the same
path, inside Bob’s apparatus in reversed order, this interferometer is autocom-
pensated. Finally, the photon is detected either in D1 or after passing through
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the circulator (C) in D2. To implement the BB84 protocol, Alice’s electronics
detects the incoming pulse and applies randomly a phase shift of 0, π, π or,
3π/2 on the second pulse with a phase modulator PMA. Bob’s electronics gen-
erates the laser pulses, and chooses the measurement basis upon applying a
0 or π/2 phase shift on the first pulse on its way back. Finally, Bob gates the
detector when the photon is supposed to arrive and registers the click. Alice
and Bob’s systems are connected to computers that communicate with each
other via ethernet or any other public classical channel.

The stability of the autoaligning interferometer has been tested in the
field [27]. Over terrestrial cables longer than 60 km and aerial cables longer
than 10 km, interference visibilities higher than 99.5% have been measured.
This means that the interference is almost perfect and does not introduce
significant bit errors. Indeed, almost all bit errors (or the quantum bit error
rate (QBER)) are due to the noise of the detectors. On one hand, the probability
that a photon arrives at Bob’s decreases exponentially with the distance due
to the losses in the optical fiber; on the other hand, the dark count probability
is constant (a dark count is an event where a single-photon detector clicks
although there is no photon). Therefore the QBER increases exponentially
with distance, which limits the range of QKD, knowing that key distillation
becomes very inefficient above a QBER of 10%. At present, InGaAs
avalanche photodiode are used as photon counters for the 1550 nm telecom
window. These detectors have dark count probabilities of the order of 10−6

per gate (time window of about 1 ns), limiting QKD to distances of about
100 km. A couple of experiments have been performed over distances in this
range [27–29]. Today, pulse rates are in the order of a few MHz, leading to
net key creation rates in the order of 1500 and 50 Hz over 20 and 70 km,
respectively [27]. Again, the performance of the available photon counters
will eventually limit the maximal pulse rate. Nevertheless, faint laser QKD
has left the lab: commercial systems are available (Figure 2.6) [30] and it is
also being considered seriously from a military perspective, see Chapter 3 of
this book.

Figure 2.6 Commercial QKD-system based on the plug & play setup.
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2.4 Two-Photon Quantum Cryptography
As we have seen in Section 2.2, time-bin qubits realized using faint pulses can
be employed to encode and to transmit quantum information. The success
of the plug & play scheme (see Section 2.3) proves them to be particularly
well suited for long distance QKD via optical fibers. However, like any exper-
imental implementation, faint-pulse-based QKD schemes do not perfectly
meet the theoretical ideal for QKD. Nevertheless, this does not necessarily
render it unsecure. For instance, the approximation of single photons by faint
pulses only limits the maximum transmission span. First, in connection with
detector noise, the nonvanishing vacuum component leads to a higher QBER
compared to true single photons and thus to smaller maximum distance (see
the discussion at the end of Section 2.3.2). Second, the possibility of photon
number splitting attacks, based on the existence of pulses containing more
than one photon, places an upper bound on the tolerable transmission losses,
hence on the distance (see Section 2.5.2). Finally, even if a specific realiza-
tion of QKD works well for a particular setting, it might not be adapted to
different working conditions. For instance, it is difficult to generate true ran-
dom numbers and to implement the corresponding settings in a high-speed
system. In this section, we will show how photon-pair-based QKD systems,
although more complicated to implement, might help to overcome some lim-
its of faint-pulse-based systems. A further expansion of some of the ideas can
be found in Section 2.5.3, where we will elaborate on quantum teleportation
as a quantum relay.

2.4.1 Single-Photon Based Realizations
In order to get around one drawback of faint pulses, i.e., the high probability
of having zero photons in a pulse, a good idea is to replace the faint pulse
source by a SPDC-based photon-pair source (see Figure 2.7b) where one pho-
ton serves as a trigger to indicate the presence of the other [31,62]. In this case,
Alice can remove the vacuum component of her source, and Bob’s detectors
are only activated whenever she sends at least one photon. In principle, it is
thus possible to achieve a probability of emitting a nonempty pulse equal to
one [90]. This leads to a higher sifted key rate (assuming the same trigger rate
as in the faint-pulse case) and a lower QBER for a given distance (for given
losses) and therefore to a larger maximum span. It is important to note that
the use of photon pairs created by SPDC does not avoid problems with mul-
tiphoton pulses. For a given mean number, the probabilities that a nonempty
pulse contains more than one photon, or pair, respectively, are essentially the
same [32]. Therefore, the possibility of multiphoton splitting eavesdropping
attacks exists as well.

2.4.2 Entanglement-Based Realizations
The potential of a source creating photon pairs is not restricted to creation of
two photons at the same time — one serving as a trigger for the other one.



P1: Naresh
Bahill.cls DK5859˙C002 September 21, 2005 13:50

28 Quantum Communications and Cryptography

laser

Alice Bob

β

2hν
β

β′

2hν

βα

2hν

αa)

b)

c)

d)

µ > 1

µ > 1

µ > 1

µ << 1

β

α

α

α′

Figure 2.7 Single-photon based quantum cryptography using (a) a faint-pulse source,
(b) a two-photon source, (c) entanglement-based quantum cryptography with active,
and (d) with passive choice of bases. 2hν denotes the photon-pair source, µ the mean
number of photons per pulse, and the parameters α and β the settings of the qubit-
creation and analyzing devices, respectively.

It is possible to use the full quantum correlation of entangled pairs to generate
identical keys at Alice’s and Bob’s and to test the presence of an eavesdropper
via a test of a Bell inequality (see Figure 2.7c). This beautiful application of
tests of Bell inequalities has been pointed out by Ekert in 1991 [33] — without
knowing about the “discovery” of quantum cryptography by Bennett and
Brassard seven years earlier. The setup is similar to the one used to test Bell
inequalities, with the exception that Alice and Bob each have to choose from
three and not only two different bases. Depending on the basis chosen for
each specific photon pair, the measured data is used to establish the sifted
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key (whenever the choice of bases enables perfect correlation), or to test a Bell
inequality, or it is discarded.

The security of the Ekert protocol is easy to understand: the action of
the eavesdropper Eve acquiring knowledge about the state of the photon
traveling to Bob can be described as adding probabilistic hidden variables
(hidden in the sense that only the eavesdropper knows about their value).
If she gets full information about all states, i.e., if the whole set of photons
analyzed by Bob can be described by hidden variables, a Bell inequality cannot
be violated anymore. If Eve has only partial knowledge, the violation is less
than maximal, and if no information has leaked out at all, Alice and Bob
observe a maximal violation.

Despite its beauty, the Ekert protocol is not very efficient concerning the
ratio of transmitted bits to the sifted key length. As pointed out in 1992 by
Bennett et al. [34] as well as by Ekert et al. [35], protocols originally devised for
single-photon schemes can also be used for entanglement-based realizations.
This is not surprising if one considers Alice’s action as a nonlocal state prepa-
ration for the photon traveling to Bob. Interestingly, it turns out that, if the
perturbation of the quantum channel (the QBER) assuming the BB84 protocol
is such that the Alice–Bob mutual Shannon information equals Eve’s maxi-
mum Shannon information, then the Clauser–Horne–Shimony–Holt (CHSH)
Bell inequality [36] cannot be violated any more [37,38]. Although this seems
very natural in this case, it is not clear yet to what extent the connection
between the security of quantum cryptography and the violation of a Bell
inequality can be generalized.

In the following, we will first briefly present a test of Bell inequalities over
a distance of 10 km and then comment on some experimental realizations
of quantum key distribution based on photon-pair correlation. We refer the
reader to Chapter 3 of this book or a survey of other experiments of quantum
communication with entangled photons.

2.4.2.1 Long-Distance Quantum Correlation
As mentioned before, a requirement for entanglement-based QKD is the gen-
eration and the transmission of entangled two-photon states with a degree of
correlation that enables them to violate the CHSH Bell inequality. The largest
spatial separation to date — a distance of 10 km — has been achieved in tests
that were carried out in our group in 1997 and 1998 [5,39,41] (see Figure 2.8).
Further developments in 2002 and 2003 led to the observation of quantum cor-
relation between analyzers connected with up to 50 km of fiber [42–44], but, in
opposition to the first-mentioned experiments, this was realized with fiber on
a spool. All setups relied on photon pairs at telecommunication wavelengths
(either 1310 nm or 1550 nm) suitable for transmission in standard telecom-
munication optical fibers (for a photo of a compact telecommunication wave-
length photon-pair source see Figure 2.9), and fiber-optical interferometers
equipped with Faraday mirrors to compensate polarization effects.

The first series of experiments [5,39,41] took advantage of energy-time en-
tanglement created by spontaneous parametric down-conversion. This type
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Figure 2.8 Experimental arrangement for a test of Bell inequalities with measure-
ments made more than 10 km apart. Source (in Geneva) and observer stations (inter-
ferometers in Bellevue and Bernex, respectively) were connected using the Swisscom
fiber optic telecommunications network.

of entanglement can be seen as the “continuous” version of time-bin entan-
glement and does not belong to the class of entangled qubits: signal and idler
photons are again emitted simultaneously within their coherence time, but
the emission time of the pair must be this time described as a continuous dis-
tribution of infinitely many possibilities (not only two) bounded only by the
large coherence time of the pump laser. Energy-time entanglement has been
proposed in the context of a test of Bell inequalities in 1989 by Franson [45]
(10 years before time-bin entanglement [46]) and demonstrated for the first
time in 1992 and 1993 by Brendel et al. [47] and Kwiat et al. [48], respectively.
Despite its formal difference, the measurement of energy-time entangled pho-
tons is similar to the one introduced for time-bin entanglement (Section 2.2):
the correlated photons are separated, and sent to equally unbalanced inter-
ferometers and the coincidence count rates of photons emerging from the
interferometer simultaneously (either both photons having passed via the
short, or both via the long arm) are measured. Therefore, the detection process
determines the two time-bins that were superposed in the local qubit projec-
tion measurements, thereby collapsing the continuously entangled state to
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Figure 2.9 Photo of our entangled photon pair source used in the first long-distance
field test of quantum correlation. Note that the whole source including temperature
and power control of the diode laser fits into a box of only 40 × 45 × 15 cm3.

the familiar entangled time-bin qubit state (Equation (2.2)). As long as the
coherence time of the pump laser is large compared to the travel-time differ-
ence �t introduced in the interferometer, i.e., as long as pair emission with
time difference �t is coherent, the coincidence count rate shows a sinusoidal
dependence on the sum of the phase in both interferometers.

After having realized in 1999 that it is possible to render “continuous”
energy-time entanglement “discrete” by replacing the high coherent pump by
a succession of a finite number of short, i.e., well localized pump pulses [46],
we performed a couple of experiments based on time-bin entangled photons.
For instance, in 2002, we demonstrated the robustness of maximally as well as
partially entangled qubits over 11 km of fiber on a spool [42]. Finally, in 2003,
we could extend the separation of the analyzing interferometers to more than
50 km, again taking advantage of fiber on a spool [44]. These investigations
showed that energy-time as well as time-bin entanglement is well suited for
QKD via optical fibers over long distances.

To conclude this section, let us briefly mention further directions of re-
search that emerged from the developments addressed above. First, the pos-
sibility of distributing entanglement over long distances enabled it to falsify
relativistic nonlocality (or multisimultaneity) [49–51] and made it possible to
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put an improved lower bound on the speed of “quantum information,” i.e.,
the speed of the propagation of a hypothetical collapse of the wave function:
analysis in the Geneva (laboratory) reference frame led to 2/3×107 c (c: the
speed of light) [50], while observation in the frame of the cosmic microwave
background radiation fixed the bound to 1.5 · 104c [91,52]. Second, we started
to investigate entanglement of higher-dimensional systems [14–16].

2.4.2.2 Quantum Key Distribution
Obviously, entanglement-based QKD is more complicated to implement than
faint-pulse based schemes. However, as long as technological limitations like
those on detector performance and the lack of efficient true single-photon
sources remain, it also features advantages.

First, as with single-photon based realizations (see Section 2.4.1),
entanglement-based QKD enables Alice to remove the vacuum component
of the generated pulses sent to Bob. Actually, the entanglement-based case is
even more efficient, since the optical losses in Alice’s preparation device also
are now eliminated, as can be seen from Figure 2.7c. In addition, depending
on the position of the source, the probability of detecting a photon at Bob’s,
conditioned on detection of its twin at Alice’s, can be further increased. This
probability is optimal if the source is located in the middle, resulting in a
minimal quantum-bit error rate.

Second, even if two pairs are created within the same detection window —
hence two photons travel towards Bob within the same pulse — they are
completely independent and do not carry the same qubit, although they are
prepared in states belonging to the same basis [92]. Only the photon forming a
pair with the photon detected at Alice’s is in a definite quantum state; the other
photon is in a completely mixed state. Therefore, eavesdropping attacks based
on multiphoton pulses do not apply in entanglement-based QKD. However,
multiphoton pulses lead to errors at Bob’s, who detects from time to time a
photon that is not correlated to Alice’s [53].

The third advantage is directly linked to the one mentioned before: be-
yond the passive state preparation, it is even possible to achieve a passive
choice of bases using a setup similar to the one depicted in Figure 2.7d: no ex-
ternal switch that forces all photons in a pulse to be prepared or measured in
a given basis is required, but each photon independently “chooses” its basis
and bit value. Therefore, no fast random number generator or active change
of basis is required.

Finally, the fact that the possibility of distillation of a secret key is intrin-
sically linked to the possibility of violating the CHSH Bell inequality ensures
that the different states are not distinguishable through other uncontrolled de-
grees of freedom [54]. For instance, assuming a faint-pulse or single-photon
based scheme where all states are generated by a different setup [24], differ-
ences in the wavelength of the photons encoding nonorthogonal states would
enable the eavesdropper to acquire full knowledge about the quantum state
sent without perturbing it: in frequency space, all states would be orthogonal.



P1: Naresh
Bahill.cls DK5859˙C002 September 21, 2005 13:50

Chapter 2: Quantum Communications with Optical Fibers 33

Using entangled states, such a correlation would prevent from violating a Bell
inequality and could thus be discovered easily.

Although all Bell experiments intrinsically contain the possibility for
entanglement-based QKD, only a few experiments have been devised in order
to allow a fast change of measurement bases. Interestingly enough, the first
experiment that fulfills this criterion is the test of Bell inequalities using time-
varying analyzers, performed by Aspect et al. in 1982 [55] — at a time when
quantum cryptography was still unknown, even the single-photon based ver-
sion. More experiments enabling active [56] and passive [41] change of bases
followed in 1998 and 1999. However, as with the first-mentioned experiment,
the bases chosen for the measurements are chosen in order to allow a test of
Bell inequalities and not to establish a secret key. The first experiments that
allowed the distribution of a quantum key were finally performed in 2000
[57–59], and more followed in 2001 [60], 2002 [61] and 2004 [43,44].

All our experiments [43,44,59,60] incorporated a passive choice of bases.
In 2000 and again in 2003, we took advantage of an original solution offered
by time-bin entanglement [44,59]. As mentioned before, only detections in the
central time window correspond to a projection on a basis with eigenstates
represented on the equator on the qubit sphere. Interestingly, detections in
one of the two remaining windows are not unwanted events that have to
be discarded after postselection but correspond to projection onto the |0〉
or |1〉 states. Hence, time-bin entanglement offers passive choice of bases
for free. While the first experiment [59] has been performed over a short
distance, we could recently extend this distance to 50 km (fiber on a spool)
with actively stabilized interferometers, which is the longest transition span
for entanglement-based QKD to date [44].

In 2001, we realized a QKD system based on energy-time entanglement
[60], similar to the test of Bell inequalities mentioned in Section 2.4.2.1. How-
ever, this realization took advantage of an asymmetric setup, with the source
close to Alice’s, instead of a setup designed for tests of Bell inequalities with
the source located roughly in the middle between Alice and Bob. This makes
it possible to employ high efficiency and low noise silicon avalanche pho-
todiodes detectors (that cannot detect photons at telecommunication wave-
lengths) at Alice’s side, together with photons at nontelecommunication wave-
length (that cannot be sent through long fibers due to enhanced absorption).
The second photon (again at 1550 nm telecommunication wavelength) is
transmitted through 8.5 km of dispersion shifted fiber to a fiber optical in-
terferometer, equipped, as usual, with Faraday mirrors. The passive choice
of bases was implemented using polarization multiplexing (see Figure 2.10),
similar to Figure 2.7d. We recently repeated this experiment using 30 km of
standard fiber, managing the dispersion by filtering or compensation [43].

Finally, in addition to the mentioned two-party QKD schemes, we re-
ported in 2001 a proof-of-principle demonstration of quantum secret sharing
(three-party quantum cryptography) in a laboratory experiment [63]; see also
Chapter 7 of this book. This rather new protocol enables Alice to send key
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Figure 2.10 Schematics of the energy-time entanglement-based quantum QKD
system.

material to Bob and Charlie in a way that neither Bob nor Charlie alone
have any information about Alice’s key. However, when comparing their
data, they have full information. The goal of this protocol is to force them to
collaborate.

In contrast to implementations using three-particle GHZ states [64,65],
pairs of time-bin entangled qubits were used to mimic the necessary quan-
tum correlation of three entangled qubits, albeit only two photons exist at the
same time (see Figure 2.11). This is possible thanks to the symmetry between
the preparation interferometer acting on the pump pulse and the interferom-
eters analyzing the down-converted photons. Indeed, the data describing the
emission of a bright pump pulse at Alice’s is equivalent to the data charac-
terizing the detection of a photon at Bob’s and Charlie’s: all specify a phase
value and an output or input port, respectively. Therefore, the emission of a
pump pulse can be considered as a detection of a photon with 100% efficiency,
and the scheme features a much higher coincidence count rate compared to
the initially proposed GHZ-state type schemes.

2.5 The Future of Quantum Cryptography
What is the future of quantum cryptography? It is likely that it is still in its
infancy. Conceptually, as alluded to above, it is deeply rooted in the basic
aspect of quantum physics, i.e., in entanglement. On the applied side, it is
already attracting attention (and money) from industries and investors [30].
On the experimental side, quite a lot of progress is still to be expected, mainly
on two major specifications: the secret bit rate and the distance. These are not
independent but may be addressed in different, complementary, ways. First,
there is a mere technological approach: improve the detectors and/or the
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Figure 2.11 Basic setup for three-party quantum secret sharing using pseudo-GHZ
states.

source. Second, develop new protocols, like SARG (see [21,22] and the next
paragraph) and continuous variables [66]. Finally, exploit the ideas of quan-
tum teleportation and entanglement swapping to develop quantum relays
[67,68] and quantum repeaters [69]. Below, we briefly comment on our con-
tributions to the above-mentioned ideas to extend quantum cryptography.

2.5.1 Quantum Cryptography and Entanglement
Quantum cryptography is very much related to quantum physics. In par-
ticular quantum entanglement is conceptually closely related to secret classical
information.

For example, consider a situation where three parties, A, B, E , share
many copies of a (pure) state ψABE, where the partial state ρAB = TrEψABE

is a two-qubit entangled state. In this situation, it has been proven that ρAB

can be mapped by single-copy measurements into a probability distribution
P(a, b) containing secret correlations between A and B, i.e., were A and B
to produce the distribution P(a, b) using only classical means, they would
need to use secret bits as an extra resource [71]. Conversely, if Alice and
Bob share a quantum state ρAB from which a probability distribution P(a, b)

containing secret correlations can be obtained, then ρAB is entangled. These
facts illustrate the central role played by quantum cryptography in quan-
tum information. Also on the experimental side, the central role played by
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entanglement can be seen even in implementations that actually do not use
entanglement [8].

2.5.2 PNS Attacks and Countermeasures
One limitation to quantum cryptography is due to the small but nonzero
probability that a (pseudo-) single-photon source actually emits two or more
photons. If this is the case and if the legitimate partners Alice and Bob use the
BB84 protocol, then Eve can perform the following attack, known as photon
number splitting (PNS) attack [73,74]. First, Eve measures the total photon-
number in each pulse leaving Alice’s office. Next, whenever the pulse contains
two or more photons, she keeps one, while teleporting the other(s) to Bob. In
this way Eve sometimes holds a perfect copy of the qubit sent by Alice and
is thus no longer limited by the no-cloning theorem, since Alice unwillingly
offered her a copy. It is intuitively clear that if such multiphotons are too
frequent, then the security is lost. The situation could be even worse if Eve
can block the single-photon pulses and Bob does not notice this (Bob could be
fooled if the missing single-photon pulses are compensated by the increased
probability that he gets the multiphoton pulses thanks to the — assumed
perfect — teleportation). Hardware-based countermeasures involve a strong
reference pulse [76] or modulating pulse intensity [78]. Recently we imagined
a way to attenuate the effect of PNS attacks, with a mere change of the sifting
part of the BB84 protocol. The basic idea is to encode bits into nonorthogonal
states. In this way, even if Eve holds a perfect copy, she cannot extract full
information about the encoded bit. The same holds true, of course, for Bob.
But Bob is in a much more favorable situation than Eve: he may perform an
unambiguous state discrimination [75,77] and simply declare to Alice whether
he was successful or not [21,22].

2.5.3 Three- and Four-Photon Quantum
Communication

Finally, let us mention how quantum teleportation and entanglement swap-
ping could be exploited to extend the distances over which quantum cryp-
tography is secure. The first remark is that detectors are noisy: there is a finite
dark count probability, which is clearly independent of the distance. Sec-
ondly, the signal, on the contrary, i.e., the rate at which Bob detects photons,
decreases exponentially with the distance. Hence, for any detector/channel
pair, there is a distance limit beyond which quantum cryptography is un-
practical [7]. Attractive ways around this limitation are quantum repeaters
and quantum relays. The idea of a relay consists in dividing the channel
into n equal trunks [67,68]. Halves of the inner nodes contain a two-photon
source (EPR source of entangled photons as described in Section 2.4); the
other halves contain a (partial) Bell measurement [79]; see Figure 2.12. In
this way, Bob’s detector is activated only if all the Bell measurements were
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(a)

(b)

Figure 2.12 (a) Quantum teleportation as a quantum relay. (b) Fidelity of the trans-
mitted quantum state as a function of the distance for different configurations. Direct
transmission (n = 1), with an EPR source in the middle (n = 2), teleportation (n = 3),
and entanglement swapping (n = 4). We assume that the fidelity is only affected by the
detector’s noise. The curves are plotted for a realistic dark count probability D = 10−4

per ns and a fiber attenuation of 0.25 db/km.

successful. Consequently, the bad chance of a dark count is reduced to the
cases where a photon is lost in the last trunk only. This intuitive idea can be
elaborated (see [68]) though one should keep in mind that this trick does not
improve the bit rate (quite the opposite actually; the poor efficiency of the
Bell measurement reduces the bit rate). But it provides a good motivation to
work on quantum teleportation. Furthermore, once quantum memories exist,
combining them with the quantum relays will provide a working quantum
repeater that will extend quantum cryptography to unlimited distances and
bit rates.

Recently we demonstrated quantum teleportation in optical fibers over
a significant distance. In a first experiment [80], the receiver was set in a lab
55 meters away and connected to the EPR source by 2 km of fiber on a spool.
In a second [81] experiment we extended this to a case of 3 × 2 km: three
trunks each of 2 km of fiber, the first one between Alice’s source and the
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Bell measurement, the second trunk between the Bell measurement and the
EPR source and the last one from there to Bob’s receiver (see Figure 2.12). Fi-
nally, let us mention an experimental realization of entanglement swapping
[70], where photons more than two kilometers apart are entangled, although
they never interacted directly. We use two pairs of time-bin entangled qubits
created in spatially separated sources and carried by photons at telecommu-
nication wavelengths. A partial Bell state measurement is performed with
one photon from each pair, which projects the two remaining photons, for-
merly independent, onto an entangled state (see Figure 2.13). The visibility
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Figure 2.13 Experimental setup for entanglement swapping. The pump laser is a
mode-locked femtosecond Ti-sapphire laser producing 200 fs pulses at a wavelength
of 710 nm with a repetition rate of 75 MHz. After the crystals, the pump beams are
blocked with silicon filters (SF). The Faraday mirrors (FM) are used to compensate
polarization fluctuations in the fiber interferometers.
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obtained after the swapping process was high enough to infer a violation of
Bell inequalities between the remaining photons.

2.5.4 Conclusions and Outlook
To summarize this review, we presented experimental and theoretical achieve-
ments of GAP Optique in the domains of fundamental research and quantum
communication. In contrast to work done in other groups, our experiments
take advantage of photons at telecommunication wavelengths, standard op-
tical fibers and time-bin qubits, enabling implementations over distances be-
tween a few kilometers and several tens of kilometers, depending on the ap-
plication. All work is closely connected to quantum key distribution and can
be summarized under the common aspect of increasing the performance of
quantum key distribution in spite of the lack of true single photon sources, of
lossy quantum channels and imperfect detectors. Starting with an auto align-
ing plug & play system for quantum cryptography based on faint laser pulses,
we turned to experiments with pairs of time-bin entangled photons that ren-
der eavesdropping attacks based on photon number splitting ineffective, and
that make it possible (in principle) to increase the maximum transmission
span as engendered by the probabilistic arrival of photons at Bob’s receiver
station. Extending our work to three photons and pursuing the idea to reduce
the effect of loss in the quantum channel, we then demonstrated quantum
teleportation in a quantum relay configuration. Finally, adding a fourth pho-
ton, we could recently demonstrate the fundamental concept of entanglement
swapping (or teleportation of entanglement), again in the spirit of a quantum
relay. In parallel to these experimental issues, we proposed a new protocol
that also makes it possible to attenuate the effect of photon number splitting
attacks, and we pointed out a general link between quantum entanglement
and classical information.

Quantum key distribution is now commercialized by different compa-
nies. In the short term, improvements should mainly be related to detectors:
this could considerably increase the actual key creation rates and sightly in-
crease the range. However, if we want to be able to implement QKD on scales
of several hundreds of kilometers, we need quantum repeaters. Therefore,
mid- and long-term research efforts are focused on long-distance entangle-
ment swapping and quantum memories.

The future of quantum communication appears bright with still plenty
of opportunities for both experimental and theoretical physicists addicted to
conceptual issues and for those who are more engineering oriented.
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idea came, preventing me from sleeping. I skipped the tourism day and, in my
student room in Cargese, wrote the first draft of [4].

83. Note that the mode containing the photon is not a frequency mode since the
pulse has a finite spread.

84. And assuming no noise in the detectors.
85. In particular it is impossible to clone perfectly a quantum state.
86. There has been some controversy on the security of faint laser QKD and some

people claimed that it is not “unconditional security.” However, there is no
such thing as “unconditional security.” Obvious conditions for secret commu-
nication are, for instance, the clear definition of the boundaries of Alice’s and
Bob’s office and, in the case of QKD, the validity of quantum mechanics. For
well-defined conditions, Eve’s information due to multiphoton pulses can be
calculated and reduced to arbitrary low values.
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87. Despite their name, polarization maintaining fibers do not maintain any arbi-
trary polarization state. Only light polarized along one of the fiber’s birefrin-
gence axes is maintained.

88. The QKD setup uses standard 50% couplers instead of the variable couplers
and the switches.

89. A Faraday mirror is a 90-degree Faraday rotator followed by a mirror. The
outcoming light is thus orthogonally polarized with respect to the ingoing
light. This is true whatever the incoming polarization state. Moreover, if a fiber
link is connected to a Faraday mirror, the outcoming light is still orthogonally
polarized independently of the polarization evolution inside the fiber [1, 7].

90. Here we assume that the collection efficiency for the photon traveling towards
Bob is 1. In practice, a more realistic value is ≈ 0.70.

91. Note that these results are not in contradiction with relativity.
92. To be precise, the assumption of independence only holds when the two pairs

are not created simultaneously within their coherence lengths [32], a condition
that is easily fulfilled experimentally.



P1: Naresh
Bahill.cls DK5859˙C002 September 21, 2005 13:50

44



P1: Shashi
Bahill.cls DK5859˙C003 October 10, 2005 18:8

chapter 3

Advanced Quantum
Communications
Experiments with
Entangled Photons

M. Aspelmeyer and A. Zeilinger
University of Vienna and
Austrian Academy of Sciences
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3.1 Introduction
Quantum communication and quantum computation are novel methods of
information transfer and information processing, all fundamentally based
on the principles of quantum physics. The performances outdo their classical
counterparts in many aspects [1,2]. In almost all quantum communication and
quantum computation schemes, quantum entanglement [3] plays a decisive
role. In essence, an entangled system can carry all information (e.g., on their
polarization properties) only in their correlations, while no individual subsys-
tem carries any information. This leads to correlations that are much stronger
than classically allowed [89, 100], which is a powerful resource for informa-
tion processing. It is therefore important to be able to generate, manipulate,
and distribute entanglement as accurately and as efficiently as possible.

Successful demonstrations of quantum communication protocols started
with photon experiments in 1992 and include quantum cryptography [4,5],
the simultaneous distribution of a cryptographic key that is ultimately secured
by the laws of quantum physics; later followed quantum dense coding [6,7],
a protocol to double the classically allowed capacity of a communication
channel by encoding two bits of information per bit sent, and finally quantum
teleportation [8,9], the remote transfer of an arbitrary quantum state between
distant locations.

Since these early achievements, the field of quantum communication, or
more generally quantum information processing, has very much advanced.
New schemes and techniques allow the generation and manipulation of en-
tangled photon pairs and even of four-photon states with much higher effi-
ciency and precision [10,11]. Also, the distances over which entanglement can
be distributed are regularly pushed further. Owing to new protocols one can
now achieve the successive use of teleported states and also the teleportation
of entanglement via entanglement swapping (see Section 3.2.1). An impor-
tant method for distributing pure entangled states even over noisy channels
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is entanglement purification (see Section 3.2.2), which is one ingredient for a
quantum repeater and is also based on the application of elementary quan-
tum gates such as a controlled NOT (CNOT) gate (see Section 3.2.3). Another
promising line of development involves entanglement in higher dimensions,
which might allow further advances such as quantum communication with a
higher resistance against noise (see Section 3.2.4). A very recent development
is the real-world application of entanglement-based quantum cryptography
(see Section 3.2.5). This is linked to the research on distributing entanglement
over long distances, which aims at the establishment of a quantum commu-
nication network (see Section 3.2.6), eventually on a global scale by using
satellites.

3.2 Advanced Quantum Communication
Schemes

3.2.1 Scalable Teleportation and Entanglement
Swapping

Teleportation of quantum states [12] is an intriguing concept within quan-
tum physics and a striking application of quantum entanglement. Besides
its importance for quantum computation [13,14], teleportation is at the heart
of the quantum repeater [15], a concept eventually allowing the distribution
of quantum entanglement over arbitrary distances and thus enabling quan-
tum communication over large distances and even networking on a global
scale.

The purpose of quantum teleportation is to transfer an arbitrary quan-
tum state to a distant location, e.g., from Alice to Bob, without transmit-
ting the actual physical object carrying the state. Classically this is an im-
possible task, since Alice cannot obtain the full information of the state to
be teleported without previous knowledge about its preparation. Quantum
physics, however, provides a working strategy. Suppose, Alice and Bob share
an ancilla entangled pair in advance. Alice then performs a Bell state mea-
surement between the teleportee particle and her shared ancilla, i.e., she
projects the two particles into the basis of Bell states. The four possible out-
comes of this measurement provide her with two bits of classical informa-
tion, which is sufficient to reconstruct the initial quantum state at Bob’s side.
After communicating the classical result to Bob, he can perform one out of
four unitary operations to obtain the original state to be teleported. In de-
tail: suppose photon 1, which Alice wants to teleport to Bob, is in a general
polarization state |χ〉1 = α|H〉1 + β|V〉1 (unknown to Alice), and the pair of
photons 2 and 3 shared by Alice and Bob is in the polarization-entangled
state |�−〉23. This state is one of the four maximally entangled Bell states
|�±〉ij = 1√

2
(|HV〉ij ± |VH〉ij) and |�±〉ij = 1√

2
(|H H〉ij ± |VV〉ij), where H and

V denote horizontal and vertical linear polarizations, and i and j index the
spatial modes of the photons. The overall state of photons 1, 2, and 3 can be
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rewritten as

|�〉123 = |�〉1|�−〉23 = 1
2

[−|�−〉12 (α |H〉3 + β |V〉3)

− |�+〉12 (α |H〉3 − β |V〉3) (3.1)

+ |�−〉12 (α |V〉3 + β |H〉3)

+ |�+〉12 (α |V〉3 − β |H〉3)].

It can thus be seen that a joint Bell measurement on photons 1 and 2
at Alice’s side, i.e., a projection of particles 1 and 2 onto one of the four
Bell states, projects the state of photon 3 at Bob’s side into one of the four
corresponding states, as shown in Equation (3.1). The outcome of the Bell
measurement is totally random (otherwise Alice and Bob could communicate
faster than light). However, when knowing Alice’s measurement results, Bob
can perform a unitary transformation, independent of |χ〉1, on photon 3 and
convert its state into the initial state of photon 1.

3.2.1.1 Entanglement Swapping
An important feature of teleportation (also of relevance for long-
distance quantum communication) is that it provides no information whatso-
ever about the state being teleported. This means that an arbitrary unknown
quantum state can be teleported. In fact, the quantum state of a teleportee
particle does not have to be well defined, and it could thus even be entangled
with another photon. A Bell state measurement of two of the photons — one
each from two pairs of entangled photons — results in the remaining two
photons becoming entangled, even though they have never interacted in the
past (see Figure 3.1(a)). This was demonstrated recently by violating a Bell
inequality between particles that never interacted with each other [16] (see
Figure 3.1(b)). A chain of several entanglement swapping systems [17] can in
principle be used to transfer quantum entanglement between distant sites.

3.2.1.2 Scalable Teleportation
A recent result also of relevance for long-distance quantum communication
is the first realization of freely propagating teleported qubits [18], which will
eventually allow the subsequent use of teleported states. In previous experi-
mental realizations of teleportation with photons, the teleported qubit had to
be detected (and thus destroyed) to verify the success of the procedure. This
can be avoided by providing, on average, more entangled ancilla pairs than
states to be teleported. In the modified teleportation scheme (Figure 3.2), a
successful Bell state analysis results in freely propagating individual qubits,
which can be used for further cascaded teleportation. In many of our exper-
iments, two independent polarization entangled photon pairs, produced by
spontaneous parametric down-conversion (SPDC) with a probability p, are
used both for the preparation of the entangled pair |�−〉23 (photons 2 and 3)
and for the preparation of the initial state to be teleported (photons 1 and 4).
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Figure 3.1 (a) Scheme for entanglement swapping, i.e., the teleportation of entangle-
ment. Two entangled pairs 0, 1 and 2, 3 are produced by two entangled photon sources
(EPR). One particle from each of the pairs is sent to two separated observers; say 0 is
sent to Alice and 3 to Bob. 1 and 2 become entangled through a Bell state measurement,
by which 0 and 3 also become entangled. This requires the entangled qubits 0 and 3 nei-
ther to come from a common source nor to have interacted in the past. (b) Experimental
setup for the demonstration of teleportation and entanglement swapping using pairs
of polarization entangled photons. The two entangled photon pairs were produced by
down-conversion in barium borate (BBO), pumped by femtosecond UV laser pulses
traveling through the crystal in opposite directions. After spectral filtering, all photons
were collected in single-mode optical fibers for further analysis and detection. Single-
mode fibers offer the benefit that the photons remain in a perfectly defined spatial
mode allowing high-fidelity interference. In order to optimize the temporal overlap
between photon 1 and 2 in the beam splitter, the UV mirror was mounted on a mo-
torized translation stage. Photons 0 and 3 were sent to Bob’s two-channel polarizing
beamsplitters for analysis, and the required orientation of the analyzers was set with
polarization controllers in each arm. All photons were detected with silicon avalanche
photodiodes, with a detection efficiency of about 40%. Alice’s logic circuit detected
coincidences between detectors D1 and D2. (c) Experimental violation of Bell’s inequal-
ities from particles that never interacted with each other obtained through correlation
measurements between photons 0 and 3, which is a lower bound for the fidelity of the
teleportation procedure (from [16]). φ0 (φ3) is the setting of the polarization analyzer
for photon 0 (photon 3) and φ0 = φ3. The minimum fidelity of 0.84 is well above the
classical limit of 2/3 and also above the limit of 0.79 necessary for violating Bell’s
inequality.

Photon 4 acts as a trigger to indicate the presence of photon 1. If one pair
of photons is emitted in each of the pairs of modes 1-4 and 2-3, a threefold
coincidence of T-D1-D2 is sufficient to guarantee a successful teleportation.

However, owing to the probabilistic nature of SPDC, two photon pairs are
both emitted into modes 1-4 with the same probability p2 as for a
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Figure 3.2 (a) (1) Original qubit teleportation scheme using polarization-entangled
photon pairs based on spontaneous parametric down-conversion (EPR sources); (2)
Freely propagating teleported qubits. (b) Conditional fidelities (squares) and noncon-
ditional fidelities (circles) obtained in 45◦ teleportation for different attenuation 1/γ .
With increasing attenuation of mode 1, an increase of nonconditional fidelities is ob-
served while the conditional ones remain constant. For γ = 0.05, the classical limit 2/3
is clearly overcome.

successful teleportation. This will also lead to threefold coincidences of T-
D1-D2, but in this case no teleportation occurs, as mode 3 is simply empty. To
ensure a successful teleportation, it has been necessary to confirm the presence
of photon 3 by actually detecting it (Figure 3.2). For this reason, the original
Innsbruck experiment [9], the first experimental demonstration of quantum
teleportation, has been called a “postselected” one, while probably the word
“conditional” would be more appropriate, as detection of photon 3 does not
depend on its state. In the new protocol, an unbalanced two-photon interfer-
ometer is used to make a detection at Bob’s side obsolete and therefore allow
for a free propagation of the teleported qubits. The number of unwanted D1-
D2 coincidence counts is reduced by attenuating beam 1 by a factor of γ while
leaving the modes 2-3 unchanged. Then a threefold coincidence D1-D2-T will
occur with probability p2 owing to successful teleportation, and with signif-
icantly lower probability γ p2 there will be a spurious coincidence. Thus the
probabilty for a successful teleportation event (conditioned on D1-D2-T) will
scale with 1/(1 + γ ), and for sufficiently low γ it will not be necessary any-
more to detect the teleported photon 3; a freely propagating teleported beam
of qubits emerges.

To demonstrate experimentally nonconditional teleportation, we inserted
a series of neutral density filters in mode 1 and showed that the probability
of having a successful teleportation conditioned on a threefold coincidence
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Figure 3.3 (a) Sketch of the two laboratories located on either side of the Danube
River (from [23]). The laboratories were located in two sewage water system buildings
owned by the city of Vienna. The faster classical channel (microwave) and the slower
quantum channel (fiber) are shown above and underneath the Danube. The vertical
separation of the two channels is about 40 m. (b) Fidelity of the teleported states with
and without active switching.

of D1, D2, and T increases with decreasing γ . The corresponding fidelities for
conditional (fourfold detection) and nonconditional (threefold detection D1-
D2-T) teleportation are shown in Figure 3.2b. We were able to demonstrate
the preparation of a freely propagating teleported quantum state with high
(nonconditional) fidelity of 0.85 ± 0.02, i.e., well above the classical limit.∗

The possibility of letting the teleported qubit travel freely in space, together
with the high experimental visibility obtained, is a fundamental step in the
direction of the realization of long-distance quantum communication. Further
protocols, such as entanglement purification, are then needed to overcome
decoherence in long-distance quantum channels (see Section 3.2.2).

3.2.1.3 Long-Distance Quantum Teleportation
Teleportation is the basis for the quantum repeater [15], which allows dis-
tributing quantum entanglement over long distances. Also, quantum telepor-
tation over longer distances will be needed for realizing quantum network
schemes involving several parties [22] and naturally for interconnecting de-
vices utilizing quantum computational algorithms. As a next step toward a
full-scale implementation of a quantum repeater, we have realized a large-
scale implementation of teleportation [23] of photon qubits in an outdoor
environment. The two laboratories involved, Alice and Bob, are separated by
600 m across the Danube River in Vienna (see Figure 3.3). Additionally, while
it has been shown that systems based on linear optical elements can only de-
termine two of the four Bell states perfectly [24,7,25], our system achieves the

∗Other nonconditional quantum teleportation experiments have been performed with
continuous variables [19] and, only recently, with ions [20,21]. However, the most
suitable systems for long-distance transmission are currently photons.
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optimal teleportation efficiency of 50% when using linear optics alone. This is
realized by an active feed-forward technique, namely by detecting two of the
four Bell states on the transmitter site, Alice, and correspondingly switching
the unitary transformation for the receiver photon at the receiver site, Bob,
with a fast electro optic modulator (EOM).

An important feature of our experiment was the implementation of an
optimized Bell state analyzer (BSA) capable of detecting two of the four Bell
states on Alice’s side, and the implementation of an “actively switched” uni-
tary transformation on Bob’s side triggered by the outcome of Alice’s Bell state
measurement (BSM). Alice’s BSM result was sent to Bob via a microwave link
(2.4 GHz) above the Danube River. The classical channel transmitted one bit
of information about Alice’s BSM outcome (�− or �+). This signal traveled
the distance of 600 m almost at the vacuum speed of light, which took about
2 µs. Additionally, delays in the detectors and in several signal stages of the
transceivers introduced an extra delay of 0.6 µs. However, since the speed
of light in a fiber is approximately 2/3 of the vacuum speed of light, the en-
tangled photon d traveled the 800 m fiber from Alice to Bob in about 4 µs.
Therefore, the information on Alice’s BSA outcome arrived at Bob’s labora-
tory approximately 1.4 µs before the arrival of photon d. This provided Bob
with sufficient time to set an EOM to apply the birefringent phase shift of 0 or
π between the |H〉 and |V〉 optical light modes on the received photon d. When
Alice’s BSM result was a �−, then Bob left the EOM at the idle voltage (i.e., the
EOM introduces no phase shift and the teleported state remains unchanged),
and when it was a �+, then Bob applied the activation voltage (i.e., the EOM
introduced a π phase shift between the horizontal and vertical polarization)
just before the photon passed through the EOM. In both cases, Bob eventually
obtains an exact replica of the initial teleportee state (see Equation (3.1)).

The EOM was a KDP Pockels cell, which achieved the phase shift of π

with an accuracy of 1:200 at a voltage of 3.4 kV. The timing information of the
received classical signal was delayed with a digital delay generator, and when
a �+ was received, then the EOM was triggered with a 100 ns pulse with a rise
time of 20 ns. Additionally, Bob used a logic circuit to count only those detec-
tions of his photons that arrived at the expected times within a coincidence
window of ±10 ns. Note that without operation of the EOM, Bob observes
only a completely mixed polarization for a |45◦〉 and a circular polarization
input state. When teleporting polarizations along H or V, the transformation
is irrelevant, since the EOM phase shift does not affect these states. The full
teleportation protocol was demonstrated by teleporting distinct linear polar-
ization states and circular polarization states (see Figure 3.4b). The classical
fidelity limit of 2/3 [26] is clearly surpassed by our observed fidelities of
around 0.85. This is a step toward a full-scale implementation of a quantum
repeater to achieve shared pure entanglement between arbitrarily separated
quantum communication partners. Such a quantum repeater requires quan-
tum teleportation, purification of entanglement, and quantum memories.
Recent results [27,28] indicate the advance of quantum memory, which might
be suitable for future quantum communication networks.
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Figure 3.4 (a) Scheme for entanglement purification of polarization-entangled qubits
[30]. Two shared pairs of an ensemble of equally mixed entangled states ρAB are fed
into the input ports of polarizing beam splitters that substitute the bilateral CNOT
operation necessary for a successful purification step. Alice and Bob keep only those
cases where there is exactly one photon in each output mode. This can happen only
if no bit-flip error occurs over the channel. Finally, to obtain a larger fraction of the
desired pure (Bell) state they perform a polarization measurement in the |±〉 basis in
modes a4 and b4. Depending on the results, Alice performs a specific operation on the
photon in mode a3. After this procedure, the remaining pair in modes a3 and b3 will
have a higher degree of entanglement than the two original pairs. (b) Experimental
results. a and b show the experimentally measured fractions both in the H/V and in
the +/− bases for the original mixed state. c and d show the measured fractions of the
purified state in the modes a3 and b3 both in the H/V and in the +/− bases. Compared
with the fractions in a and b, the experimental results shown in c and d both together
confirm the success of entanglement purification.



P1: Shashi
Bahill.cls DK5859˙C003 September 21, 2005 14:8

54 Quantum Communications and Cryptography

3.2.2 Purifying Quantum Entanglement
Owing to unavoidable decoherence in the quantum communication channel,
the quality of entangled states generally decreases with the channel length.
Entanglement purification schemes [29] allow two spatially separated parties
to convert an ensemble of partially entangled states (which result from trans-
mission through noisy channels) to a set of almost perfectly entangled states
by performing local unitary operations and measurements on the shared
pairs, and coordinating their actions with a classical channel. One thus sim-
ulates a noiseless quantum channel by a noisy one, supplemented by local
actions and classical communication. In a recent experiment, entanglement
purification could be demonstrated for the first time experimentally for mixed
polarization-entangled two-particle states [30].

The crucial operation for a successful purification step is a bilateral condi-
tional NOT (CNOT) gate, which effectively detects single bit-flip errors in the
channel by performing local CNOT operations (see Section 3.2.3) at Alice’s
and Bob’s side between particles of shared entangled states. The outcome of
these measurements can be used to correct for such errors and eventually
leads to a less noisy quantum channel [29]. For the case of polarization en-
tanglement, such a parity check on the correlations can be performed in a
straightforward way by using polarizing beamsplitters (PBS) [31] that trans-
mit horizontally polarized photons and reflect vertically polarized ones.

Consider the situation in which Alice and Bob have established a noisy
quantum channel, i.e., they share a set of equally mixed, entangled states ρAB .
At both sides the two particles of two shared pairs are directed into the input
ports a1, a2 and b1, b2 of a PBS (see Figure 3.2). Only if the entangled input
states have the same correlations, i.e., they have the same parity with respect
to their polarization correlations, will the four photons exit in four different
outputs (four-mode case), and a projection of one of the photons at each side
will result in a shared two-photon state with a higher degree of entanglement.
All single bit-flip errors are effectively suppressed.

For example, they might start with the mixed state ρAB = F · |�+〉〈�+|AB

+ (1 − F ) · |�−〉〈�−|AB , where |�+〉 = (|H H〉 + |VV〉) is one of the four maxi-
mally entangled Bell states. Then only the combinations |�+〉a1,a2 ⊗
|�+〉b1,b2 and |�−〉a1,a2 ⊗ |�−〉b1,b2 will lead to a four-mode case, while |�+〉a1,a2

⊗ |�−〉b1,b2 and |�−〉a1,a2 ⊗ |�+〉b1,b2 will be rejected. Finally, a projection of the
output modes a4, b4 into the basis |±〉 = 1√

2
(|H〉 ± |V〉) will create the pure

states |�+〉a3,b3 with probability F ′ = F 2/[F 2 + (1 − F )2] and |�+〉a3,b3 with
probability 1 − F ′, respectively. The fraction F ′ of the desired state |�+〉 be-
comes larger for each purification step if F > 1

2 . In other words, the new state
ρ ′

AB shared by Alice and Bob after the bilateral parity operation demonstrates
an increased fidelity with respect to a pure, maximally entangled state. This
is the purification of entanglement.

Typically, in the experiment, one photon pair of fidelity 92% could be
obtained from two pairs, each of fidelity 75%. Also, although only bit-flip
errors in the channel have been discussed, the scheme works for any general
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mixed state, since any phase-flip error can be transformed to a bit-flip by
a rotation in a complementary basis. In these experiments, decoherence is
overcome to the extent that the technique would achieve tolerable error rates
for quantum repeaters in long-distance quantum communication based only
on linear optics and polarization entanglement.

Purification not only provides a way to implement long-distance quan-
tum communication but also plays an important role in fault-tolerant
quantum computation. Quantum error correction [32,33] allows a universal
quantum computer to be operated in a fault tolerant way [34,35]. However, in
order for quantum repeaters and quantum error correction schemes to work,
there are stringent requirements on the precision of logic operations between
two qubits. While the tolerable error rate of logic gates in quantum repeaters
is of the order of several percent [15], that in quantum error correction is of
the order of 10−4 to 10−5, still far beyond experimental feasibility. Fortunately,
a recent study shows that entanglement purification can also be used to in-
crease the quality of logic operations between two qubits by several orders of
magnitude [36]. In essence, this implies that the threshold for tolerable error
in quantum computation is within reach using entanglement purification and
linear optics. Our experiments achieved an accuracy of local operations at the
PBS of about 98%, or equivalently an error probability of 2%. Together with
the high fidelity achieved in the latest photon teleportation experiments, the
present purification experiment implies that the threshold of tolerable error
rates in quantum repeaters can be well fulfilled. This opens the door to realistic
long-distance quantum communication. On the other hand, with the help of
entanglement purification the strict accuracy requirements of the gate opera-
tions for fault-tolerant quantum computation are also reachable, for example,
within the frame of linear optics quantum computation [37].

3.2.3 A Photonic Controlled NOT Gate
As can be seen above, advanced quantum communication protocols such
as entanglement purification may require nontrivial manipulation of qubits,
e.g., bilateral parity checks on pairs of photons (see Section 3.2.2). The under-
lying operations are typically elementary quantum gates, which are also used
for universal quantum computation. Well-known examples of such gates are
the controlled NOT (CNOT) and controlled phase (CPhase) operations. The
crucial trait of these gates is that they can change the entanglement between
qubits. A CNOT gate flips the value of the target bit if and only if the control
bit has the logical value 1 (see below). Entanglement can now be created be-
tween two independent input qubits if the control bit is in a superposition of
0 and 1. On the other hand, any Bell state that is fed into a CNOT gate will
result in distinct separable output states that make it possible to distinguish
all four Bell states deterministically.

In previous experiments [38,39,40] destructive linear optical gate oper-
ations have been realized. However, such schemes necessarily destroy the
output state and are hence not classically feed-forwardable, i.e., they do not
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Figure 3.5 (a) The scheme to obtain a photonic realization of a CNOT gate with
two independent qubits. The qubits are encoded in the polarization of the photons.
The scheme makes use of linear optical components, polarization entanglement, and
postselection. When one and only one photon is detected at the polarization sensitive
detectors in the spatial modes b3 and b4, the scheme works as a CNOT gate. (b) The
experimental setup. A type II spontaneous parametric down-conversion is used both
to produce the ancilla pair (in the spatial modes a3 and a4) and to produce the two input
qubits (in the spatial modes a1 and a2). In this case, initial entanglement polarization is
not desired, and it is destroyed by making the photons go through polarization filters,
which prepare the required input state. Half-wave plates (HWP) have been placed in
the photon paths in order to rotate the polarization; compensators (comp) are able to
nullify the birefringence effects of the nonlinear crystal. Overlap of the wavepackets
at the PBSs is assured through spatial and spectral filtering.

allow scalable quantum computation. This section will discuss the realization
of a CNOT gate, which operates on two polarization qubits carried by inde-
pendent photons and which satisfies the feed-forwardability criterion [41].
The scheme, shown in Figure 3.5, was first proposed by Franson et al. [42].
It performs a CNOT operation on the input photons in spatial modes a1 and
a2; the output qubits are contained in spatial modes b1 and b2. The ancilla
photons in the spatial modes a3 and a4 are in the maximally entangled Bell
state |φ+〉a3,a4 = 1√

2
(|H〉a3 |H〉a4 + |V〉a3 |V〉a4).

In the following, |H〉 (a horizontally polarized photon) and |V〉 (a verti-
cally polarized photon) will denote our logical “0” and “1”. The CNOT opera-
tion for qubits encoded in polarization can be written as |H〉c |H〉t → |H〉c |H〉t ,
|H〉c |V〉t → |H〉c |V〉t , |V〉c |H〉t → |V〉c |V〉t , |V〉c |V〉t → |V〉c |H〉t, where the in-
dices c and t denote the control and target qubit.

The scheme works in those cases where one and only one photon is found
in each of the modes b3 and b4. It combines two simpler gates, namely the
destructive CNOT and the quantum encoder. The first gate can be seen in
the lower part of Figure 3.5 and comprises a polarizing beam splitter (PBS2)
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rotated by 45◦ (the rotation is represented by the circle drawn inside the sym-
bol of the PBS), which works as a destructive CNOT gate on the polarization
qubits, as was experimentally demonstrated in [42]. The upper part, compris-
ing the entangled state and the PBS1, is meant to encode the control bit in the
two channels a4 and b1.

Owing to the PBS operation, which transmits horizontally polarized pho-
tons and reflects vertically polarized ones, the successful detection of the state
|+〉 at the port b3 postselects the following transformation of the arbitrary in-
put state in a1: α|H〉a1 + β|V〉a1 → α|H〉a4 |H〉b1 + β|V〉a4 |V〉b1 . The control bit
is thus encoded in a4 and in b1. The photon in a4 serves as the control input to
the destructive CNOT gate and will be destroyed, while the second photon
in b1 serves as the output control qubit.

For the gate to work properly, one has to demonstrate that the most gen-
eral input state,

|�〉in
a1,a2

= |H〉a1(α1|H〉a2 + α2|V〉a2) + |V〉a1(α3|H〉a2 + α4|V〉a2),

can be converted to the output state,

|�〉out
b1,b2

= |H〉b1(α1|H〉b2 + α2|V〉b2) + |V〉b1(α3|V〉b2 + α4|H〉b2).

Let us consider first the case where the control photon is in the logical
zero or horizontally polarized. The control photon will then travel undis-
turbed through the PBS, arriving in the spatial mode b1. As required, the
output photon is |H〉. In order for the scheme to work, a photon needs to
arrive also in mode b3: given that the input photon is already in mode b1,
the additional photon will necessarily be provided by the EPR pair and is
|H〉 after transmission through PBS1. We know that the photons in a3 and
a4 are entangled, so the photon in a4 is also in the horizontal polarization
state. For a |H〉 (|V〉) target photon, taking into account the 45◦ rotation of the
polarization on the paths a2, a4 due to the half-wave plates, the input at PBS2
will then be in the state |+〉a2 |+〉a4(|+〉a2 |−〉a4). This state will give rise, with
a probability of 50%, to the state where two photons go through the PBS2,
namely |φ±〉b2,b4 = 1√

2
(|H〉b2 |H〉b4 ± |V〉b2 |V〉b4). After the additional rotation

of the polarization and after the subsequent change to the H/V basis (where
the measurement will be performed), this state acquires the form |φ+〉b2,b4 =

1√
2
(|H〉b2 |H〉b4 + |V〉b2 |V〉b4) (|ψ+〉b2,b4 = 1√

2
(|H〉b2 |V〉b4 + |V〉b2 |H〉b4)).

The expected result, |H〉(|V〉), in the mode b2 is found for the case where
the photon in b4 is horizontally polarized. We can see in a similar way that the
gate works also for the cases where the control photon is vertically polarized
or is polarized at 45◦.

The experimental setup for the CNOT gate is shown in Figure 3.5. An
ultraviolet pulsed laser, centered at a wavelength of 398 nm, with pulse du-
ration 200 fs and a repetition rate of 76 MHz, impinges on a nonlinear BBO
crystal [43], in which it produces probabilistically the first photon pair in
the spatial modes a1 and a2. They serve as input qubits to the gate. The UV
laser is reflected back by the mirror M1 and, on passing through the crystal a
second time, produces the entangled ancilla pair in spatial modes a3 and a4.
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Half-wave plates and nonlinear crystals in the paths provide the necessary
birefringence compensation, while the same half-wave plates are used to ad-
just the phase between the down-converted photons (i.e., to produce the state
φ+) and to implement the CNOT gate.

We then superpose the two photons at Alice’s (Bob’s) side in the modes
a1, a3 (a2, a4) at a polarizing beam splitter PBS1 (PBS2). The indistinguisha-
bility between the overlapping photons is improved by introducing narrow
bandwidth (3 nm) spectral filters at the outputs of the PBSs and monitor-
ing the outgoing photons by fiber-coupled detectors. The single-mode fiber
couplers guarantee good spatial overlap of the detected photons; the narrow
bandwidth filters stretch the coherence time to about 700 fs, substantially
larger than the pump pulse duration [44]. The temporal and spatial filtering
process effectively erases any possibility of distinguishing the photon pairs
and therefore allows two-photon quantum interference.

The described CNOT scheme is nondestructive, i.e., the output photons
can travel freely in space and may be further used in quantum communication
protocols. This is achieved by detecting one and only one photon in modes b3
and b4. Since photon-number resolving detectors are not yet readily available
at this wavelength, we implement a fourfold coincidence detection to confirm
that photons actually arrive in the output modes b1 and b2.

To demonstrate experimentally the working operation of the CNOT gate,
we first verify the CNOT truth table for input qubits in the computational basis
states |H〉|H〉, |H〉|V〉, |V〉|H〉, and |V〉|V〉. Figure 3.6(b) compares the count
rates for all 16 possible combinations. We then show that the gate also works
for a superposition of input states. The special case in which the control input
is a 45◦ polarized photon and the target qubit is an |H〉 photon is particularly
interesting: we expect that the state |+〉a1 |H〉a2 evolves into the maximally
entangled state |φ+b1, b2 = 1√

2
(|H〉b1 |H〉b2 + |V〉b1 |V〉b2). We prepare |+〉a1 |H〉a2

as the input state; first we measure the count rates of the four combinations of
the output polarization (|H〉|H〉, . . . , |V〉|V〉) and then after going to the |±〉
linear polarization basis an Ou–Hong–Mandel interference measurement is
possible; this is shown in Figure 3.6.

On the other hand, the same CNOT operation can be used to identify Bell
states when they are used as input states [45]. For this procedure, the gate
performs an operation that transforms each of the entangled Bell states into
well-defined but different separable states, which are simple to distinguish.
When a Bell state enters a CNOT gate in modes a1 and a2, the gate operation
can be described by

|φ±〉a1,a2 → |±〉b1 |H〉b2

|ψ±〉a1,a2 → |±〉b1 |V〉b2 .

Figure 3.6 shows the count rates of all 16 possible combinations (four
different inputs and four different outputs). They clearly confirm the suc-
cessful implementation of the Bell state analyzer. The fidelity of each Bell
state analysis is Fφ+ = (0.75 ± 0.05), Fφ− = (0.79 ± 0.05), Fψ+ = (0.79 ± 0.05),
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Figure 3.6 (a) Demonstration of the ability of the CNOT gate to transform a sepa-
rable state into an entangled state. In (a), the coincidence ratio between the different
terms |H〉|H〉, . . . , |V〉|V〉 is measured, proving that the birefringence of the PBS has
been sufficiently compensated; in (b) the superposition between |H〉|H〉 and |V〉|V〉
is proved to be coherent, by showing via the Ou–Hong–Mandel dip at 45◦ that the
desired |+〉 state of the target bit emerges much more often than the spurious state
|−〉. The fidelity is of (81 ± 2)% in the first case and (77 ± 3)% for the second. (b) Ex-
perimental demonstration of the optical Bell state analyzer. Fourfold coincidences for
all possible 16 combinations of the inputs and outputs are shown. Each of the four
different polarization-encoded Bell states is transformed into a distinguishable separa-
ble state |φ±〉a1,a2 → |±〉b1 |H〉b2 and |ψ±〉a1,a2 → |±〉b1 |V〉b2 . Each input state was mea-
sured for 1800 seconds at each of the four different polarizer settings. The fidelity is, on
average, 77%.
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Fψ− = (0.75 ± 0.05), without subtracting background of any kind. The incor-
rect outcomes originate mainly from incomplete suppression of the double
pair emission and imperfections in the PBS operation.

3.2.4 Higher Dimensional Entanglement
for Quantum Communications

In classical communication protocols it is not unusual to send the informa-
tion encoded not only in 0’s and 1’s but also in a higher number of levels.
For example, when the information is encoded in phase-modulated electrical
signals, coding two bits per phase change doubles the number of bits per
second. This is called two-level coding. This method is suitable, for example,
for 2400 bps modems (CCITT V.26). Encoding more bits per phase change
increases the number of bits per second but, assuming a constant noise, de-
creases the signal-to-noise ratio (SNR). The right choice of level coding per
physical information carrier is a complicated engineering problem which, be-
sides the speed and the SNR, includes the elaboration of new and efficient
communication protocols for higher level encoding.

As we have already reviewed in previous chapters, quantum communi-
cation and quantum computation protocols usually encode the information
in two-dimensional quantum systems, better known as qubits. Nevertheless,
there are ways of enlarging the available dimension of the quantum informa-
tion carrier. A system that is completely described by n different orthogonal
vectors is called a qunit. In the same way as in their classical counterpart, the
use of qunits increases the information rate, but surprisingly enough the sys-
tem is also more resistant to noise. For example, entangled qunits can violate
Bell’s inequalities more than their two-dimensional counterpart, protecting
in this way the nonlocal quantum correlations against noise. Also, a quan-
tum cryptography protocol using qunits is usually more secure against noise
than those protocols based on qubits [46,47,48]. On the other hand, there are
a series of protocols in quantum communication that are designed specifi-
cally for being implemented in higher dimensional spaces [49,50,51]. On a
more fundamental level, higher dimensional Hilbert spaces provide novel
counterintuitive examples of the relationship between quantum information
and classical information, which cannot be found in two-dimensional sys-
tems [52,53,54].

Encoding qunits with photons has been experimentally demonstrated
using interferometric techniques such as time-bin schemes [55] and super-
positions of spatial modes [56]. Up to now, the only noninterferometric
technique of encoding qunits in photons is using their orbital angular mo-
mentum or, equivalently, their transversal modes [57,58]. Orbital angular
momentum modes usually contain dark spots that regularly exhibit phase
singularities.

The orbital angular momentum of light has already been used to en-
tangle and to concentrate entanglement of two photons [57,59]. This entan-
glement has also been shown to violate a two particle three-dimensional Bell
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inequality [60]. There have been proposals of some experimental techniques to
engineer entangled qunits in photons [58,61,62]. Here we will discuss a gen-
eral scheme for a quantum communication protocol based on the orbital an-
gular momentum of light [63]. This scheme has already been succesfully used
for the experimental realization of a quantum coin tossing protocol [64].

In a general communication scheme, prior to the sharing of information,
the two parties, say Alice and Bob, have to define a procedure that will assure
that the signal sent by one party is properly received by the other. Usually, this
scheme works as follows. First, Alice prepares a signal state she wants to send.
Bob will measure it and communicate the result to Alice, who will correct the
parameters of her sending device following Bob’s indications. This process
will be repeated until the two parties adjust the corresponding devices. After
this step is completed, Alice can safely assume that any subsequent signal
which is sent is properly received by Bob.

Using pairs of photons entangled in orbital angular momentum, we can
prepare any qutrit state, transmit it, and measure it. The preparation is done
by projecting one of the two photons onto some desired state. This projects
the second photon nonlocally onto a corresponding state. This state may be
transmitted to Bob and finally measured by him. The measurement employs
tomographic reconstruction. This last step is usually a technically demanding
problem, inasmuch as it needs the implementation and control of arbitrary
transformations in the quantum system’s Hilbert space.

The experimental setup we used is shown in Figure 3.7. A 351 nm wave-
length argon-ion laser pumps a 1.5-mm-thick BBO (β-barium-borate) crystal
cut for Type I phase matching conditions. The crystal is positioned so as to
produce down-converted pairs of equally polarized photons at a wavelength
of 702 nm emitted at an angle of 4◦ off the pump direction. These photons are
directly entangled in the orbital angular momentum degree of freedom. Alice
can manipulate one of the down-converted photons while the other is sent
to Bob. Before being detected, Bob’s photon traverses two sets of holograms.

Alice
side

Bob
side

Nonlinear
crystal

Pump beam

Transforming
holograms

Projecting
holograms

Electronics

Figure 3.7 Experimental setup from [63]. A 351 nm wavelength laser pumps a BBO
crystal. The two generated 702 nm down-converted photons are sent to Alice’s and
Bob’s detectors, respectively. Before being detected, each photon propagates through
a set of holograms. Each photon was coupled into single-mode fibers and directed to
detectors based on avalanche photodiodes operating in the photon counting regime.
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Each set consists of one hologram with charge m = 1 and another with charge
m = −1. The first set of holograms provides the means of a transformation in
the three-dimensional space expanded by the states | − 1〉, |0〉, and |1〉. The
second set, together with a single-mode fiber and a detector, acts as a projector
onto the three different basis states. All these elements are Bob’s receiving de-
vice. Alice’s photon also traverses a set of holograms, which, together with the
source and the detector on Alice’s side, act as Alice’s sending device. When-
ever Alice detects one photon, the transmission of a photon to Bob is initiated.
Due to the quantum correlations between the entangled photons, Alice can
radically control the state of the photon sent to Bob. In order to adjust their
respective devices properly, Bob has to perform a tomographic measurement
of the received state and classically to communicate his result to Alice.

In Figure 3.8 we present three examples of qutrits that were received by
Bob and remotely prepared by Alice. All of them were found to be very nearly
pure states, their largest eigenvalues and corresponding eigenvectors being
(a) λmax = 0.99, |emax〉 = 0.68|0〉 + 0.71|1〉 − 0.14| − 1〉; (b) λmax = 0.99, |emax〉 =
0.65|0〉 + 0.53 exp(−i0.26π)|1〉 + 0.55 exp(−i0.6π)| − 1〉; (c) λmax = 0.99, |emax〉
= 0.58|0〉 + 0.58 exp(−i0.05π)|1〉 + 0.58 exp(−i0.89π)| − 1〉. From these exam-
ples it is shown that besides the relative intensities, Alice could also control the
relative phases of the states sent. Other reconstructed qutrits (not presented
in Figure 3.8) showed an effective suppression of the |0〉 mode through de-
structive interference from the two holograms. The result was λmax = 0.97,
|emax〉 = 0.26|0〉 + 0.68 exp(i0.11π)|1〉 + 0.68 exp(−i0.21π)| − 1〉. As can be de-
duced from the maximum eigenvalue of all the data, the purity of the recon-
structed states was larger than 97%. By direct comparison of the measured
data and the data estimated by the reconstructed matrix, the error was com-
parable to the statistical Poissonian noise, which demonstrates the reliability
of the tomography.

The method presented establishes a point-to-point communication pro-
tocol in a three-dimensional alphabet. Using the orbital angular momentum
of photons, we can implement the three basic tasks inherent in any communi-
cation or computing protocol: preparation, transmission, and reconstruction
of a qutrit. This communication scheme has already been experimentally im-
plemented in a quantum coin tossing experiment [64], which is an original
cryptographic protocol using qutrits.

3.2.5 Entanglement-Based Quantum Cryptography
Quantum cryptography is the first technology in the area of quantum infor-
mation that is in the process of making the transition from purely fundamental
scientific research to an industrial application. In the last three years, several
companies have started developing quantum cryptography prototypes, and
the first products have hit the market. Up to now, these commercial products
were all based on various faint-pulse implementations of the BB84 proto-
col [5,65,66].
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Figure 3.8 Results of quantum state tomography applied to three different re-
motely prepared states of Bob’s qutrits: (a) 0.68|0〉 + 0.71|1〉 − 0.14| − 1〉; (b) 0.65|0〉 +
0.53 exp(−i0.26π)|1〉 + 0.55 exp(−i0.6π)| − 1〉; (c) 0.58|0〉 + 0.58 exp(−i0.05π)|1〉 +
0.58 exp(−i0.89π)| − 1〉. Left and middle panels show real and imaginary parts of
the reconstructed density matrices; right panels show the absolute values of those
elements for better comparison of how large are the contributions of the three basic
states. From the results it is shown that Alice can control both the relative amplitudes
and the phases of the sent states.

The use of entanglement provides a superior approach to quantum cryp-
tography and was first proposed by Ekert [67]. One of the main conceptional
advantages over single-photon quantum cryptography is the inherent ran-
domness in the results of a quantum-mechanical measurement on an en-
tangled system leading to purely random keys. Furthermore, the use of en-
tangled pairs eliminates the need for a deterministic single photon source,
because a pure entangled photon state consists, by definition, of exactly two
photons that are sent to different recipients. Multiple-pair emissions are in-
herently rejected by the protocol, in contrast to the faint-pulse case, where a
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beam-splitting attack might be successful.∗ Additionally, high-intensity
sources would allow longer transmission paths compared to single-photon
based systems [69,70]. Another important advantage over single-photon sys-
tems is that the photon pair source is immune to tampering by an illegitimate
party. Any manipulation at the photon source can be detected by the commu-
nicating parties and communication can be stopped.

3.2.5.1 Adopted BB84 Scheme
A very elegant implementation of the BB84 scheme utilizes polarization-
entangled photon pairs instead of the polarized single photons originally
used. This is very similar to the Ekert scheme [67] when Alice and Bob chose
different settings of their analyzers for their measurements of the entangled
photons. As opposed to the Ekert scheme, in which both Alice and Bob ran-
domly vary their analyzers between three settings, the adopted BB84 scheme
uses only two analyzer states, namely 0◦ and 45◦. If they share, for example,
the entangled Bell singlet state |�−〉, Alice’s and Bob’s polarization measure-
ments will always give perfect anticorrelations if they measure with the same
settings, no matter whether the analyzers are both at 0◦ or at 45◦. A way to
view this is to assume that Alice’s measurement on her particle of the en-
tangled pair projects the photon traveling to Bob onto the orthogonal state
of the one observed by Alice. So the photons transmitted to Bob are polar-
ized in one of the four polarizations 0◦, 45◦, 90◦ and 135◦, as with the BB84
scheme.

After a measurement run, when Alice and Bob independently collect
photons for a certain time, they communicate over an open classical channel.
By comparing a list of all detection times of photons registered by Alice and
Bob, they find out which detection events correspond to entangled photon
pairs. From these events they extract those cases in which they both had used
the same basis setting of the analyzers. Owing to the perfect anticorrelations
in these cases, Alice and Bob can build a string of bits (the sifted key) by
assigning a “0” to the +1 results and a “1” to the −1 result of the individual
polarization measurements. In order to obtain identical sets of a random bit
sequence, one of them finally has to invert the bits.

3.2.5.2 An Entanglement-Based Quantum
Cryptography Prototype System

We have recently developed a quantum cryptography prototype system in
cooperation with the Austrian Research Centers Seibersdorf (ARCS). It was

∗This is due to the nonvanishing probability of producing more than two photons
per faint pulse. One possible attack on the security would then simply involve a
beamsplitter, which distributes one photon of a pulse to Eve and one to Bob. This
would allow Eve to gain sufficient information to reconstruct the distributed key. True
single-photon sources are needed to overcome this sufficiency [68].
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Figure 3.9 Sketch of the experimental setup from [71]. Our entangled state source
produces polarization-entangled photon pairs. One of the photons is locally analyzed
in Alice’s detection module, while the other is sent over a 1.45 km long single-mode
optical fiber (SMF) to the remote site (Bob). Polarization measurement is done in one
of two bases (0◦ and 45◦) by using a beam splitter (BS) that randomly sends incident
photons to one of two polarizing beamsplitters (PBS). One of the PBS is defined for
measurement in the 0 basis, and the other in the 45 basis as the half-wave plate (HWP)
rotates the polarization by 45◦. The final detection of the photons is done in passively
quenched silicon avalanche photodiodes (APD). When a photon is detected in one
of Alice’s four APDs, an optical trigger pulse is created (sync. laser) and sent over
a second fiber to Bob to establish a common time basis. At both sites, this trigger
pulses and the detection events from the APDs are fed into a dedicated quantum key
generation (QKG) device for further processing.

applied in a real-world scenario in April 2004. This was the first time that
a quantum cryptography system was used for the encryption of an Internet
bank transfer [71]. The system was installed at the headquarters of a large
bank (Alice) and at the Vienna City Hall (Bob), and a key was distributed
over the 1.45 km optical single-mode fiber connecting the parties.

The quantum cryptography system (Figure 3.9) consists of a port-
able source for polarization-entangled photons (Figure 3.10) and two sets
of fourfold single-photon detection modules with integrated polarization an-
alyzers and embedded hardware devices that are capable of handling the
complete software protocol needed to extract a secure and private key out
of raw detection events. The quantum channel between Alice and Bob con-
sisted of an optical fiber that has been installed between the two experimental
sites in the Vienna sewage system. The classical protocol in that experiment is
performed via a standard TCP/IP connection. The exposure of the fibers to re-
alistic environmental conditions, such as stress and strain during installation
as well as temperature changes, was an important feature of this experiment;
the successful operation of the system shows that laboratory conditions are
not necessary for its operation.
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Figure 3.10 Sketch of the experimental implementation. The beam of a laser diode
(LD) is focused by a telescope (lenses L1, L2, and L3) onto the nonlinear crystal (BBO).
The photon pairs created by SPDC leave the crystal with an opening angle of 6◦,
passing a half-wave plate (HWP); the polarization of the photons is flipped before they
pass the two compensation crystals (BBO/2). Before they are coupled into a single-
mode optical fiber (SMF) by the coupling lens L4, they pass an optional polarizer
(POL) and an orange glass filter (OF) that blocks scattered UV light. To compensate
for arbitrary polarization rotation within the fiber, a polarization control module (PC)
is connected to the end of the SMF.

3.2.5.2.1 The Photon Source. The entangled-photon source has been
inspired by the design of several previous experiments [72,73] (see Figure 3.10).
There, the entangled photons are created by spontaneous parametric down-
conversion in a nonlinear crystal. In our setup, a continuous wave (CW) violet
GaN laser diode was used to pump a nonlinear β-barium borate (BBO) crystal
with 18.6 mW optical power at 405 nm. To achieve a narrow line width, the
laser diode was mounted in Littrow configuration.

The pump beam was focused to a round waist of approximately 100
µm at the BBO crystal using a telescope lens system. Three lenses form an
imaging system in which an achromatic lens creates a distortion-free elliptical
focus that could then be imaged, astigmatically corrected, into the crystal.
The Rayleigh range of the pump beam is much longer than the length of the
BBO crystal used (4 mm long). We used a half-wave plate and a 2 mm long
BBO crystal for compensating for the transversal and longitudinal walkoff
effects [72] (see Figure 3.10). We assumed a gaussian distribution of angles
and rotational symmetry around the intersection lines for the emission of
entangled photons [73]. The collection efficiency was optimized by matching
the emission modes of the entangled photons with the modes accepted by the
fiber coupler.

The setup is aligned to produce the maximally entangled Bell singlet
state

|ψ−〉12 = 1√
2

(|H〉1|V〉2 − |V〉1|H〉2). (3.2)
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To characterize realistically the quality of our source without completely re-
constructing the density matrix, we make an assumption on the noise present
in our produced output state. Assuming random (white) noise, our produced
state becomes

ρ12 = v|ψ−〉〈ψ−|12 + (1 − v)

4
I12. (3.3)

In this model, the quality of our source is entirely described by the two-
photon visibility v and the pair production rate per second. The overall num-
ber of detected photon pairs was approximately 25,000 pairs per second, and
the average visibility was better than v = 0.95.

3.2.5.2.2 QKD Electronics. The prototype of the dedicated quantum
key distribution (QKD) hardware currently under development consists of
three main computational components: acquisition of the raw key, genera-
tion of synchronization pulses, and QKD protocol tasks. All three units are
situated on a single printed circuit board. The developed detection logic is
implemented in a FPGA and runs at a sampling frequency of 800 MHz, while
employing a time window of 10 ns for matching the detection events and
synchronization signals.

The board handles the synchronization channel and generates a strong
laser pulse whenever a photon counting event is detected at Alice’s site. This
is ensured by a logical OR connection of the detector channels. The synchro-
nization laser pulse at the wavelength of 1550 nm was sent over a separate
single-mode fiber.

A full scale QKD protocol was implemented very recently including data
acquisition, error estimation, error correction, implementing the algorithm
CASCADE [74], privacy amplification, and a protocol authentication algo-
rithm that ensures the integrity of the quantum channel by using a Töplitz
matrix approach. Furthermore, the encryption library modules applied in-
clude one-time pad and AES encryption schemes, the latter allowing key
exchange on a scale determined by the user.

3.2.5.2.3 Results. The average total quantum bit error rate (QBER) of
the raw key was found to be less than 8% for more than the entire run time
of the experiment. An analysis of the different contributions to the QBER
showed that about 2.6% originate in imperfections of the detection modules
and 1.2% are due to reduced visibility of the entangled state. The rest of the
QBER was attributed to the error produced by the quantum channel. The
average raw key bit rate in our system was found to be about 80 bits/s after
error correction and privacy amplification. This value is mainly limited by
the attenuation on the quantum channel, by the detection efficiency of the
avalanche photodiodes, and by the electronics.

To conclude, polarization-entangled photon systems provide an excellent
alternative for systems based on weak coherent pulses. Our results suggest
that the development of a commercial entanglement based quantum cryp-
tography system is not far away.
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3.2.6 Toward a Global Quantum Communication
Network

3.2.6.1 Free-Space Distribution of Quantum
Entanglement

In more recent years, work has begun on extending the reach of quantum
communication to longer and longer distances — after all, what good is a
quantum phone if you can only call across the room? Clearly, optical photons
are the ideal system for quantum communication over distances, owing to
their weak interaction with the environment (i.e., long decoherence times)
and high speed. The two methods for sharing photons over long distances
are through optical fibers or via free-space optical links. Previously, entan-
gled photons have been shared over long distances only in optical fiber up to
50 km [75]. Similar systems were used to perform a Bell inequality experiment
that closed the locality loophole [76]. Free-space optical links provide an excit-
ing alternative quantum channel when there is a direct line of sight between
two communicating parties. They consist of at least two telescopes — a trans-
mitter and a receiver — which are used to send light over large distances
through the air. Free-space links have been used in conjunction with faint
laser pulses to implement the BB84 quantum cryptography protocol up to a
distance of 23.4 km [77] and even at daylight [78,79,80]. Theoretical studies
have shown that quantum communication in optical fiber can be extended to
approximately 100 km before attenuation overwhelms the signal [81]. Recent
fiber-based experiments already reach this limit. Similar limitations are valid
for optical free-space links, which suffer from attenuation in the atmosphere
due to aerosols [82] and from atmospheric turbulences, which are eventually
limited by the Earth’s curvature. Why is this distance of some hundred kilo-
meters not a limit in our optical networks of today? Quantum information
suffers from a fragility that is not present in its classical counterpart. For ex-
ample, classical optical pulses that encode 0’s and 1’s in an optical network
can be detected and regenerated or amplified every so often in repeater sta-
tions, effectively extending the range of optical communication indefinitely.
However, the polarization state of a single photon cannot be faithfully am-
plified — this can be seen as a consequence of the no-cloning theorem [83].
This makes the quantum analogue of repeaters much more complicated than
their classical counterparts. A quantum repeater [15] is in principle possible
with the use of quantum memories, entanglement purification [29,18], and
entanglement swapping [84,85]. In addition, free-space optical links may be
the way to increase significantly the present quantum communication dis-
tance limit: while earthbound free-space links are just as limited as fiber,
they have the advantage in that they can be combined with satellites. The
atmosphere is relatively thin, and most of the absorption takes place near
the Earth’s surface. The attenuation experienced on a clear day at the Earth’s
surface over approximately 4 km is roughly equivalent to that experienced
vertically through the atmosphere [86]. Transmitting entangled photons from
space to Earth will definitely allow us to overcome the current distance limits



P1: Shashi
Bahill.cls DK5859˙C003 September 21, 2005 14:8

Chapter 3: Advanced Quantum Communications Experiments 69

and bridge distances much larger than those achievable with purely ground-
based laboratories.

3.2.6.1.1 Free-Space Optical Links with Entangled Photons. Our group
recently demonstrated how combine free-space optical technology with en-
tangled photon pairs. The first experiment took place over the Danube in
Vienna, where we could demonstrate the distribution of entangled photon
pairs over 600 m [87]. The second experiment [88] was set up over the city
of Vienna and achieved a distance of approximately 8 km, which exceeds the
atmospheric attenuation for satellite communication.

The schematic setup of the Danube experiment is shown in Figure 3.11.
The compact, portable down-conversion source (see Section 2.5) was placed

(a) (c)

(b)

Figure 3.11 (a) Experimental schematic and communication diagram from [87]. The
upper figure shows the positioning of the source and receiver stations for the ex-
periment. The down-conversion source was positioned on the southwest bank of the
Danube River. One receiver station, named Alice, was located 500 m away on a rooftop
on the northeast side of the river, while the second receiver, Bob, was located on a sec-
ond rooftop 150 m away across a railroad and a highway. The inset shows a schematic
of the receiver telescope (the sender is the same with no polarizer). The lower figure
shows how data were communicated and shared for the experiment (see text). (b)
One of the transmitter telescopes during alignment. (c) Measured polarization corre-
lations between receivers. The data show the measured coincidence rate (per second)
between the two receivers as a function of the angle of the polarizer at receiver B
when the polarizer at receiver A was set to 0◦ (solid circles, solid line) and to 45◦ (open
circles, dotted line), respectively. The obviously noisy part in the data coincides with
the passing of a freight train underneath the link to receiver B. The visibilities of the
best fit curves are 88.2 ± 5.7% and 89.0 ± 3.3%.
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on one bank of the Danube and stored in a shipping crate. One receiver station,
Alice, was on the far bank of the Danube and located on a rooftop approxi-
mately 500 m away. The second receiver, Bob, was located about 150 m from
the source location on a second rooftop. Although both receiver stations were
located above ground level, the Alice link was periodically blocked by pass-
ing ships, and the Bob link, while not completely blocked, experienced extra
beam fluctuations from passing freight trains on the railroad. Our diode-
laser-pumped down-conversion source requires a fraction of the electrical
power and none of the water cooling of an argon-ion- or titanium-sapphire-
pumped system. For this experiment, all electrical power for the source was
supplied from a gas-powered 2 kW generator. This demonstrates that down-
conversion sources are no longer tied to the laboratory environment and can
be taken virtually anywhere; they can function in real-world applications.
In addition to using the diode-pumped system, we took advantage of a sec-
ond recent advance in entangled photon-pair generation — high efficiency
coupling of the down-conversion light into single-mode optical fiber [73].
Transmission from and collection into nighttime ambient background sources
without resorting to high-loss band-pass filters. The transmitting telescopes
for the experiment were simply single-mode fiber couplers and a 5-cm achro-
matic lens with a 150 mm focal length. The receiver telescopes were identical
except for a polarizer placed in front of the coupler that could be rotated
for polarization measurements. Our singles rate background level was lim-
ited to about 600–700 Hz, which was essentially due only to the dark count-
ing rates of the detectors. The communication schematic for the experiment
is shown in Figure 3.11. Alice’s detection signals were sent directly to Bob
via a long coaxial cable that connected the two labs. At the Bob station, a
delay generator was used to account for the extra propagation time of the
Alice signal and synchronize the coincident pulses, which were measured
using standard NIM electronics. While the singles rates and coincidence rates
were measured only at the Bob station, the results were distributed via local
area network (LAN) connections to the Bob rooftop and Wave-LAN to the
source and Alice station. This allowed for remote polarization compensation,
telescope adjustments, and data accumulation using only a single measure-
ment configuration. The source parameters have already been described in
detail in Section 3.2.5. In short, the polarization-entangled singlet Bell state
|�−〉12 = 1√

2
(|HV〉12 − |VH〉12) could be generated with a two-photon visibil-

ity of approximately v = 0.95 with singles rates and coincidence rates of ap-
proximately 120,000 Hz and 20,000 Hz, respectively, at a UV pumping power
of 18 mW. The light was coupled through the optical telescope links, each of
which had an attenuation of 12 dB (or about 6% transmission). This was suffi-
cient to yield singles count rates at the receivers of about 4000 s−1 (including
background) and a maximum coincidence rate of 15 s−1.

In order to support our claim that the shared photons were entangled,
we measured a set of polarization correlations designed to violate maxi-
mally a CHSH Bell inequality [89,90] for the singlet. We define a polarization
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correlation as

E(φA, φB) = N++ + N−− − N+− − N−+

N++ + N−− + N+− + N−+ , (3.4)

where N is the number of coincidence counts when the polarizer is set to
the angle φA (“+”) or φ⊥

A (“−”) at Alice and when the polarizer is set to the
angle φB (“+”) or φ⊥

B (“−”) at Bob. The CHSH Bell inequality, which holds for
any local realistic description of the photon pair’s polarization states, is then
written as a combination of such polarization correlations for a set of angles;
this inequality is

S = |E(φA, φB) − E(φA, φ̃B) + E(φ̃A, φB) + E(φ̃A, φ̃B)| ≤ 2, (3.5)

where S is the so-called Bell parameter and φA(B) and φ̃A(B) represent different
polarization settings for Alice (Bob). For a pure singlet state, quantum me-
chanics predicts a maximal violation of this inequality of S = 2

√
2, for the set

of angles {φA, φ̃A, φB, φ̃B} = {0◦, 45◦, 22.5◦, 67.5◦}.
The experimentally obtained polarization correlations are E(0◦, 22.5◦) =

−0.509 ± 0.057, E(0◦, 67.5◦) = +0.643 ± 0.042, E(45◦, 22.5◦) = −0.558 ± 0.055,
and E(45◦, 67.5◦) = −0.702 ± 0.046. Using these results, we calculate SEXP =
2.41 ± 0.10, which is a sufficient violation of the Bell inequality by over four
standard deviations. It is also the experimental signature of shared entangled
states between the two receiver stations. This work was the first demonstra-
tion of the distribution of entangled photon pairs over free-space optical links.
A cryptographic system based on our setup would have shown a total raw
key generation rate of a few tens of bits per second and an estimated quantum
bit error rate (QBER) of 8.4%. It is interesting to note that our link attenuation
of 12 dB corresponds to a value that might be achievable with state-of-the-
art space technology when establishing a free-space optical link between an
Earth-based receiver telescope of 100-cm diameter and a satellite-based trans-
mitter telescope of 20-cm diameter orbiting Earth at a distance of 600 km [91].
Typical losses in an actual satellite experiment might vary, depending on the
link optics and on the performance of satellite pointing and tracking [92,93].

In an extended experiment, we could significantly increase the distance
between the stations. We have distributed entangled photons between an
old observatory and a modern office skyscraper in Vienna, that are 7.8 km
apart [88]; see Figure 3.12. The source of the entangled photons is placed at the
observatory. The reason for choosing such a distance is that in a 4.5-km link
along the ground, one expects the same level of attenuation from scattering
with airborne particles as in going through the whole atmosphere vertically.∗

In order to have a reasonable signal at this distance, we have built redesigned

∗The transmission of 800 nm light from the whole vertical atmosphere is about 80%
under good weather conditions [94,93]. The horizontal attenuation coefficient mea-
sured in Vienna was approximately α = 0.05 km−1. The horizontal distance with the
same attenuation as the whole atmosphere vertically is L = −ln(0.8)/α = 4.5 km [82].
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Figure 3.12 Scheme of the free-space quantum communication experiment over
Vienna. The transmitter Alice, comprising the single-mode fiber coupled polarization-
entangled photon source (DC) and sending telescope, is located in the 19th-century
observatory Kuffner Sternwarte. Bob has a receiver telescope and is located on the 46th
floor of the Millennium Tower skyscraper 7.8 km away. Alice measures the photons in
mode A from each entangled pair using a four-channel detector made of a 50/50 beam
splitter (BS), a half-wave plate (HWP), and polarizing beam splitters (PBS), which mea-
sures the photon polarization on either the H/V or +/− basis, where ± = 1√

2
(H ± V).

She sends the other photon in mode B, after polarization compensation (Pol.), via her
telescope and free-space link to Bob. Bob’s receiver telescope is equipped with a simi-
lar four-channel detector and can measure the polarizations in the same bases as Alice
or, by rotating an extra HWP, measure another pair of complementary linear polar-
ization bases. Alice and Bob are both equipped with time-tagging cards, which record
the times at which each detection event occurs. Rubidium atomic clocks provide good
relative timing stability between the local measurements. Both stations also embed a
1 pps signal from the global positioning system (GPS) into their time-tag data stream
to give a well-defined zero time offset. During accumulation, Bob transmits his time
tags in blocks over a public Internet channel to Alice. She finds the coincident photon
pairs in real time by maximizing the cross-correlation of these time tags. Which of the
four detector channels fired is also part of each time tag and allows Alice and Bob
to determine the polarization correlations between their coincident pairs. Alice uses
her polarization compensators to establish singlet-like anticorrelations between her
measurements and Bob’s.

refractor telescopes. Our new designs are based on larger and higher quality
optical elements. We also relaxed our spatial filtering requirement to re-
duce sensitivity to beam wander and fluctuations. Using locally recorded
time stamps and a public Internet channel, coincident counts from correlated
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photons are demonstrated to violate a Bell inequality by 14 standard devia-
tions. This confirms the high quality of the shared entanglement and it is an
encouraging step toward satellite-based distribution of quantum entangle-
ment and future intracity quantum networks.

3.2.6.2 Quantum Communications in Space
Although free-space optical links are in general superior to optical fibers
with respect to photon absorption, terrestrial free-space links will eventually
suffer from obstruction of objects in the line of sight, from possible severe
attenuation due to weather conditions and aerosols [82] from atmospheric
turbulence, and from the Earth’s curvature. They are thus limited to rather
short distances. To exploit fully the advantages of free-space links, it will
be necessary to use space and satellite technology. By transmitting and/or
receiving either photons or entangled photon pairs to and/or from a satellite,
entanglement can be distributed over truly large distances and thus would
allow quantum communication applications on a global scale. Such a scenario
looks unrealistic at first sight, but we have recently shown that demonstrations
of quantum communication protocols using satellites are already feasible
today [91, 96, 101].

Based on present-day technology and assuming reasonable link parame-
ters, one can achieve enough entangled photons per receiver pair to demon-
strate several quantum communication protocols. For example, a single opti-
cal link between a satellite based transmitter terminal and an optical ground
station would suffice to establish a (single-photon) quantum cryptography
protocol such as BB84 and hence to generate a secure key between the satel-
lite and the ground station. If the same terminal generates another key with
another ground station (at an arbitrary distance from the first one), classi-
cal communication between the two ground stations suffices to establish a
secret key between them. In other words, satellite-based single-photon links
already allow quantum key distribution on a global scale. Note, however, that
in this scenario the security requirements on the satellite are as high as for
standard cryptography schemes. In contrast, these requirements are relaxed
if one can fully exploit an entangled source that distributes pairs of entangled
photons to two ground stations. For example, assuming a LEO based trans-
mitter terminal, a simultaneous link to two separate receiving ground stations
(see Figure 3.13) and a (conservatively estimated) total link attenuation of ap-
proximately 51 dB, one can expect a local count rate of approximately 2600
per second in total at each of the receiver terminals. The number of shared
entangled photon pairs is then expected to be approximately 4 per second. For
a link duration of 300 seconds, this accumulates to a net reception of 1200 en-
tangled qubits. One can expect erroneous detection events on the order of 7
per 100 seconds, which yields a bit error of approximately 2%. This would
already allow a quantum key distribution protocol between the two receiver
stations. It is thus clear that a demonstration of basic quantum communi-
cation protocols based on quantum entanglement can already be achieved
today. Furthermore, the possibility of distributing entangled particles over
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Transmitter

Receiver

Receiver

Figure 3.13 Quantum entanglement for space experiments (space-QUEST). Scheme
for satellite-based distribution of entangled photons (left: schematic (from [96]); lower
right: simulation for source on ISS and two specific ground stations (courtesy of ESA
General Studies, Copyright ESA-Autigravite)). Laser comunication satellite terminals
such as SILEX (upper right; courtesy of ESA) might provide the technology necessary
to establish the optical links between satellites or between satellite and ground stations.

distances beyond the capabilities of earthbound laboratories provides novel
opportunities for fundamental tests of quantum physics [95, 101].

Although one must not underestimate the demanding technological chal-
lenges associated with bringing quantum entanglement into space, the next
steps are both clear and feasible. They include the development of a next gen-
eration of space-proof sources for entangled photons as well as the
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development of space-based and ground-based transmitter and receiver con-
cepts for quantum communication hardware. On the space-terminal side, we
have started to investigate the possibility of incorporating an entangled pho-
ton source onboard (existing) laser communication satellite terminals [96]. On
the ground station side, we have performed the first proof-of-concept tests
to demonstrate the feasibility of adapting existing optical ground stations for
satellite-ground quantum communication [97]. It may not be too long until
the first space-based quantum communication experiment with entangled
photons will take off.

3.3 Conclusion and Outlook
Quantum communication has come the long way from purely fundamental
considerations on the nature of quantum physics to the implementation of
novel concepts and technologies of information processing. Somewhat as a
surprise, the role of quantum entanglement has also become more and more
important for the applications. It is now a relevant resource for most advanced
quantum communication schemes and even for novel quantum computing
architectures such as the one-way quantum computer [98,99]. Main future ex-
perimental challenges in the field of quantum communication and quantum
computation certainly include the development of more reliable and more ef-
ficient sources for entanglement. For example, space-based experiments will
require a compact, robust, and efficient source for entangled pairs, while quan-
tum computing schemes and multiparty quantum communication schemes
will benefit from high-fidelity sources of multiparticle entangled states. Also,
improving the interface between photonic qubits and stationary systems such
as atoms or solids will eventually allow the realization of quantum memories,
which are the major building blocks in any quantum communication network.

We have presented a collection of recent advances in the field of
entanglement-based quantum communication. It is fascinating to observe
how the last years have paved the way for key quantum technologies such as
a quantum repeater and even the realization of a satellite-based global quan-
tum communication network. The quantum physics community is about to
reach a stage in which the developed concepts and techniques of quantum
communication, which started from curiosity about fundamental aspects of
the nature of quantum physics, will evolve into technologies and commercial
products on an industrial level. Quantum cryptography has already reached
this stage. We are confident that other technologies will soon follow.

Acknowledgments
We acknowledge discussions and collaborations with our scientific colleagues
and friends. Our work was supported by the Austrian Science Foundation un-
der Project SFB1506; the European Commission under projects IST-QuComm,
RamboQ and SECOQC; the Austrian Research Center Seibersdorf; the



P1: Shashi
Bahill.cls DK5859˙C003 September 21, 2005 14:8

76 Quantum Communications and Cryptography

Austrian and European Space Agencies ASA and ESA; and the city of
Vienna. We also acknowledge support from Wien Kanal AG, the Austrian
BA-CA Bank, Energie AG Oberosterreich, Stumpf AG, Wienerberger AG, the
Alexander von Humboldt Foundation (M.A.), the NSERC (K.R.), and the
Marie-Curie Program of the EC (G.M.-T.).

References
1. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information,

Springer-Verlag, Berlin, 2000.
2. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information,

Cambridge University Press, Cambridge, U.K., 2000.
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4.1 Introduction
It now seems likely that quantum key distribution (QKD) techniques can
provide practical building blocks for highly secure networks and in fact may
offer valuable cryptographic services, such as unbounded secrecy lifetimes,
which can be difficult to achieve by other techniques. Unfortunately, how-
ever, QKD’s impressive claims for information assurance have been to date at
least partly offset by a variety of limitations. For example, traditional QKD is
distance limited, can only be used across a single physical channel (e.g., free-
space or telecommunications fiber, but not both in series due to frequency

83
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propagation and modulation issues), and is vulnerable to disruptions such as
fiber cuts because it relies on single points of failure.

To a surprising extent, however, these limitations can be mitigated or
even completely removed by building QKD networks instead of the tradi-
tional stand-alone QKD links. Accordingly, a team of participants from BBN
Technologies, Boston University, and Harvard University has recently built
and begun to operate the world’s first quantum key distribution network
under Defense Advanced Research Projects Agency (DARPA) sponsorship.∗

The DARPA Quantum Network became fully operational on October 23,
2003, in BBN’s laboratories, and in June 2004 it was fielded through dark fiber
underneath the streets of Cambridge, Massachusetts, to link our campuses
with nonstop quantum cryptography, 24 hours per day. It is the world’s first
quantum cryptography network and indeed probably the first metro-area
QKD deployment in continuous operation. As of December 2004, it consists
of six QKD nodes. Four are used in BBN-built, interoperable weak-coherent
QKD systems running at a 5-MHz pulse rate through telecommunications
fiber and inter-connected via a photonic switch. Two are electronics built by
the National Institute of Standards and Technology (NIST) for a high-speed
free-space QKD system. All run BBN’s full suite of production-quality QKD
protocols. In the near future, we plan to add four more quantum cryptographic
nodes based on a variety of physical phenomena and start testing the resulting
network against sophisticated attacks.

This chapter introduces the DARPA Quantum Network as it currently
exists and briefly outlines our plans for the near future. We first describe the
motivation for our work and define the basic principles of a quantum crypto-
graphic network (which may be composed of a number of QKD systems with
relays and/or photonic switches). We then discuss the specifics of our current
weak-coherent QKD network, including its QKD links, photonic switches for
“untrusted” networks, and key relay protocols for “trusted” networks. We
conclude with future plans and our acknowledgments.

4.2 Current Status of the DARPA
Quantum Network

Figure 4.1 displays a fiber diagram of the DARPA Quantum Network’s build-
out through Cambridge, Massachusetts, as of December 2004. The network
consists of two weak-coherent BB84 transmitters (Alice, Anna), two compati-
ble receivers (Bob, Boris), and a 2 × 2 switch that can couple any transmitter to
any receiver under program control. Alice, Bob, and the switch are in BBN’s
laboratory; Anna is at Harvard; and Boris is at Boston University (BU). The
fiber strands linking Alice, Bob, and the switch are several meters long. The

∗The opinions expressed in this article are those of the author alone and do not nec-
essarily reflect the views of the United States Department of Defense, DARPA, or the
United States Air Force.
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Bob

Alice Switch

Anna

Boris

Figure 4.1 The metro-fiber portions of the DARPA Quantum Network.

Harvard-BBN strand is approximately 10 km. The BU-BBN strand is approx-
imately 19 km. Thus the Harvard-BU path, through the switch at BBN, is
approximately 29 km. All strands are standard SMF-28 telecommunications
fiber. Figure 4.2 presents the network in schematic form.

Anna’s mean photon number is 0.5 at present, with the Anna–Bob link
delivering about 1,000 privacy-amplified secret bits/second at an average 3%
quantum bit error rate (QBER). At present, the DARPA Quantum Network
cannot support fractional mean photon numbers to Boris at BU, owing to
high attenuation in fiber segments across the Boston University campus and
relatively inefficient detectors in Boris. (BBN–BU attenuation is approximately
11.5 dB). Thus the network currently operates at a mean photon number of 1.0

Barb

exAl

baBa

iAl

Switch
Optical
2 x 2

@ BU
Boris

@ Harvard
Anna

BobeAlic

Figure 4.2 Connectivity schematic of the DARPA Quantum Network.
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on the BBN–BU link, in order continuously to exercise all parts of the system,
even though the resultant secret key yield is zero. In the near future, fiber
splices and perhaps detector upgrades should allow operation to BU with
mean photon numbers of 0.5.

The DARPA Quantum Network also contains Ali and Baba, the electron-
ics subsystems for a high-speed free-space QKD system designed and built
by the NIST. Ali and Baba run the BBN QKD protocols and are linked into
the overall network by key relay between Ali and Alice. It further contains
two new entanglement based nodes named Alex and Barb, built jointly by
BU and BBN, but these nodes are not yet fully operational.

4.3 Motivation for the DARPA Quantum
Network

QKD provides a technique for two distinct devices to come to agreement
upon a shared random sequence of classical bits, with a very low probability
that other devices (eavesdroppers) will be able to make successful inferences
as to those bits’ values. Such sequences may then be used as secret keys for
encoding and decoding messages between the two devices. In short, it is a
cryptographic key distribution technique.∗ Although QKD is an interesting
and potentially quite useful technique for key distribution, it is not the only
one — human couriers and algorithmic “one-way” functions such as the
Diffie–Hellman come immediately to mind — and thus it is important to
gauge QKD’s strengths across a number of goals for key distribution systems
in general. Table 4.1 provides such an assessment of “classic” QKD techniques;
see [1] for a more extended treatment of this subject.

It can be seen that “classic” QKD, i.e., QKD performed by sending a sin-
gle quantum entity directly from source to destination, has areas of weakness
mixed with its strengths. As important guidelines of our overall research
agenda, we are working to strengthen QKD’s performance in these weaker
areas. A surprising number of these weaknesses, as it turns out, can be re-
moved by weaving individual QKD links into an overall QKD network such
as the DARPA Quantum Network.

4.4 What Is a QKD Network?
Figure 4.3 depicts a typical stand-alone QKD system in highly schematic
form.∗∗ In this example, Alice contains both a photon source and a mod-
ulator; in this case, Alice employs an attenuated laser and Mach–Zehnder

∗Strictly speaking, it is a means for coming to agreement upon a shared key, rather
than a way to distribute a key, but we follow conventional QKD terminology in this
chapter.
∗∗In fact, it depicts our “Mark 2” weak-coherent link but corresponding forms of
high-level schematics can be drawn for any quantum cryptographic system.
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Table 4.1 Assessment of “Classic” Quantum Cryptography

Important Goals for a
Cryptographic Key
Distribution System QKD Strengths and Weaknesses

Protection of Keys QKD offers significant advantages in this regard and
indeed this is the main reason for interest in QKD.
Assuming that QKD techniques are properly
embedded into an overall secure system, they can
provide automatic distribution of keys that may
offer security superior to that of competitors.

Authentication QKD does not in itself provide authentication.
Current strategies for authentication in QKD
systems include prepositioning of secret keys at
the distant device, to be used in hash-based
authentication schemes, or hybrid QKD–public key
techniques.

Robustness This critical property has not traditionally been taken
into account by the QKD community. Since keying
material is essential for secure communications, it
is extremely important that the flow of keying
material not be disrupted, whether by accident or
by the deliberate acts of an adversary (i.e., by
denial of service). Here QKD has provided a highly
fragile service to date, since QKD techniques have
implicitly been employed along a single point-to-
point link.

Distance- and Location-
Independence

This feature is notably lacking in QKD, which
requires the two entities to have a direct and
unencumbered path for photons between them,
and which can only operate for a few tens of
kilometers through fiber.

Resistance to Traffic Analysis QKD in general has had a rather weak approach, since
most setups have assumed dedicated,
point-to-point QKD links between communicating
entities, which has thus clearly laid out a map of
the underlying key distribution relationships.

interferometer. Bob contains another modulator and photon detectors, spe-
cifically a twin Mach–Zehnder interferometer and cooled InGaAs APDs.
Here the channel between Alice and Bob is a standard telecommunications
fiber.

In the network context, this system can be viewed as a single, isolated
QKD “link” that allows Alice and Bob to agree upon shared cryptographic
key material. In our terminology, both Alice and Bob are QKD endpoints,
as are other cryptographic stations based on QKD technology, e.g., the Alice



P1: Sanjay

Bahill.cls DK5859˙C004 September 21, 2005 14:9

88 Quantum Communications and Cryptography

Source Modulation Channel Modulation Detectors

Attenuated
1550 nm

Telecommunications
Laser

Mach-Zehnder
Interferometer

Standard
Telecommunications

Fiber

Cooled InGaAs
Avalanche

Photo Detectors

Mach-Zehnder
Interferometer

Alice Bob

Figure 4.3 High-level schematic of an exemplary QKD link.

or Bob used in plug-and-play systems, entanglement-based links with Ekert
protocols, and so forth.

Figure 4.4 shows how a number of such QKD endpoints and links may be
woven together into an overall QKD network. Here we see that one Alice/Bob
pair (A1, B1) is directly connected via a fiber strand, while another (A2, B2) is
connected by a free-space channel. Other pairs are connected via fibers and
photonic switches, e.g., either A1 or A3 may be connected to B3 depending
on the setting of the switch between them. Multiple QKD endpoints, e.g.,
(B1, A2), may also be grouped into a “key relay device,” whose purpose is
explained below.

By proper use of QKD networking protocols, a node such as A1 may agree
upon key material not just with its direct neighbors (B1 or B3) but indeed with
nodes many hops away through the key distribution network. For example, it
could agree upon shared keys with B4, through intermediaries of B1, A2, and
B4. Perhaps more surprisingly, it could also agree upon shared keys with other
transmitters even though neither transmitter can detect the other’s photons!
Thus two transmitting nodes such as A1 and A3 can agree upon shared keys
in a quantum cryptographic network — provided that they rely on a trusted
relay, such as B1, to act as a middleman in this process.

A1 B1

A3 B3

A2 B2 B4
A1

QKD Endpoint

Photonic Switch

Key Relay Device

Fiber Optic Strand

Freespace Channel

A1

A4

Figure 4.4 High-level schematic of an exemplary QKD network.
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4.4.1 Photonic Switching for “Untrusted Networks’’
Untrusted networks employ unamplified, all-optical paths through the net-
work mesh of fibers, photonic switches, and endpoints. Thus a photon from
its source QKD endpoint proceeds, without measurement, from switch to
switch across the optical QKD network until it reaches the destination end-
point at which point it is detected. The (A1, B3) path in Figure 4.4 pro-
vides an example, though in general a path may transit multiple photonic
switches.

Untrusted QKD networks support truly end-to-end key distribution —
QKD endpoints need not share any secrets with the key distribution network
or its operators. This feature could be extremely important for highly secure
networks. Unfortunately, though, untrusted switches cannot extend the ge-
ographic reach of a QKD network. In fact, they may significantly reduce it,
since each switch adds at least a fractional dB insertion loss along the photonic
path. In addition, it will also prove difficult in practice to employ a variety
of transmission media within an untrusted network, since a single frequency
or modulation technique may not work well along a composite path that
includes both fiber and free-space links.

4.4.2 Key Relay for “Trusted Networks’’
After a set of QKD nodes have established pairwise agreed-to keys along an
end-to-end path between two QKD endpoints — e.g., (A1, A4) in Figure 4.4 —
they may employ these key pairs to relay securely a key “hop by hop” from
one endpoint to another, being one-time-pad encrypted and decrypted with
each pairwise key as it proceeds from one relay to the next. In this approach,
the end-to-end key will appear in the clear within the relays’ memories proper
but will always be encrypted when passing across a link.

Key relays bring important benefits but are not a panacea. They can extend
the geographic reach of a network secured by quantum cryptography, since
wide-area networks can be created by a series of point-to-point links bridged
by active relays. Furthermore, links can employ heterogeneous transmission
media, i.e., some may be through fiber while others are free-space. Thus in the-
ory such a network could provide fully global coverage. However, QKD key
relays must be trusted. Since keying material and — directly or indirectly —
message traffic are available in the clear in the relays’ memories, these relays
must not fall into an adversary’s hands. They need to be in physically secured
locations and perhaps guarded if the traffic is truly important. In addition,
all users in the system must trust the network (and the network’s operators)
with all keys to their message traffic.

4.4.3 The Major Benefits of QKD Networks
Table 4.2 summarizes the major benefits that QKD networks bring to tradi-
tional, stand-alone QKD links.
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Table 4.2 Major Benefits of Quantum Cryptographic Networks

Benefit Discussion

Longer Distances QKD key relay can easily extend the geographic reach of
quantum cryptography. As one example, quantum
cryptography could be performed through
telecommunications fiber across a distance of 500 km by
interposing four relays between the QKD endpoints, with a
span of 100 km fiber between each relay node.

Heterogenous
Channels

QKD key relay can mediate between links based on differ-
ent physical principles, e.g., between free-space and fiber
links, or even between links based on entanglement and those
based on weak laser pulses. This allows one to “stitch
together” large networks from links that have been
optimized for different criteria.

Greater Robustness QKD networks lessen the chance that an adversary could
disable the key distribution process, whether by active
eavesdropping or simply by cutting a fiber. When a given
point-to-point QKD link within the network fails — e.g., by
fiber cutting or too much eavesdropping or noise — that link
may be abandoned and another used instead. Thus QKD
networks can be engineered to be resilient even in the face of
active eavesdropping, fiber cuts, equipment failures, or other
denial-of-service attacks. A QKD network can be engineered
with as much redundancy as desired simply by adding more
links and relays to the mesh.

Cost Savings QKD networks can greatly reduce the cost of large-scale
interconnectivity of private enclaves by reducing the
required (N × N − 1)/2 point-to-point links to as few as
N links in the case of a simple star topology for the key
distribution network.

4.5 BBN’s “Mark 2’’ Weak
Coherent Systems

This section describes the four fiber based QKD systems currently running
in the DARPA Quantum Network. All became operational in October 2003;
we call these “Mark 2” systems because they replaced our first-generation
system, which started continuous operation in December 2002. These links
were inspired by a pioneering Los Alamos system [2].

Each Mark 2 link employs a highly attenuated telecommunications laser
(hence the term “weak coherent”) at 1550.12 nm, phase modulation via unbal-
anced Mach–Zehnder interferometers, and cooled avalanche photo detectors
(APDs). Most Mark 2 electronics are implemented by discrete components
such as pulse generators, though it would not be difficult to integrate all elec-
tronics onto a small custom board. Figure 4.5 depicts Anna and Boris, our first
rack-mounted versions of the Mark 2 hardware, before their deployment into
wiring closets at Harvard and Boston University as part of the metro network.
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Figure 4.5 BBN’s Mark 2 weak-coherent transmitter and receiver (Anna and Boris).
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Two aspects of the Mark 2 weak-coherent link are fundamental to its
overall operation and performance. It is important to understand these fun-
damental points, why they occur, and their implications on the overall system.

First, this link is designed to run through telecommunications fiber as
widely deployed today. Thus we have chosen to transmit dim pulses in the
1550.12 nm window for maximal distance through this fiber. At present, these
dim pulses can be best detected by certain kinds of commercial APDs cooled
to approximately –40 degrees Celsius. These cooled detectors form one of the
most important bottlenecks in the overall link performance, as they require
on the order of 10 µsec to recover between detection events. The overall link
has been designed to run at up to a 5-MHz transmit rate but with a dead time
circuit to disable the APD after a detection event in order to accommodate
this recovery interval and detector after-pulsing.

Second, the Mark 2 weak-coherent link employs an attenuated telecom-
munications laser as its source of dim (“single photon”) pulses. This is cer-
tainly the easiest kind of source to build. Such attenuated, weak-coherent
sources, however, have been shown to be vulnerable to at least theoretical
forms of attack from Eve by Brassard et al. [3]. Such attacks are generally
termed photon number splitting (PNS) attacks. For experimental purposes,
we sometimes run the so-called Geneva sifting protocol or SARG [4], which
may provide protection against such attacks, even in systems employing at-
tenuated laser pulses. In addition, our forthcoming entangled link will em-
ploy a completely different type of source, namely, the BU entangled source.
(If possible, we may attempt to build an Eve that can actively attack the atten-
uated pulses used in our Mark 2 weak-coherent link and perform laboratory
demonstrations of this heretofore theoretical form of attack.)

Figure 4.6 highlights the major features of our Mark 2 weak-coherent link.
As shown, the transmitter at Alice sends data by means of very highly atten-
uated laser pulses at 1550.12 nm. Each pulse passes through a Mach–Zehnder
interferometer at Alice and is randomly modulated to one of four phases,
thus encoding both a basis and a value in that photon’s self interference. The
receiver at Bob contains another Mach–Zehnder interferometer, randomly set
to one of two phases in order to select a basis for demodulation. The received
single photons pass through Bob’s interferometer to strike one of the two
cooled detectors and hence to present a received value. Alice also transmits
bright pulses at 1550.92 nm, multiplexed over the same fiber, to send timing
and framing information to Bob.

Alice provides the clock source for both transmitter and receiver. All
clocking in this system ultimately derives from a single trigger supplied from
the transmitter suite. The rising edge of this signal triggers a pulse generator
whose output is split into two pulses: one drives the 1550.12 nm QKD data
laser to create data pulses, and the other drives the 1550.92 nm sync laser
through a gate and delay line. The delay line provides a stable time relation-
ship between the data and sync pulses and is chosen so that the sync pulse is
transmitted about 20 ns after its associated data pulse.
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The data pulse passes through the unbalanced Mach–Zehnder interfer-
ometer where one arm applies phase shift modulation to the pulse. A D-to-
A converter drives an electro-optic modulator with an analog voltage that
produces the Basis and Value phase shifts clocked from the transmitter elec-
tronics. In the other arm an adjustable air gap delay line allows fine-tuning
of the interferometer differential delay. After exiting the interferometer the
data pulse is attenuated to achieve the requisite mean photon number. A po-
larizer then removes mistimed replicas of the data pulse that may have been
generated by misaligned polarization-maintaining components in the inter-
ferometer. At the transmitter output, the data pulse is combined with the sync
pulse in a DWDM (dense wavelength division multiplexing) optical filter.

At the receiver the sync and data pulses are separated with a DWDM
filter and the sync pulse is detected with a PIN-FET receiver. This signal is
shaped in a pulse thresholding circuit that produces two outputs: a 100 ns
TTL-level clock signal sent to the receiver electronics and a 4 ns NIM-level
APD gate-timing pulse that triggers the APD gate-pulse generators and the
pulse generator driving the APD output line gates. The output line gates are
timed to pass only the demodulated data signal from the APDs and block
noise due to spurious pulse reflections. An adjustable delay line in the NIM
pulse interconnection allows fine-tuning of APD gate-pulse timing.

The data pulse passes through a fiber delay loop to adjust its timing
with respect to the sync pulse and then through a circulator that is the input
to the interferometer demodulation circuit. This interferometer is a folded
version of the conventional Mach–Zehnder design and is independent of the
input polarization to accommodate the uncontrolled incident polarization at
the receiver. Faraday mirrors at the ends of the unequal-length arms reflect
light so that the polarization of the light returning to the beam splitter is
the same for each arm, producing interference with high visibility [5]. The
Basis is clocked out of the receiver electronics and applied to the electro-optic
modulator through a D-to-A converter to produce a phase shift of either 0 or
π/2. A pair of cooled APDs, biased above avalanche breakdown only during
the time a data photon is expected to arrive, detect the interferometer outputs,
one from the beam splitter and the other from the circulator. After gating to
select only the data pulse, the APD signals are shaped by threshold detectors
and passed as 0 or 1 to the receiver electronics.

A phase-correcting feedback signal, derived by the receiver from training
frames sent by the transmitter, is used to maintain phase stability between the
transmitter and receiver interferometers as path lengths change with temper-
ature and stress. This phase-correcting signal is applied to the receiver inter-
ferometer electrooptic modulator through the transmitter electronics. Phase
correction is also necessary when a transmitter and receiver first connect dur-
ing a startup or switching operation to obtain the phase-matched condition
needed for low quantum bit error rate. See [6] for a discussion of BBN’s algo-
rithms for automatic path-length control.

It is by now well-known that certain conventional InGaAs APDs can be
operated in the single-photon regime if properly cooled and gated. Like many
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other research teams, we have selected Epitaxx EPM 239 AA APDs for our
detectors. Even with this special treatment, they suffer considerably from low
quantum efficiency (QE), relatively high dark noise, and serious after-pulsing
problems. Even so, they provide adequate performance for a 5-MHz pulse
rate quantum cryptography system. Since custom cooling and electronics
are required, we designed and built our own cooler package to maintain
the InGaAs APDs at the requisite operating temperatures. We had two key
goals in mind for the cooler package: it should be able to operate reliably
and repeatably over a wide range of temperatures down to –80◦C, to enable
exploration of detector behavior over a range of operating conditions; and
it should be suitable for prototype deployment and thus should not require
human intervention on a regular basis, e.g., to refill liquid nitrogen reservoirs.

Figure 4.7 shows a schematic of the core housing, which is a vacuum-
pumped chamber containing a pair of InGaAs detectors brought to operating
temperature by two Peltier thermoelectric coolers (TECs).

The housing itself is machined aluminum, consisting of a base container
plus a removable lid. The lid fits snugly with an O-ring so that a vacuum can
be maintained in the inner chamber. A number of holes pass through the base
container to allow hermetic feedthrough of fibers and electrical connections.
A large connection leads to the vacuum line. At the center of the chamber
rests a cooled block of copper with holes drilled out for two detectors. The
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Figure 4.7 Side and top cutaway views of DARPA thermoelectric cooler package.
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detectors are inserted into this block, with fibers fed to the outside through a
hermetic seal. Microstrip RF connections lead from the side of the container to
the detectors. These two detectors are the two 1550.12 nm QKD cooled APDs,
i.e., one is D0 and the other is D1. Each detector has its own fiber lead through
which come the dim pulses for that detector. Each detector also has a set of
microstrip RF connectors by which the bias voltage can be applied and the
detector output led to electronics outside the chamber.

The block of copper rests between two five-stage Peltier coolers, also
known as thermoelectric coolers (TECs). We chose two coolers of this size to
ensure that we had an adequate margin for whatever range of temperatures
we wanted to explore; two or three stages would suffice for routine operation.
The chamber also contains a thermocouple to measure its current tempera-
ture. Electrical leads for the coolers and thermocouple pass through hermetic
feedthroughs to the outside equipment.

4.6 BBN QKD Protocols
Although a detailed discussion of BBN’s QKD protocols is well beyond the
scope of this chapter, quantum cryptographic systems contain a surprising
amount of sophisticated software. It has been our observation that the optics
in quantum cryptography is perhaps the easiest part; the electronics are more
difficult. Moreover, for a real, functional system, the software is harder than
the electronics.

Figure 4.8 illustrates our software architecture in a high-level form. Here
we see that the QKD protocols have been integrated into a Unix operating
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system and provide key material to its indigenous Internet key exchange (IKE)
daemon for use in cryptographically protecting Internet traffic via standard
IPSec protocols and algorithms. See [7] for a more detailed discussion of this
implementation and how QKD interacts with IKE and IPsec.

BBN’s QKD protocol stack is an industrial-strength implementation writ-
ten in the C programming language for ready portability to embedded real-
time systems. At present, all protocol control messages are conveyed in IP
datagrams so that control traffic can be conveyed via the Internet. However,
the control messages could be ported to use other forms of communications
quite easily, e.g., ATM networks or dedicated channels.

Two aspects of BBN’s QKD protocol stack deserve special mention. First,
it implements a complete suite of QKD protocols. In fact, it implements mul-
tiple “plug compatible” versions of some functions, as shown in Figure 4.8;
for instance, it provides both the traditional sifting protocol and the newer
Geneva-style sifting [4].∗ It also provides a choice of entropy estimation func-
tions. We expect to add additional options and variants as they are developed.
Second, BBN’s QKD protocols have been carefully designed to make it as easy
as possible to plug in other QKD systems, i.e., to facilitate the introduction
of QKD links from other research teams into the overall DARPA Quantum
Network.

4.7 Photonic Switching for Untrusted
Networks

The DARPA Quantum Network currently consists of two transmitters, Al-
ice and Anna, and two compatible receivers, Bob and Boris, interconnected
through their key transmission link by a 2 × 2 optical switch. In this config-
uration, either transmitter can directly negotiate a mutual key with either
receiver. The switch must be optically passive so that the quantum state of
the photons that encode key bits is not disturbed.

Figure 4.9 depicts the fiber-based portion of the current network dia-
gram. Here all four QKD endpoints are connected through a conventional
2 × 2 optical switch. At one switch position, Alice is connected to Bob, and
Anna to Boris. At the other, Alice is connected to Boris, and Anna to
Bob. At present the switch controller changes this connectivity on a
periodic basis, e.g., every 15 minutes. Immediately after the switch setting
is changed, the receivers autonomously discover that they are receiving pho-
tons from a new transmitter, and they realign their Mach–Zehnder interfer-
ometers to match the transmitter’s interferometer. Then they begin to de-
velop new key material by performing the BBN QKD protocols with this new
transmitter.

∗For some time, we ran traditional sifting during weekdays and Geneva sifting over
the weekends to gain realistic experience with both.
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Alice Bob

Anna Boris

2 x 2
Optical
Switch

Figure 4.9 Current topology of the DARPA Quantum Network.

The switch chosen for this network is a standard telecommunications
facilities switch that operates by moving reflective elements that change the
internal light path to produce either a BAR or a CROSS connection. It is
operated by applying a TTL-level pulse to either the BAR or the CROSS pin for
20 ms and latches in the activated position. Switching time is 8 ms and optical
loss is < 1 dB. Figure 4.10 shows a photograph of the switch mounted on a PC
board with the electrical interconnects on the left and optical interconnects
on the right.

Figure 4.10 The 2 × 2 optical switch mounted on a PC board.
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4.8 BBN Key Relay Protocols for Trusted
Networks

When two QKD endpoints do not have a direct or photonically switched QKD
link between them, but there is a path between them over QKD links through
trusted relays, novel BBN-designed networking protocols allow them to agree
upon shared QKD bits. They do so by choosing a path through the network,
creating a new random number R, and essentially sending R one-time-pad
encrypted across each link. We call this process “key relay” and the resultant
network a “trusted network” since the chief characteristic of this scheme is that
the secrecy of the key depends not just on the endpoints being trustworthy;
the intermediate nodes must also be trusted.

The BBN key relay protocols have been continuously operational in the
DARPA Quantum Network since October 2003. In fact, they run continuously
in our network through Cambridge and allow Alice to build up a reservoir
of shared key material with Anna, even though both entities are transmitters,
via a trusted relay at Bob or Boris. Similarly Bob and Boris continuously build
up shared key material via trusted relays at Alice or Anna.

The four main aspects of the key relay process are illustrated in Figure 4.11.
Figure 4.11(A) makes it clear that a key relay network is parallel to an overar-
ching network conveying communication messages and control traffic such
as the QKD protocols. Here the Internet is the communications network, each
link underneath it is a separate QKD link, and circular nodes are key relay
stations. In Figure 4.11(B), one particular source QKD endpoint (S) wishes
to agree upon key material with a far-away destination QKD endpoint (D).
Since both endpoints, S and D, are connected to a ubiquitous communications
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network, they can perform QKD protocols in order to derive key material,
and once they have agreed upon these keys, they can use the Internet to
communicate between themselves securely.

Figure 4.11(C) shows a path used for key relay from S to D, as darkened
lines across the key relay network, and the resultant pairs of QKD key material
at the right. One QKD-derived key is shared between S and R1; this key is
denoted K(S,R1). Likewise K(R1,R2) denotes the pairwise key shared between
relay nodes R1 and R2, and so forth. Once all these pairwise keys are in place,
S and D can easily derive their own end-to-end shared secret key by key relay.
One obvious means is for node S to create a new random number R, protect
this number R by K(S,R1), and transmit the result to R1. Node R1 can then
decrypt this message to obtain R itself and re-encrypt it by K(R1, R2) to send
it onwards to R2, who can in turn repeat the process, and so forth, until it
has been relayed all the way to D. At this point, both S and D know the same
secret random sequence, R, and can use this shared value as key material.

Finally, Figure 4.11(D) shows that the BBN key relay protocols can au-
tomatically discover failures along the key relay path — whether due to cut
fiber or eavesdropping — and route the key material around these failures.

4.9 Future Plans
Our near-term plans call for augmenting the DARPA Quantum Network with
four new QKD nodes, one pair based on entangled photons in fiber and the
other on polarized photons in a free-space channel.

The entangled link’s optical subsystem has been designed and shaken
down by Boston University and is now resident at BBN’s laboratory. All
electronics and software have been built. Once the entangled system is
fully operational, we will tie it via key relay into the overall DARPA
Quantum Network.

The free-space link will be based on polarization modulation of faint laser
pulses at visible wavelengths. The transmitter will contain four lasers,
one for each polarization basis and value, which pulse according to
externally supplied random signals; the receiver will perform passive
random splitting via a 50/50 coupler. This link will also be woven into
the DARPA Quantum Network when operational.

4.10 Summary
The DARPA Quantum Network has married a variety of QKD techniques
to well-established Internet technology in order to build a secure key dis-
tribution system that can be employed in conjunction with the public
Internet or, more likely, with private networks based on the Internet pro-
tocol suite. Such private networks are currently in widespread use around
the world with customers who desire secure and private communications,
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e.g., financial institutions, governmental organizations, militaries, and so
forth.

The DARPA Quantum Network has been in continuous operation in
BBN’s laboratory since October 2003, and since June 2004 through dark fiber
linking the Harvard University, Boston University, and BBN campuses. It
currently consists of four interoperable QKD nodes designed for use through
telecommunications fiber and a passive photonic switch that interconnects
them; a high-speed free-space system designed and built by NIST; and a full
suite of production-quality QKD protocols running on all nodes. Key material
derived from these systems is integrated into the Internet security protocols
(IPsec) to protect user traffic.
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5.1 Introduction
Quantum key distribution emerged with an idea and an experiment of Bennett
and Brassard in the early 1980s, with the seminal BB84 protocol [1]. At that
point it was believed that the only way of rendering the key distribution

103
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“quantum” was to use single quanta as information carriers. In the BB84
protocol, the sender Alice prepares the signal states via polarization encoding
of single photons, and the receiver Bob decodes them using single photon
detection after the appropriately oriented polarizer (for details see [2] and the
chapters devoted to the implementation of the BB84 protocol). The protocol
relies on the nonorthogonality of the two polarization bases used, i.e., on the
impossibility of discriminating deterministically between two nonorthogonal
quantum states.

Since the first experiment of Bennett and Brassard [1], the experimental
implementation of the BB84 is commonly performed using faint coherent
pulses with about 0.1 to 0.4 photons per pulse (for a review see [2]). When
using weak coherent pulses, the probability that a single pulse contains more
than one photon is not zero. In quantum key distribution (QKD), this was seen
for quite some time as a severe drawback as it limits the secure transmission
distance [3].

The unconditional security of the BB84 was first proven for the single pho-
ton implementation [4] and then also for the faint coherent pulses [5]. Later, a
reduced protocol with only two nonorthogonal states, known as the B92 pro-
tocol [7], was developed. This paper contains visions which with hindsight
carried surprisingly far and include the possibility of continuous variable
quantum key distribution with coherent states, which had no immediate im-
pact and was reinvented later (see below). The security of the B92 protocol
requires the use of an additional feature compared to the single photon BB84.
The signals are encoded using weak nonorthogonal coherent states and a
strong reference pulse sent along with each weak signal pulse. The security
of the weak signal–strong reference pulse method has still to be rigorously es-
tablished. However, the idea is that in the intercept–resend strategy, the strong
reference pulse prevents the eavesdropper Eve from suppressing unnoticed
the intercepted signals, for which she did not manage to gain the desired
information. In the absence of the strong reference, this would be a powerful
strategy that allows Eve to introduce no errors in the transmission but just
reduce the transmission rate which Alice and Bob would then attribute to
losses.

The proven possibility of generating a secure key using faint coherent
pulses and photon counting has stimulated more thoughts about quantum
cryptography with coherent states, leading beyond the early picture of the
ultimate importance of single quanta. In 1995, Huttner et al. suggested a so-
called 4 + 2 state protocol [8] combining the strong sides of the BB84 and the
B92 protocols. The protocol uses four nonorthogonal coherent states, which
are polarization encoded in weak signal pulses and sent along with the in-
tense reference. The detection, however, was still done with a single-photon
detector. The preliminary discussion of security aspects in [8] suggests an
improved security performance of the 4 + 2 state protocol as compared to the
BB84 (four-state protocol) and the B92 (2-state protocol). An interesting feature
of the 4 + 2 state protocol is that the weak signals and the strong reference are
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sent as a single pulse in one spatial mode using two orthogonal polarizations.
This allows for a convenient practical implementation of the protocol and will
later be an important issue for the cryptographic scheme presented below.

Along with coherent states, which are frequently though incorrectly seen
as classical, the nonclassical entangled states were also considered for the
QKD. The first protocol based on entanglement was suggested by Ekert in
1992 [9]. It uses the test of the Bell inequalities to protect the scheme from an
eavesdropper, the invasion of whom would result in entanglement decoher-
ence and can be disclosed by a Bell test of Alice and Bob. The disadvantage
is the same as in the previous protocols: stochastic, inefficient sources and
inefficient slow detectors. The protocol of Ekert is in its essence equivalent to
the BB84 protocol if reformulated in terms of a prepare and measure scheme.

The paper of Ralph [10] marks the starting point of a new era of continuous
variable quantum cryptography [10–17]. These continuous variable crypto-
graphic systems all used squeezed or entangled states. The ultimate goal was
to achieve high bit rates and thus to solve the problem of low efficiency of dis-
crete variable schemes. As already mentioned, there are no reliable, fast, and
deterministically operating single-photon sources available at the moment,
and most implementations of single-photon cryptographic systems use weak
coherent pulses instead. Owing to the problem of multiphoton components
of coherent states in those systems, the effective amplitude has to be very low,
which impairs the performance, resulting in a key rate that scales as the square
of the single-photon transmission efficiency of the quantum channel. A sec-
ond drawback is the lack of fast and efficient single-photon detectors, whereas
homodyne detectors and bright light photoreceivers work with nearly unit
quantum efficiency at high speeds. However, the need for highly nonclassical
squeezed or entangled states, the low loss tolerance, and the absence of an
unconditional security proof for existing schemes had put the practicability
of continuous variable quantum cryptography in question. For a long time it
was believed that nonclassical states are the unavoidable prerequisite for pro-
tecting the system against eavesdroppers. In addition, the achievable range
of key exchange was argued to be restricted to the attenuation length of the
channel (50% loss)[18].

The potential advantages in using fast and efficient homodyne detection
instead of single-photon counters did not remain unnoticed in the community
working with the weak coherent pulse QKD. In 2000 Hirano et al. [19] were
the first to replace single-photon detectors with homodyne detection. They
used the BB84 protocol with phase encoding and weak coherent pulses using
homodyning for detecting quadrature amplitudes. In a way, they progressed
on the track pointed out by Bennett [7], that continuous variable cryptogra-
phy does not necessarily require the use of cumbersome nonclassical states
but can get along with quantum coherent states, which are much easier to
implement. But they kept the established binary single-photon strategy by
extracting binary information from their measured homodyne data. For this
purpose they introduced a certain nonzero threshold to differentiate between
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positive and negative outcomes to provide 0 and 1 bit values. The scheme
was still operating on the traditional BB84 with weak coherent pulses. The
role of postselection in increasing the ultimate range of continuous variable
cryptography has not yet been recognized.

Finally in 2002, Grangier and coworker published a paper [18] proposing
QKD using Gaussian modulated coherent states and homodyne detection and
showing its security against the beam-splitting attack. This paper reminded
the new quantum continuous variable community of the seminal publication
by Bennett [7]. The scheme was based on the BB84-type protocol with many
nonorthogonal bases represented by slight modulations of different quadra-
ture amplitudes x̂θ = 〈eiθ â † + e−iθ â〉, which were Gaussian distributed around
〈x̂θ 〉 = 0. To ensure the sufficient overlap between all signal states, the scheme
operated at a low light level, and the modulation depth was kept low enough.
The system did not use any postprocessing of the data, and the security of this
first scheme was said to be limited to less than 50% loss level, the so-called
3 dB limit. It was argued that this loss limit, implied by the beam-splitting
attack, holds for standard minimum uncertainty states such as coherent states
as long as no advanced devices such as quantum memories are used.

Shortly after, Silberhorn et al. [20] demonstrated that secure quantum
key distribution systems based on continuous variable implementations can
operate beyond this apparent 3 dB loss limit. It was shown that, by an appro-
priate postselection mechanism, reminding one of the approach by Hirano
et al. [19], one can enter a region where Eve’s knowledge of Alice’s key falls
behind the information shared between Alice and Bob, even in the presence of
substantial losses. The calculations were performed for a particular modifica-
tion of the protocol of Ref. 18. The security issues related to the postselection
in cryptographic schemes using the phase encoded BB84 with weak coherent
pulses and homodyne detection were further discussed in Ref. 24.

To overcome the loss limit, another special technique has been proposed
by Grangier and coworkers, which uses reverse reconciliation of data [21–
23]. The use of reverse reconciliation has demonstrated for the first time the
robustness of continuous variable systems against losses of more than 3 dB in
an experiment [22]. The original protocol, however, requires strict one-way
communication and relies on interferometric stability for the transmission of
a local oscillator beam. The restriction to one-way error correction posed a
severe limitation, but the same authors showed that certain combinations of
one- and two-way communication will also lead to a secure key.

In the following we present the experimental quantum key distribution
using coherent polarization states [25]. The implemented system is a con-
tinuous variable scheme that combines different features of the traditional
discrete variable BB84 [1,8] and continuous variable coherent state cryptog-
raphy [18–20,22,24]. The distinct difference from the discrete scheme is the use
of homodyne detection. The particular properties of our system that make it
dissimilar from the related continuous variable schemes [18,19,22,24,26] are
polarization encoding and, in contrast to [18,22], the four state protocol based
on postselection to ensure security and high loss tolerance.
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5.2 Postselection
A coherent state with amplitude α is an eigenstate of the annihilation operator
â and can be represented as an expansion in the Fock basis with photon
number n [27]:

|α〉 = e− |α|2
2

∑ αn

(n!)
1
2

|n〉. (5.1)

Due to the Heisenberg uncertainty principle, a coherent state occupies a cer-
tain area in phase space, such that two coherent states | + α〉 = eiϕ|α〉 and
| − α〉 = ei(ϕ+π)|α〉 with ϕ = 0 exhibit an overlap

f = e−2|α|2 . (5.2)

For large |α|, this overlap vanishes, and | + α〉 and | − α〉 are orthogonal. How-
ever, for small |α| a quadrature amplitude measurement x = 〈eiθ â † + e−iθ â〉
cannot discriminate deterministically between | + α〉 and | − α〉. Measuring
of | + α〉 may yield results that could have been produced by a measurement
of a | − α〉 state and vice versa (Figure 5.1). Let us first assume that the quan-
tum channel connecting Alice with Bob is ideal, so that its transmitivity η = 1.
When a sender (Alice) prepares randomly one of the two nonorthogonal pure
states, and a receiver (Bob) guesses which state it was by measuring the am-
plitude x, his error probability

pe(η = 1) = Prob(x < 0|α > 0) + Prob(x > 0|α < 0)

= 1
2

(

1 −
√

1 − f 2
)

(5.3)

is directly linked to the resulting overlap and hence to the amplitude |α|. For a
channel of transmitivity η < 1, the states impinging on Bob’s detector system
are changed to | + α〉 = √

η |α〉 and | − α〉 = √
η eiπ |α〉, and the error probability
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0.6
0.4
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p

Figure 5.1 Probability distributions of measurement results x for the two nonorthog-
onal signal states 0 and 1. In the postselection procedure the most inconclusive results
x < |x0| (shaded region) are removed, for which the probability of error is high owing
to substantial overlap of the probability distributions p(0) and p(1). The choice of the
postselection threshold x0 is governed by the calculated IAB and IAE as described in
the text. (Courtesy of Ch. Silberhorn.)
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pe is modified correspondingly. Figure 5.1 illustrates the dependence of the er-
ror probability pe on x, α, η. The probability distributions for quantum states
prepared as 0 and 1 are overlapping, and the degree of the overlap is defined
by α, η. The dependence pe(x) exhibits a certain pattern, which can be ex-
ploited in the postselection process taking into account the independence of
Bob’s and Eve’s measurement outcomes x. For Bob’s measurement results x
falling in the region around the zero point, the error probability of his decision
on 0 or 1 on the basis of his measurement is high. On the left and right wings
the error probability decreases as the results might be assigned to 0 or 1 with
more certainity.

The mutual information between Alice and Bob, IAB , can be determined
and depends on Alice’s amplitude |α|, Bob’s amplitude measurement result
x, and the transmission η of the channel between Alice and Bob [20,24,28]:

IAB = 1 + pe(x, α, η) log2 pe(x, α, η)

+ (1 − pe(x, α, η)) log2(1 − pe(x, α, η)). (5.4)

It is not possible yet to give a general statement about the security of the
protocol. However, it is possible to show the security of the scheme against
beam-splitting attacks, which are the basic kinds of attacks for a potential
eavesdropper (Eve) who wants to utilize nonzero quantum channel losses.
Eve could split off the part of the signal that is lost in the channel with trans-
mitivity η < 1. She uses a beam splitter with reflectivity of 1 − η to obtain that
part of Alice’s signal that would be lost normally. Eve transmits the rest of the
signal over a perfect (lossless) channel, so that her presence is undetectable.
She can then make measurements on her part of the signal, e.g., an amplitude
measurement like Bob’s, and try to infer Bob’s measurement results from her
own results. For coherent states, Eve’s and Bob’s probability distributions of
measurement outcomes are independent. This means that Eve’s and Bob’s
measurements are completely uncorrelated, so it is possible that Eve obtains
inconclusive results while Bob is quite sure about the state Alice prepared,
and vice versa. The average information Eve can get depends on Alice’s pre-
pared amplitude α and Eve’s portion of the signal (in this case 1 − η), giving
a mutual information of IAE between Alice and Eve. It can be shown [20] that
the mutual information between Alice and Eve depends only on the effective
amplitude of the prepared nonorthogonal coherent states and is independent
of the measurement outcomes x of her and of Bob:

IAE = 1
2

(

1 +
√

1 − f 2(α, η)
)

log
(

1 +
√

1 − f 2(α, η)
)

+ 1
2

(

1 −
√

1 − f 2(α, η)
)

log
(

1 −
√

1 − f 2(α, η)
)

, (5.5)

where f (α, η) is the overlap of each pair of the four signal states. Alice and
Bob can determine the error probability and shared information IAB (Equa-
tion (5.4)) for each single event x after the measurement. For a given channel
transmission η and state overlap governed by |α|, a lower limit for Bob’s mea-
surement result x can be given, where IAB > IAE . On this basis, Bob decides on
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the appropriate value of the postselection threshold x0 to eliminate the most
inconclusive results x < |x0| (see Figure 5.1). As already mentioned, an impor-
tant point is that for coherent states, Eve’s and Bob’s probability distributions
of measurement outcomes x are independent. Owing to this fact, the shared
knowledge between Alice and Bob about the selected events x > |x0| is larger
than that shared between Alice and Eve, allowing a secret key to be distilled
(compare Equations (5.4) and (5.5)). The process of sorting out those events
with IAB > IAE , i.e., the events that are favorable for Alice and Bob after the
data have been recorded is called postselection. The detailed description of
this procedure can be found in Ref. 20, which includes the derivation of the
relevant formulae.

Postselection procedure for a secure key distillation is not limited to co-
herent state cryptography. It can be extended to enhance the security of contin-
uous variable quantum cryptography [10–17,26] in general. The postselection
analysis [20,29] was already applied to one particular QKD scheme [15] based
on the entanglement of intense beams. The error probability in (Equation (5.4))
is then determined by the ratio between the signal level and the noise level
(signal-to-noise ratio) [10], which depends on the transmitivity of the channel
and on the quality of entanglement. It was shown [29] that postselection of
the data for such an entanglement-based scheme enables one to sort out the
events with IAB > IAE and thus to distill the secret key, even in the presence
of high losses.

5.3 Polarization Encoding
Continuous variable cryptography with coherent states and postselection can
be implemented with traditional polarization variables of the BB84 proto-
col. The role of two incompatible nonorthogonal bases is then taken up by
the noncommuting quantum polarization variables, Stokes parameters. The
hermitian Stokes operators [30,31] are defined as quantum versions of their
classical counterparts [32]:

Ŝ0 = â †xâx + â †yâ y = n̂x + n̂y = n̂ (5.6)

Ŝ1 = â †xâx − â †yâ y = n̂x − n̂y (5.7)

Ŝ2 = â †xâ y + â †yâx (5.8)

Ŝ3 = i
(
â †xâ y − â †yâx

)
(5.9)

where the x and y subscripts label the creation, destruction, and number
operators of quantum harmonic oscillators associated with the x and y photon
polarization modes, and n̂ is the total photon number operator. The creation
and destruction operators have the usual commutation relations,

[
â j , â †k

] = δ jk j, k = x, y. (5.10)

The Stokes operator Ŝ0 commutes with all the others:

[Ŝ0, Ŝi ] = 0 i = 1, 2, 3 (5.11)
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but the operators Ŝ1, Ŝ2, and Ŝ3 satisfy the commutation relations of the SU(2)
Lie algebra:

[Ŝk , Ŝl] = 2i εklm Ŝm. (5.12)

Apart from the factor of 2 and the absence of Planck’s constant, this is iden-
tical to the commutation relation for components of the angular momentum
operator. Simultaneous exact measurements of the quantities represented by
these Stokes operators are thus impossible in general, and their means and
variances are restricted by the uncertainty relations

V2V3 ≥ |〈Ŝ1〉|2, V3V1 ≥ |〈Ŝ2〉|2, V1V2 ≥ |〈Ŝ3〉|2, (5.13)

where Vj is a convenient shorthand notation for the variance 〈Ŝ2
j 〉 − 〈Ŝj 〉2 of the

quantum Stokes parameter Ŝj . The angle brackets denote expectation values
with respect to the state of interest.

Figure 5.2 witnesses the convenience of using polarization encoding in
coherent state cryptography in place of the quadrature encoding traditional
for continuous variable schemes. In a measurement of a Stokes parameter Sj ,
the mode with high photon number âx is used as a phase reference to de-
termine the photon number in the dark mode â y of orthogonal polarization.
Note that in conventional homodyne detection, the measurement of conju-
gate quadratures (e.g., amplitude and phase) of an optical mode normally
requires a separate phase reference (local oscillator). The signal and the local
oscillator are in two spatially separated modes. Thus the spatial overlap and
the phase stability limit the efficiency of such a setup. The use of the quantum
polarization of a two-mode coherent state in our cryptographic system pro-
vides a clear practical advantage of having its own built-in strong reference
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Figure 5.2 Schematical setups to detect all four Stokes parameters. (PBS: polarizing
beam splitter.)
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field, so that the polarization setup has perfect spatial overlap and a stable
relative phase by default without active control.

If in the experiment one of the Ŝj components, e.g., the Ŝ1 component,
is chosen to be large, the quantum Stokes variables effectively acquire the
properties of quadrature operators. The arguments used in the section de-
voted to postselection of coherent states can then be easily extended to the
use of coherent polarization states. The choice of “classical” S1, |〈Ŝ1〉| 
 1,
corresponds to an almost completely horizontally polarized light beam with
Ŝ2 and Ŝ3 as noncommuting observables. The Ŝ2 and Ŝ3 measurement bases
play the role of two nonorthogonal bases in the BB84 protocol. The S2 and S3
components can be measured by applying appropriate phase shifts between
âx and â y and using a balanced photodetector (see Figure 5.2) [30]. As seen in
Figure 5.2, the switching between these two bases requires the least modifica-
tion in the measurement setup, which is our motivation to use this particular
polarization setting.

Polarization encoding is illustrated in Figure 5.3. A quantum state of
a polarized light can be conveniently represented on the Poincare sphere
[30]. The quantum state of a p-polarized light is represented with a quantum

S1

S2

S3

Figure 5.3 Polarization encoding of a coherent p-polarized state on the Poincare
sphere. The modulation in S2 is illustrated for two different modulation amplitudes
(+δ1S2, +δ2S2).
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0.5
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–0.5

–0.5 0.0 0.5

Figure 5.4 Plot of possible Q-function measurement results for Bob. Alice produces
four coherent states with either positive or negative S2 and S3 polarization. In the
experiment, the state overlap is high, so the states cannot be distinguished. In this
figure, the overlap is low for better visualization.

uncertainty sphere centered around (〈S1〉, 0, 0). For the sake of better visual-
ization, the coherent state with low 〈S1〉 is shown. The modulation in S2, S3
results in moving the state around on the Poincare sphere. Modulation in S2
is depicted in Figure 5.3 by two further coherent states, which differ by some
angle θ in the (S1, S2) plane corresponding to two modulation amplitudes.
Again, for better visualization, states with low overlap between the initial
and two modulated states are shown. With growth of 〈S1〉 and increasing
overlap, the radius of the Poincare sphere goes to infinity, S1 can be assumed
classical, and three depicted states form in the (S2, S3) plane the well-known
picture of overlapping nonorthogonal states exactly as one is used for coher-
ent states in quadrature amplitude representation (see also Figure 5.4). Note
that, in contrast to the BB84, we do not deal here with two nonorthogonal
pairs of orthogonal states, all involved states are nonorthogonal. This differ-
ence will explained in greater detail in the next section and is an important
feature of our protocol.

5.4 Protocol
The security of the BB84 relies in the first line on the nonorthogonality of the
two bases. Does one really need two nonorthogonal bases with two orthogo-
nal signal states each? Would it not suffice to exploit just a few nonorthogonal
states [6]? The answer is yes, but certain additional arrangements are required
to fix an arising security loophole, as we will describe in the following. The first
protocol of this type was the B92 protocol, which was suggested by Bennett
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[7] in 1992 and which uses only two nonorthogonal states prepared by Alice.
The receiver Bob cannot discriminate between these deterministically but he
can apply a generalized measurement using an ancillary system. This kind
of measurement, known as positive operator valued measurement (POVM
or POM), provides Bob with either a correct answer or with no answer, i.e.,
with an inconclusive result. Bob will get a bit string of 0’s, 1’s and ?’s, his 0’s
and 1’s being deterministic results perfectly correlated with those of Alice.
Discarding the events corresponding to his ?’s time slots via a public classical
channel, Alice and Bob can generate the shared key.

However, in this form the B92 protocol is not secure: eavesdropper Eve
could go for an intercept–resend strategy and perform on the intercepted bits
the same kind of measurements as Bob. She would then suppress the bits for
which she gets inconclusive results and resend only the ones she knows with
certainty. This loophole can be closed by sending a strong reference pulse
along with a faint signal pulse down the quantum channel. At the receiving
side, a weak part of the strong signal is split off and gives in interference
with the other weak signal the measurement results. In this scenario, Eve
can no longer remain unnoticed; in contrast to a weak signal with 0.1–0.4
photons per pulse, the strong reference part will give a macroscopic signal
on Bob’s side and cannot be suppressed without being noticed. Whenever
the strong signal is present, at least the weak part that is split off from it
will enter Bob’s remaining measurement device and leads there to a photo
detection event with some probability. This means that Eve cannot suppress
these events with certainty any more. Hence Eve is forced always to send
some signal with the strong pulse and will inevitably introduce errors.

As mentioned in the introduction, in 1995 Huttner et al. extended the
BB84 and B92 to the so-called 4 + 2 state protocol [8]. Basically it works with
the prepare and measure strategy of the BB84 protocol, but all four states are
nonorthogonal. In the QKD run, one of these four nonorthogonal coherent
states is polarization encoded using weak coherent pulses. The strong ref-
erence needed to support the security of the transmission is sent with the
same pulse using two orthogonally polarized modes, one for the signal and
the other for the reference. This setting is reminiscent of the Stokes operators
of Section 5.3: compare the picture “weak signal and strong reference pulse”
with the detection scheme of the Stokes operators (Figure 5.2). By a certain
change of the basis, one can represent any polarization state as a dark mode
containing information about the quantum polarization state and the mode
with a high photon number serving as a phase reference. To illustrate differ-
ences and similarities, it is worthwhile to visualize different protocols that use
polarization encoding on the Poincare sphere [2,8,25,30]. Notably, the signal
states of the 4 + 2 state, together with the respective reference pulses, form
on the Poincare sphere of Figure 5.3 exactly the same pattern as described
in the previous section if four slight modulations (+δS2, +δS3), (+δS2, −δS3),
(−δS2, +δS3), and (−δS2, −δS3) are applied. Thus our protocol described be-
low can be easily reformulated in the established language of weak signal
and strong reference pulse, which is a useful tool in security considerations.
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The major difference between the 4 + 2 state protocol and our cryptography
scheme is in the receiver: the 4 + 2 state scheme relies on photon counting,
whereas our system makes use of homodyne detection.

The key distribution protocol presented works with a BB84-type prepare
and measure strategy. By small modulations of the S1 polarized cw beam, four
coherent states with slightly positive (negative) Ŝ2 and Ŝ3 are produced with
the overlap chosen small enough to render these states nonorthogonal (cf.
Figure 5.3). Alice randomly prepares one of these four states and sends it to
Bob. Bob chooses randomly a measurement basis out of S2 and S3. Figure 5.4
shows possible measurement outcomes for Bob, when he uses a 50 : 50 beam
splitter to measure S2 on one half and S3 on the other half of the beam (see also
Figure 5.12). By assigning a bit value 1 (0) to a positive (negative) measurement
result in both S2 and S3 bases, a shared key can be established.

The important constituent of the continuous variable system that forms
a distinct difference from conventional single-photon BB84 and 4 + 2 state
protocols is the postselection. It should be intentionally incorporated in the
protocol, whereas for single photons it is granted for free by nature: the pho-
tons affected by the loss do not arrive at the receiver. They are postselected
[20]. In contrast to original BB84, Bob has to choose a postselection thresh-
old x0 according to the actual key distribution data (Figure 5.1). The optimal
threshold is determined by the overlap f and attained information advantage
IAB − IAE , which means by the amplitude |α| and observed channel transmi-
tivity η (loss level).

Bob discards all his measurement results that did not exceed the post-
selection threshold. For the remaining measurement results with low pe , he
announces his measurement bases and corresponding time slots through the
public channel, so that Alice knows Bob’s measurement results with high
probability. In the case of vanishing overlap between the states, this proce-
dure is deterministic and hence insecure. An eavesdropper may discriminate
between all four states and launch an intercept–resend attack without being
noticed. By using states with a considerable overlap, the error probability for
Eve increases, while Bob and Alice can postselect favorable events.

It is interesting to establish connections among and within the discrete
cryptographic systems and their continuous counterparts and to point out
the differences. The tight relation between the four-state BB84 protocol, the
two-state B92, and the 4 + 2 state protocol was already discussed in the be-
ginning of this section. We would like to suggest here a few more analogies.
The coherent state continuous variable scheme of Grangier and coworkers
[18,22] can be interpreted as the BB84 protocol with many bases and ho-
modyne detection which uses reverse reconciliation to render the secret key
generation possible also at high loss level. The scheme of Hirano and Namiki
with coworkers [19,24] is similar to the BB84 protocol with two bases but uses
homodyne detection and postselection as a reconciliation procedure to sup-
port the security. The continuous variable systems [18,19,22,24] encode the
signals in quadrature amplitudes. The discrete variable systems use mostly
polarization or phase encoding [2]. All these schemes operate at very low light
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intensities to ensure a sufficient overlap of the signal states. Our scheme can
be viewed as the 4 + 2 protocol but with homodyne detection as the receiver’s
measurement system and with postselection of data to enhance the security
beyond the 3-dB loss limit.

5.5 Sub Shot Noise Polarization
Measurement

To detect reliably the polarization with high speed and good efficiency, a
homodyne setup as in Figure 5.2 is used. For the measurement of the S3 pa-
rameter, the incoming light polarization is rotated by the appropriate λ

2 and
λ
4 retarders. A subsequent lens is used to focus the incoming beam on the two
photodiodes of the homodyne detector. A high-quality calcite Wollaston po-
larizer is used to separate the two orthogonal polarization components. It pro-
duces a contrast of better than 106. Each of two resulting beams is reflected by a
mirror onto the photodetector diode. The balanced detection systems use two
silicon PIN photodiodes (Hamamatsu S3883), which have a large active area
(1 mm diameter), low dark noise, fast response, and a high quantum efficiency
(> 0.9 electrons per photon at 810 nm wavelength). The photocurrents are sub-
tracted directly before the net current is converted into a symmetric voltage by
a Philips NE5211 transimpedance amplifier, which has a high transimpedance
of 28 k� and low dark noise. The low dark noise of diodes and electronics
is important to resolve the low quantum noise of the polarization signal.
Figure 5.5 shows the electronic noise of the detector compared to the signal
noise at an input power of 250 µW. At the sampling frequency of Bob’s re-
ceiver, 100 kHz, the electronic noise is more than 10 dB below the signal noise.
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Figure 5.5 Comparision of detector dark noise (lower trace) and detector signal for
500µW input power (upper trace).
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Figure 5.6 DC detector calibration curve. Optical power corresponds to the power
on one photodiode, while the other is blocked.

The DC response of the detectors was calibrated by applying a known
intensity on one of the two diodes while blocking the other diode. The re-
sulting calibration curve is shown in Figure 5.6. The AC calibration is shown
in Figure 5.7. Both diodes were illuminated with the same amount of light,
and the AC response was recorded with a rf spectrum analyzer. The detectors
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Figure 5.7 AC detector output power vs. light intensity for an unmodulated S1 beam.
This corresponds to a homodyne quadrature measurement of the vacuum field, thus
resulting in a linear power dependence of the detected noise signal.
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show a linear behavior up to 1 mW incident cw light power. The peak in the fre-
quency response results from the single pole low pass filtering in the detector.

5.6 Alice: Preparation of Polarization States
The experimental apparatus consists of independent setups for Alice and
Bob, which are separated by roughly 30 cm. Alice controls the laser source
and the state preparation. As a light source a commercial diode laser is used
(Figure 5.8). The diode used (TOPTICA DL100) delivers up to 40 mW of power
and is wavelength stabilized by an external grating to 810 nm. The laser is
decoupled from the rest of the experiment by a tunable optical isolator. A
subsequent half-wave plate and polarizing beam splitter combination serves
as a variable optical attenuator. The attenuation of roughly 10 dB is used to
suppress intensity fluctuations induced by the laser power supply. A mode
cleaning of the laser radiation is achieved by coupling the light into a standard
telecom fiber. The light that is coupled out of the fiber is then polarized using
two polarizing beam splitters, increasing the purity of S1 polarization. The
overall attenuation of the sender setup was adjusted to give an output power
of 0.5 mW of S1 polarized cw light without any modulation (p-polarized
light). To induce small S2 and S3 components in the beam for signal encoding,
two modulators were used.

laser
diode

optical
isolator

λ/2λ/2

λ/2 λ/2

PBS

PBS EOM MOM

PBS

4.6mm

4.6mm

silica fiber

Figure 5.8 Schematic view of Alice’s setup.
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The S3 modulation is performed by an electro-optic modulator (EOM).
The crystal axis is oriented in a way that small deviations from the quarter-
wave voltage result in a circular modulation of the p-polarized laser beam,
which corresponds to the modulation in S3. The S2 modulation of the beam
is achieved by a magneto-optical modulator (MOM), which uses the Faraday
effect of a magneto-optically active glass rod (Moltech MOS-04). By applying
small longitudinal magnetic fields with a 10 turn copper coil, the active glass
rotates the linear polarization, corresponding to an S2 modulation. By adjust-
ing the EOM voltage and the MOM current, S2 and S3 can be modulated con-
tinuosly. As the small modulation depth is required to keep the state overlap
f large, the voltages applied at EOM and MOM are low. As both modulators
are built for free-space optics, their size prohibits high modulation speeds that
could be achieved easily with integrated optics. Thus all experiments were
done with frequencies in the kHz regime.

5.7 Signal State Description
The modulation pattern of one event is shown in Figure 5.9 for a positive S2
modulation by Alice. The first and last five samples are zero and are used
by Bob to get a reference level. The middle 10 samples give the modulation
itself, which can be either positive or negative. In the experiment, both S2
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Figure 5.9 Visualization of the positive modulation samples.
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and S3 were modulated randomly with either positive or negative patterns
simultaneously. Bob’s measurement thus has to discriminate between positive
and negative modulation in either of the two polarization bases. To achieve
this, Bob records the detector signal for each event and does a baseline restora-
tion using the start and stop parts of the modulation pattern. The central part
of his measurements then corresponds to Alice’s modulation.

5.8 Bob: Measurement Systems
Bob performs the polarization measurements on the states he receives from
Alice (Figures 5.10, 5.11, 5.12). To choose between measurements in S2 or S3,
Bob can introduce an EOM in his receiver, described in Section 5.6, switching
between no retardation for S2 and quarter-wave retardation for S3 measure-
ments (see Figure 5.11). Although the EOM has the advantage of introducing
little extra loss, it is very slow, owing to its large clear aperture, needed for the
free-space transmission line. Thus only low switching speeds (approximately
200 Hz) could be achieved with this type of basis choice.

To circumvent the problem of slow switching speed with the EOM,
one can use the loss tolerance advantage of postselection to build a mea-
surement system without active switching. Instead of choosing a basis, both
the S2 and S3 parameters are measured simultaneously (Figure 5.12).
The resulting decrease in accuracy due to the quantum penalty in measure-
ment of two conjugate variables must be encountered by postselection. A
polarization-independent beamsplitter is inserted into the beam behind the

λ/2 λ/4

EOM BS PBS
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300mm

balanced
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balanced
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Figure 5.10 Schematic view of Bob’s setup, including electro-optical modulator and
double detector scheme.
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balanced
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Figure 5.11 Schematic view of Bob’s setup, using an electro-optical modulator to
change between S2 and S3 measurement.

focusing lens (see Figure 5.12). It transmits 52% of the incoming light and
reflects 48%. The reflected light is retarded with a quarter-wave plate, to mea-
sure its S3 parameter on a second detector, similar to the one described above.
The remaining light is detected by the initial detector to give a measurement
of the S2 parameter. Both detectors can be read out simultaneously. Figure 5.10
shows the combination of both setups that was used in the experiment as a
reciever setup enabling us to make different performance tests.
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Figure 5.12 Schematic view of Bob’s setup, using two detection setups to measure
simultaneously S2 and S3 with a loss of 50%. If the quarter-wave plate is removed, S2
can be measured on both halves of the original beams.
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5.9 Experimental Postselection
In our demonstration experiment, the setups of Alice (Figure 5.8) and Bob
(Figure 5.10) are separated by roughly 30 cm. To show the independence of
two measurements in the case of a beam splitting attack, the signal is di-
vided at a 50 : 50 splitter and measured by two Stokes detector setups (see
Figure 5.13). This independence is crucial for the postselection procedure as
described in Section 5.2. When both detectors are set to measure in the same
basis (in this case S2), an unmodulated S1 polarized coherent state gives a
Gaussian distribution of the measurement results in each detector. The re-
sults are uncorrelated, as can be seen from the circular correlation plot in
Figure 5.13 (left). For an S2 modulation with low amplitude, the plot (Fig-
ure 5.13 right) shows a slight ellipticity, revealing small correlations between
the detected signals. Still it is not possible to deduce the sign of the mea-
surement result of one detector from the outcome of the other detector with
certainty. A potential eavesdropper Eve who uses detector 2 cannot infer the
results of detector 1, even though she has measured 50% of the signal. Note
that the setup of Figure 5.12 was also used with one S2 and one S3 detector to
produce Figure 5.4.

In the rest of the experiments, only a single detector with electro-optical
basis switching was used (cf. Figures 5.11 and 5.12). The losses due to nonunity
photodiode efficiency, EOM transmissivity, and optical imperfections in the
detector were treated as if they were transmission channel losses. This con-
servative point of view implies that Eve could manipulate Bob’s receiver and
increase its efficiency while sending more imperfect states at the same time,
gaining additional information. With an additional attenuator in between
Alice and Bob, overall transmission levels of 79% and 36% were set. The
modulation was adjusted to give an average coherent amplitude of 0.6 in the
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Figure 5.13 Signal divided by a 50:50 beam splitter and measured by two S2 detectors.
Left: no S2 modulation of the signal. Right: small S2 modulation, correlations of the
two detected signals result in elliptical shape of the scatter plot. As detector 1 and
detector 2 have slightly different gains, a small horizontal ellipticity is introduced in
both graphs.
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Figure 5.14 Typical oscilloscope trace of the detector signal with constant basis. The
insert shows the whole trace, with visible jumps due to basis switching by the EOM.

dark mode â y, thus giving a considerable overlap according to Equation (5.2).
A typical readout of the oscilloscope is shown in Figure 5.14. The main graph
shows eleven events with constant measurement basis. In the inset one can
see the whole measurement trace, with a basis change visible as a large jump
of the signal curve. After the measurement, a bit value was assigned to each of
Bob’s measurements. In the case of low loss (21%), a postselection threshold
of |α| > 1 reduced the number of bits from 1001 to 222. The information ad-
vantage IAB − IAE was larger than 0.7 bits per event for this threshold. For
high losses (64%), the threshold was set to |α| > 1.5, giving an information
advantage of 0.4 bits per event. 139 out of 956 bits survived the postselec-
tion. The error rates for both low and high losses are shown in Table 5.1.
Postselection reduces the initial error rate, as expected. As the coherent am-
plitude α decreases with the losses, the overlap of the states increases (cf.
Equation (5.2)). Thus the rising error probability has to be compensated for
by error correction, giving also a hint that the channel quality is low. Even
though the ratio of secret bits to transmitted bits drops for high losses, it is

Table 5.1 Measurement Results for Low and High Loss

Inital Residual Information
Loss (%) Errors (%) Threshold Errors (%) Advantage

21 15 1 4 0.7
64 22 1.5 10 0.4

Note: Initial errors are before postselection with a threshold as in the
third column. After postselection, the fourth column shows the
remaining error rate. The information advantage in bits per event
is shown in the fifth column.
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still possible to select secret information from the measurements. As the post-
selection is done by Bob alone, no data has to be transmitted over the public
channel during this process. Only after Bob has chosen his events with high
information advantage does he reveal their measurement basis to Alice. Thus
the effort in authentication and the bandwidth requirements on the public
channel decrease substantially.

5.10 Conclusions and Outlook
We have presented an experimental quantum cryptography that uses coher-
ent states, homodyne detection, and postselection to generate a shared key
between Alice and Bob. The states are polarization encoded, ensuring fast
modulation compared to quadrature encoding and giving a perfect mode
overlap in Bob’s homodyne detector. There is no need to send a separate local
oscillator along with the quantum channel. The system is robust against losses
of more than 50% of the states and does not need special reconciliation tech-
niques. Its implementation is very simple, and it could be used in free-space
communication with high efficiency and speed. When using a polarization
dispersion compensation, the scheme can also be adapted to fiber transmis-
sion lines by exchanging the 810 nm coherent laser source with a 1.5 µm laser.

Further improvements could be made with the receiver design. First, the
homodyne detection setup of Figure 5.11 can be modified. If one uses the
setup described in Section 5.8, used to generate Figure 5.4 (see Figure 5.12),
Bob’s detector would not require active basis switching, as in some single-
photon systems [34]. The theoretical upper bound for detection speed is then
the bandwidth of the balanced detector, which can be very high compared
to photon counters in single-photon experiments. Second, the photon count-
ing and homodyne systems are not the only possible detection systems. It is
worthwhile to look for a system that might be more capable of discriminating
nonorthogonal quantum states preserving the advantages of the homodyne
technique. For example, one might think about implementation of a modifi-
cation of the so-called Kennedy receiver [35].

The most important issue is the security of the scheme. Extension of the
security analysis to more general kinds of eavesdropping attacks is required.
An interesting issue here is the role of squeezing and entanglement in the
protection of the system against eavesdroppers. These issues were recently
considered by several authors [13,28,29,36].
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Abstract
In order for quantum communications systems to become widely used, it
will probably be necessary to develop quantum repeaters that can extend
the range of quantum key distribution systems and correct for errors in the
transmission of quantum information. Quantum logic gates based on linear
optical techniques appear to be a promising approach for the development of
quantum repeaters, and they may have applications in quantum computing as
well. Here we describe the basic principles of logic gates based on linear optics,
along with the results from several experimental demonstrations of devices
of this kind. A prototype source of single photons and a quantum memory
device for photons are also discussed. These devices can be combined with a
four-qubit encoding to implement a quantum repeater.

6.1 Introduction
Systems for quantum key distribution have been demonstrated over limited
distances, both in optical fibers and in free space, but they have not yet been
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used for practical applications. In order for quantum communications sys-
tems to become widely used, it will probably be necessary to develop quan-
tum repeaters that can extend the range of quantum key distribution systems
and correct for errors in the transmission of quantum information. One of the
most promising approaches for the development of quantum repeaters is the
use of linear optical techniques [1,2] to implement quantum logic gates, com-
bined with optical storage loops to implement a quantum memory device for
single photons [3–5]. In this chapter, we describe several prototype quantum
logic gates [6–8], a single-photon source [9], and a single-photon memory de-
vice [3,4] that we have recently demonstrated. A four-qubit encoding [5] that
allows these devices to be combined to implement a quantum repeater will
also be described.

The past development of quantum key distribution has been strongly
influenced by the need to overcome a variety of practical challenges, and
the future development of the field will probably be determined by the chal-
lenges that remain. As a result, we begin in Section 6.2 with a brief review of
the challenges facing the development of quantum communications systems,
both past and future. In Section 6.3, we describe the basic operation of prob-
abilistic quantum logic gates based on linear optics techniques, along with
experimental results from several devices of that kind. The development of
quantum repeaters will also require a source of single photons and a quantum
memory device, and demonstrations of prototype devices of that kind are de-
scribed in Section 6.4. A proposed implementation [5] of a quantum repeater
using a combination of these devices is outlined in Section 6.5, followed by a
summary in Section 6.6.

6.2 Challenges in Quantum
Communications

Quantum key distribution systems have evolved over the past 15 years in
response to a number of technical challenges that limited their performance
at the time. As a result, it may be useful to review briefly the past development
of quantum key distribution systems and to discuss the remaining challenges
that seem likely to determine the future development of the field of quantum
communications.

At one time, the only known method for quantum key distribution was
based on the use of the polarization states of single photons. In addition to
introducing the BB84 and B92 protocols, Bennett et al. also performed the
first experimental demonstration of quantum key distribution using photon
polarization states in a tabletop experiment [10]. But the use of single-photon
polarizations was considered to be a major obstacle to practical applications
at the time, since the state of polarization of a photon will change in a time-
dependent way as it propagates through an optical fiber. In response to this
problem, we developed a feedback loop [11,12] that automatically compen-
sated for the change in polarization of the photons. The system alternated
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between high-intensity bursts, which determined the necessary corrections
to the polarization, and single-photon transmissions, used for the generation
of secret key material. The corrections themselves were applied using a set
of Pockels cells that also controlled the transmitted polarization state in a
BB84 implementation. A system of this kind [13] implemented error correc-
tion and privacy amplification in 1994, and it was the first fully automatic and
continuously operating quantum key distribution system.

Quantum key distribution systems based on an interferometric approach
are now widely used. They have the advantage of being relatively insensitive
to changes in the state of polarization in optical fibers. The evolution of in-
terferometer systems of this kind is illustrated in Figure 6.1. The two-photon
interferometer shown in Figure 6.1(a) was proposed by one of the authors
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Figure 6.1 Evolution of interferometer-based quantum key distribution systems. (a)
Nonlocal interferometer suggested by Franson in which an entangled pair of photons
propagate toward two separated interferometers with a long path L and a short path S.
(b) Modification by Bennett to utilize a single photon passing through two interferom-
eters in series. (c) Plug-and-play system by Gisin’s group that folds the above system
in half using a Faraday mirror.
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in 1989 [14,15]. Roughly speaking, two entangled photons propagate toward
two distant interferometers that both contain a long path L and a short path
S. The photons are emitted at the same time in a parametric down-conversion
source, and if they arrive at the detectors at the same time, it follows that
they both must have traveled the longer path or they both must have trav-
eled the shorter path. Quantum interference between these two probability
amplitudes gives rise to nonlocal quantum correlations that violate Bell’s in-
equality.

As early as 1989, John Rarity noted that a two-photon interferometer of
this kind could be used as a method of quantum key distribution [16]. Ek-
ert, Rarity, Tapster, and Palma later [17] showed that tests of Bell’s inequality
could be used to ensure that an eavesdropper cannot determine the polar-
ization states of the photons without being detected, which allows secure
communications to be performed. Systems of this kind have now been experi-
mentally demonstrated [18]. One potential advantage of an entangled-photon
approach of this kind is that no active devices are required in order to choose
a set of random bases for the measurement process. Instead, 50–50 beam split-
ters can randomly direct each photon toward one of two interferometers with
fixed phase shifts.

The interferometric approach of Figure 6.1(a) has the disadvantage of
requiring a parametric down-conversion source, which typically has a lim-
ited photon generation rate. Charles Bennett realized [19], however, that the
need for an entangled source could be eliminated by passing a single photon
through two interferometers in series, as illustrated in Figure 6.1(b). Although
nonlocal correlations cannot be obtained in such an arrangement, it does al-
low the use of weak coherent state pulses containing much less than one
photon per pulse on the average. The ease in generating weak coherent state
pulses combined with the relative lack of sensitivity to polarization changes
made this type of interferometer system relatively easy to use. As a result, a
number of groups [20–23] demonstrated quantum key distribution systems
of this kind, including work by Townsend, Rarity, Tapster, and Hughes.

One of the disadvantages of the interferometric approaches of Figures
6.1(a) and (b) is that the relative phase of the two interferometers must be
carefully stabilized. In addition, the polarization of the photons must still
be controlled to some extent in order to achieve a stable interference pat-
tern. Gisin and his colleagues [24] avoided both these difficulties by using a
very clever technique illustrated in Figure 6.1(c). Here the system is essen-
tially folded in half by placing a mirror at one end of the optical fiber and
reflecting the photons back through the same interferometer a second time.
By using a Faraday mirror, the state of polarization is changed to the orthog-
onal state during the second pass through the optical fiber, which eliminates
any polarization-changing effects in the optical fiber. Plug-and-play systems
of this kind are very stable and are now in widespread use.

The remaining problem in existing quantum key distribution systems is
the limited range that can be achieved in optical fibers due to photon loss.
As a potential solution to this problem, we performed the first demonstration
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[25] of a free-space system over a relatively short distance outdoors in broad
daylight in 1996. The accidental detection rate due to the solar background
was minimized using a combination of narrow-band filters, short time win-
dows, and a small solid angle over which the signal was accepted. A number
of other groups [26,27] have now demonstrated similar systems over larger
ranges, and satellite systems of this kind are being considered. These systems
will probably have relatively high costs and small bandwidths.

The widespread use of quantum communications systems will require
both large bandwidth and operation over large distances. Although earlier
limitations due to polarization changes in fibers and the stability of inter-
ferometric implementations have now been overcome, it seems likely that
quantum repeaters [5,28,29] will be required in order to achieve the necessary
bandwidth and operational range. A promising approach for the implemen-
tation of a quantum repeater is described in the following sections.

6.3 Linear Optics Quantum Logic Gates
Quantum logic operations are inherently nonlinear, since one qubit must con-
trol the state of another qubit. In the case of photonic logic gates, this would
seem to require nonlinear optical effects, which are usually significant only
for high-intensity beams of light in nonlinear materials. As shown by Knill,
Laflamme, and Milburn (KLM), however, probabilistic quantum logic oper-
ations can be performed using linear optical elements, additional photons
(ancilla), and postselection based on the results of measurements made on
the ancilla [1].

The basic idea of linear optical logic gates is illustrated in Figure 6.2. Here
two qubits in the form of single photons form the input to the device and two
qubits emerge, having undergone the desired logical operation. In addition, a
number of ancilla photons also enter the device, where they are combined with
the two input qubits using linear optical elements, such as beamsplitters and
phase shifters. The quantum states of the ancilla are measured when they leave
the device, and there are three possible outcomes: (a) When certain outcomes
are obtained, the logic operation is known to have been correctly implemented
and the output of the device is accepted without change. (b) When other
measurement outcomes are obtained, the output of the device is incorrect,
but it can be corrected in a known way using a real-time correction known as
feedforward control, which we have recently demonstrated [30]. (c) For the
remaining measurement outcomes, the output is known to be incorrect and
cannot be corrected using feedforward control. The latter events are rejected
and are referred to as failure events. The probability of such a failure can scale
as 1/n or 1/n2, depending on the approach that is used [1,2].

The original approach suggested by KLM was based on the use of nested
interferometers [1]. It was subsequently shown [6,31] that similar devices
could be implemented using polarization encoding, which had the advan-
tage of simplicity and lack of sensitivity to phase drifts. A controlled NOT
(CNOT) quantum logic gate implemented in this way [6] is shown in
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control
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photon

OUTPUT

ancilla
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detectors

Figure 6.2 Basic idea behind linear optics quantum logic gates. One or more ancillla
photons are mixed with two input qubits using linear elements. Postselection based
on measurements made on the ancilla will project the correct state of the two output
qubits. Feedforward control can be used to accept additional measurement results.

Figure 6.3. Its implementation requires only two polarizing beam splitters,
two polarization-sensitive detectors, and a pair of entangled ancilla used as
a resource. The correct logical output is obtained whenever each detector
registers one and only one photon, which occurs with a probability of 1/4.

The CNOT gate shown in Figure 6.3 can be understood as the combination
of several more elementary gates, including the quantum parity check [6,32]
shown in Figure 6.4. The intended purpose of this device is to compare the
values of the two input qubits without measuring either of them. If the values
are the same, then that value is transferred to the output of the device. If the
two values are different, then the device indicates that the two bits were
different and no output is produced. A quantum parity check of this kind
can be implemented using only a single polarizing beam splitter and a single
polarization-sensitive detector.

An experimental apparatus [7] used to implement a quantum parity check
is outlined in Figure 6.5. Parametric down-conversion was used to generate
a pair of photons at the same wavelength. In type-II down-conversion, the
two photons have orthogonal polarizations, so that a polarizing beam splitter
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pair
ancilla

OUTPUT++++Φ

TARGET

LCONTRO

Figure 6.3 Controlled NOT gate using polarization-encoded qubits. The correct logi-
cal output is obtained whenever one and only one photon is detected in both detectors,
which occurs with a probability of 1/4.

could be used to separate the photons along two different paths. Waveplates
could be used to rotate the plane of polarization of the photons, which cre-
ated a quantum superposition of logical states, where a horizontally polarized
photon represented a value of 0 and a vertically polarized photon represented
a value of 1. The parity check itself was implemented with a second polarizing
beam splitter, after which the state of polarization could be measured using
polarization analyzers and single-photon detectors. The results of the exper-
iment [7] are shown in Figure 6.6 for the case in which the input qubits had
definite values of 0 or 1. Here the large data bars correspond to correct results,
while incorrect results are seen to be relatively small. Similar performance was
also obtained using superposition states as inputs, which demonstrates the
quantum-mechanical coherence of the operation.

Another useful quantum logic gate is the quantum encoder [6] shown
in Figure 6.7. The intended function of this device is to copy the value of a
single input qubit onto two output qubits. Once again, this operation has to be
performed without measuring the value of the qubits. Our implementation of
a quantum encoder requires a pair of entangled ancilla photons in addition to
a polarizing beam splitter. The results from an experimental demonstration
[33] of a quantum encoder are shown in Figure 6.8. Once again, the error rate
can be seen to be relatively small.

It can be seen that the quantum parity check and encoder form the up-
per half of our CNOT gate shown in Figure 6.3. The operation of such a
device would require four single photons, two of them in an entangled state.
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OUTPUTINPUT 1

PBS

INPUT 2

Figure 6.4 Implementation of a parity check operation using a polarizing beam split-
ter (PBS) and a polarization-sensitive detector. As shown in the insert, the polarization-
sensitive detector consists of a second polarizing beam splitter oriented at a 45-degree
angle, followed by two ordinary single-photon detectors.

A CNOT operation can also be performed using a three-photon arrangement
[8] in which a single ancilla enters the top of the diagram and exits from be-
low, as shown in Figure 6.9. Although this arrangement is easier to implement,
the correct results are only obtained when a single photon actually exits in
each output port, which can be verified using coincidence measurements (the
so-called coincidence basis). The results from the first experimental demon-
stration [8] of a CNOT gate for photons are shown in Figure 6.10. Here mode
mismatch is responsible for most of the incorrect results.

The devices described above succeed with probabilities ranging from 1/4

to 1/2. Increasing the probability of success would require the use of larger
numbers of ancilla photons [1,2]. In addition to requiring the generation of
ancilla photons in entangled states [34], the ancilla must also be detected
with high efficiency. In order to avoid these difficulties, we are currently
investigating the possibility of a hybrid approach [35] that combines linear
optical techniques with a small amount of nonlinearity. It is expected that an
approach of this kind will be able to reduce greatly the requirements for large
numbers of ancilla and high detection efficiency. In particular, we have shown
that the failure rate of devices of this kind can be reduced to zero using the
quantum Zeno effect [35].
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Figure 6.5 Experimental apparatus used to perform a demonstration of a quantum
parity check and a destructive CNOT logic gate.

6.4 Single-Photon Source and Memory
The linear optical techniques described above are a promising method for
implementing the quantum logic operations that would be required for a
quantum repeater. But a source of single photons and a quantum memory
would also be required for quantum repeater applications. In this section, we
describe prototype experiments in which both of these devices were demon-
strated.

In many respects, parametric down-conversion is an ideal way to generate
single photons [9]. As illustrated in Figure 6.11, a pulsed laser beam incident
on a nonlinear crystal will produce pairs of photons. If one member of a pair
is detected, that signals the presence of the other member of the pair. A high-
speed optical switch was then used to store the remaining photon in an optical
storage loop until it was needed, at which time it could be switched back out
of the storage loop. Although a source of this kind cannot produce photons
on demand at arbitrary times, it can produce photons at specific times that
can be synchronized with the clock time of a quantum computer, which is all
that is required for practical applications.

Some experimental results [9] from a single-photon source of this kind
are shown in Figure 6.12. It can be seen that the source is capable of producing
and storing single photons for later use, but there was a loss of roughly 20%
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Figure 6.6 Experimental results from a demonstration of a quantum parity check
operation. (Reprinted with permission from T.B. Pittman, B.C. Jacobs, and J.D. Franson,
Phys. Rev. Lett., 88, 257902, 2002. Copyright 2002 by the American Physical Society.)
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Figure 6.7 Implementation of a quantum encoder using a polarizing beam splitter
(PBS) and an entangled pair of ancilla photons.
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Figure 6.8 Experimental results from a demonstration of a quantum encoder.
(Reprinted with permission from T.B. Pittman, B.C. Jacobs, and J.D. Franson, Phys.
Rev. A, 69, 042306, 2004. Copyright 2004 by the American Physical Society.)

per cycle time in the original experiment. We are currently working on an
improved version of this experiment in which the photons are stored in an
optical fiber loop and special-purpose switches are used to reduce the amount
of loss.

control
photon

target
photon

single ancilla
photon

Figure 6.9 Implementation of a CNOT gate in the coincidence basis using a single
ancilla photon. (Reprinted with permission from T.B. Pittman, M.J. Fitch, B.C. Jacobs,
and J.D. Franson, Phys. Rev. A, 68, 032316, 2003. Copyright 2003 by the American
Physical Society.)
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Figure 6.10 First experimental demonstration of a CNOT gate for single photons.
(Reprinted with permission from T.B. Pittman, M.J. Fitch, B.C. Jacobs, and J.D. Franson,
Phys. Rev. A, 68, 032316, 2003. Copyright 2003 by the American Physical Society.)

It is also possible to construct a quantum memory for photons by switch-
ing them into an optical storage loop and then switching them out again when
needed [3,4]. In this case the system must maintain the polarization state of the
photons in order to preserve the value of the qubit, which is more challeng-
ing than the single-photon source described above. This can be accomplished

PDC

EO
SWITCH output

storage
loop

∆τ

∆τ

detector

Figure 6.11 Implementation of a single-photon source using pulsed parametric
down-conversion (PDC). The detection of one member of a pair of down-converted
photons indicates the presence of the second member of the pair, which is then
switched into an optical storage loop until it is needed. (Reprinted with permission
from T.B. Pittman, B.C. Jacobs, and J D. Franson, Phys. Rev. A, 66, 042303, 2002. Copy-
right 2002 by the American Physical Society.)
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Figure 6.12 Experimental results from a prototype single-photon source. Figures (a)
through (d) show the relative probability of switching the photon out after one through
five round trips through the optical storage loop. (Reprinted with permission from
T.B. Pittman, B.C. Jacobs, and J.D. Franson, Phys. Rev. A, 66, 042303, 2002. Copyright
2002 by the American Physical Society.)

by using a polarizing Sagnac interferometer as the switching mechanism, as
illustrated in Figure 6.13. We have also performed a proof-of-principle exper-
iment [4] of this kind where, once again, there were significant losses due to
the optical switch.

6.5 Quantum Repeaters
In the ideal case, a quantum repeater should be able to correct for all forms of
errors that may occur in the transmission of a photon through an optical fiber,
including phase and bit-flip errors. But as a practical matter, the dominant
error source in fiber based QKD systems is simply the loss of photons due
to absorption or scattering. In the quantum key distribution systems that
we have implemented, all other sources of error are negligible; there is no
measurable decoherence of those photons that pass through the fiber, even
when the overall absorption rate is high.
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Figure 6.13 Polarizing Sagnac interferometer used as the switching element for a
single-photon memory device. A single photon can be stored in the delay line until
needed and then switched out again without changing its state of polarization, aside
from small technical errors. (Reprinted with permission from T.B. Pittman and J.D.
Franson, Phys. Rev. A, 66, 062302, 2002. Copyright 2002 by the American Physical
Society.)

As a result, it may be sufficient to consider a quantum repeater system
that compensates only for photon loss and simply ignores any other form of
error. Such a system can be implemented using a simple four-qubit encoding,
as shown by Dowling’s group at the Jet Propulsion Laboratory (JPL) [5]. The
necessary encoding into four qubits can be done using the circuit shown in
Figure 6.14. It can be seen that this encoding can be accomplished using a
combination of CNOT logic gates and single-qubit operations, which can be
easily implemented in an optical approach.

Once the qubits have been encoded in this way, the effects of photon
loss can be corrected [5] using the circuit shown in Figure 6.15. Here a quan-
tum nondemolition measurement is designated by the abbreviation QND;
H represents an Hadamard transformation, the sigmas represent the usual
Pauli spin matrices and the polygons represent a single-photon source used
to replace any photons that have been lost. QND measurements can also be
implemented [29,36] using linear optical techniques, so that the entire error
correction process can be performed using the kinds of techniques that are
described above.

A quantum repeater would then consist of a series of error correction
circuits of this kind, separated by a sufficiently short distance L of optical
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|q1〉

|q2〉

|0〉

|0〉 H

Figure 6.14 Circuit used to encode two logical qubits into four physical qubits, as
suggested by Gingrich et al. [5]. (Reprinted with permission from R.M. Gingrich,
P. Kok, H. Lee, F. Vatan, and J.P. Dowling, Phys. Rev. Lett., 91, 217901, 2003. Copyright
2003 by the American Physical Society.)

fiber that the probability of absorbing two or more photons in a distance L is
negligibly small. Alternatively, the optical fibers could be formed into a set
of loops to implement a quantum memory device, as described above, where
the error correction circuits would correct for the effects of photon loss and
extend the storage time [3,5].

Since the error correction circuit of Figure 6.15 does not correct for other
types of errors, it will also be necessary to minimize the failure rate of the
CNOT gates by using a sufficiently large number of ancilla photons [2] or by

QND

QND

QND

QND

|0〉

|0〉

H

H

H

H

σz

σz σx

σz

σz

σz

Figure 6.15 A circuit that can be used to correct for photon loss based on the four-
qubit encoding of Figure 6.14, as proposed by Gingrich et al. [5]. (Reprinted with
permission from R.M. Gingrich, P. Kok, H. Lee, F. Vatan, and J.P. Dowling, Phys. Rev.
Lett., 91, 217901, 2003. Copyright 2003 by the American Physical Society.)
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using a concatenated code as described by KLM [1]. It may also be possible to
reduce the requirements on the number of ancilla and the detector efficiency
by using a hybrid approach, such as the Zeno gates [35] that were briefly
mentioned above.

6.6 Summary
In summary, we have reviewed some of the challenges faced by quantum
communications systems, both past and present. Earlier difficulties associ-
ated with changes in the state of polarization and sensitivities to interferom-
eter phase drift have been largely overcome. Although free-space systems
will probably be used for special applications, their bandwidth is limited,
and quantum repeaters will probably be required in order to achieve the de-
sired bandwidth and operating range. We have demonstrated several kinds
of quantum logic gates [6–8], along with a prototype source of single photons
[9] and a quantum memory device [4]. As shown by the group at JPL [5], these
techniques can be combined with a four-qubit code to correct for the effects
of photon loss and to implement a quantum repeater system. Further work
will be required in order to reduce the failure rate of linear optics quantum
logic gates, possibly including the development of hybrid approaches such
as Zeno gates [35].
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Abstract
Quantum cryptography has attracted much attention because of its potential
for providing secret communications that cannot be decrypted by any amount
of computational effort. Here we provide an analysis of the BB84 quantum
cryptographic protocol that simultaneously takes into account and presents
the full set of analytical expressions for effects due to the presence of pulses
containing multiple photons in the attenuated output of the laser, the finite
length of individual blocks of key material, losses due to error correction,
privacy amplification, and authentication, errors in polarization detection,
the efficiency of the detectors, and attenuation processes in the transmission
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medium. The analysis addresses an extremely important set of eavesdrop-
ping attacks on individual photons rather than collective attacks in general.
Of particular importance is our derivation of the necessary and sufficient amount
of privacy amplification compression to ensure secrecy against the loss of key
material that occurs when an eavesdropper makes optimized direct (USD),
indirect (PNS), and combined individual attacks on pulses containing multi-
ple photons. It is shown that only a fraction of the information in the multiple
photon pulses is actually lost to the eavesdropper. We also provide a careful
analysis of the use of privacy amplification in quantum cryptography. In or-
der to be practically useful, quantum cryptography must not only provide
a guarantee of secrecy but also provide this guarantee with a useful, suffi-
ciently large throughput value. The standard result of generalized privacy
amplification yields an upper bound only on the average value of the mutual
information available to an eavesdropper. Unfortunately this result by itself
is inadequate for cryptographic applications. A naive application of the stan-
dard result leads one to conclude incorrectly that an acceptable upper bound
on the mutual information has been achieved. It is the pointwise value of the
bound on the mutual information, associated with the use of some specific
hash function, that corresponds to actual implementations. We provide a fully
rigorous mathematical derivation that shows how to obtain a cryptograph-
ically acceptable upper bound on the actual, pointwise value of the mutual
information. Unlike the bound on the average mutual information, the value
of the upper bound on the pointwise mutual information and the number of
bits by which the secret key is compressed are specified by two different pa-
rameters, and the actual realization of the bound in the pointwise case is nec-
essarily associated with a specific failure probability. The constraints among
these parameters, and the effect of their values on the system throughput,
have not been previously analyzed. We show that the necessary shortening
of the key dictated by the cryptographically correct, pointwise bound, can
still produce viable throughput rates that will be useful in practice.

7.1 Introduction
The use of quantum cryptographic protocols to generate key material for
use in the encryption of classically transmitted messages has been the sub-
ject of intense research activity. The first such protocol, known as BB84 [1],
can be realized by encoding the quantum bits representing the raw crytpo-
graphic key as polarization states of individual photons. The protocol results
in the generation of a shorter string of key material for use by two individ-
uals, conventionally designated Alice and Bob, who wish to communicate
using encrypted messages that cannot be deciphered by a third party, con-
ventionally called Eve. The unconditional secrecy of BB84 has been proved
under idealized conditions, namely, on the assumption of pure single-photon
sources and in the absence of various losses introduced by the equipment
that generates and detects the photons or by the quantum channel itself [2].
The conditions under which secrecy can be maintained under more realistic
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circumstances have been studied extensively [3–6]. Our analysis of the secrecy
of a practical implementation of the BB84 protocol simultaneously takes into
account and presents the full set of analytical expressions for effects due to
the presence of pulses containing multiple photons in the attenuated output
of the laser, the finite length of individual blocks of key material, losses due
to error correction, privacy amplification, and authentication, errors in polar-
ization detection, the efficiency of the detectors, and attenuation processes in
the transmission medium [7,13].

We consider particular attacks made on individual photons, as opposed to
collective attacks on the full quantum state of the photon pulses. The extension
to other protocols, such as B92 [8] is straightforward, but is not discussed here
because of limitations of space. We analyze important subtleties that arise in
the practical implementation of privacy amplification in which the distinction
between averaging over hash functions, on the one hand, and making use of
a particular hash funtion, on the other, yield different bounds on the mutual
information available to an enemy eavesdropper. We pay special attention to
the consequences of this distinction on the resulting throughput of secret bits,
which is a crucial figure-of-merit in assessing the viability of a practical key
distribution system.

7.2 Presentation of the Effective
Secrecy Capacity

The protocol begins when Alice selects a random string of m bits from which
Bob and she will distill a shorter key of L bits which they both share and about
which Eve has exponentially small information. We define the secrecy capac-
ityS as the ratio of the length of the final key to the length of the original string

S = L
m

. (7.1)

This quantity is useful for two reasons. First, it can be used in proving the
secrecy of specific practical quantum cryptographic protocols by establishing
that

S > 0 (7.2)

holds for the protocol. Second, it can be used to establish the rate of generation
of key material according to

R= S
τ

, (7.3)

where τ is the pulse period of the initial sequence of photon transmissions.
Several scenarios in which useful key generation rates can be obtained are
described in Ref. [7].

The length of the final key is given by

L = n − (eT + q + t + ν) − (a + gpa ). (7.4)

The first term n, is the length of the sifted string. This is the string that remains
after Alice has sent her qubits to Bob, and Bob has informed Alice of which



P1: Naresh
Bahill.cls DK5859˙C007 September 21, 2005 14:11

148 Quantum Communications and Cryptography

qubits were received and in what measurement basis, and Alice has indicated
to Bob which basis choices correspond to her own. We consider here the
important special case where the number of photons in the pulses sent by
Alice follow a Poisson distribution with parameter µ. This is an appropriate
description when the source is a pulsed laser that has been attenuated to
produce weak coherent pulses. In this case, the length of the sifted string may
be expressed as [7]

n = m
2

[

ψ≥1(ηµα)(1 − rd) + rd

]

, (7.5)

where η is the efficiency of Bob’s detector, α is the transmission probability
in the quantum channel, and rd is the probability of obtaining a dark count
in Bob’s detector during a single pulse period. ψ≥k (X) is the probability of
encountering k or more photons in a pulse selected at random from a stream
of Poisson pulses having a mean of X photons per pulse:

ψ≥k(X) ≡
∞∑

l=k

ψl(X) =
∞∑

l=k

e−X Xl

l!
, (7.6)

Other types of photon sources may be treated by appropriate modifications of
Equations (7.5) and (7.6). A comprehensive treatment of this subject, including
an extensive analysis of factors contributing to α, is found in Ref. [7].

The next terms represent information that is either in error or that may
be leaked to Eve during the rest of the protocol. This information is removed
from the sifted string by the algorithm used for privacy amplification, and so
the corresponding number of bits must be subtracted from the length of the
sifted string to obtain the size of the final key that results.

The first such term, eT , represents the errors in the sifted string. This may
be expressed in terms of the parameters already defined and the intrinsic
channel error probability rc :

eT = m
2

[

ψ≥1(ηµα)rc(1 − rd) + rd

2

]

, (7.7)

where the intrinsic channel errors are due to relative misalignment of Alice’s
and Bob’s polarization axes and, in the case of fiber optics, the dispersion
characteristics of the transmission medium. These errors are removed by an
error correction protocol that results in additional q bits of information about
the key being transmitted over the classical channel. We express this as

q ≡ Q
(

x,
eT

n

)

eT

= xh(eT/n)

eT/n
eT (7.8)

where h(p) is the binary entropy function for a bit whose a priori probability
of being 1 is p. The factor x is introduced as a measure of the ratio by which a
particular error correction protocol exceeds the theoretical minimum amount
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of leakage given by Shannon entropy [9]:

qmin = nh(eT/n) = h(eT/n)

eT/n
eT (7.9)

The next term, t, is an upper bound for the amount of information Eve can
obtain by direct measurement of the polarizations of single-photon pulses.
This upper bound can be expressed as

t = TeT (7.10)

where T is given by [7,10,11]

T(n1, eT , eT,1, ε) =
(

n1

eT
− eT,1

eT

)

Ī R
max

(
eT,1

n1
+ ξ(n1, ε)

)

+ξ(n1, ε)
n1

eT

(

1 − eT,1

n1

)1/2

, (7.11)

with

Ī R
max(ζ ) ≡ 1 + log2

[

1 − 1
2

(
1 − 3ζ

1 − ζ

)2
]

, (7.12)

and ξ is defined by

ξ(n1, ε) ≡ 1√
2n1

erf−1
(1 − ε). (7.13)

In the above equation ε is a security parameter that gives the likelihood for
a successful eavesdropping attack against a single-photon pulse in the stream.

Finally, we have used

n1 = m
2

[

ψ1(ηµα)(1 − rd) + rd

]

(7.14)

and

eT,1 = m
2

[

rcψ1(ηµα)(1 − rd) + rd

2

]

, (7.15)

which are the contributions to n and eT from the subset of Alice’s pulses for
which exactly one photon reaches Bob.

The next term, ν, is the information leaked to Eve by making attacks on
pulses containing more than one photon. There are a variety of possible at-
tacks, including coherent attacks that operate collectively on all the photons
in the pulse. We restrict our attention to disjoint attacks that single out each
individual photon. Even with this restriction, there are a number of alterna-
tives. It is not clear that all possible attacks with this restriction have been
enumerated in research carried out to date. In this analysis, we consider the
situation in which Eve can carry out three important types of attacks. Eve can
perform a direct attack by making direct measurements of the polarization
of some subset of the photons and allowing the rest to continue undisturbed
(this is sometimes called an “unambiguous state discrimination” (USD) at-
tack). She can also perform an indirect attack by storing some of the photons
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until she learns Alice’s and Bob’s basis choices by eavesdropping on their
classical channel. She then measures the stored photons in the correct basis
to determine unambiguously the value of the bit (this is sometimes called a
“photon number splitting” (PNS) attack). Finally, she can make a combined
attack by using the two strategies in some combination. In Ref. [7] it is shown
that the optimum attack is always either a direct or an indirect attack, depend-
ing on the value of a parameter y, which depends on channel and detector
characteristics and the technological capabilities attributed to Eve [7]. For the
case of a fiber optic channel, it is possible in principle for Eve to replace
the cable with a lossless medium, so that those pulses whose polarizations
she can measure are guaranteed to reach Bob. In this case we take y = η. For
the free-space case, such an attack may not be feasible, but she can achieve a
similar effect by using entanglement. In this version of the indirect attack, Eve
and an accomplice located near Bob prepare pairs of entangled photons in ad-
vance. Eve then entangles one of these pairs with a photon emitted by Alice.
Her accomplice can now make measurements on the entangled state, gaining
information about the photons at Eve’s location without losing photons to the
attenuation in the channel. If we allow for such attacks, we still have y = η.
If we do not attribute this level of technology to Eve, it is appropriate to take
y = ηα. Note also that Eve can perform direct attacks using classical optical
equipment, but that the indirect attacks require the use of a quantum memory.

There are three regions of interest. If y > 1 − 1√
2

(i.e., y >∼ 0.293), the indi-
rect attack is stronger, and the maximum information that Eve can obtain is

νmax = m
2

[[ψ≥2(µ) − (1 − y)−1

· {e−yµ − e−µ[1 + µ(1 − y)]}]] . (7.16)

If y < 1 − 1
3
√

2
(i.e., y <∼ 0.206), the direct attack is stronger, and Eve’s informa-

tion is

νmax = m
2

[

ψ2(µ)y + 1

−e−µ

(√
2 sinh

µ√
2

+ 2 cosh
µ√

2
− 1

) ]

. (7.17)

Finally, if y lies between these two regions, the relative strength of the attacks
depends on the number of photons in the pulse. The information leaked to
Eve is

νmax = m
2

[[

ψ2(µ)y + e−µ

(

sinh µ −
√

2 sinh
µ√

2

)

+
∞∑

k=2

ψ2k(µ)

{

θ(σe(k, y) − 1)[1 − (1 − y)2k−1]

+ [1 − θ(σe(k, y) − 1)](1 − 21−k)

}]]

, (7.18)
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where we have introduced the function

σe(k, y) = 1 − (1 − y)2k−1

1 − 21−k
. (7.19)

For a photon pulse with 2k photons, σe(k, y) is greater than 1 if the indirect
attack is stronger and less than 1 if the direct attack is stronger. For odd
numbers of photons, the direct attack is always stronger in this region [7].

The significance of these results for Eve is evident. If the key distribution
system is operating in the region of large y, her optimal attack is always the
indirect attack. If the system operates in the region of small y, the direct attack
is optimal. If the system operates in the middle region, Eve optimizes her
attack by measuring nondestructively the number of photons in the incoming
pulses and then selecting the attack for each pulse according to the number
of photons it contains.

In Figure 7.1 we plot the y-number line, divided into the three optimal
attack regions for multiphoton pulses subjected to any of the direct (USD),
indirect (PNS) or combined individual attacks. It should be noted that, for
many conceivable practical quantum cryptography systems, the values of
the relevant parameters are such that one will naturally be located in Region
II on the plot, which implies that the direct (USD) attack is typically going to be
stronger than the indirect (PNS) attack. For instance, a typical system may have
photon detectors with efficiencies of about η � 0.5, and the quantum channel

odd photon number: direct attack

even photon number:

σe ≡

σe<1
σe>1

1 – (1–y)2k–1

1 – 21–k

2k = number of photons

indirect attack
direct attackdirect attack indirect attack

Region II Region III Region I

0 y
.206 .296

y  <  1
1

–
3 2

<  y  <  1
11

–
3 2

1
1

–
22

1  – <  y  

y ≡ ηα : the value of y when the enemy cannot effectively eliminate the line attenuation

y ≡ η : the value of y when the enemy can effectively eliminate the line attenuation

or

Figure 7.1 Optimal attack regions for multiphoton pulses.
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may typically exhibit attenuation values of α � .01 (or worse), which yields a
value of y � .005 (at most), squarely within Region II.

The expressions for ν represent upper bounds on the information that is
leaked to Eve by attacks on the individual photons of multiphoton pulses. In
Ref. [7] it is shown that Eve can always choose an eavesdropping strategy to
achieve this upper bound as long as Bob does not counterattack by monitoring
the statistics of multiple detection events that occur at his device. Even with
this proviso, the upper bounds are only a fraction of the information contained
in the multiphoton pulses. This indicates that the assumption, common in the
literature, that Alice and Bob must surrender all this information to Eve is
overly restrictive.

The next two terms are grouped together at the end of the expression
because their effect on S vanishes in the limit of large m. The first of these, a ,
is the authentication cost. This is the number of secret bits that are sacrificed as
part of the authentication protocol to ensure that the classical transmissions for
sifting and error correction occur between Alice and Bob without any “man-
in-the-middle” spoofing by Eve. For the authentication protocols described
in Ref. [7], the authentication cost is

a(n, m) = 4{gauth + log2 log2 [2n(1 + log2 m)]}
· log2 [2n(1 + log2 m)]

+ 4[gauth + log2 log2(2n)] log2(2n)

+ 4(gEC + log2 log2 n) log2 n

+ 4(gauth + log2 log2 gEC) log2 gEC

+ g̃EC

+ 4(gauth + log2 log2 g̃EC) log2 g̃EC. (7.20)

The first term above is not strictly necessary for security, but is useful in iden-
tifying situations in which the authentication process has been compromised.
The security parameters gauth, gEC, and g̃EC are adjusted to limit the probability
that some phase of the authentication fails to produce the desired result. For
instance, the probability that Eve can successfully replace Alice’s transmis-
sions to Bob with her own transmissions is bounded by 2−gauth . The probability
that Alice’s and Bob’s copies of the key do not match after completion of the
protocol is bounded by 2−gEC + 2−g̃EC .

The last term, gpa , is a security parameter that characterizes the effective-
ness of privacy amplification. It is the number of bits that must be sacrificed to
limit the average amount of information, 〈I 〉, about Alice’s and Bob’s shared
key that Eve can obtain to an exponentially small number of bits [12]:

〈I 〉 ≤ 2−gpa

ln 2
. (7.21)
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The inequality above furnishes an average bound defined with respect to
hash functions of a certain type. In specific applications one is necessarily
interested in pointwise bounds associated with particular hash functions. This
is further discussed below.

The fundamental expression for the secrecy capacity may now be written
in the limit of small dark count, rd � 1:

S = 1
2

[

ψ≥1(ηµα) · (1 − f rc) +
(

1 − f
2

)

rd − ν̃

]

− gpa + a
m

, (7.22)

where we have defined

f ≡ 1 + Q + T, (7.23)

and

ν̃ ≡ 2νmax/m, (7.24)

so that the rescaled quantity ν̃ is independent of m.
Note that the pulse intensity parameter µ can be chosen to maximize

the secrecy capacity S and thus also the key generation rate R. A detailed
investigation of the optimum pulse intensity under various conditions of
practical interest and the resulting secrecy capacities and rates can be found
in Ref. [7] and Ref. [13].

7.2.1 Secrecy Capacity for Keys of Finite Length
Most of the terms appearing in Equation (7.4) for the length of the secret key,
L , are directly proportional to the length of the block of raw key material,
m. After dividing through by m (cf Equation (7.1)), the contributions of these
terms to the secrecy capacity S are independent of m. Three of the terms in L
are not proportional to m, namely gpa , a , and t. They result in contributions
to the effective secrecy capacity that retain explicit dependence on m.

The third contribution, t, requires additional explanation. Its m depen-
dence arises from a precise application of the privacy amplification result,
Equation (7.21), derived by Bennett et al. [12]. The bound on Eve’s knowl-
edge of the final key is obtained by assuming she has obtained a specific
amount of Renyi information prior to privacy amplification. Starting from
this point, Slutsky et al. [10] explicitly introduce a security parameter ε (see
Equation (7.13)) to bound the probability that Eve has obtained more than t
bits of Renyi information as a result of her attacks on single-photon pulses.

By contrast, the analysis of Lütkenhaus [3] introduces no parameter anal-
ogous to ε. Furthermore, the expression for the amount of privacy amplifica-
tion compression given in Ref. [3] is linear in the block size, thus resulting in
a contribution to the secrecy capacity that is independent of the block size.
While this approach, as developed in Ref. [3], does yield a bound on Eve’s in-
formation about the key shared by Alice and Bob after privacy amplification,
explicit results pertaining to the amount of information Eve obtains on the key
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prior to privacy amplification are not presented. Such results have important
practical consequences. For example, Eve’s likelihood of obtaining more than
a given fraction of the raw key from her attacks on single photons increases
as the block size of the key material is reduced. One therefore expects that the
amount of privacy amplification compression required to ensure secrecy will
increase as well. However, since this conclusion is strictly a consequence of
the information Eve obtains prior to privacy amplification, it cannot directly
be inferred from the analysis of Ref. [3]. In contrast, the approach of Ref. [10],
which we adopt in our analysis, relates the privacy amplification compres-
sion directly to the amount of information leaked to Eve prior to privacy
amplification. This makes it possible to analyze the effect of the block size
on the amount of privacy amplification compression, and it concomitantly
introduces an explicit security parameter, ε, as a bound on Eve’s chances of
mounting a successful attack on strings of finite length.

7.3 Privacy Amplification: Pointwise
Bounds and Average Bounds

Quantum cryptography has been heralded as providing an important ad-
vance in secret communications because it provides a guarantee that the
amount of mutual information available to an eavesdropper can uncondi-
tionally be made arbitrarily small. Any practical realization of quantum key
distribution that consists only of sifting, error correction, and authentication
will allow some information leakage, thus necessitating privacy amplification.
Of course, one might contemplate carrying out privacy amplification after ex-
ecuting a classical key distribution protocol. In the absence of any assumed
conditions on the capability of an eavesdropper, it is not possible to deduce
a provable upper bound on the leaked information in the classical case, so
that the subsequent implementation of privacy amplification would produce
nothing, i.e., the “input” to the privacy amplification algorithm cannot be
bounded, and as a result neither can the “output.” In the case of quantum
key distribution, however, the leaked information associated with the string
that is the input to the privacy amplification algorithm can be bounded, and
this can be done in the absence of any assumptions about the capability of
an eavesdropper. This bound is not good enough for cryptography, however.
Nevertheless, this bound on the input allows one to prove a bound on the
output of privacy amplification, so that one deduces a final, unconditional
upper bound on the mutual information available to an eavesdropper. More-
over, this bound can be made arbitrarily small and hence good enough for
cryptography, at the cost of suitably shortening the final string. Except that
as usually presented this is not exactly true.

The above understanding is usually presented in connection with the
standard result of generalized privacy amplification given by Bennett et al.
[12], which applies only to the average value of the mutual information. The
average is taken with respect to a set of elements, namely, the universal2 class
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of hash functions introduced by Carter and Wegman [14]. The actual imple-
mentation of privacy amplification, however, will be executed by software
and hardware that selects a particular hash function. The bound on the av-
erage value of the mutual information does not apply to this situation: it
does not directly measure the amount of mutual information available to an
eavesdropper in practical quantum cryptography.

In this section we calculate cryptographically acceptable pointwise
bounds on the mutual information that can be achieved while still main-
taining sufficiently high throughput rates. In contrast to a direct application
of the privacy amplification result of Ref. [12], we must also consider and
bound a probability of choosing an unsuitable hash function and relate this
to cryptographic properties of the protocol and the throughput rate. The re-
lation between average bounds and pointwise bounds of random variables
follows from elementary probability theory, as was also described in Ref. [15].

7.3.1 Privacy Amplification
In ideal circumstances, the outcome of a k-bit key-exchange protocol is a k-bit
key shared between Alice and Bob that is kept secret from Eve. Perfect secrecy
means that from Eve’s perspective the shared key is chosen uniformly from
the space of k-bit keys. In practice, one can only expect that Eve’s probability
distribution for the shared key is close to uniform in the sense that its Shannon
entropy is close to its largest possible value k. Moreover, because quantum
key-exchange protocols implemented in practice inevitably leak information
to Eve, Eve’s distribution of the key is too far from uniform to be usable for
cryptographic purposes. Privacy amplification is the process of obtaining a
nearly uniformly distributed key in a key space of smaller bit size.

We review the standard assumptions of the underlying probability model
of Ref. [12]: � is the underlying sample space with probability measure P.
Expectation of a real random variable X with respect to P is denoted EX. W is
a random variable with key material known jointly to Alice and Bob, and V is
a random variable with Eve’s information about W. W takes values in some
finite key spaceW . The distribution of W is the function PW(w) = P(W = w)

for w ∈W . Eve’s distribution having observed a value v of V is the conditional
probability PW |V=v(w) = P(W = w|V = v) onW . In the discussion that follows,
v is fixed, and accordingly we denote Eve’s distribution of Alice and Bob’s
shared key given v by PEve. H and R denote Shannon and Renyi entropies of
random variables defined onW relative to PEve.

Definition 7.1 SupposeY is a key space. If α is a positive real number, a mapping γ :
W→Y is an α strong uniformizer for Eve’s distribution iff H(γ ) = �y∈YPEve(γ

−1

(y)) log2 PEve(γ
−1(y)) ≥ log2 |Y| − α.

If γ is an α strong uniformizer, then we obtain a bound on the mutual
information between Eve’s data V and the image of the hash transformation
Y as

I (Y, V) = I (Y) − H(Y|V) = log2 |Y| − H(γ ) ≤ α. (7.25)
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Definition 7.2 Let � be a random variable with values in YW (space of func-
tions W→Y) which is conditionally independent of W given V = v, i.e., P(� =
γ and W = w|V = v) = P(� = γ |V = v) P(W = w|V = v). � is an α > 0 average
uniformizer for Eve’s distribution iff

E(H�) ≥ log2 |Y| − α, (7.26)

where H� = H�(z) = H(�(z)).

If � is an α average uniformizer, the bound is on the mutual information
averaged over the set �:

I (Y, �V) = I (Y) − H(Y|�V) = log2 |Y| − E(H�) ≤ α. (7.27)

Uniformizers are produced stochastically. Notice that by the conditional
stochastic independence assumption, z can be assumed to vary independently
of w ∈W with the law PEve.

Proposition 7.1 Suppose � is an α average uniformizer. Then for every β > 0,
�(ω) is a β strong uniformizer for ω outside a set of probability α

β
.

PROOF. Note that for any γ :W→Y , Hγ is at most log2 |Y|. Thus log2 |Y| −
H� is a nonnegative random variable. Applying Chebychev’s inequality to
log2 |Y| − H�, it follows that for every β > 0,

P(log2 |Y| − β ≥ H�) ≤ 1
β

E(log2 |Y| − H�)

= 1
β

(log2 |Y| − E(H�))

≤ 1
β

α.

The random variable � is strongly universal2 iff for all x �= x′ ∈ X,

P{z : �(z)(x) = �(z)(x′)} ≤ 1
|Y| . (7.28)

The following is the main result of Ref. [12]:

Proposition 7.2 (BBCM Privacy Amplification). Suppose � is a univer-
sal2 family of mappings W→Y conditionally independent of W. Then � is a
2log2 |Y|−R(X)

ln 2 average uniformizer for X.

7.3.2 Practical Results
We will refer to the inequality that provides the upper bound on the average
value of the mutual information as the average privacy amplification bound, or
APA, and we will refer to the inequality that provides the upper bound on the
actual, or pointwise mutual information as the pointwise privacy amplifcation
bound, or PPA.
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In carrying out privacy amplification, we must shorten the key by the
number of bits of information that have potentially been leaked to the eaves-
dropper [7]. Having taken that into account, we denote by g the additional
number of bits by which the key length will be further shortened to assure
sufficient secrecy, i.e., the additional bit subtraction amount, and we refer to g
as the privacy amplification subtraction parameter. With this definition of g, Ben-
nett et al. [12] show as a corollary of Prop. 7.2 that the set of Carter-Wegman
hash functions is a 2−g/ln 2 average uniformizer. We thus have for the APA
bound on 〈I 〉, the average value of the mutual information, the inequality

〈I 〉 ≡ I (Y, �V) ≤ 2−g

ln 2
. (7.29)

In the case of the APA, the quantity g plays a dual role: in addition to represent-
ing the number of additional subtraction bits, for the APA case g also directly
determines the upper bound on the average of the mutual information.

In the case of PPA we again employ the symbol g to denote the number
of subtraction bits, as above for APA, but the upper bound on the pointwise
mutual information is now given in terms of a different quantity g′, which
we refer to as the pointwise bound parameter. Also in the case of the PPA we
need the parameter g′′, which we refer to as the pointwise probability parameter,
in terms of which we may define the failure probability Pf . This definition
is motivated by Prop. 7.1, from which we find that the Carter-Wegman hash
functions are 2−g′

/ln 2 strong uniformizers except on a set of probability

Pf ≤ 2−g

ln 2

/
2−g′

ln 2
. (7.30)

We therefore define the pointwise probability parameter as

g′′ ≡ g − g′. (7.31)

Thus the quantities g, g′ and g′′ are not all independent, and are constrained
by Equation (7.31). In terms of these parameters we have for the PPA bound
on I , the actual value of the mutual information, the inequality

I ≡ I (Y, V) ≤ 2−g′

ln 2
= 2−(g−g′′)

ln 2
(7.32)

where the associated failure probability Pf is bounded by

Pf ≤ 2−g′′
. (7.33)

The failure probability is not even a defined quantity in the APA case, but
it plays a crucial role in the PPA case. Thus the bound on the pointwise
mutual information is directly determined by the value of the parameter g′,
with respect to which one finds a tradeoff between g, the number of additional
compression bits by which the key is shortened, and g′′, the negative logarithm
of the corresponding failure probability.
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7.3.3 Application of Pointwise Bound
Operationally, it will usually be the case in practice that end users of quantum
key distribution systems will be first and foremost constrained to ensure that
a given upper bound on the pointwise mutual information available to the
enemy is realized.

To appreciate the significance of the distinction between the PPA and APA
results, we will consider an illustrative example that shows how reliance on
the APA bound can lead to complete compromise of cryptographic security.
We begin with the APA case. As noted above, in the case of APA, the privacy
amplification subtraction parameter, which we will now denote by gAPA to
emphasize the nature of the bound, directly specifies both the upper bound
on 〈I 〉 and the number of bits by which the key needs to be shortened to
achieve this bound. Without loss of generality we take the value of the privacy
amplification subtraction parameter to be given by gAPA = 30, which means
that, in addition to the compression by the number of bits of information
that were estimated to have been leaked, the final length of the key will be
further shortened by an additional 30 bits. This results in an upper bound on
the average mutual information given by 〈I 〉 ≤ 2−30/ ln 2 � 1.34 × 10−9, which
we take as the performance requirement for this example. While this might
appear to be an acceptable bound, the fact that it applies only to the average of
the mutual information of course means that it is not the quantity we require.

We turn to the PPA case, with respect to which we will now refer to the
privacy amplification subtraction parameter as gPPA. In order to discuss the
PPA bound we must select appropriate values amongst gPPA, g′ and g′′. In the
APA case discussed above, the bound on the (average) mutual information
and the number of subtraction bits are both specified by the same parame-
ter gAPA. In the PPA case, the number of subtraction bits and the parameter
that specifies the bound on the (pointwise) mutual information are not the
same. To achieve the same value for the upper bound on I as we discussed
for the upper bound on 〈I 〉 above, we must select g′ = 30 as the value of the
pointwise bound parameter. From Equation (7.32), this indeed yields the re-
quired inequality I ≤ 2−30/ ln 2 � 1.34 × 10−9. However, with respect to this
requirement on the value on the mutual information, i.e., the required final
amount of cryptographic secrecy, there are a denumerable set (since bits are
discrete) of different amounts of compression of the key that are possible to se-
lect, each associated with a corresponding failure probability, Pf , in the form
of ordered pairs

(
gPPA, g′′) that satisfy the constraint given by gPPA = g′ + g′′

(Equation (7.31)).
Our starting point was the secrecy performance requirement that must

be satisfied. On the basis of the APA analysis above, one might conclude
that in order to achieve the required secrecy performance constraint it is suf-
ficient to shorten the key by 30 bits. However in the PPA case, satisfying
the same performance requirement and shortening the key by 30 bits means
choosing identical values for the privacy amplification subtraction parameter
(gPPA = 30) and the pointwise bound parameter (g′ = 30). However, we note
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Figure 7.2 Failure probability versus secrecy bound for various privacy amplification
compressions.

from Equation (7.31) that in the case of the PPA bound, gPPA and g′ become
the same only when g′′ = 0, which corresponds to an upper bound on the fail-
ure probability of 100%. (In other words, there is no guarantee that privacy
amplification is successful.) This is clearly cryptographically useless!

This example emphasizes the importance of assuring a sufficiently small
failure probability in addition to a sufficiently small upper bound on the mu-
tual information. As we see from the above example, the APA result provides
no information about the correct number of subtraction bits that are required
in order to achieve a specified upper bound on the pointwise mutual infor-
mation with a suitable failure probability, for which it is essential to use the
PPA result instead. In Figure 7.2 we have plotted the failure probability as a
function of the upper bound on the mutual information, for a family of choices
of gPPA values. Returning to the example discussed above for the APA bound,
we see that if we need to achieve an upper bound on I of about 10−9, we may
do so with a failure probability of about (coincidentally) 10−9, at the cost of
shortening the final key by 60 bits: the secrecy is dictated by the pointwise
bound parameter value of g′ = 30, which is effected by choosing gPPA = 60,
corresponding to Pf � 10−9. Smaller upper bounds can obviously be obtained,
with suitable values of the failure probability, at the cost of further shortening
of the key.

In Figure 7.3 we plot the throughput of secret Vernam cipher material in
bits per second, as a function of bit cell period, for the two bit subtraction
amounts gPPA = 30 and gPPA = 60. The example chosen is a representative sce-
nario for applied quantum cryptography. In calculating the rate we follow
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Figure 7.3 Effective throughput of secret Vernam cipher for different g values.

the method described in Ref. [7]. We assume the use of an attenuated, pulsed
laser, with Alice located on a low Earth orbit satellite at an altitude of 300
kilometers and Bob located at mean sea level, with the various system pa-
rameters corresponding to those for Scenario (i) in Section 5.3.2 in Ref. [7],
except that here the source of the quantum bits operates at a pulse repetition
frequency (PRF) of 1 MHz, and we specifically assume that the enemy does
not have the capability of making use of prior shared entanglement in con-
ducting eavesdropping attacks. We see that the additional cost incurred in
subtracting the amount required to achieve the required mutual information
bound and failure probability reduces the throughput rate by an amount that
is likely to be acceptable for most purposes. For instance, for a source PRF
of 1 MHz, we find that the throughput rate with a value of gPPA = 30 is 5614
bits per second. With a subtraction amount of gPPA = 60, the throughput rate
drops to 5563 bits per second [16].

7.4 Conclusions
We have presented results for the secrecy capacity of a practical quantum
key distribution scheme using attenuated laser pulses to carry the quantum
information and encoding the raw key material using photon polarizations
according to the BB84 protocol. This analysis of the secrecy of a practical
implementation of the BB84 protocol simultaneously takes into account and
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presents the full set of analytical expressions for effects due to the presence of
pulses containing multiple photons in the attenuated output of the laser, the fi-
nite length of individual blocks of key material, losses due to error correction,
privacy amplification, and authentication, errors in polarization detection,
the efficiency of the detectors, and attenuation processes in the transmission
medium for the implementation of BB84 described in Ref. [7]. The transmis-
sion medium may be either free space or fiber optic cable. The results apply
when eavesdropping is restricted to direct, indirect, and combined attacks
on individual photons. The extension of these results to include collective at-
tacks on multiple-photon states in full generality is the subject of continuing
research. Of particular importance are the findings that only a portion of the
information in the multiphoton pulses need be lost to Eve and the identifi-
cation of those regions of operation for which Eve’s attack is optimized by
choosing direct attacks, indirect attacks, or selecting the attack in real time
based on the number of photons in the pulse. The assumption, common in
the literature, that Alice and Bob must surrender all of this information to Eve
is overly conservative. Our analysis presented in Ref. [13] compares quanti-
tatively the results described here for attenuated laser sources with what is
achievable using ideal single-photon sources.

The significance and proper implementation of privacy amplification in
quantum cryptography are clarified by our analysis. By itself the bound on
the average value of the mutual information presented in Ref. [12] does not al-
low one to determine the values of parameters required to bound the actual,
pointwise value of the mutual information. Those parameters must satisfy
a constraint, which in turn implies a constraint on the final throughput of
secret key material. We have rigorously derived the cryptographically mean-
ingful upper bound on the pointwise mutual information associated with the
use of some specific privacy amplification hash function and shown that the
corresponding requirements on the shortening of the key still allow viable
throughput values.
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8.1 Introduction
Cryptography, i.e., the process of scrambling and encoding a plaintext into
a cyphertext and then back again, has been in use for centuries. Over time,
these techniques have evolved from simple substitution cyphers (where, for
example, a letter is replaced with another symbol) to a range of sophisticated
mathematical methods due to the advent of computers. Traditionally, cryptog-
raphy involves only two parties: the sender and the receiver, commonly know in
the literature as Alice and Bob. In some applications, however, the sender may
want to send the secret to more than one receiver so that only through collab-
oration can a subset of receivers recover it. This situation arises, for example,
when the sender cannot trust each receiver individually but can trust a num-
ber of receivers collectively. Protocols that facilitate this type of cryptocommu-
nication are known as secret sharing protocols. The role of Alice, or the sender,
is now replaced by a dealer who distributes the secret. The sole receiver, Bob, is
now replaced by a number of players, none of whom can be completely trusted.

An important class of secret sharing protocols is (k, n) threshold secret
sharing [1], in which the dealer encodes and distributes the secret information
to n players. Any subset of k players (the access structure) must collaborate to
retrieve the secret information, while the remaining recipients outside the
subset (the adversary structure) learn nothing, even when conspiring together.
This protocol is widely used to distribute information over classical networks
such as the Internet and distributed computer networks.

Quantum state sharing is the quantum equivalent of classical secret sharing,
where the classical information is replaced by an unknown quantum state, as
illustrated in Figure 8.1. In the ideal case, the access structure can reconstruct
the secret quantum state perfectly, even though it appears partially destroyed
as a result of malicious and conspiring parties, or catastrophic quantum chan-
nel failures.

This chapter is structured in the following way: Section 8.2 gives the
reader some background information about classical secret sharing schemes.
Section 8.3 discusses how these concepts can be extended to distribute fragile
quantum states. It also shows the differences between quantum state sharing

players

adversary
 structure

φ1
φ2

φ3

φn-1

φn
dealer

φ1

φk-1

φk

ψin

  access
 structure

ψout

ψin

Figure 8.1 Illustration of a quantum state sharing protocol.



P1: Manoj

Bahill.cls DK5859˙C008 September 20, 2005 12:49

Chapter 8: Quantum State Sharing 165

and the similarly named, but different, quantum secret sharing protocol pro-
posed by Hillery et al. [2]. In Section 8.4 we discuss how to implement exper-
imentally and characterize a (2,3) threshold quantum state sharing protocol.
Section 8.5 shows the first experimental demonstration of a nontrivial thresh-
old quantum state sharing scheme. Finally, Section 8.6 presents an outlook on
the applications of this protocol.

8.2 Classical Secret Sharing
The first formal allusion to secret sharing (though not using this nomencla-
ture) was made by Liu [3] through a simple combinatorial problem in the
late 1960s. Liu’s problem is illustrated in Figure 8.2. Suppose a group of 11

Figure 8.2 The problem of Liu’s vault. How many locks on the vault, and how many
keys do the scientists (Félix Bloch, Satyendranath Bose, Erwin Schrödinger, Marie
Curie, Albert Einstein, David Hilbert, Hendrick Lorentz, Max Planck, Louis de Broglie,
Paul Dirac, and Wolfgang Pauli) need to have so that any permutation of six or more
of them will be able to open the vault?
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scientists are working on a secret project and want to conceal their results in
a vault so that none of them can have individual access. The secret document
can only be retrieved when a majority of the 11 scientists, that is, any permu-
tation of six or more of them, are present. Liu’s vault question is: If a key can
only open one lock, what is the minimum number of locks and keys needed
to grant this form of access? The answer can be easily calculated to be 462
locks on the vault, and 252 keys per scientist or a total of 2772 keys.

In general where there are n scientists and at least k of them have to
collaborate to open the vault, the total number of locks is Cn

k−1 = n!/((k −
1)!(n + 1 − k)!), and each scientist has to carry Cn−1

k−1 keys. It becomes clear from
this example that this kind of protocol is impractical when working within
the mechanical paradigm. Resource requirements become exponentially large
when the number of scientists increases.

Shamir [1] and Blakley [4] independently formalized Liu’s problem in
1979. Their goal was to divide some secret information D into n shares D1,
D2, . . . , Dn in such a way that

• The knowledge of k or more Di (where k ≤ n) makes D easily com-
putable. The ensemble of all the permutations of such shares is referred
to as the access structure.

• The knowledge of k − 1 or fewer Di gives absolutely no information
on D. The ensemble of these shares is known as the adversary structure.

Such schemes are called (k, n) threshold secret sharing. Shamir’s idea is
based on polynomial interpolation [1]. The dealer, who wants to share some
secret information, chooses a polynomial P(x) of degree k − 1, and distributes
n pairs of values (x1, P(x1)), (x2, P(x2)), . . . , (xn, P(xn)) to the players. The
secret information can be, for instance, the y-axis intercept of the polynomial
P(0). It is then clear that any k or more players are able to recover the original
polynomial using interpolation of their values (see Figure 8.3(a)). On the
other hand, any subset of k − 1 or fewer players face an infinite possibility
of polynomials that have all their values included. Therefore no information
about the secret can be recovered (see Figure 8.3(b)).

Blakley’s secret sharing protocol, on the other hand, is based on projective
spaces [4]. In his scheme, the dealer distributes a point in a projective space of
dimension k to each player. Each of the n players therefore receives a subspace
of dimension k − 1 (i.e., a hyperplane) comprising the secret data point. k or
more players can then intersect their hyperplanes together to retrieve the
secret. Similar to Shamir’s protocol, k − 1 or fewer players will not be able to
obtain a unique point by the intersection of their hyperplanes and are thus
unable to recover the secret.

Apart from avoiding the explosion of resources required by a mechanical
implementation of secret sharing, both Shamir’s and Blakley’s mathematical
methods present several additional advantages. First, the size of information
distributed to each player does not exceed the size of the secret. This allows
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Figure 8.3 Shamir’s polynomial (4, n) threshold secret sharing scheme. (a) Four play-
ers can collaborate in order to retrieve the original third-order polynomial P(x), and
thus the secret information P(0); (b) while three players get infinitely many solutions
and are unable to obtain any information.

secret sharing to be efficient. Second, while keeping the secret unchanged,
new players can be added or old players deleted without the necessity of
modifying the existing access structure. This dynamicity is valuable in many
field situations. Third, when the situation arises, it is easy to completely re-
generate new shares without changing the secret. All that is needed is to
generate a new polynomial or new hyperplanes in projective spaces. Finally,
it is possible to improve on the threshold structure by creating a hierarchical
access structure where more shares are dealt to a certain subset of players.

Secret sharing, in the context of information technology, is still a very ac-
tive research area. A lot of new schemes, developments and applications have
been proposed. Among them are proposals for proactive secret sharing and
verifiable secret sharing. Proactive secret sharing [5] addresses the compro-
mising, loss, or corruption of the shares by periodically renewing the shares
without changing the secret. Verifiable secret sharing [6] offers a way for the
players to check the authenticity of the shares they receive from the dealer, or
the other players from the access structure.

Some applications of secret sharing are

• The secure access of corporate funding. In order to secure the money in one
of its accounts, the company can use a (k, n) threshold secret sharing
protocol to share the account access code among all its authorized
employees. In doing so it ensures that at least k stackholders need
to collaborate to access the fund and thus lower the risks of having
money being stolen, or syphoned off, by any single person or small
group.

• The clipper chip. This is a National Institute of Standards and Technol-
ogy proposal to provide the governmental agencies the possibility of
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tapping private encrypted communications but still allowing some
level of protection against unauthorized tapping [7]. To achieve this,
the key used by the private parties to communicate would be shared
between two governmental escrow agencies. Both agencies would
then need to be contacted independently in order to obtain the cryp-
tographic key to tap the communications, thus providing a basic level
of protection to the citizens.

• Electronic voting. The privacy of an electronic voting procedure can be
ensured by secret sharing [6]. Here is a short explanation on how to
proceed. First, the voters need to split their vote into k shares and give
them to a group of trusted tallying authorities (who can also verify
the identity and uniqueness of the voter). At this point no tallying
authority knows what has been voted. These tallying authorities will
then count their partial votes independently and send their results to a
central authority. Finally, the central authority obtains the final result
by concatenating all the partial results together.

8.3 Translating Secret Sharing
to the Quantum Domain

As we have seen in the previous section, secret sharing is an important crypto-
graphic protocol designed to distribute secret information to n players, where
certain subsets, the access structure, can be trusted, and all other subsets, the
adversary structure, cannot be trusted.

In quantum information processing, the objective in a multiplayer system
is not to distribute information but rather to distribute quantum states to
the players; hence we employ the term quantum state sharing to describe a
quantum version of secret sharing. Now the dealer distributes a pure quantum
state, or alternatively a mixed state density operator, rather than some classical
information to the players. Nevertheless, the properties of classical secret
sharing as seen in the previous section are still applicable, except that, as a
result of the no-cloning theorem [8], a majority of the players must collaborate
to extract the state. This imposes the limitation n ≤ 2k − 1 on quantum state
sharing.

Our employment of the term quantum state sharing follows the use of the
term quantum secret sharing by Cleve et al. [9], which corresponds to the quan-
tum version of secret sharing in cryptography developed by Shamir [1] and
Blakley [4]. However, we prefer to use the term quantum state sharing to quan-
tum secret sharing, as the latter term has been employed for another purpose:
protected dissemination of quantum states between completely trustworthy
parties in a hostile environment [2,10, 11]. These schemes correspond to our
(n, n) threshold quantum state sharing, which is a trivial case of general (k, n)

quantum state sharing. Hillery et al. [2] were the first to propose such a
scheme using discrete variable GHZ states. They were followed by Karlsson
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et al. [10], who included entanglement as a resource and also speculated
on the possibility of general (k, n) threshold quantum secret sharing. Tittel
et al. [11] experimentally realized the (2,2) threshold quantum secret sharing
scheme in an elegant experiment involving energy time entangled pseudo-
GHZ states. In quantum secret sharing, security against eavesdropper attacks
is of paramount importance. Ultimately such techniques offer no security
advantage over classical secret sharing used in conjunction with quantum
cryptography. Quantum state sharing, on the other hand, is concerned with
situations in which the players in the protocol are not themselves completely
trustworthy. Such a scheme was proposed by Cleve et al. [9], who gave the
full theory for (k, n) threshold quantum state sharing and provided a detailed
analysis of the (2,3) threshold quantum state sharing case.

Threshold quantum state sharing, in the spirit of Cleve et al., is interest-
ing for numerous applications. One illustrative example is the distribution
of quantum money. One of the first motivations for quantum information
theory was Wiesner’s suggestion that quantum money could be employed,
which was impervious to counterfeiting [12]. Nowadays we have an interest
in quantum resources, such as a supply of ebits, or Bell states, but in a sense
we can think of this as quantum money since money is a representation of
resources. Quantum state sharing allows the distribution of quantum money
or quantum resources to multiple players who have to collaborate in prede-
termined ways (the access structure) in order to use, or spend, this resource.
Quantum state sharing allows the quantum money to be locked in a vault until
an access structure set with sufficient numbers of keys accesses the vault and
removes the quantum money. Other, and probably more crucial, applications
of quantum state sharing will be discussed in Section 8.6.

The Cleve et al. result is important as it provides the general protocol for
threshold quantum state sharing. The drawback is that it is hard to imple-
ment. Even the simplest nontrivial case, namely the (2,3) threshold quantum
state sharing scheme, is difficult because it relies on having three qutrits avail-
able and the capability of universal transformations on these qutrits. Whereas
qutrits and higher order qudits are hard to create and manipulate [13], quan-
tum state sharing with continuous variables is feasible as shown by Tyc and
Sanders [14], who developed continuous variable (k, n) threshold quantum
state sharing and showed explicitly how to realize the (2,3) threshold quantum
state sharing special case. Their scheme utilized Einstein–Podolsky–Rosen
(EPR) entanglement [14]. This entanglement is an experimentally accessible
quantum resource [15,16] used in quantum information experiments such as
continuous variable quantum teleportation [17,18]. This scheme was adapted
to a practical scenario by Lance et al. [19], the details of which will be dis-
cussed in Sections 8.4 and 8.5. Moreover, Tyc et al. [20] demonstrated that,
in the general (k, n) threshold quantum state sharing case, the players never
need more than a single EPR-entangled pair, which is an important cost saving
for implementation of quantum state sharing protocols.
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It has been shown that any (k, n) threshold quantum state sharing schemes
with n ≤ 2k − 1 can be achieved by throwing away shares in a (k, 2k − 1)
scheme [9,14]. We can therefore restrict our analysis to the special case of
(k, 2k − 1) threshold secret sharing without any loss of generality. We may
also restrict our analysis to any set of states that span Hilbert space, since an
arbitrary state can be constructed from a linear combination of such states.
Here we consider coherent states, since they span Hilbert space and can be
readily obtained and manipulated in an experimental setting. A thorough
analysis of (k, 2k − 1) threshold quantum state sharing of coherent states can
be found in the papers of Tyc et al. [14,20]. To provide the clearest possible
analysis, and due to its relevance to the experimental work presented later in
this chapter, we restrict ourselves henceforth to the simplest nontrivial case,
(2, 3) threshold quantum state sharing.

8.4 Implementation of a (2,3) Quantum
State Sharing Scheme

In the continuous variable regime, it is convenient to represent the quan-
tum states using the Heisenberg picture of quantum mechanics. The analysis
presented in this chapter will be undertaken in this picture. In particular, we
consider states at the frequency sidebands of an electromagnetic field. A quan-
tum state is associated with the field annihilation operator â = (X̂+ + i X̂−)/2,
where X̂± are the amplitude (+) and phase (−) quadratures. These quadra-
tures are expanded into steady state 〈X̂±〉 and fluctuating δ X̂± components
respectively, with X̂± = 〈X̂±〉 + δ X̂±. The variance of the quadrature operator
is given by V± = 〈(δ X̂±)2〉.

8.4.1 The Dealer Protocol
In the dealer protocol for the (2,3) quantum state sharing scheme proposed by
Tyc and Sanders, an entangled state is utilized to encode and distribute the se-
cret quantum state to the players. One way in which this entangled state may
be generated is by interfering two amplitude quadrature squeezed beams on
a 1:1 beam splitter (x:y beamsplitter with reflectivity x/(x + y) and transmit-
tivity y/(x + y) with a relative phase shift of π/2, as shown in Figure 8.4.
Amplitude squeezed beams are so called because they exhibit an amplitude
quadrature noise variance below the quantum noise limit, while correspond-
ingly the phase quadrature has fluctuations over the quantum noise limit. The
two output beams resulting from the interference of the amplitude squeezed
beams are entangled and can be expressed as

âEPR1 = (âsqz1 + i âsqz2)/
√

2 (8.1)

âEPR2 = (i âsqz1 + âsqz2)/
√

2 (8.2)

where âsqz1 and âsqz2 are the annihilation operators of the amplitude quadra-
ture squeezed beams. The signature of this form of entanglement is that
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Figure 8.4 Schematc of the dealer protocol for the (2,3) quantum state sharing scheme.
OPA: optical parametric amplifier; ψin: secret quantum state; 1:1: 50% reflectivity
beamsplitter; φ phase delay.

correlations of both the amplitude and phase quadratures between the beams.
We therefore call the state quadrature entangled. Such entanglement is directly
analogous to the particle position-momentum entanglement described by
Einstein, Podolsky and Rosen [21], and as such it can be used to demonstrate
the EPR paradox [16].

The dealer generates the players’ shares by interfering the secret state âin
with one of the entangled beams âEPR1 on a 1:1 beam splitter. The two result-
ing output fields and the second entangled beam âEPR2 form the three shares
that are distributed to the players, as shown in Figure 8.4. The entangled state
ensures that the secret is protected from each player individually. The dealer
can further enhance the security of the scheme by displacing the coherent
amplitudes of the shares with correlated Gaussian white noise [19]. This ad-
ditional security can be arbitrarily enhanced by the dealer by increasing the
variance of the added Gaussian noise. By choosing the Gaussian noise to have
the same correlations as the quadrature entanglement, the shares can then be
expressed as

â1 = (âin + âEPR1 + δN)/
√

2 (8.3)

â2 = (âin − âEPR1 − δN)/
√

2 (8.4)

â3 = âEPR2 + δN∗ (8.5)

where δN = (δN+ + iδN−)/2 represents the Gaussian noise with mean 〈δN±〉
= 0 and variance 〈(δN±)2〉, and ∗ denotes the complex conjugate. The recon-
struction protocol used for the (2,3) quantum state sharing scheme is depen-
dent on which players constitute the access structure. The next section exam-
ines the reconstruction protocols used by the different access structure sets.
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Figure 8.5 Schematic of the reconstruction protocol for {1,2}. ψout: reconstructed
quantum state; 1:1: 50% reflectivity beamsplitter; φ phase delay.

8.4.2 Reconstruction Protocols

8.4.2.1 {1,2} Reconstruction Protocol
As proposed by Tyc and Sanders, the access structure formed by players
1 and 2, henceforth denoted as {1,2}, reconstructs the secret quantum state
by completing a Mach–Zehnder interferometer, using a 1:1 beam splitter as
shown in Figure 8.5. The resulting output from the interferometer can be
expressed as

âout = (â1 + â2)/
√

2 = âin (8.6)

Equation (8.6) clearly shows that the secret is perfectly reconstructed using
the {1,2} reconstruction protocol. In contrast, more complex protocols are
required for {2,3} or {1,3} to reconstruct the secret state.

8.4.2.2 {2,3} and {1,3} Reconstruction Protocol
Using Two OPAs

As the access structures {2,3} and {1,3} are symmetric, we will only study the
{2,3} reconstruction protocol in the following. The {1,3} reconstruction proto-
col follows an identical analysis. In the original proposal by Tyc and Sanders,
the {2,3} reconstruction protocols require two additional optical parametric
amplifiers, as shown in Figure 8.6. In this protocol, the access structure shares
from {2,3} are interfered on a 1:1 beam splitter. The two output fields are
then parametrically amplified and deamplified, respectively, using a pair of
optical amplifiers, each acting on one of the outputs. The optical parametric
amplifiers (OPAs) perform a unitary squeezing operation on the input fields,
squeezing one of the quadratures while antisqueezing the orthogonal quadra-
ture. The optical parametric amplifier acting on the first output squeezes
the amplitude quadrature, while the second optical parametric amplifier
squeezes the phase quadrature of the second output. The two beams are then
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player 1
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player 3

ψout

1:1pump
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φφ

g

1/g

1:1

{1,3} and {2,3}

Figure 8.6 Schematic of the 2 OPA reconstruction protocol for {2,3} and {1,3}. OPA(g):
optical parametric amplifier with parametric gain g; ψout: reconstructed quantum
state; 1:1: 50% reflectivity beam splitter; φ phase delay.

interfered on another 1:1 beamsplitter. The resulting output beam can then be
expressed as

δ X̂±
out = 1

2
√

2

[

δ X̂±
in

(√
g + 1√

g

)

+ 1√
2
α±(

δ X̂∓
sqz1 + δN+)

+ 1√
2
β±(

δ X̂±
sqz2 + δN−)

]

(8.7)

where g is the gain of the optical parametric amplifiers, and the parameters are
defined as α± = (−1 ∓ √

2)/
√

g + √
g(−1 ± √

2) and β± = (−1 ± √
2)/

√
g +√

g(−1 ∓ √
2). By choosing a correct gain for the optical parametric amplifiers,

it is possible to reconstruct the secret state. Setting the gain to
√

g = √
2 + 1,

the quadratures of the reconstructed secret simplify to

δ X̂+
out = δ X̂+

ψ −
√

2δ X̂+
sqz2 (8.8)

δ X̂−
out = δ X̂−

ψ −
√

2δ X̂+
sqz1 (8.9)

Equation (8.8) shows that in the ideal limit of perfect squeezing and with
correct gain for the optical parametric amplifiers, the access structure can
perfectly reconstruct the secret state.

The Tyc and Sanders [14] original scheme requires significant resources
including a pair of entangled beams and two optical parametric amplifiers.
Furthermore, the reconstruction protocol requires that the gain of the phase-
sensitive amplifiers be controlled precisely and that they have a high nonlin-
earity. Each of these requirements is difficult to achieve experimentally. High
nonlinearity can be achieved either in Q-switched or mode-locked setups,
or by enhancing the optical intensities within optical resonators. These tech-
niques, however, result in losses and reduced quantum efficiency. For these
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reasons an experimental demonstration of this reconstruction protocol would
be extremely difficult to achieve using existing technology.

8.4.2.3 {2,3} and {1,3} Reconstruction Protocol
Using a Feedforward Loop

An alternative reconstruction protocol for {2,3} and {1,3} that simplifies the
orginal scheme by replacing the phase sensitive amplifiers with linear op-
tics and electro-optic feedforward (Figure 8.7) was proposed by Lance et al.
[19]. In this protocol the shares are interfered on a 2:1 beam splitter. The
beam splitter reflectivity is chosen so that the magnitudes of the noise fluc-
tuations (due to the entangled state and noise contributions) on each of the
two shares are equal on the beam splitter output b. With a correctly chosen
relative phase between the input beams, the noise fluctuations on the phase
quadrature of bare cancelled and the phase quadrature of the secret state is
reconstructed. The noise on the amplitude quadrature of b is increased by
this process. This noise can be cancelled, however, since it is correlated with
noise on the amplitude quadrature of c. By detecting c and feeding forward
the resulting photocurrent to displace the noise b, it is possible to cancel this
noise and simultaneously reconstruct the amplitude quadrature of the secret
state. Typically, in feedforward schemes, the fluctuations are directly applied
to the optical field using an electro-optic modulator. This method can be quite
inefficient, resulting in high losses. A more efficient method is to apply the
fluctuations to a separate intense beam (a strong local oscillator) and then
interfere this beam with b on a highly reflective beam splitter, as shown in
Figure 8.7.

LO

G2:1

player 1

player 2

player 3

{1,3} and {2,3}

AM

HR

φ

b

c

φ

ψout

Figure 8.7 Schematic of the {2,3} and {1,3} reconstruction protocols for the (2,3) quan-
tum state sharing scheme using linear optics and electro-optic feedforward. G: elec-
tronic gain; ψout: reconstructed quantim state; AM: amplitude modulator; LO: optical
local oscillator; HR: high reflectivity; 2:1: 2/3 reflectivity beamsplitter; φ: phase delay.
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The reconstructed secret using the feedforward protocol can then be ex-
pressed as

δ X̂+
out = g+δ X̂+

in +
√

3
2

(

1 −
√

3g+
) (

δ X̂+
sqz1 + δ X̂+

sqz2

)

+ 1
2

(

g+ −
√

3
) (

δ X̂−
sqz1 − δ X̂−

sqz2

) +
(√

3 − g+
)

δN+ (8.10)

δ X̂−
out = 1√

3

(
δ X̂−

in + δ X̂+
sqz1 − δ X̂+

sqz2

)
(8.11)

where we have defined g± = 〈X̂±
out〉/〈X̂±

in〉 as the optical quadrature gains
for the respective quadratures. The phase quadrature gain is constant g− =
1/

√
3, while the amplitude quadrature gain can be controlled by varying the

electronic feedforward gain G by g+ = (1/
√

3 + G/
√

6). The specific gain of
g+g− = 1 can be thought of as the unitary gain point, similar to the unity gain
point in continuous variable teleportation experiments [17,18]. At this unitary
gain point and in the ideal limit of perfect squeezing, the quadratures of the
reconstructed state can be expressed as

δ X̂+
out =

√
3δ X̂+

in

δ X̂−
out = 1√

3
δ X̂−

in. (8.12)

Hence this reconstruction protocol allows the access structure to reproduce a
unitary transformed version of the secret state. Of course, ideally the recon-
structed output state should be of identical form to the input state. This can
be achieved here by performing a single unitary squeezing operation on the
output state of Equation (8.12). Since the two OPAs reconstruction protocol
requires two of these operations, the feedforward scheme even including this
operation is significantly less demanding. It should be pointed out, however,
that the result of Equation (8.12) is only possible if quantum resources (i.e.,
entanglement) are shared between the players in the protocol. The unitary
transform required for the output state to be of the same form as the input
state, on the other hand, requires only local resources and no entanglement.
Therefore it is reasonable to conclude that the essence of the quantum state
sharing reconstruction protocol is contained within the feedforward scheme
rather than the unitary transform. For these reasons, we consider that the feed-
forward scheme in and of itself constitutes a {2,3} reconstruction protocol for
quantum state sharing. It should also be noted that the squeezing exhibited
on the feedforward reconstructed state is deterministically known. Therefore,
if the quantum state sharing protocol was utilized within a quantum informa-
tion network, more likely than not, the squeezing could be taken account of by
simply adjusting the alphabet used by the network in subsequent processes.
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8.4.3 Characterization
Quantum state sharing can be characterized in a similar manner to quantum
teleportation and other quantum information protocols concerned with quan-
tum state reconstruction. We characterize the quality of the state reconstruc-
tion using fidelityF = 〈ψin|ρout|ψin〉, which measures the overlap between the
secret and reconstructed quantum states [22]. While the secret state can, in
general, be an arbitrary unknown state, we simplify the characterization by
assuming that the secret is a coherent state. Since coherent states span Hilbert
space, a demonstration of quantum state sharing with coherent states can be
directly extended to arbitrary quantum states in general. Assuming that all
fields involved have Gaussian statistics, the fidelity can be expressed in terms
of experimentally measurable parameters as

F = 2e−(k++k−)/4
/√

(1 + V+
out)(1 + V−

out) (8.13)

where we have defined k± = 〈X±
in〉2(1 − g±)2/(1 + V±

out). The fidelity for the
{1,2} reconstruction protocol can be determined directly. For the {2,3} and {1,3}
reconstruction protocols, since the reconstructed state is a squeezed version of
the secret state, the fidelity is determined by inferring the unitary parametric
operation δ X̂±

infer = (
√

3)∓1δ X̂±
out) on the reconstructed state. In the ideal case,

δ X̂±
infer = δ X̂±

in. Any one of the access structures sets can, in the ideal case of
perfect squeezing and at unitary gain, achieve perfect reconstruction of the
secret quantum stateF = 1; the corresponding adversary structure obtains no
information about the secret state F = 0.

The efficacy of the quantum state sharing scheme can be characterized
by determining the average fidelity over all access structure permutations.
It is relatively easy to show that for a general (k, n) threshold quantum state
sharing scheme without any entanglement resources, the maximum fidelity
averaged over all access structure permutations is F clas

avg = k/n. This limit can
only be exceeded by using quantum resources. For the (2, 3) quantum state
sharing scheme this limit reduces to F clas

avg = 2/3.
Quantum state sharing can also be characterized by measuring the signal

transfer to (T ), and the additional noise on (V), the reconstructed state [23].
This measure provides additional information to the fidelity measure about
the efficacy of state reconstruction. Such analysis has been used to character-
ize quantum nondemolition [24] and quantum teleportation experiments [18].
Unlike the fidelity measure described above, bothT andV are invariant to uni-
tary parametric transformations of the reconstructed state. Therefore, for the
T and V measures, it is unnecessary to infer a unitary transform after the {2,3}
and {1,3} reconstruction protocols to characterize the state reconstruction.

The signal transfer describes the signal-to-noise transfer between the se-
cret and reconstructed state for both quadratures T = T+ + T−. It is expressed
in terms of the quadrature signal transfer coefficients T± = SNR±

out/SNR±
in,

where SNR is the signal-to-noise ratio. The additional noise describes extra
quadrature noise on the reconstructed state V = V+

cvV−
cv and is expressed in

terms of the conditional variances between the secret and reconstructed state
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V±
cv = V±

out − |〈δ X̂+
inδ X̂+

out〉|2/V±
out. V can be expressed in experimentally mea-

surable parameters as V = (V+
out − (g+)2)(V−

out − (g−)2).
Any one of the access structures can, in the ideal case, achieve perfect

state reconstruction corresponding to a signal transfer T = 2 and additional
noise V = 0; the adversary structure obtains no information about the secret
state T = 0 and V = ∞.

8.5 Experimental Realization
8.5.1 Experimental Setup
Quantum state sharing has recently been experimentally demonstrated by
Lance et al. [25]. In this experiment, a Nd:YAG laser producing a coherent
laser field at 1064 nm was used to provide a shared time frame or universal
local oscillator among all parties. The secret quantum state was generated from
this laser field, by displacing the sideband frequency vacuum states of the
laser field using a phase and amplitude modulator.

The pair of quadrature entangled beams used in the dealer protocol
were generated from the interference of two amplitude squeezed beams. The
squeezed beams were produced using a pair of optical parametric amplifiers
(OPAs) seeded with 1064 nm light and pumped with 532 nm light, produced
from a second harmonic generator (SHG) [16]. A π/2 phase shift was chosen
between the beams, which after interference on a 1:1 beam splitter exhibits
quadrature entanglement.

In order to enhance the security of the secret state against the adversaries,
the coherent quadrature amplitudes of the entangled beams were displaced
with Gaussian noise. Experimentally, this can be achieved by encoding broad-
band Gaussian noise onto the nonlinear crystals within the OPA resonators
at the sideband frequency of the secret state.

A homodyne detection system, consisting of a pair of balanced detectors
and the universal local oscillator with controllable optical phase, was used to
characterize the secret, adversary and reconstructed quantum states for the
reconstruction protocols.

8.5.2 Experimental Results
Since the {1,3} and {2,3} reconstruction protocols are equivalent owing to the
symmetry of the player 1 and 2 shares, the (2,3) threshold quantum state
sharing scheme is demonstrated through the implementations of only the
{1,2} and {2,3} reconstruction protocols.

Figure 8.8 shows the noise spectra for the secret and reconstructed state
for the {1,2} protocol. The corresponding inferred Wigner function standard
deviation contours were determined from these noise spectra and are shown
in Figure 8.8(c). For the {1,2} protocol, the best measured fidelity was F{1,2} =
0.93 ± 0.02 with corresponding optical quadrature gains of g+ = 0.94 ± 0.01
and g− = 0.97 ± 0.01, respectively. Figure 8.8(d) shows several measured
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Figure 8.8 Experimental results for the {1,2} access structure. (a) Input amplitude
quadrature; (b) output amplitude quadrature; (c) input phase quadrature; (d) output
phase quadrature spectra of the secret quantum states. 
 f is the offset from the sig-
nal frequency. Signal frequency = 6.12 MHz; resolution bandwidth = 1 kHz; video
bandwidth = 30 Hz. (e) Standard deviation contours of Wigner functions of the secret
(dark gray) and extracted (gray) quantum states. (d) Measured fidelity as a function
of gain deviation r2 = (〈X̂+
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in〉)2. Gray area highlights the

accessible fidelity region. Points plotted are from six different experimental runs.
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fidelity points for the {1,2} protocol as a function of the phase space dis-
tance, r , between the coherent amplitudes of the secret and reconstructed
states. The nonzero distance of r on the experimental points is due to mode
mismatch, optical losses, and imperfect phase locking. The corresponding
adversary structure obtained a fidelity of F{3} = 0, since share {3} contains no
information about the secret state.

Similarly, Figure 8.9 shows an example of the secret and reconstructed
state for the {2,3} protocol. To allow for a direct measure of the overlap be-
tween the secret and reconstructed states, an inferred unitary squeezing oper-
ation was performed on the reconstructed state of this protocol. The inferred
Wigner function standard deviation contour after this unitary squeezing op-
eration is shown in the figure. Figure 8.10 shows the measured fidelity for
a range of gains. The amplitude quadrature gain, and subsequently g+g−,
was controlled by varying the gain G of the photocurrent of the electro-optic
feedforward loop. At the unitary gain point, the best fidelity observed was
F{2,3} = 0.63 ± 0.01 with corresponding optical quadrature gains of g+g− =
(1.77 ± 0.01)(0.58 ± 0.01) = 1.02 ± 0.01 in this case. The corresponding adver-
sary structure {1} achieved an average fidelity of F{1} = 0.03 ± 0.01.

The quantum nature of the (2,3) threshold quantum state sharing scheme
is demonstrated by the average fidelity over all the access structure permuta-
tions of Favg = 0.74 ± 0.04, which exceeds the classical limit F clas

avg = 2/3. This
can only be achieved using quantum resources and provides a direct verifi-
cation of the tripartite continuous variable entanglement between the shares
dealt to the players.

The quantum state sharing scheme was also characterized with the sig-
nal transfer (T ) to, and the additional noise (V) on, the reconstructed state.
The inset of Figure 8.11 shows the experimental T and V points obtained
for the {1,2} protocol, plotted on orthogonal axes [23]. The theoretical point,
assuming no losses, is also shown. The {1,2} protocol achieved a best state re-
construction ofT{1,2} = 1.77 ± 0.05 andV{1,2} = 0.01 ± 0.01. Both of these values
are close to optimal, being degraded only by optical losses and experimental
inefficiencies.

Figure 8.11 shows the experimental T and V points obtained for the {2,3}
protocol for a range of gains together with the theoretical curve for varying
electronic feedforward gain G. The adversary structure {1} is also shown. The
accessible region for the {2,3} protocol without entanglement is illustrated by
the shaded region. The quantum nature of the state reconstruction is demon-
strated by the experimental points that exceed this classical region. For the
{2,3} protocol the lowest reconstruction noise measured was V{2,3} = 0.46 ±
0.04 and the largest signal transfer was T{2,3} = 1.03 ± 0.03. The measured ex-
perimental points with T > 1 exceeded the information cloning limit [18],
demonstrating that for these points, the {2,3} has better access to information
encoded on the secret state than any other parties. The adversary structure,
meanwhile, obtains significantly less information about the state reconstruc-
tion, with a mean signal transfer and reconstruction noise of T{1} = 0.41 ± 0.01
and V{1} = 3.70 ± 0.06, respectively. The separation of the adversary structure
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Figure 8.9 Experimental results for the {2,3} access structure. (a) Input amplitude
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local unitary operation (parametric amplification) is performed on the reconstructed
state.
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Figure 8.10 Experimental fidelity for the {2,3} access structure as a function of the
product of the optical quadrature amplitude gains g+g−. Dashed line: calculated the-
oretical curve with squeezing of −4.5 dB, added noise of +3.5 dB, electronic noise
of −13 dB with respect to the quantum noise limit, and feedforward detector effi-
ciency of 0.93. Solid line and dotted lines: experimental fidelity for the adversary
structure and error bar. Gray area highlights the classical boundary for the access
structure.

T and V points from that of the {2,3} protocol in Figure 8.11 illustrates that in
such a protocol the access structure performs far better than any adversary
structure.

8.6 Applications of Quantum State Sharing
Quantum state sharing has many possible applications in quantum informa-
tion science. We conclude this chapter with a discussion of some of those
applications.

8.6.1 Quantum Information Networks
One of the primary experimental goals of quantum information science is to
realize quantum networks analogous to the Internet. These quantum informa-
tion networks are expected to consist of atomic nodes where quantum states
are stored and processed, connected by optical channels. To date, research
into quantum information networks has, for the most part, been restricted
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tronic noise of -13 dB with respect to the quantum noise limit, and feedforward detector
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to demonstrations of the individual components required for their success,
such as quantum memory [26], and quantum gates [27]. Apart from achiev-
ing these components in isolation, it is essential that quantum information
networks are scalable, both in terms of the complexity of problems solvable
within a node, and in terms of the total number of nodes involved.

Quantum state sharing allows many nodes to cooperate on a specific
computing problem as with distributed computing, and it naturally extends
the number of nodes that can be involved in any quantum information pro-
tocol. Suppose, as an example, that a group of people who do not trust each
other want to crack a code using Shor’s algorithm [28]. Suppose also that the
group has only one quantum computer powerful enough to realize this algo-
rithm. They can ask the person owning this quantum computer to perform
most, but not all, of the steps in Shor’s algorithm and to use the quantum
state sharing protocol to distribute the partial results to the other members
of the group. Finally, an access structure can reunite, and with a smaller, less
powerful quantum computer complete Shor’s algorithm to crack the code.

These properties, coupled with its ability to facilitate quantum error cor-
rection, as discussed below, suggest that quantum state sharing is an impor-
tant tool for scalable quantum information networks.
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8.6.2 Quantum Error Correction
Error correction capabilities are required for any form of large-scale computa-
tion. In conventional computing, error correction is performed by introducing
redundancy within the computer. The simplest form of redundancy is to en-
code each bit of information more than once. If an error or erasure occurs,
it appears as a discrepancy among the multiple copies of the bit and can be
corrected for. In quantum computing, error correction is made much more
complex by our inability to clone perfectly, or nondestructively measure, a
quantum state. Many techniques have been proposed to overcome these lim-
itations for various forms of errors [29], and quantum state sharing is one
example [9]. In the case of continuous variable quantum state sharing, er-
ror correction is possible for errors that can be seen to have occurred. One
example of such an error is a faulty connection to one node in a quantum
information network, resulting in the irreversible but known destruction of
a quantum state under transmission to that node. For quantum state shar-
ing, the redundancy required for successful error correction arises from the
distribution of shares, each containing some fraction of the secret state, to n
nodes (players). From the previous discussion we know that any k nodes (or
nodes in a quantum information network) can collaboratively recover the se-
cret state. Therefore, as many as n − k nodes can malfunction with the secret
state still perfectly retrievable.

8.6.3 Transmission of Entanglement
over Faulty Channels

One of the primary requirements of long-distance quantum communication
and quantum information networks is the effective transmission of entan-
glement in nonideal environments. It has been shown that highly inefficient
transmission lines can be overcome using entanglement purification, quan-
tum memory, and quantum repeaters analogous to conventional repeaters in
fiber-optic communication [30]. Such techniques, however, are of limited use
if the communication channels, or network nodes, are prone to catastrophic
failure. These sorts of failures commonly occur even in the present day In-
ternet, for example when servers go off-line or are overloaded. It is therefore
highly likely that catastrophic failures will also be exhibited by quantum in-
formation networks. Quantum state sharing overcomes these failures using
a series of error correction protocols such as those described above. Let us
consider the case of {2,3} secret sharing, with the goal of distributing one of a
pair of entangled beams through a channel prone to catastrophic failures. The
entangled beam is encoded into three shares, and the first is sent down the
optical channel. If the transmission fails, the sender uses the other two shares
to recover the entangled state and begins again. If the transmission is suc-
cessful, the sender sends the second share. If transmission of the second share
is successful the receiver can recover the entangled beam, and the entangled
state transmission was successful. If the second transmission fails, the sender
encodes the third and final share into three parts (subshares) and repeats the
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procedure. If the first two subshares are transmitted successfully the receiver
can recover the third share and, since he or she already has the first share, also
the entire entangled beam. If transmission of the second subshare fails, the
sender encodes the remaining subshare into three subsubshares and the pro-
cess continues. This nested series of quantum state sharing protocols provides
in principle a 100% successful method to distribute entangled states, and in-
deed any arbitrary quantum states, through channels prone to catastrophic
failures.

8.6.4 Multipartite Quantum Cryptography
Quantum state sharing could be useful for generalized quantum key dis-
tribution. In the usual quantum cryptography protocols, such as BB84 [31],
Alice and Bob share a quantum key, which can be used to create a secure
one-time pad via public channels. A quantum key can be established by Al-
ice sending qubits to Bob, as suggested by Bennett and Brassard, or equiv-
alently by sharing entangled pairs, or ebits, along the lines suggested by
Ekert. To see how quantum state sharing plays a role in quantum key dis-
tribution, let us consider the latter approach of having Alice and Bob share
ebits.

Suppose that Alice and Bob are not planning to use the key themselves
and instead disseminate their shares to other players. Alice’s colleagues have
nA shares, and Bob’s colleagues hold nB shares. At some future time, some of
Alice’s colleagues and some of Bob’s colleagues can collaborate separately to
extract Alice’s state and Bob’s state, respectively, and then communicate to
establish the quantum key for secure quantum cryptography.
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Abstract
This chapter describes the development of free-space quantum cryptography
apparatus used for the secure exchange of keys. Existing systems use weak
laser pulses to approximate single photons and polarization coding. Minia-
ture multilaser sources and compact receiver units have been developed.
These can be incorporated with lightweight portable telescopes to exchange
cryptographic key material over long free-space ranges. The record distance
to date has been 23.4 km between two mountain locations. Future experiments
should be able to exchange keys over a 150 km range, and the feasibility of
key exchange to a low Earth orbit satellite has been proven.

9.1 Introduction
With the exponential expansion of electronic commerce, the need for global
protection of data is paramount. Data are normally protected by encoding
them bit-wise using a large random binary number known as a key. An iden-
tical key is used to decode the data at the receiver. The secure distribution of
these keys thus becomes essential to secure communications and transactions
across the globe. At present electronic commerce generally exchanges keys
using public key methods [1]. These methods rely on computational com-
plexity, in particular the difficulty of factoring very large (publicly declared)
numbers, as proof against tampering and eavesdropping. Any confidential
information exchanged using such a key thus becomes insecure after a time
when the rapid improvements in computational power or algorithmic de-
velopment render the public key insecure. To guarantee long-term security,
the cryptographic key must be exchanged in an absolutely secure way. The
conventional method used for this for most of the last century has been the
trusted courier carrying a long random key from one location to the other.
Following the idea of Bennett and Brassard in 1984 [2], it is only recently that
absolutely secure key exchange between two sites has been demonstrated
over fiber [3–6] and free-space [7–13] optical links. This technique, known as
quantum cryptography, has security based on the laws of nature and is, in
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principle, absolutely secure against any computational improvements. In this
chapter we review the state of the art in free-space quantum cryptography.
We describe a semiportable free-space quantum cryptography system that
has been tested in a key exchange experiment between two mountain tops,
Karwendelspitze (2244 m) and Zugspitze (2960 m), in southern Germany [12].
The distance between the two locations is 23.4 km. The elevated beam path
dramatically reduced the air turbulence effects experienced in previous low-
altitude tests [11] but also caused unprecedented requirements on stability
against temperature changes, reliability under extreme weather conditions,
and ease of alignment. In future high-altitude experiments we plan to extend
this range more than 100 kilometers.

We go on to describe how such a system combined with sophisticated au-
tomatic pointing and tracking hardware could exchange keys with low Earth
orbit satellites. If we engineer a satellite to be a secure relay station, we may
see secure key exchange between any two arbitrary locations on the globe.
The advantage of the space environment for communications is the loss-free
(and distortion-free) optical path provided by the vacuum. Conventional op-
tical free-space laser communication systems have been under development
for some time. The recent success of the ARTEMIS-SPOT4 satellite-to-satellite
(GEO-to-LEO) link [14] has increased confidence in these technologies. The
question remains whether one can exchange a key to a low earth orbit satel-
lite. Preliminary studies suggest this will be possible [15,16] with lightweight
launch optics of ∼ 125 mm aperture. In this chapter we discuss some of the
detailed designs for such a system and remaining technical challenges to be
overcome.

We also extend the scope of our study to introduce entangled state key
exchange methods [17–22]. Such systems are intrinsically more secure than
the faint pulse techniques that have predominated to date.

9.2 Quantum Coding
In quantum communications, the primary carrier of the information is the
particle of light, the photon. The general qubit is represented by

|� >= α|0 > +β|1 > (9.1)

with probability amplitudes normalized to |α|2 + |β|2 = 1. The implicit as-
sumption is that a single two-state system is involved. This generic notation
can stand for any of the properties of various two-state systems, for exam-
ple for ground |g> and excited |e> state of an atom, for horizontal |H> and
vertical |V> polarization of a photon, or for path 0 and path 1 around an inter-
ferometer. The probability of detection of either state is the square modulus
of the state amplitudes |α|2 and |β|2. The key to quantum communications
is the principle of superposition, where the probability amplitudes are both
nonzero; the photon then exhibits wavelike and particlelike properties.

Another key concept for quantum communications is the phenomenon of
entanglement. Entanglement describes the strong correlations that can exist
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in the quantum properties of two or more particles.

|�〉 = 1/
√

2(|0〉1|0〉2 + |1〉1|1〉2) (9.2)

is an example of a maximally entangled two-particle state. If one only looks
at one of the two particles, one finds it with equal probability in state |0> or in
state |1>. The state shows classical two-particle correlations in that when we
measure a 1 (0) in channel 1 this immediately implies a 1 (0) in channel 2. The
quantum state also shows strong correlation for any arbitrary superposition.
For instance, if we consider a polarization entangled state, |0> is |H> and |1>
is |V>. Measurements in any polarization direction in channel 1 will be 100%
correlated in channel 2.

9.3 Quantum Cryptography (Key Sharing)
Using the above coding, one could encode data on single photons, but com-
munication would be prone to errors due to loss; loss implies lost photons
and thus lost bits. More practical one photon per bit schemes revolve around
cryptographic key sharing where correlated random bit strings are generated
at separate locations. Only those photons that arrive are used to form the
key. Quantum key sharing has been demonstrated using faint pulses to ap-
proximate the one-photon superposition states [3–13] and using the strong
correlations inherent in the entangled state [17–22].

9.3.1 Faint Pulse Quantum Cryptography

9.3.1.1 The Method
We follow the first experimental realization [7], which is known as the BB84
protocol and was first described in [2]. In this protocol the transmitter (Alice)
encodes a random binary number in weak pulses of light using one linear po-
larization to encode 1’s and orthogonally polarized pulses to encode 0’s. To
prevent eavesdropping, the number of photons per pulse is limited to much
less than unity (the actual attenuation is linked to the overall transmission
and is usually chosen as 0.1 photons per pulse). Furthermore, the encoding
basis is randomly changed by introducing a 45◦ polarization rotation on half
the sent pulses. In the receiver (Bob), single-photon-counting detectors detect
the pulses, converting the light to macroscopic electronic pulses. The two po-
larizations are separated in a polarizing beam splitter, and a 0 or 1 is recorded
depending on the detected polarization. A random switch selects whether to
measure on a 0◦ or 45◦ polarization basis. Owing to the initial weak pulse
and the subsequent attenuation along the transmission line, only very few
of the pulses sent result in detected photoevents at the receiver. A record
of when the pulses are detected is kept, and at the end of the transmission
the receiver uses a classical channel (e.g., a telephone line) to tell the sender
which pulses arrived and on what basis they were measured. All lost pulses
and all detected pulses measured on a different basis to the encoding basis
are erased from the sender’s record. Thus identical random keys are retained
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by sender and receiver. Any remaining differences (errors) signal the inter-
ception of an eavesdropper! If an eavesdropper measures the polarization of
one pulse, that pulse, being a single photon, is destroyed and does not reach
Bob and thus is not incorporated in the key. The eavesdropper could choose
a basis, measure the pulses, and then reinject copies. However, this strategy
has to fail because half the time the eavesdropper will have chosen the wrong
measurement basis and the reinjected pulses will induce an error rate of 25%.
Of course a certain level of error could be caused by imperfections in the
equipment used, but in order to guarantee absolute security any error should
be attributed to (partial) interception. Below a certain threshold the error can
be corrected and potential knowledge of the key by any eavesdropper can be
erased by privacy amplification protocols [23,24].

9.3.1.2 The Tools
Compared to the original experiment using polarization rotations performed
by high-voltage Pockels cells, it is by far advantageous to use separate laser
diodes for every polarization at the transmitter. An additional simplification
of the equipment can be achieved by randomly splitting the light in the re-
ceiver between the analyzers for two bases by a nonpolarizing beam splitter.
This allowed us to design a long-range free-space key exchange apparatus
capable of exchanging keys over free-space ranges greater than 20 km, where
diffraction/turbulence and absorption losses reach up to 20 dB.

Transmitter The transmitter (Figure 9.1) is designed around an 80-mm-
diameter transmit telescope. A novel miniature source of polarization coded
faint pulses approximating single photons is used. The task of this transmit-
ter module in a BB84 kit is to launch a faint light pulse with one out of 4
linear polarizations into a quantum channel, containing an average photon
number of approximately 0.1. This ensures that the information leakage to

laser diode

mirror

relay lens

xy adjustment stage
spatial filter

to telescope

Figure 9.1 Optical configuration for a free-space transmitter module. The light of
four laser diodes is combined with a mirror; here, only the diode emitting V polarized
light is shown. Spatial indistinguishability is achieved by using a spatial filter. The
module can be attached directly to a telescope.
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an eavesdropper due to the possibility of the light field containing more than
one photon is small [25].

A significant reduction in system complexity compared to former ap-
proaches was achieved by using four independent sources for the individual
polarizations rather than optical elements selecting or preparing the polariza-
tions as in earlier implementations of the BB84 protocol [7]. We have chosen
laser diodes as light sources, because of the technological simplicity in achiev-
ing switching times of fractions of a nanosecond.

Another reduction of the necessary optical elements is enabled by the fact
that light emitted by laser diodes shows a very high degree of polarization.
Therefore not even passive optical polarization preparation elements like po-
larizers are needed. Together with an appropriate combination scheme for the
light of the four laser diodes, the four necessary polarizations for the BB84
protocol are obtained by geometrical orientation of the laser diodes.

In principle, the combination of the light from the different sources could
be achieved by beam splitters [26], but it turns out that a simple beam overlap
in front of a spatial mode filter is sufficient [27]. A spatial filter is necessary
to ensure that information is only encoded in the polarization degree of free-
dom and that the parasitic channel of emission direction is closed for the
information encoded into the faint pulse.

Another important simplification arises from the fact that the laser diodes
have to be attenuated strongly in order to come down to the 0.1 photon-per-
pulse level on the quantum channel. This can be looked at as a very relaxed
specification of the coupling efficiency into the quantum channel, which in
our case was either a single-mode optical fiber or the spatial mode filter for a
free-space optical link. Therefore, all the coupling into the quantum channel
can be achieved using partial mode overlap between the laser diodes and the
target mode of the optical fiber or the spatial filter.

All of this was elegantly achieved in a novel miniature source of polar-
ization coded faint pulses (Figure 9.1). It consists of four laser diodes (850 nm
wavelength) arranged on a ring around a conical mirror. Each laser is rotated
to produce one of the four polarizations 0◦, 90◦, 45◦, or 135◦ and illuminates
a spatial filter consisting of two pinholes with a diameter of 100 µm spaced
at a distance of 9 mm. Since the overlap of the emission modes of the four
laser diodes with the filter mode is rather poor, the initially very bright laser
pulses are attenuated to about the required “one photon per pulse” level. The
actual attenuation can be fine tuned by manipulating the diode current and
precisely calibrated by optionally shining the light transmitting the spatial
filter onto a single-photon detector. The filter erases all spatial information
about which laser diode fired. Spectral information is also not attainable by
an eavesdropper, as the spectra of the four laser diodes well overlap with a
width of about 3 nm in pulsed mode. A continuous wave alignment laser
was also fed through the spatial filter in order to ease optimizing the fo-
cusing of the receiver. The complete optical setup (Figure 9.2) was confined
into an aluminum block of size 35 × 35 × 35 mm to maintain rigid alignment,
demonstrating the ability to integrate the source module, e.g., into a PC-based
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Figure 9.2 Transmitter light source with spatial filter removed. The pulse driver with
the computer interface is attached on the back side of the unit. The size is small
compared to a telescope needed for focusing the beam to a distant location.

quantum cryptography system. The close thermal coupling of the laser diodes
also ensures a fixed wavelength relation between the individual laser diodes,
keeping the laser frequency side channel for a possible eavesdropping attack
closed.

The beam from the filter transmitting only one spatial mode is trans-
formed in a Galilean telescope to a collimated beam with a diameter of
∼ 40 mm FWHM (Figure 9.3). Together with the alignment laser and the
single-photon detector, the whole system is mounted on a 25 × 50 cm bread-
board, attached to a microradian-sensitive pointing stage on a sturdy tripod.
The lasers are randomly driven from a computer via a digital output card at
a 10 MHz repetition rate using subnanosecond duration pulses. This creates
∼ 500 ps duration optical pulses randomly polarized in 0◦, 90◦, 45◦, or 135◦

directions. The computer uses a prestored random number to choose the po-
larization for the present set of experiments. Alternatively, nearly real-time
generation was possible. A sequence of bits produced by a quantum random
number generator running at 20 MHz could be fed to the Alice computer
seconds before the transmission.

Receiver The receiver system (Figure 9.4) consists of a 25-cm-diameter
commercial telescope (Meade LX200) with computer controlled pointing ca-
pability. Unfortunately, the resolution of the mechanics of this system was
the limiting factor for the alignment of the receiver and was also difficult to
handle in the harsh outdoor conditions. Yet the stability of the system was
very convincing.

A compact four-detector photon-counting module [27,28] was coupled
to the back of the telescope after an RG780 long-pass filter to block out
short-wavelength background. The module consists of a polarization-in-
sensitive beam splitter passing two beams to polarizing beam splitters that
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L2

to receiver

reference
clock

random
number
generator

computer with
digital I/O card

pulse
driver

source
module

alignment
laser

AM

spatial
filter

relay
optics

FM
M1

L1

M2

reference
photon
counter

base plate sitting on
precision tip/tilt aligner

Figure 9.3 The Alice compact breadboard transmitter. The digital I/O card delivers
a random 2-bit signal at 10 MHz synchronized to the reference clock. This signal is
used in the pulse driver for randomly firing one of four lasers in the miniature source
module. The four lasers are combined in a spatial filter using a conical mirror and relay
lens. This system produces pulses with 0.05 to 0.5 photons per pulse. The output of the
spatial filter is then transformed to a collimated beam with 2 mm FWHM and further
expanded in a x20 telescope (L1 and L2) to produce a near diffraction-limited 40 mm
beam. A precision translator with lens L1 allows for the fine focus adjustment. A bright
CW laser beam can be injected with an auxiliary mirror AM for alignment purposes
into the the same spatial filter as the faint pulses, while a calibration of the number
of photons per bit can be made by inserting mirror FM and measuring a reference
photocount. Mirrors AM, FM, M1 and M2 are gold coated for high reflectivity in the
infrared.

are followed by four photon-counting avalanche diodes. One polarizing beam
splitter is preceded by a 45◦ polarization rotator (half-wave plate). Photons
detected in this channel are thus measured on the 45◦ basis, while the other
polarizer allows measurement on the 0–90◦ basis. Since the splitting of in-
coming photons to the two analyzers by the beam splitter is truly random, no
random number sequence is required on the receiver side, at the expense of
more photodetectors.

The time of arrival of each photodetection is recorded in the computer
using a two-channel time digitization card (Guide Technology GT654). Thus
the four detectors’ outputs are combined into the two channels with a delay
of 5 ns. The delay is then used to discriminate between the two measurement
bases. The overall optical detection efficiency of the receiver is about 16%,
and the timing jitter was smaller than 1 ns.

Timing and synchronization The two separate computers were linked
via modems operating over a standard mobile telephone link (9.6 Kbaud
bit rate). Local oven-stabilized 10 MHz clocks were synchronized to better
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Figure 9.4 The receiver (Bob) consists of a 25 cm aperture Schmidt–Cassegrainian
telescope. The miniature detector module is attached to the rear mounting of the tele-
scope. It consists of a nonpolarizing beam splitter (BS) followed by two polarizing
beam splitters (PBS). Single-photon detectors (D1-4) receive the output of the polariz-
ers. In the D1/D3 arm, a half-wave plate rotates the analyzed polarization to the 45◦
basis. The module incorporated high-voltage supplies and discriminator circuitry to
produce standard NIM pulses at the output. The detector outputs D3, D4 are com-
bined with the D1, D2 outputs with a delay of 5 ns and input into the two-channel
timing card in the PC. A flip mirror allows a CCD camera to view the incoming light
for alignment purposes.

than l ns using a software-based phase-locked loop driven by the received
photodetections. The photodetections thus can be gated in two 1.4-ns-wide
time windows separated by 5 ns. Pulses outside these timing gates are ig-
nored. The error rate due to dark and background counts is thus suppressed
by a factor of ∼ 1/35. The random polarization pulses are sent in 700 ms blocks
preceded by a series of predetermined pseudorandom data sets lasting 110 ms
to determine uniquely the start time of each block. Following the transmis-
sion of the block, a settling time of ∼ 300 ms allows the computers to verify
a successful transmission. Gross block length is thus just over 1.1 s. Sifting
and error correction of the 700 ms data blocks were then performed over the
telephone link using software developed in our 1.9 km experiment [11].

9.3.2 The Long-Range Trial
To avoid air turbulence effects, the long-range experiment was carried out
over an elevated path with the receiver on Karwendelspitze and the trans-
mitter located at a small experimental facility of the Max-Planck-Institute for
Extraterrestrial Physics on the summit of Zugspitze, southern Germany. Ini-
tial alignment of both transmitter and receiver was achieved by shining a
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Figure 9.5 The Alice breadboard is in the foreground. Karwendelspitze is in the
background.

low-power green laser (3 mW) from Karwendelspitze that was clearly visible
from Zugspitze. This was followed by a fine alignment using an approxi-
mately 500 µW beam at 850 nm passing through the same spatial filter as the
faint light pulses in the Alice setup.

The collimation in the Alice system was adjusted to minimize the diameter
at 23.4 km, resulting in a beam 1–2 meters in diameter (depending on air
turbulence). This led to lumped optical losses in the transmission path of
about 18 to 20 dB. With a receiver efficiency of around 16% and using faint
pulses containing 0.1 photons per bit, the detected bit rate at Bob was about
1.5 to 2 kilobits per second.

Several night trials were carried out at various times from September 2001
to January 2002. In the final trial, several keys were exchanged over a period
of three days at a selection of pulse intensities ranging from 0.4 to 0.08 photons
per bit. Representative data are shown in Table 9.1. Total gated photon rates
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Figure 9.6 The 25 cm receiver telescope with compact detector module attached.

(summed over all detectors) were 2–4 Kcps with dark counts dropping as low
as 4 Kcps (actual detector dark counts summed to about 1 Kcps). Background
rates were high because of scattered light from snow cover and the use of
simple colored-glass shortwave blocking filters. The bracketed figures in the
error rate column represent the errors arising from background counts alone,
showing that half the error rate was from this source. The remaining errors
of 2.1 to 2.7% arose from imperfections in the polarization encoding and
decoding. At these error levels the error correction efficiency was between 50
and 60%. The low bit rate (9.8KB) of the mobile telephone link was a limiting
factor in the sifting and error correction process. The final net key rate is about
1/6 of the raw detected rate. A factor of 2 is lost in sifting, a further factor of
∼ 2 is lost in error correction, and then the data block efficiency is about 66%.
Typically the sifting rate was 2 to 300 raw key bits per second (about 4 bytes
of timing data per key bit). The interactive error correction process proceeded
at a similar rate but of course with half as many key bits after sifting. To save
time, longer blocks of raw key data were analyzed offline as shown. One
point to note is that the error correction efficiency is better for these larger

Table 9.1 Summary of Selected Experiments

Number of Unsifted Quantum Bit Final Net Total Key
Photons Per Bit Data Background Error Rate Key Rate Exchanged

Night (+/−10%) Bits/s Bits/s % Bits/s Bits

16/01 0.37 4484 6268 4.11 626 9395
(1.96)

16/01 0.27 2505 5504 5.24 396 4341
(3.08)

16/01 0.18 2651 5578 4.54 363 5448
(2.94)

17/01 0.096 2627 4516 4.77 367 5399
(2.41)
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Figure 9.7 The detector matrix showing, on the diagonal, the number of bits trans-
mitted and measured on the same basis. The suppressed measurements are the errors,
bits encoded and measured on the same basis, but turning up in orthogonal channels
(e.g., 0◦ and 90◦). Measurements where different bases were used show roughly half
the height of the diagonal, but constitute roughly half of all measurements.

keys because of the need to estimate the error rate sacrificing some of the key
before correction.

Sifted and corrected keys showed a high degree of randomness with little
or no bias. An online check of the balance of received bits compared to sent bits
could be performed. A typical matrix of sent versus measured polarizations
is shown in Figure 9.7. Care was taken to keep the diagonal values as close as
possible.

9.3.3 Entangled State Key Exchange
Entangled state quantum cryptography is schematically illustrated in
Figure 9.8. A source of (polarization) entangled photon pairs is configured
to send one photon to Alice and one photon to Bob. Using receiver units
identical to the one used in faint pulse cryptography (Figure 9.4) and se-
lecting coincident detections measured on the same polarization basis, they
establish identical random strings to use as cryptographic keys. There is no
encoding of a random number to form the basis of the key, as the randomness
comes from the superposition in the entangled state. This gives key security
advantages over the faint pulse systems.

The first attempts at free-space entangled-state distribution have already
begun. In [21], strong polarization correlations at 600 m range (across the
river Danube) were demonstrated. These experiments could be easily ex-
tended to demonstrate entangled state key exchange [20]. As small telescopes
were used, the lumped optical losses were in the 30 dB region. Pair photon
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ALICE BOB
classical

communication
010011

secret
key

entangled pair

EPR-source

110010

secret
key

Figure 9.8 Schematic entangled pair key exchange system. Alice and Bob measure
the arriving photons on 0 or 45 degree bases using receivers described in Figure 9.4.
Keeping only those coincident detections measured on the same basis, they are able
to establish identical keys.

coincidence rates of 2.104 per second were measured in a laboratory environ-
ment using only 18 mW of diode laser to pump a BBO nonlinear crystal. This
led to long-range coincidence rates of 20 per second (or a raw key rate of 20
bits per second). Recently a full key exchange has been implemented over
several kilometers [22].

In the next generation of portable equipments, pair brightness could be
increased by at least an order of magnitude so that similar key rates to faint
pulse systems could be achieved.

9.4 Space Applications

9.4.1 Key Upload to Satellites
Satellites storing and distributing large amounts of data such as digital TV
transmitters and Earth observation satellites need to scramble data before
transmission to licensed users on the ground. The scrambling and unscram-
bling process is done using symmetric key encoding data at the satellite and
decoding them at the ground. New keys are thus required regularly to ensure
the security of the transmissions. Key upload to satellites is thus a possible
first application of quantum communications in space. The feasibility of key
exchange to low Earth orbit is now being studied [15, 16]. The system will
have to work between a range of 600 and 2000 km with fully automated ac-
quisition and maintenance of the link during the satellite pass. Optical losses
(see Section 9.5) in a typical pass could be as low as 20 dB for a close approach,
rising to 35 dB at the longest range, which is around the maximum loss toler-
ance of a faint pulse system. Higher losses could be tolerated if one used true
single-photon sources or accepted the reduced security associated with high
average photon numbers per bit (< 0.5 photons/pulse).



P1: Sanjay

Bahill.cls DK5859˙C009 September 20, 2005 12:56

200 Quantum Communications and Cryptography

ALICE
LEO Satellite
ST RV/Other

BOB
Albuquerque
New Mexico

8500km

<1800km

BOB
O. Teide,
Cananes

Figure 9.9 Global key exchange using quantum cryptography.

9.4.2 Global Key Distribution via LEO Satellite
It should be noted that a cryptographic terminal mounted on a satellite is
just one side of a much larger experiment, resulting in a prototype global key
exchange system. Since space vehicles in polar orbits can access the majority
of the surface of the Earth, it makes sense to provide more than one ground
receiving station. Keys exchanged on one continent can be used to secure
those exchanged on another (Figure 9.9). The result is a truly strategic secure
communications system.

9.4.3 Satellite-to-Ground Quantum Key
Distribution Utilizing Entangled Photon Pairs

Using entangled (EPR) photons, it is possible to transmit secure keys to two
places at once (Figure 9.10). The technology required for this system is still im-
mature but could easily be integrated with that developed for the experiments
described above. One key limitation may be the losses associated with the
two optical paths from space to ground. Typically, optical losses due mainly
to diffraction will be (at best) around 15 dB (see Section 9.6). The system will
thus have to be able to cope with about 28–32 dB losses in the pair photon rate.

9.4.4 Other Quantum Key Exchange Scenarios
Further applications include satellite-to-satellite key exchange, particularly
LEO to MEO and GEO satellites. Here the ranges are 1000 to 35,000 km. How-
ever the hardware will be similar to that developed for ground-to-satellite
key exchange, albeit with higher losses. An attractive proposition is to have a
satellite in GEO exchanging keys with a ground station or with LEO satellites
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Figure 9.10 Satellite-to-ground quantum cryptography using entangled photons.

as in the ARTEMIS-SPOT4 classical optical communications experiment [14].
Such a satellite would be able to relay instantaneously keys between any
two points on a hemisphere, and fixed pointing ground stations could be
used. However, present technology on ARTEMIS produces a 7 µR divergence
beam at a distance of 35,000 km. This then produces a ground spot 250 m in
diameter on Earth. Even with a 2.5 m diameter telescope, diffraction losses
will exceed 40 dB. Losses in a GEO-to-LEO link are much higher, as LEO
launched telescopes would be limited in size to 25–30 cm in diameter.

9.5 Experimental Feasibility of Key
Exchange to Space

9.5.1 Link Budgets for the Various Systems
Losses arise from various sources:

Diffraction spreading of the beams
Beam wandering due to atmospheric turbulence
Pointing wander
Atmospheric absorption (for ground-to-satellite experiments)
Lumped receiver efficiency

Diffraction losses are set by the dimensions of the output telescope and by
the standard equations of Gaussian optics. The divergence half-angle (1/e2)

for Gaussian beams with 1/e2 radius W0 is given by

θ = λ

π.W0
(9.3)
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In a standard collimating telescope the small-diameter beam is defocused by
a negative lens and expands to fill the output lens, which collimates to near
the diffraction limit. We can ensure that 98% of our Gaussian beam passes
through this lens of diameter D when 2W0 = 0.7D. This sets the minimum
divergence of our collimated beam to

2θ = 1.8λ

D
(9.4)

For instance the typical full divergence for a 125 mm lens illuminated by
650 nm light is thus ∼ 10 µR. At the receiver (range R) we intercept a large
Gaussian beam diameter 2W = 2θ R; with small-diameter telescope DT we
will collect a fraction

Lg = 1 − exp
[

2D2
T

(2W)2

]

≈ D2
T

2W2 (9.5)

Another source of beam broadening is the atmospheric turbulence. This
causes beam wander and also scintillation. We estimate from our results at
high altitude [10] that scintillation will cause effective beam wander of order
10–40 µR, depending on atmospheric conditions. Looking upwards from a
high altitude ground station, this could be as low as 3–5µR. Losses due to scat-
tering from aerosols in the atmosphere are low at altitudes greater than 2000 m,
being approximately 0.04–0.06 dB/km in clear weather. Obviously haze and
cloud can increase these values significantly. Experiments at sea level will tend
to have higher aerosol attenuation. Further simulation of atmospheric trans-
mission using programs such as Modtran would improve these estimates.

We summarize the typical losses to be expected in various experimental
scenarios in Table 9.2. For the comparison of systems we assume that satellite
transmitter optics should be small and limit ourselves to 125 mm apertures
where possible. This then gives a 10 µR diffraction spread (assuming light of
around 650 nm wavelength), and we assume that pointing can be achieved
to much better than this accuracy. In particular cases (GEO-to- ground and
teleportation experiments) we allow for larger 300 mm apertures. This gives
a smaller diffraction spread ∼ 4 µR (we assume some improvement from ex-
isting classical experiments [14]), which is balanced against greater problems
from pointing errors. The receiver optics need not be pointed to the diffrac-
tion limit as detectors can have a relatively wide field of view (up to 50 µR).
However, space telescopes are still limited in dimension by weight. We limit
our table to space receiver telescopes of aperture 300 mm in diameter. On the
ground, tracking optical telescopes are available up to 1 m in diameter, while
fixed telescopes up to 2 m in diameter might be used for ground-to-GEO
systems.

Also included in the table is a next-generation high-altitude experiment
where we might aim for 150 km key exchange using a faint pulse system as
shown in Figure 9.3, Figure 9.4, and Figure 9.5. We also have options for an
up-looking key exchange to LEO satellite Alice and a down-looking system
with a ground Alice. For the entangled-state system we include losses from
both arms and limit the satellite range to 700 km to limit loss. What is clear is
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that for most systems in Table 9.2, the loss budget can be between 20 and 30
dB, and systems tolerating this sort of loss are well within our reach.

Receiver efficiency is common to all systems. Detector efficiencies of 70%
are easily achieved for near-infrared wavelengths, while narrow-band filter-
ing can also reach 70% transmission. By optimally coating telescope mirrors,
transmission in the near-infrared can reach 90%, while relay lenses, beam
splitters, and waveplates in the Bob module can reduce efficiency by 60%. All
in all, a good target is to design a receiver with efficiency of about 30% (η = 0.3).

9.5.2 Feasibility of Faint Pulse Quantum Key
Distribution Systems

The system closest to realization is the faint pulse quantum key distribu-
tion system described in Section 9.3. Key factors defining the feasibility of

Plane mirror

Retro reflector

Lens

CMOS
Sensor

Narrow
bandwidth filter

Beam splitterLaser
source
optics

Tip-tilt
mirror

Lens

Figure 9.11 Breadboard for Alice suitable for development into a lightweight system
for space operation. Includes tip–tilt mirror for closed-loop fine pointing and vibration
compensation. The design is based on an f/10 telescope with 1 m focal length. The
CMOS sensor (it could be a CCD in a final design) would have pixel size typically
10µm, which with interpolation techniques would allow pointing to better than 10µR
over a field of view of 10 mR (1000 pixels). The retrocube system is used to produce
a weak spot from the outgoing beam on the camera. Point ahead problems due to
Doppler shifts are solved by displacing the image of the ground station guidestar
from the image of the laser source. Note also the unlabeled spatial filter and narrow-
band filter between source and first beam splitter.
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long-range experiments are the system susceptibility to loss and the security
of the key exchange in a high-loss system. The key exchange rate (K ) will be a
product of the pulse repetition rate of the system R, the number of photons per
pulse M (typically M < 0.1), the atmospheric transmission T , the geometric
loss Lg , the detection system lumped efficiency η, and the protocol efficiency
(50%).

K = RMTLgη/2 (9.6)

At present, repetition rates of 10 MHz can be achieved, but next-generation
systems will run at 100 MHz. Assuming we can use M ∼ 0.1 and take Alice
on the satellite scenario, then the worst-case loss is ∼ 22 dB (see Table 9.2).
We then expect a raw key rate after sifting of K ∼ 10,000 bits per second.
Error correction and privacy amplification protocols will reduce this figure
(by about 50%) but still leave long keys when satellite passes take 50 to 100
seconds within the 1000 km range.

The scenario where Alice resides in the satellite is preferred because typ-
ically it will be lower loss and the mass of the 125 mm telescope is quite low.
In Figure 9.8 we show a preliminary compact breadboard designed for use on
a microsatellite. The system is aimed at installation in a three-axis stabilized
microsatellite with total mass < 50 kg. Satellite pointing to better than 0.5◦

(9 mR) is expected, so the tip–tilt pointing system would have to operate over
this field of view with an accuracy much better than 10 µR. Using existing
microsatellite technology [29] and suitable low-cost launch facilities, such a
system could cost less than $20 million to bring to operation.

The system range is limited primarily by the background counting rate
at the receiver, which contributes to the bit-error rate. With a background
count rate per second B, the gated background count probability per pulse
per detector is

Pb = Bt (9.7)

where t is a time gate set by the synchronization between transmitter and
receiver. There are four detectors, and half the background pulses will lead to
errors (the other half fortuitously match the sent bit). The background error
rate is thus

E = 0.02 + 2Bt
MTLgη

(9.8)

where T is atmospheric transmission. We assume a 2% base error rate due
to optical element imperfections. The error correction scheme is optimum for
error rates E < 0.07; thus we see that the minimum transmission is simply
related to the background count rate

TLg ≥ 40Bt
Mη

(9.9)

Clearly the error rate is independent of the pulse repetition rate but highly
dependent on the gating. Present systems achieve around 1 ns synchroniza-
tion and at night with 10 nm bandwidth filters the background can be re-
duced to B < 100 counts per second per detector. Putting these values into
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Equation 9.9 with η ∼ 0.3 and M ∼ 0.1, we see that the system can tolerate
about 40 dB of loss. Such low background rates are only possible during night
operation or with subnanometer-wide filters in daylight (pointing sunwards
is still a problem [16]).

In faint pulse quantum cryptography, the security is susceptible to eaves-
dropping on multiphoton pulses. This involves an eavesdropper hijacking the
weak pulse beam at the exit of the transmitter, selecting only those pulses with
more than one photon and measuring in such a way as to get partial informa-
tion on the key. The eavesdropper can then reinject pulses at the receiver, thus
bypassing the channel transmission losses. To avoid this possibility requires
that the average number of photons per pulse (M) be low. A conservative
assumption takes the view that all errors and all multiphoton pulses will leak
information to an eavesdropper. After error correction, this implied leakage
can be removed by applying a privacy amplification routine to both keys
[23,24]. This random binary matrix multiplication scrambles the key and re-
duces key length while reducing the number of bits known by a potential
eavesdropper to zero. An extreme technology projection assumes the eaves-
dropper can store one photon of a two-photon pulse (until measurement bases
are revealed) and send the other to the receiver without seeing any loss. This
scenario can be guarded against by limiting M ≤ TLg , which would suggests
that a system operating at M ≤ 0.1 can tolerate only 10 dB of transmission loss.
However, the required technologies are decades away at present. With present
technologies the eavesdropper is limited to a strategy where the coding basis
and bit value are uniquely determined from three-photon detection events in
a standard receiver [11]. To do this without discovery, the rate of three-photon
detection at the eavesdropper must be greater than the normal rate of detec-
tion of single photons at the receiver. This implies that setting M2 ≤ 24TLg is
an adequate security level to guard against this attack. A system operating
at M ≤ 0.1 is secure against attack with up to 34 dB of losses. This may affect
the use of GEO-to-ground systems (see Table 9.2). It is probably more realis-
tic, however, to protect against intercept–resend eavesdropping as discussed
above using passive and active monitoring of the viability of the free-space
channel. By definition, the entire free-space channel is visible during the key
exchange, and any eavesdropper must remain invisible to all wavelengths of
the electromagnetic spectrum that can be used to monitor the security. A new
protocol based on varying the intensity may also make higher M possible in
future [30].

9.5.3 Entangled State Quantum Cryptography:
Feasibility

For a space experiment one could use 30-cm optics to collimate the pair photon
beams to about 4 µR divergence. Two ground stations with 1 m telescopes
could be used separated by up to 1000 km. A dedicated satellite in orbit
at about 500 km altitude could then be arranged to pass between the two
ground stations at a range of ∼ 700 km from each. Losses per arm would then
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be between 14 and 16 dB in clear weather with total lumped losses of 28 to
32 dB. Present experiments produce around 20,000 detected pairs per second
in the laboratory using compact diode lasers with 18 mW of power. Future
systems will easily achieve an order-of-magnitude improvement leading to
ground-based coincidence rates ∼ 200 per second with an effective raw key
rate of 100 per second. Errors due to background count rates up to 10,000 per
second are negligible because the background coincidence rate is around 10–1

per second if gates of 1 ns can be used. The pointing requirements for such
an experiment are quite challenging. Two separate closed loop pointing and
tracking systems are required with an accuracy of better than 4 µR. Down to
7 µR diffraction and beam wander is the state of the art in GEO-to-LEO clas-
sical communications experiments [14]. However, the mass of typical optical
pointing and tracking terminals (∼ 25 kg) mean that minimum experiment
plus satellite mass would be in the 100 to 200 kg range.

9.6 Conclusions
As an important step toward satellite-based quantum cryptography we have
demonstrated a secure key exchange over a free-space distance of 23.4 km.
Operation down to 0.08 photons per bit has been demonstrated with optical
losses of about 18 dB. A large fraction of errors arose from background counts
but was still below 6%. Improved performance including daylight operation
is expected with improved spatial filtering at the receiver and a narrow band-
pass filter set to the correct wavelength together with accurate temperature
control of the transmitter lasers. The apparatus showed high stability with
the ambient temperatures in these experiments ranging from +5◦C to −25◦C.
The polarization preparation and analysis modules developed in this work
were stable and required no adjustments over the whole temperature range.
In fact this was quite a relief, as system alignment is not a very pleasant task
at 4:00 A.M., −20◦C, and 2960 m altitude. Extension of entangled state key ex-
change experiments from the laboratory out to similar multikilometer ranges
is already underway.

We have looked at space applications of quantum key distribution. We
identified two future experiments/applications that could be achieved in the
coming years. The first is global key distribution using satellite-to-ground
faint pulse quantum cryptography (Figure 9.4) with secure bit rates greater
than 1000 per second. The second is simultaneous key generation between
two ground stations using entangled state quantum cryptography (Figure 9.5)
with key generation at bit rates greater than 100 per second.

Obviously the nearest to implementation is the faint pulse quantum cryp-
tography scheme, since a low-cost (but still greater than $20 million) mi-
crosatellite experiment is possible. A key problem yet to be solved is the
extreme pointing and tracking requirements, although these are being ad-
dressed in classical optical communications experiments. Further work on
brighter and lighter sources of pair photons will bring entangled state sys-
tems to space readiness. Similar improvements to sources will be required
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before teleportation experiments are ready to move out of the laboratory. A
further requirement for all experiments is time synchronization, to nanosec-
onds for key exchange and picoseconds for teleportation schemes.
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Abstract
We review quantum key distribution schemes that are noise-immune (require
no alignment). For both polarization and time-bin qubits, we present three
noise-immune schemes: round-trip, one-way, and symmetric. In the round-
trip schemes, the signal travels back and forth between the legitimate users
(Alice and Bob); in the one-way schemes, the signal travels only from Alice
to Bob; in the symmetric schemes, a central source sends signals to Alice and
Bob. The primary benefit of the symmetric configuration is that both Alice
and Bob may have passive setups (neither Alice nor Bob is required to make
active changes for each run of the protocol). We show that all the schemes can
be implemented with existing technology.
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10.1 Introduction
Of all the capabilities afforded by quantum information science [1], quantum
key distribution (QKD; for a review, see Reference [2]) currently shows the
most promise for practical implementation. Accordingly, there has been a con-
certed effort to develop QKD schemes that mitigate the technical challenges
associated with existing approaches. Among the successes in this effort are the
development of noise-immune (alignment-free) schemes for polarization [3]
and time-bin [4–7] qubits. A further advance is the development of a sym-
metric scheme for time-bin qubits in which neither Alice nor Bob is required
to make active changes to their setups [8]. Here we use the term symmetric to
describe QKD schemes in which a central source distributes some number of
photons to both Alice and Bob, so that they share entanglement. This is in con-
trast to round-trip and one-way configurations, in which the photons move
according to Bob→Alice→Bob, and Alice→Bob, respectively. Here we show
that symmetry and noise-immunity can be combined in a single implementa-
tion, for both polarization and time-bin qubits. Beginning with polarization-
coded QKD, we first present a round-trip scheme in which noise-immunity is
achieved by sampling the channel birefringence twice (once on the way from
Bob to Alice and once on the way back). Second, we show how Klyshko’s “ad-
vanced wave interpretation” (AWI) [9] can be used to transform this round-
trip scheme into a one-way scheme imbued with passive detection. Third, we
apply the AWI again to obtain a symmetric noise-immune scheme in which
both Alice and Bob have passive setups. We then repeat these three steps for
time-bin-coded QKD. For each scheme, we present a feasible implementation
that relies only on current technology.

10.2 Noise-Immune Polarization-Coded
Schemes

10.2.1 Round-Trip Noise-Immune
Polarization-Coded QKD

The left column of Figure 10.1 shows the space-time diagrams of three noise-
immune polarization-coded QKD schemes. For polarization qubits, noise-
immune means that the scheme is immune to channel birefringence. The first
scheme [Figure 10.1(A)] requires a round trip and is active (both Alice and
Bob are required to make changes to their respective setups). The scheme
runs as follows. Bob randomly chooses between polarization states |V〉 and
|H〉 + |V〉 (here, and for the rest of this chapter, we suppress normalization
factors) and sends a single photon in that state to Alice. Alice uses a Faraday
mirror to reflect that single photon back, and she also sends along an auxil-
iary unpolarized photon. Alice encodes a single bit by controlling the time
ordering of the two photons she sends to Bob. Bob then measures each pho-
ton in the basis associated with the state of the initial photon he sent. Without
knowing which state Bob sent to Alice, Eve cannot deterministically learn



P1: Manoj

Bahill.cls DK5859˙C010 September 20, 2005 12:57

Chapter 10: Noise-Immune Quantum Key Distribution 213

Alice Bob
x

Alice Bob
x

t

Alice Bob
x

t

Polarization qubits Time-bin qubits

(A)

(B)

(C)

(D)

(E)

(F)

1

2

3

4

5

6

1

2

3

4

Alice Bob
x

t

Alice Bob
x

t

Alice Bob
x

t

t

Round-Trip

One-Way

Symmetric

Figure 10.1 Space-time diagrams of six noise-immune QKD schemes organized by
encoding (polarization or time-bin) and signal flow (round-trip, one-way, and sym-
metric). The dashed lines and curved arrows show how the advanced wave interpre-
tation relates the round-trip schemes [(A) and (B)] to the one-way schemes [(B) and
(C)], and the one-way schemes to the symmetric schemes [(C) and (F)]. The dotted
lines connecting photons indicate entanglement. The photon labels in (C) and (F) are
used later in this chapter.

Alice’s bit setting. From Bob’s point of view, the scheme is equivalent to
Bennett’s two-state protocol [10], since he is attempting to distinguish prob-
abilistically between two nonorthogonal states. The noise-immune feature is
derived from the unique property of the Faraday rotator: whatever the po-
larization transformation along the line from Bob to Alice, the photon that
Alice reflects will arrive in Bob’s laboratory in a polarization state orthogonal
to its original state [11]. For example, if Bob sent |V〉, then either the first or
the second photon he receives from Alice will be in the state |H〉. Thus if he
measures one photon in state |V〉 and the other in state |H〉, he knows the
value of Alice’s bit. Any other detection pattern is ambiguous, and Alice and
Bob discard these cases.

The AWI was originally conceived as a method for generating one-photon
experiments from two-photon experiments. However, we may reverse this
procedure and determine which two-photon state embodies the action of
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Alice’s Faraday rotator. Using Faraday rotation as an example, the AWI asso-
ciates the single-photon transformation

Hin → Vout Vin → Hout (10.1)

with the two-photon state

|HinVout〉 + |Vin Hout〉. (10.2)

In going from Equation (10.1) to Equation (10.2), the propagation direction
for Hin and Vin is reversed. To preserve the handedness of the coordinate
system, one of the transverse directions must be reversed as well. This may be
accomplished by replacing Vin with −Vin. Thus we see that the AWI associates
Faraday rotation with the polarization singlet state |HV〉 − |VH〉.

10.2.2 One-Way Noise-Immune
Polarization-Coded QKD

We arrive at the one-way scheme of Figure 10.1(B) by “folding” the input
arm of the Faraday rotator of Figure 10.1(A) along the dashed line, thereby
replacing a round-trip single-photon space-time diagram with a one-way,
two-photon space-time diagram (the dotted line connecting the two photons
indicates entanglement). What follows is a passive-detection version of the
three-photon scheme presented in Reference [3]. Alice sends three photons
to Bob, with the first two (case 1), the last two (case 2), or the first and last
(case 3) in the singlet state and the other photon unpolarized. Bob makes his
measurements using the passive setup shown on the right side of Figure 10.2.
By appropriate postselection, this setup effectively makes a random choice
of two out of the three photons and brings them together on a nonpolarizing
beam splitter, which serves to distinguish the singlet state from the other three
Bell states [12]. Ignoring the first Mach–Zehnder interferometer (with relative

Alice Bob

τ τ4 τ

Figure 10.2 A schematic of one-way noise-immune polarization-coded QKD [see
Figure 10.1(B)]. Alice sends three photons to Bob, with the first two (case 1), the last
two (case 2), or the first and last (case 3) in the singlet state and the other photon unpo-
larized. The delay in Bob’s first and second interferometer are 4τ and τ , respectively.
Bob’s apparatus effectively makes a random choice of two out of the three photons and
brings them together on a nonpolarizing beam splitter, which serves to distinguish
the singlet state from the other three Bell states [12]. The operation of the protocol is
described in the text.
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delay 4τ ) for the moment, we see that the second interferometer (with relative
delay τ ) enables the first two, or the last two, photons to meet at the second
beam splitter of this interferometer. If these two photons are in the singlet
state, they will leave by opposite ports. The contrapositive is also true: if they
leave by the same port (and are detected by one of the pairs of detectors on
each output port), then one can infer that they were not in the singlet state.
Returning to the first interferometer, we see that this interferometer provides
an opportunity for the first and last photons to be analyzed in a similar way.
Thus Bob’s apparatus probabilistically chooses a pair out of the three photons
sent by Alice and determines whether the pair is in the singlet state or in some
orthogonal state [22]. Based on his detections, Bob can rule out at most one of
the three cases corresponding to Alice’s possible signal states. Therefore, after
Bob has made his detection, Alice announces whether the run was a “data
run” (cases 1 or 2), or a “test run” (case 3). The data runs are used to share key
material, and the test runs are used to monitor the eavesdropper. The scheme
is noise-immune because the singlet state is immune to collective rotation.

10.2.3 Symmetric Noise-Immune
Polarization-Coded QKD

We can apply the AWI one more time to get a six-photon symmetric scheme
[Figure 10.1(C)] from the three-photon one-way scheme by folding along the
dotted line in Figure 10.1(B). As indicated in Figure 10.1(C), this would yield
a six-photon entangled state. It is currently not practical to create such a state;
however, we can still implement the scheme using three pairs of entangled
photons in the state

|�+〉14|�+〉25|�+〉36, (10.3)

where |�+〉 = |H H〉 + |VV〉. The execution of the protocol is similar to the
one-way polarization protocol, except that instead of randomly choosing a
three-photon state and sending it to Bob, Alice uses the the apparatus depicted
in Figure 10.3 to choose randomly which pair of photons is in the singlet state.
For example, if Alice obtains a triple coincidence that indicates that photons

S

Alice Bob

6 5 41 2 3

(same as Bob)
τ τ4 τ

Figure 10.3 A schematic of symmetric noise-immune polarization-coded QKD [see
Figure 10.1(C)]. A central source (S) emits three entangled pairs, so that Alice and Bob
each get one from each pair. The scheme works much the same as the one-way scheme
of Figure 10.2, except that Alice’s apparatus makes a passive choice of the signal state
that Bob receives, as described in the text.
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1 and 2 were in the singlet state, then she knows that photons 4 and 5 are also
in the singlet state. This effect can be seen as an application of entanglement
swapping [13]. A similar argument works for the other two possible photon
pairs on Alice’s side. Thus, on these occasions, she effectively prepares for
Bob one of the three signal states from the one-way scheme of Figure 10.1(B).
The protocol then runs exactly as that of Figure 10.1(B). The security of the
scheme derives from the fact that only a triple of maximally entangled photon
pairs will produce the correlations that Alice and Bob measure. Therefore the
source can be controlled by the adversary without compromising security.

10.3 Noise-Immune Time-Bin-Coded
Schemes

10.3.1 Round-Trip Noise-Immune Time-Bin-Coded
QKD

Figure 10.4 contains a schematic and space-time diagram of round-trip
noise-immune time-bin-coded QKD (originally introduced as plug-and-play
quantum cryptography [4]). The protocol begins with Bob launching a strong

PM PM

Alice Bob
A)

B)

AT

L

C

D

L

DAlice Bob
t

z

A4

A3

A2

A1

B4

B3

B2

B1

P1

P2

Figure 10.4 Schematic (A) and space-time diagram (B) for round-trip noise-immune
time-bin-coded QKD. L is a source of laser pulses, C is a circulator, AT is an attenuator,
and PM is a phase modulator.
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pulse from a laser (L) into a Mach–Zehnder interferometer via a circulator
(C). This interferometer splits the pulse into an advanced amplitude (P1) and
a retarded amplitude (P2). The amplitudes travel through phase modulators
(PM) on Bob’s side and Alice’s side, and are then attenuated (AT) to the single
photon level and reflected by Alice back to Bob. Although both P1 and P2 will
again be split at Bob’s Mach–Zehnder interferometer, by gating his detector
appropriately, Bob can postselect those cases in which P1 takes the long path
and P2 takes the short path on the return trip. Thus the interfering amplitudes
experience identical delays on their round trip, ensuring insensitivity to drift
in Bob’s interferometer.

The role of the phase modulators can be readily understood by examining
the space-time diagram of this protocol [see Figure 10.4(B)]. The eight boxes
(A1–A4, B1–B4) refer to the phase settings on the two modulators as the two
amplitudes pass through each of them twice. For example, B2 refers to the
phase acquired by the delayed amplitude of the pulse that Bob sends to Alice,
while B4 refers to the phase acquired by the same amplitude as it travels back
from Alice to Bob. It should be understood that B1–B4 refer to settings of the
same physical phase shifter at different times (and similarly for A1–A4). The
probability of a detection at Bob’s detector is given by

Pd ∝ 1 + cos[(B2 − B1) + (A2 − A1) + (A4 − A3) + (B4 − B3)]. (10.4)

From this expression we see that only the relative phase between the phase
modulator settings affects the probability of detection. Thus, by setting
B1 = B2 and A1 = A2, Alice and Bob can implement the interferometric ver-
sion of BB84 [14] by encoding their cryptographic key in the difference settings
�φA ≡ A4 − A3 and �φB ≡ B4 − B3. Since the resulting expression

Pd ∝ 1 + cos (�φA + �φB) (10.5)

is independent of the time delay in Bob’s interferometer and the absolute
phase settings in either modulator, Alice and Bob are able to achieve high-visi-
bility interference without initial calibration or active compensation of drift.

10.3.2 One-Way Noise-Immune Time-Bin-Coded
QKD

In this section, we describe a one-way noise-immune time-bin-coded QKD
scheme. The scheme also allows for Bob’s apparatus to be passive. Before pre-
senting the full scheme, we review a non-noise-immune QKD scheme that mo-
tivates the technique used to combine noise-immunity and passive detection.

The two-photon quantum key distribution scheme described in Refer-
ence [8] has the remarkable property that both Alice and Bob use passive
detection (i.e., they are not required to switch between conjugate measure-
ment bases). In Reference [2], Gisin et al. suggest applying the AWI to generate
an associated one-photon scheme. We present a specific implementation of
this one-photon scheme here to show that it achieves passive detection by
enlarging the Hilbert space (see Figure 10.5). Let the advanced and delayed
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Figure 10.5 A single-photon implementation of BB84 suggested in Reference [2]. The
kets |E〉 and |L〉 correspond respectively to an advanced (early) and a delayed (late)
single-photon wavepacket. Alice sends one of the four states listed below the diagram
of the apparatus. The chart indicates which of Alice’s states are consistent with a given
measurement event at Bob’s side. As described in the text, Bob’s apparatus does not
require active change of measurement basis.

single-photon wavepackets be associated with the poles of the Poincaré sphere.
The four states required for BB84 are typically taken from the equator, since a
single Mach–Zehnder interferometer can be used to generate any of the equa-
torial states. Instead, we imagine using two antipodal points on the equator
and the poles themselves. Bob analyzes the signal from Alice with a Mach–
Zehnder interferometer, recording which detector fired (one of two possibil-
ities) at which time (one of three possibilities). When Bob’s detection is in
the first or third time positions, he can reliably distinguish between the pole
states based on the time of detection. When his detection is in the second time
position, he can reliably distinguish between the equatorial states based on
which detector fired. Thus Bob is no longer obliged to make an active change
to his apparatus to effect the requisite change of basis [23].

To see how this passive detection is derived from enlargement of the
Hilbert space, consider the quantum state of Alice’s signal after Bob’s
Mach–Zehnder interferometer. Alice’s four states of one qubit are mapped
onto four mutually nonorthogonal states of a six-state quantum system (see
Figure 10.5). Thus by mapping a two-state quantum system into a six-state
quantum system, Bob is able to perform his part of the BB84 protocol with a
fixed-basis measurement in the six-state Hilbert space [24].

Next we present a scheme that combines passive detection with one-way
noise-immunity (see Figure 10.6). This scheme follows from that presented
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in Reference [6], just as the preceding single-photon scheme follows from
the traditional phase-coding implementation. Let the states |1〉 and |2〉 in
Figure 10.6 be associated with the poles of the Poincaré sphere. Instead of
using equatorial states and forcing Bob to postselect those cases for which
the advanced (delayed) amplitudes take the long (short) path, we use two
equatorial points (|3〉 and |4〉) and the poles themselves to make up Alice’s
four signal states. Signal states that are consistent with a given joint detection
are presented in the chart. As seen in Figure 10.5, each photon can lead to six
different detection events. Thus, since the new protocol involves two photons,
there are 36 possible detection events (see Figure 10.6).

The protocol operates as follows. As in BB84, Alice and Bob publicly
agree on an association of each of the four signal states (see Figure 10.6) with
logical values 0 or 1 (i.e., 1 → 0, 2 → 1, 3 → 0, 4 → 1). For each run of the
experiment, Alice randomly chooses one of the four signal states and sends
it to Bob. When Bob detects both photons in their respective middle time
slots, he has effectively measured in the {3, 4} basis (the “phase” basis). When
Bob detects both photons in their early time slots, or both photons in their late
time slots, he has effectively measured in the {1, 2} basis (the “time” basis) [25].
After the quantum transmission, Alice and Bob publicly announce their bases.
On the occasions when their bases match, Bob is able to infer the state that
Alice sent, based on his detection pattern using the chart in Figure 10.6. As
in single-qubit BB84, the occasions in which their bases do not match are
discarded. The scheme achieves passive detection (Bob is not required to make
any active changes to his apparatus) and noise-immunity (the phase delay in
Bob’s interferometer does not affect any measured probabilities). The intrinsic
efficiency of the scheme is 1/4, compared to 1/2 for single-qubit BB84.

A proposed implementation for the source employed in Figure 10.6 is
presented in Figure 10.7. First, a pair of noncollinear, polarization-entangled
photons is produced via type-II spontaneous parametric down-conversion
from a nonlinear crystal pumped by a brief pulse [26]. Second, the modu-
lating element M performs one of four functions (filters one of the two po-
larization modes, or introduces one of two relative phases between the two
polarization modes), based on Alice’s choice of signal states. Third, the two

+
–SPDC

M

Source

P

Figure 10.7 A proposed implementation for the source employed in Figure 10.6.
SPDC is a nonlinear crystal pumped by a brief pulse to produce a noncollinear,
polarization-entangled two-photon state via spontaneous parametric down-conver-
sion. The action of elements M and P is described in the text.
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beams are combined with a relative temporal delay that matches the tem-
poral delay that Bob will subsequently introduce with his Mach–Zehnder
interferometer. This stage converts the photon pair from a pair of spatially
defined polarization-entangled qubits to a pair of polarization-defined time-
bin-entangled qubits. Finally, the element labeled P (for polarization) delays
and rotates one of the polarization modes by a duration much greater than
the delay of the third step, so that the delayed portion of the state is in the
same polarization mode as the nondelayed portion. Thus the two photons
sent from Alice to Bob have the wavepacket structure illustrated at the top of
Figure 10.6.

There are two noteworthy aspects of the configuration in Figure 10.7. First,
the technique introduced in Reference [8] for creating time-bin-entangled pho-
tons pairs only leads to superpositions of the correlated possibilities (i.e., |EE〉
and |LL〉). The source presented in Figure 10.7 enables arbitrary superposi-
tions of the anticorrelated possibilities (i.e., |EL〉 and |LE〉). Furthermore, the
correlated states can easily be created from this source by rotating the polariza-
tion axes at element M in Figure 10.7. In this way, all four time-bin-entangled
Bell states can be conveniently generated with this source. Second, the inter-
ference in Bob’s interferometer results from the indistinguishability of photon
amplitudes that were initially in the same polarization mode. This is in con-
trast to configurations in which photon amplitudes from different polarization
modes are made indistinguishable by use of a polarization analyzer. Thus the
reduction in visibility that has come to be associated with extremely brief
pump pulses [15] will not be present in this scheme. Note that a symmetriza-
tion method has been developed to restore visibility for experiments using
polarization-entangled photons created by such a short pulse pump [16,17].

10.3.3 Symmetric Noise-Immune Time-Bin-Coded
QKD

In the symmetric time-bin scheme of Figure 10.1(F), the source produces a
four-photon entangled state. As it is currently not practical to create such a
state, we achieve the same result in Figure 10.8 by using two entangled pairs
in the state

(|EE〉13 + |LL〉13)(|EE〉24 + |LL〉24), (10.6)

where E and L stand for early and late, respectively. The source apparatus
consists of three switches, while Alice and Bob simply have Mach–Zehnder
interferometers. The switches in the source behave as follows. The first switch
(SW1) directs photon 1 along the lower path and photon 2 along the upper
path. The action of the second switch (SW2) is indicated by the labels t and
r, which stand for transmit and reflect, respectively. Thus for the early am-
plitude of photon 1 and the late amplitude of photon 2, SW2 reflects; other-
wise it transmits. The third switch (SW3) directs the photons 5 and 6 onto
the same output fiber. By postselecting only those occasions when one pho-
ton is found in the positions labeled 5 and 6, Alice effectively creates the
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τ

SW1

SW2

+
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rt t

1

2
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6 Bob
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−
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5 6

SW3

Alice

Figure 10.8 A schematic of symmetric noise-immune time-bin-coded QKD [see
Figure 10.1(F)]. A central source (S) emits two separately entangled photon pairs [see
Equation (10.6)]. One photon from each pair is sent to Bob. The other two photons
are sent through a series of three switches. The first switch (SW1) directs photon 1
along the lower path and photon 2 along the upper path. The action of the second
switch (SW2) is indicated by the labels t and r, which stand for transmit and reflect, re-
spectively. The third switch (SW3) directs photons 5 and 6 onto the same output fiber.
By postselecting the cases in which one photon is in position 5 and one photon is in
position 6, Alice effectively creates the four-photon entangled state in Equation (10.7).
This state is then analyzed by Alice and Bob with their Mach–Zehnder interferome-
ters, each of which has a delay equal to τ . The protocol used to establish a shared key
is described in the text.

four-photon entangled state

|ELLE〉5634 + |LEEL〉5634. (10.7)

When all the amplitudes follow the pattern (E →long path, L → short
path) in Alice’s and Bob’s Mach–Zehnder interferometers, Alice and Bob an-
nounce that they have measured in the phase basis, and they use the chart
in Figure 10.9 to infer the bit value. When one photon on each side does not

Alice

Bob

Figure 10.9 Possible joint detection patterns for the scheme of Figure 10.8. The expres-
sion (+, −) indicates that the + detector fired for the first photon and the − detector
for the second. Given that the source produces the state in Equation (10.6), when all
the amplitudes follow the pattern (E → long, L → short) in Alice’s and Bob’s Mach–
Zehnder interferometers, the unchecked joint detection patterns do not occur because
of destructive interference. Thus Alice and Bob may use a publicly known encoding
(e.g., {(+, +), (−, −)} →0, {(+, −), (−, +)} →1) to agree on a secret key bit.
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follow the pattern (E → long, L → short), Alice and Bob announce that they
have measured in the time basis. On these occasions, they each know which
of the superposed terms in Equation (10.7) was realized, and they use this
knowledge to establish a shared bit. The scheme is noise-immune because on
the phase-basis occasions, each leg of the two Mach–Zehnder interferometers
is traversed by one of the four photons. Thus the relative phase along the
two paths of each interferometer factors out and does not affect the measured
results. The scheme is passive because neither Alice nor Bob is required to
make active changes to their apparatus.

The security of the scheme derives from the fact that only the state in Equa-
tion (10.6) will produce the correlations that Alice and Bob measure. Therefore
the source can be controlled by the adversary without compromising security.
This technique can be viewed as the time-bin analog of the polarization based
entanglement distillation experiment described in Reference [18].

10.4 Discussion
We have presented round-trip, one-way, and symmetric noise-immune QKD
schemes that can be implemented with existing technology for both polariza-
tion and time-bin qubits. The noise-immunity of the schemes makes active
compensation of interferometric drift and channel birefringence unnecessary.
The round-trip methods are the simplest, since they do not involve entangle-
ment. However, the bidirectional flow of signals leaves an opportunity for an
eavesdropper to compromise the security of the link by sending signals into
the apparatus of Alice and/or Bob and measuring the state of the reflected
signal. The one-way schemes remove this security concern at the cost of re-
quiring a multi-photon entangled state. A further advantage of the one-way
schemes presented here is that they do not require Bob to make active changes
to his apparatus. Finally, the symmetric schemes presented here achieve noise-
immunity while requiring neither Bob nor Alice to make active changes to
his/her apparatus. The cost of this simplicity is a doubling of the number of
photons involved in each run of the protocol.

It is interesting to observe that discoveries in the field of quantum in-
formation (entanglement swapping and entanglement distillation) can be
naturally related to other areas of quantum information theory (quantum er-
ror correction and decoherence-free subpaces) via the AWI, as demonstrated
in Figure 10.1. Since the central goal of quantum computation is a “folding in
time” of a classical computation, the AWI may yield insight into the mecha-
nisms behind the speed-up achieved by certain quantum computation algo-
rithms.
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