
Introduction to Python for Econometrics, Statistics and Data Analysis

Kevin Sheppard
University of Oxford

Monday 25th November, 2013

-

©2012, 2013 Kevin Sheppard

2

Change Log

Version 2.02

• Changed the Anaconda install to use both create and install, which shows how to install additional

packages.

• Fixed some missing packages in the direct install.

• Changed the configuration of IPython to reflect best practices.

• Added subsection covering IPython profiles.

Version 2.01

• Updated Anaconda to 1.8 and added some additional packages to the installation for Spyder.

• Small section about Spyder as a good starting IDE.

i

ii

Notes to the 2nd Edition

This edition includes the following changes from the first edition (March 2012):

• The preferred installation method is now Continuum Analytics’ Anaconda. Anaconda is a complete

scientific stack and is available for all major platforms.

• New chapter on pandas. pandas provides a simple but powerful tool to manage data and perform

basic analysis. It also greatly simplifies importing and exporting data.

• New chapter on advanced selection of elements from an array.

• Numba provides just-in-time compilation for numeric Python code which often produces large per-

formance gains when pure NumPy solutions are not available (e.g. looping code).

• Dictionary, set and tuple comprehensions

• Numerous typos

• All code has been verified working against Anaconda 1.7.0.

iii

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Conventions . 2

1.3 Important Components of the Python Scientific Stack . 3

1.4 Setup . 4

1.5 Using Python . 9

1.6 Exercises . 19

1.A register_python.py . 19

2 Python 2.7 vs. 3 (and the rest) 23

2.1 Python 2.7 vs. 3 . 23

2.2 Intel Math Kernel Library and AMD Core Math Library . 23

2.3 Other Variants . 24

2.A Relevant Differences between Python 2.7 and 3 . 25

3 Built-in Data Types 27

3.1 Variable Names . 27

3.2 Core Native Data Types . 28

3.3 Python and Memory Management . 38

3.4 Exercises . 40

4 Arrays and Matrices 43

4.1 Array . 43

4.2 Matrix . 45

4.3 1-dimensional Arrays . 46

4.4 2-dimensional Arrays . 47

4.5 Multidimensional Arrays . 47

4.6 Concatenation . 47

4.7 Accessing Elements of an Array . 48

4.8 Slicing and Memory Management . 53

4.9 import and Modules . 55

4.10 Calling Functions . 56

v

4.11 Exercises . 58

5 Basic Math 59

5.1 Operators . 59

5.2 Broadcasting . 60

5.3 Array and Matrix Addition (+) and Subtraction (-) . 61

5.4 Array Multiplication (*) . 62

5.5 Matrix Multiplication (*) . 62

5.6 Array and Matrix Division (/) . 62

5.7 Array Exponentiation (**) . 62

5.8 Matrix Exponentiation (**) . 63

5.9 Parentheses . 63

5.10 Transpose . 63

5.11 Operator Precedence . 63

5.12 Exercises . 64

6 Basic Functions and Numerical Indexing 67

6.1 Generating Arrays and Matrices . 67

6.2 Rounding . 70

6.3 Mathematics . 71

6.4 Complex Values . 73

6.5 Set Functions . 73

6.6 Sorting and Extreme Values . 74

6.7 Nan Functions . 76

6.8 Functions and Methods/Properties . 77

6.9 Exercises . 78

7 Special Arrays 79

7.1 Exercises . 80

8 Array and Matrix Functions 81

8.1 Views . 81

8.2 Shape Information and Transformation . 82

8.3 Linear Algebra Functions . 89

8.4 Exercises . 92

9 Importing and Exporting Data 95

9.1 Importing Data using pandas . 95

9.2 Importing Data without pandas . 96

9.3 Saving or Exporting Data using pandas . 102

9.4 Saving or Exporting Data without pandas . 102

9.5 Exercises . 103

vi

10 Inf, NaN and Numeric Limits 105

10.1 inf and NaN . 105

10.2 Floating point precision . 105

10.3 Exercises . 106

11 Logical Operators and Find 109

11.1 >, >=, <, <=, ==, != . 109

11.2 and, or, not and xor . 110

11.3 Multiple tests . 111

11.4 is* . 112

11.5 Exercises . 113

12 Advanced Selection and Assignment 115

12.1 Numerical Indexing . 115

12.2 Logical Indexing . 120

12.3 Performance Considerations and Memory Management . 124

12.4 Assignment with Broadcasting . 124

12.5 Exercises . 126

13 Flow Control, Loops and Exception Handling 129

13.1 Whitespace and Flow Control . 129

13.2 if . . . elif . . . else . 129

13.3 for . 130

13.4 while . 133

13.5 try . . . except . 135

13.6 List Comprehensions . 135

13.7 Tuple, Dictionary and Set Comprehensions . 137

13.8 Exercises . 137

14 Dates and Times 139

14.1 Creating Dates and Times . 139

14.2 Dates Mathematics . 139

14.3 Numpy datetime64 . 140

15 Graphics 143

15.1 2D Plotting . 143

15.2 Advanced 2D Plotting . 149

15.3 3D Plotting . 158

15.4 General Plotting Functions . 161

15.5 Exporting Plots . 161

15.6 Exercises . 162

vii

16 Structured Arrays 163

16.1 Mixed Arrays with Column Names . 163

16.2 Record Arrays . 166

17 pandas 167

17.1 Data Structures . 167

17.2 Statistical Function . 186

17.3 Time-series Data . 187

17.4 Importing and Exporting Data . 190

17.5 Graphics . 193

17.6 Examples . 194

18 Custom Function and Modules 201

18.1 Functions . 201

18.2 Variable Scope . 208

18.3 Example: Least Squares with Newey-West Covariance . 209

18.4 Anonymous Functions . 210

18.5 Modules . 210

18.6 Packages . 211

18.7 PYTHONPATH . 213

18.8 Python Coding Conventions . 213

18.9 Exercises . 214

18.A Listing of econometrics.py . 215

19 Probability and Statistics Functions 219

19.1 Simulating Random Variables . 219

19.2 Simulation and Random Number Generation . 223

19.3 Statistics Functions . 225

19.4 Continuous Random Variables . 228

19.5 Select Statistics Functions . 231

19.6 Select Statistical Tests . 234

19.7 Exercises . 235

20 Optimization 237

20.1 Unconstrained Optimization . 238

20.2 Derivative-free Optimization . 241

20.3 Constrained Optimization . 242

20.4 Scalar Function Minimization . 246

20.5 Nonlinear Least Squares . 247

20.6 Exercises . 248

viii

21 String Manipulation 249

21.1 String Building . 249

21.2 String Functions . 250

21.3 Formatting Numbers . 254

21.4 Regular Expressions . 258

21.5 Safe Conversion of Strings . 259

22 File System Operations 261

22.1 Changing the Working Directory . 261

22.2 Creating and Deleting Directories . 261

22.3 Listing the Contents of a Directory . 262

22.4 Copying, Moving and Deleting Files . 262

22.5 Executing Other Programs . 263

22.6 Creating and Opening Archives . 263

22.7 Reading and Writing Files . 264

22.8 Exercises . 266

23 Performance and Code Optimization 267

23.1 Getting Started . 267

23.2 Timing Code . 267

23.3 Vectorize to Avoid Unnecessary Loops . 268

23.4 Alter the loop dimensions . 269

23.5 Utilize Broadcasting . 270

23.6 Use In-place Assignment . 270

23.7 Avoid Allocating Memory . 270

23.8 Inline Frequent Function Calls . 270

23.9 Consider Data Locality in Arrays . 270

23.10Profile Long Running Functions . 271

23.11Numba . 276

23.12Cython . 278

23.13Exercises . 283

24 Parallel 285

24.1 map and related functions . 285

24.2 Multiprocess module . 286

24.3 IPython Parallel . 287

25 Examples 289

25.1 Estimating the Parameters of a GARCH Model . 289

25.2 Estimating the Risk Premia using Fama-MacBeth Regressions 293

25.3 Estimating the Risk Premia using GMM . 297

25.4 Outputting LATEX . 300

ix

26 Other Interesting Python Packages 303

26.1 statsmodels . 303

26.2 pytz and babel . 303

26.3 rpy2 . 303

26.4 PyTables and h5py . 303

27 Quick Reference 305

27.1 Built-ins . 305

27.2 NumPy (numpy) . 312

27.3 SciPy . 327

27.4 Matplotlib . 330

27.5 Pandas . 332

27.6 IPython . 336

x

Chapter 1

Introduction

1.1 Background

These notes are designed for someone new to statistical computing wishing to develop a set of skills nec-

essary to perform original research using Python. They should also be useful for students, researchers or

practitioners who require a versatile platform for econometrics, statistics or general numerical analysis

(e.g. numeric solutions to economic models or model simulation).

Python is a popular general purpose programming language which is well suited to a wide range of

problems.1 Recent developments have extended Python’s range of applicability to econometrics, statis-

tics and general numerical analysis. Python – with the right set of add-ons – is comparable to domain-

specific languages such as MATLAB and R. If you are wondering whether you should bother with Python

(or another language), a very incomplete list of considerations includes:

You might want to consider R if:

• You want to apply statistical methods. The statistics library of R is second to none, and R is clearly

at the forefront in new statistical algorithm development – meaning you are most likely to find that

new(ish) procedure in R.

• Performance is of secondary importance.

• Free is important.

You might want to consider MATLAB if:

• Commercial support, and a clean channel to report issues, is important.

• Documentation and organization of modules is more important than raw routine availability.

• Performance is more important than scope of available packages. MATLAB has optimizations, such

as Just-in-Time (JIT) compilation of loops, which is not automatically available in most other pack-

ages.

Having read the reasons to choose another package, you may wonder why you should consider Python.

1According to the ranking onhttp://www.tiobe.com/, Python is the 8th most popular language. http://langpop.corger.
nl/ ranks Python as 5th or 6th, and on http://langpop.com/, Python is 6th.

1

http://www.tiobe.com/
http://langpop.corger.nl/
http://langpop.corger.nl/
http://langpop.com/

• You need a language which can act as an end-to-end solution so that everything from accessing web-

based services and database servers, data management and processing and statistical computation

can be accomplished in a single language. Python can even be used to write apps for desktop-class

operating systems with graphical user interfaces as well as tablets and phones (IOS and Android).

• Data handling and manipulation – especially cleaning and reformatting – is an important concern.

Data set construction is substantially more capable at than either R or MATLAB.

• Performance is a concern, but not at the top of the list.2

• Free is an important consideration – Python can be freely deployed, even to 100s of servers in a

compute cluster or in the cloud (e.g. Amazon Web Services or Azure).

• Knowledge of Python, as a general purpose language, is complementary to R/MATLAB/Ox/GAUSS/Ju-

lia.

1.2 Conventions

These notes will follow two conventions.

1. Code blocks will be used throughout.

"""A docstring

"""

Comments appear in a different color

Reserved keywords are highlighted

and as assert break class continue def del elif else

except exec finally for from global if import in is

lambda not or pass print raise return try while with yield

Common functions and classes are highlighted in a

different color. Note that these are not reserved,

and can be used although best practice would be

to avoid them if possible

array matrix xrange list True False None

Long lines are indented

some_text = ’This is a very, very, very, very, very, very, very, very, very, very, very

, very long line.’

2. When a code block contains >>>, this indicates that the command is running an interactive IPython

session. Output will often appear after the console command, and will not be preceded by a com-

mand indicator.

2Python performance can be made arbitrarily close to C using a variety of methods, including Numba (pure python), Cython
(C/Python creole language) or directly calling C code. Moreover, recent advances have substantially closed the gap with respect
to other Just-in-Time compiled languages such as MATLAB.

2

>>> x = 1.0

>>> x + 2

3.0

If the code block does not contain the console session indicator, the code contained in the block is

intended to be executed in a standalone Python file.

from __future__ import print_function

import numpy as np

x = np.array([1,2,3,4])

y = np.sum(x)

print(x)

print(y)

1.3 Important Components of the Python Scientific Stack

1.3.1 Python

Python 2.7.6 (or later, but in the Python 2.7.x family) is required. This provides the core Python interpreter.

1.3.2 NumPy

NumPy provides a set of array and matrix data types which are essential for statistics, econometrics and

data analysis.

1.3.3 SciPy

SciPy contains a large number of routines needed for analysis of data. The most important include a wide

range of random number generators, linear algebra routines and optimizers. SciPy depends on NumPy.

1.3.4 IPython

IPython provides an interactive Python environment which enhances productivity when developing code

or performing interactive data analysis.

1.3.5 matplotlib

matplotlib provides a plotting environment for 2D plots, with limited support for 3D plotting.

1.3.6 pandas

pandas provides high-performance data structures.

3

1.3.7 Performance Modules

A number of modules are available to help with performance. These include Cython and Numba. Cython

is a Python module which facilitates using a simple Python-derived creole to write functions that can be

compiled to native (C code) Python extensions. Numba uses a method of just-in-time compilation to

translate a subset of Python to native code using Low-Level Virtual Machine (LLVM).

1.4 Setup

The recommended method to install the Python scientific stack is to use Continuum Analytics’ Anaconda.

Instructions are also provided for directly installing Python and the required modules if it isn’t possible to

install Anaconda.

1.4.1 Continuum Analytics’ Anaconda

Anaconda, a free product of Continuum Analytics (www.continuum.io), is a virtually complete scientific

stack for Python. It includes both the core Python interpreter and standard libraries as well as most

modules required for data analysis. Anaconda is free to use and modules for accelerating the perfor-

mance of linear algebra on Intel processors using the Math Kernel Library (MKL) are available (free to

academic users and for a small cost to non-academic users). Continuum Analytics also provides other

high-performance modules for reading large data files or using the GPU to further accelerate performance

for an additional, modest charge. Most importantly, installation is extraordinarily easy on Windows, Linux

and OSX. Anaconda is also simple to update to the latest version using

conda update conda

conda update anaconda

Windows

Installation on Windows requires downloading the installer and running. These instructions use ANA-

CONDA to indicate the Anaconda installation directory (e.g. the default is C:\Anaconda). Once the setup

has completed, open a command prompt (cmd.exe) and run

cd ANACONDA

conda update conda

conda update anaconda

conda create -n econometrics numpy scipy ipython-qtconsole ipython-notebook spyder pandas

statsmodels matplotlib

conda install -n econometrics cython distribute lxml nose numba numexpr pep8 pip psutil

pyflakes pytables pywin32 rope openpyxl sphinx statsmodels xlrd xlwt

conda install -n econometrics mkl

which will first ensure that Anaconda is up-to-date and then create a virtual environment named econo-

metrics. The virtual environment provides a set of components which will not change even if anaconda

is updated. Using a virtual environment is a best practice and is important since component updates can

lead to errors in otherwise working programs due to backward incompatible changes in a module. The

long list of modules in the conda create command includes the core modules. The first conda install

4

www.continuum.io

contains the remaining packages, and is shown as an example of how to add packages to a virtual envi-

ronment after it has been created. The second conda install installs the Intel Math Kernel library linked-

modules which provide large performance gains in Intel systems – this package requires a license from

Continuum which is is free to academic users (and low cost otherwise). I recommend acquiring a license

as the performance gains are substantial, even on dual core machines. If you will not be purchasing a

license, this line should be omitted. It is also possible to install all available packages using the command

conda create -n econometrics anaconda.

The econometrics environment must be activated before use. This is accomplished by running

ANACONDA\Scripts\activate.bat econometrics

from the command prompt, which prepends [econometrics] to the prompt as an indication that virtual

environment is active. Activate the econometrics environment and then run

pip install pylint beautifulsoup4 html5lib

which installs one package not directly available in Anaconda.

Linux and OSX

Installation on Linux requires executing

bash Anaconda-x.y.z-Linux-ISA.sh

where x.y.z will depend on the version being installed and ISA will be either x86 or more likely x86_64.

The OSX installer is available either in a GUI installed (pkg format) or as a bash installer which is installed

in an identical manner to the Linux installation. After installation completes, change to the folder where

Anaconda installed (written here as ANACONDA, default ~/anaconda) and execute

cd ANACONDA

cd bin

./conda update conda

./conda update anaconda

./conda create -n econometrics numpy scipy ipython-qtconsole ipython-notebook spyder pandas

statsmodels matplotlib

./conda install -n econometrics cython distribute lxml nose numba numexpr pep8 pip psutil

pyflakes pytables rope openpyxl sphinx statsmodels xlrd xlwt

./conda install -n econometrics mkl

which will first ensure that Anaconda is up-to-date and then create a virtual environment named econo-

metrics with the required packages. conda create creates the environment and conda install installs

additional packages to the existing environment. The second invocation of conda install is used to in-

stall the Intel Math Kernel library-linked modules, which provide substantial performance improvements

– this package requires a license which is free to academic users and low cost to others. If acquiring a

license is not possible, omit this line. conda install can be used later to install other packages that may

be of interest. To activate the newly created environment, run

source ANACONDA/bin/activate econometrics

and then run the command

pip install pylint beautifulsoup4 html5lib

to install one package not included in Anaconda.

5

1.4.2 Installation without Anaconda

Anaconda greatly simplifies installing the scientific Python stack. However, there may be situations where

installing Anaconda is not possible, and so (substantially more complicated) instructions are included for

both Windows and Linux.

Windows

The list of required windows binary packages, along with the version and Windows installation file, re-

quired for these notes include:

Package Version File name

Python 2.7.5 python-2.7.5.amd64

Setuptools 1.3.2 setuptools-1.3.2.win-amd64-py2.7

Pip 1.4.1 pip-1.4.1.win-amd64-py2.7

Virtualenv 1.10.1 virtualenv-1.10.1.win-amd64-py2.7

pywin32 218.4 pywin32-218.4.win-amd64-py2.7

Jinja2 2.7.1 Jinja2-2.7.1.win-amd64-py2.7.exe

Tornado 3.1.1 tornado-3.1.1.win-amd64-py2.7.exe

PyCairo 1.10.0 pycairo-1.10.0.win-amd64-py2.7

PyZMQ 14.0.0 pyzmq-13.1.0.win-amd64-py2.7

PyQt 4.9.6-1 PyQt-Py2.7-x64-gpl-4.9.6-1

NumPy 1.7.1 numpy-MKL-1.7.1.win-amd64-py2.7

SciPy 0.13.0 scipy-0.13.0.win-amd64-py2.7

MatplotLib 1.3.1 matplotlib-1.3.0.win-amd64-py2.7

pandas 0.12.0 pandas-0.12.0.win-amd64-py2.7

IPython 1.1.0 ipython-1.1.0.win-amd64-py2.7

statsmodels 0.5.0 statsmodels-0.5.0.win-amd64-py2.7

PyTables 3.0.0 tables-3.0.0.win-amd64-py2.7

lxml 3.2.4 lxml-3.2.4.win-amd64-py2.7

psutil 1.1.3 psutil-1.1.3.win-amd64-py2.7

These remaining packages are optional and are only discussed in the final chapters related to perfor-

mance.

6

Package Version File name

Performance

Cython
Cython 0.19.2 Cython-0.19.2.win-amd64-py2.7

Numba
LLVMPy 0.12.1 llvmpy-0.12.1.win-amd64-py2.7

LLVMMath 0.1.2 llvmmath-0.1.2.win-amd64-py2.7

Numba 0.11.1 numba-0.11.1.win-amd64-py2.7

pandas (Optional)
Bottleneck 0.7.0 Bottleneck-0.7.0.win-amd64-py2.7

NumExpr 2.2.2 numexpr-2.2.1.win-amd64-py2.7

Begin by installing Python, setuptools, pip and virtualenv. After these four packages are installed, open

an elevated command prompt (cmd.exe with administrator privileges) and initialized the virtual environ-

ment using the command:

cd C:\Dropbox

virtualenv econometrics

I prefer to use my Dropbox as the location for virtual environments and have named the virtual en-

vironment econometrics. The virtual environment can be located anywhere (although best practice is to

use a path without spaces) and can have a different name. Throughout the remainder of this section, VIR-

TUALENV will refer to the complete directory containing the virtual environment (e.g. C:\Dropbox\econometrics).

Once the virtual environment setup is complete, run

cd VIRTUALENV\Scripts

activate.bat

pip install beautifulsoup4 html5lib meta nose openpyxl patsy pep8 pyflakes pygments pylint

pylint pyparsing pyreadline python-dateutil pytz==2013d rope sphinx spyder wsgiref xlrd

xlwt

which activates the virtual environment and installs some additional required packages. Finally, before

installing the remaining packages, it is necessary to register the virtual environment as the default Python

environment by running the script register_python.py3, which is available on the website. Once the correct

version of Python is registered, install the remaining packages in order, including any optional packages.

Finally, run one final command in the prompt.

xcopy c:\Python27\tcl VIRTUALENV\tcl /S /E /I

Linux (Ubuntu 12.04 LTS)

To install on Ubuntu 12.04 LTS, begin by updating the system using

3This file registers the virtual environment as the default python in Windows. To restore the main Python installation (nor-
mally C:\Python27) run register_python.py with the main Python interpreter (normally C:\Python27\python.exe) in an elevated
command prompt.

7

sudo apt-get update

sudo apt-get upgrade

Next, install the system packages required using

sudo apt-get install python-pip libzmq-dev python-all-dev build-essential gfortran libatlas-

base-dev pyqt4-dev-tools libfreetype6-dev libpng12-dev python-qt4 python-qt4-dev python-

cairo python-cairo-dev hdf5-tools libhdf5-serial-dev texlive-full dvipng pandoc

Finally, install virtualenv using

sudo pip install virtualenv

The next step is to initialize the virtual environment, which is assumed to be in your home directory

and named econometrics.

cd ~

virtualenv econometrics

The virtual environment can be activated using

source ~/econometrics/bin/activate

Once the virtual environment has been initialized, the remaining packages can be installed using the

commands

mkdir ~/econometrics/lib/python2.7/site-packages/PyQt4/

mkdir ~/econometrics/lib/python2.7/site-packages/cairo/

cp -r /usr/lib/python2.7/dist-packages/PyQt4/* ~/econometrics/lib/python2.7/site-packages/

PyQt4/

cp -r /usr/lib/python2.7/dist-packages/cairo/* ~/econometrics/lib/python2.7/site-packages/

cairo/

cp /usr/lib/python2.7/dist-packages/sip* ~/econometrics/lib/python2.7/site-packages/

pip install Cython

pip install numpy

pip install scipy

pip install matplotlib

pip install ipython[/*all*/]

pip install beautifulsoup4 html5lib lxml openpyxl pytz==2013d xlrd xlwt

pip install patsy bottleneck numexpr

pip install tables

pip install pandas

pip install statsmodels

pip install distribute meta rope pep8 pexpect pylint pyflakes psutil sphinx spyder

The three cp lines copy files from the default Python installation which are more difficult to build using

pip. Next, if interested in Numba, a package which can be used to enhance the performance of Python,

enter the following commands. Note: The correct version of llvm might change as llvmpy and numba

progress.

wget http://llvm.org/releases/3.2/llvm-3.2.src.tar.gz

tar -zxf llvm-3.2.src.tar.gz

cd llvm-3.2.src

./configure --enable-optimizations --prefix=/home/username/llvm

REQUIRES_RTTI=1 make

8

make install

cd ..

LLVM_CONFIG_PATH=/home/username/llvm/bin/llvm-config pip install llvmpy

pip install llvmmath

pip install numba

1.5 Using Python

Python can be programmed using an interactive session using IPython or by directly executing Python

scripts – text files that end in the extension .py – using the Python interpreter.

1.5.1 Python and IPython

Most of this introduction focuses on interactive programming, which has some distinct advantages when

learning a language. The standard Python interactive console is very basic and does not support useful

features such as tab completion. IPython, and especially the QtConsole version of IPython, transforms

the console into a highly productive environment which supports a number of useful features:

• Tab completion - After entering 1 or more characters, pressing the tab button will bring up a list of

functions, packages and variables which match the typed text. If the list of matches is large, pressing

tab again allows the arrow keys can be used to browse and select a completion.

• “Magic” function which make tasks such as navigating the local file system (using %cd ~/directory/

or just cd ~/directory/ assuming that %automagic is on) or running other Python programs (using

run program.py) simple. Entering %magic inside and IPython session will produce a detailed de-

scription of the available functions. Alternatively, %lsmagic produces a succinct list of available

magic commands. The most useful magic functions are

– cd - change directory

– edit filename - launch an editor to edit filename

– ls or ls pattern - list the contents of a directory

– run filename - run the Python file filename

– timeit - time the execution of a piece of code or function

• Integrated help - When using the QtConsole, calling a function provides a view of the top of the help

function. For example, entering mean(will produce a view of the top 20 lines of its help text.

• Inline figures - The QtConsole can also display figure inline which produces a tidy, self-contained

environment. (when using the --pylab=inline switch when starting, or when using the configu-

ration option _c.IPKernelApp.pylab="inline").

• The special variable _ contains the last result in the console, and so the most recent result can be

saved to a new variable using the syntax x = _.

• Support for profiles, which provide further customization of sessions.

9

1.5.2 IPython Profiles

IPython supports using profiles which allows for alternative environments (at launch), either in appear-

ance or in terms of packages which have been loaded into the IPython session. Profiles are configured

using a set of files located in

%USERPROFILE%\.ipython\

on Windows and and

~/.config/ipython/

on OSX or Linux. There should be one directory in this location, profile_default, that is mostly empty. To

configure a profile, activate the environment using

ANACONDA\Scripts\activate.bat econometrics

on Windows or

source ANACONDA/bin/activate econometrics

on OSX or Linux, and then run

ipython profile create econometrics

This will create a directory named profile_econometrics and populate it with 4 files:

File Purpose

ipython_config.py General IPython setting for all IPython sessions

ipython_nbconvert_config.py Settings used by the Notebook converter

ipython_notebook_config.py Settings specific to IPython Notebook (browser) sessions

ipython_qtconsole_config.py Settings specific to QtConsole sessions

The two most important are ipython_config and ipython_qtconsole_config. Opening these files in a text

editor will reveal a vast array of options, all which are commented out using #. A full discussion of these

files would require a chapter or more, and so please refer to the online IPython documentation for details

about a specific setting (although most settings have a short comment containing an explanation and

possible values).

ipython_config

The settings in this file apply to all IPython sessions using this profile, irrespective of whether they are in

the terminal, QtConsole or Notebook. One of the most useful settings is

c.InteractiveShellApp.exec_lines

which allows commands to be executed each time an IPython session is open. This is useful, for example,

to import specific packages commonly used in a project. Another useful configuration options is

c.InteractiveShellApp.pylab

which can be used to load pylab in the session, and is identical to launching an IPython session using the

command line switch --pylab=backend. An alternative is to use

c.InteractiveShellApp.matplotlib

which will only load matplotlib and not the rest of pylab.

10

ipython_qtconsole_config

The settings in this file only apply to QtConsole sessions, and the most useful affect the appearance of the

console. The first two can be used to set the font size (a number) and font family (a string, containing the

name of the font).

c.IPythonWidget.font_size

c.IPythonWidget.font_family

The next setting sets the model for pylab, which can in particular be set to "inline" which is identical to

using the command line switch --pylab=inline when starting IPython using the QtConsole. This setting

is similar to the previous pylab setting, but since this is specific to QtConsole sessions, it will override the

general setting (only) in using QtConsole, and so it is possible to use, for example, "qt4", for terminal-

based IPython sessions, and to use "inline" for QtConsole sessions.

c.IPKernelApp.pylab

This final setting is identical to the command-line switch --colors and can be set to "linux" to produce

a console with a dark background and light characters.

c.ZMQInteractiveShell.colors

1.5.3 Configuring IPython

These notes assume that two imports are made when running code in IPython or as stand-alone Python

programs. These imports are

from __future__ import print_function, division

which imports the future versions of print and / (division). Open ipython_config.py in the directory pro-

file_econometrics and set the values

c.InteractiveShellApp.exec_lines=["from __future__ import print_function, division",

"import os",

"os.chdir(’c:\\dir\\to\\start\\in’)"]

and

c.InteractiveShellApp.pylab="qt4"

This code does two things. First, it imports two “future” features (which are standard in Python 3.x+), the

print function and division, which are useful for numerical programming.

• In Python 2.7, print is not a standard function and is used like print ’string to print’. Python 3.x

changes this behavior to be a standard function call, print(’string to print’). I prefer the latter

since it will make the move to 3.x easier, and find it more coherent with other function in Python.

• In Python 2.7, division of integers always produces an integer so that the result is truncated (i.e.

9/5=1). In Python 3.x, division of integers does not produce an integer if the integers are not even

multiples (i.e. 9/5=1.8). Additionally, Python 3.x uses the syntax 9//5 to force integer division with

truncation (i.e. 11/5=2.2, while 11//5=2).

11

Second, pylab will be loaded by default using the qt4 backend.

Changing settings in ipython_qtconsole_config.py is optional, although I recommend using

c.IPythonWidget.font_size=11

c.IPythonWidget.font_family="Bitstream Vera Sans Mono"

c.IPKernelApp.pylab="inline"

c.ZMQInteractiveShell.colors="linux"

These commands assume that the Bitstream Vera fonts have been locally installed, which are available

from http://ftp.gnome.org/pub/GNOME/sources/ttf-bitstream-vera/1.10/.

1.5.4 Launching IPython

OSX and Linux

Starting IPython requires activating the virtual environment and then starting IPython with the correct

profile.

source ANACONDA/bin/activate econometrics

ipython --profile=econometrics

Starting IPython using the QtConsole is virtually identical.

source ANACONDA/bin/activate econometrics

ipython qtconsole --profile=econometrics

A single line launcher on OSX or Linux can be constructed using

bash -c "source ANACONDA/bin/activate econometrics && ipython qtconsole --profile=

econometrics"

This single line launcher can be saved as filename.command where filename is a meaningful name (e.g.

IPython-Terminal) to create a launcher on OSX by entering the command

chmod 755 /FULL/PATH/TO/filename.command

The same command can to create a Desktop launcher on Ubuntu by running

sudo apt-get install --no-install-recommends gnome-panel

gnome-desktop-item-edit ~/Desktop/ --create-new

and then using the command as the Command in the dialog that appears.

Note that if Python was directly installed, launching IPython is identical only replacing the Anaconda

virtual environment activation line with the activation line for the directly created virtual environment,

as in

source VIRTUALENV/bin/activate econometrics

ipython qtconsole --profile=econometrics

Windows (Anaconda)

Starting IPython requires activating the virtual environment and the starting IPython with the correct pro-

file using cmd.

12

http://ftp.gnome.org/pub/GNOME/sources/ttf-bitstream-vera/1.10/

Figure 1.1: IPython running in the standard Windows console (cmd.exe).

ANACONDA/Scripts/activate.bat econometrics

ipython --profile=econometrics

Starting using the QtConsole is similar.

ANACONDA/Scripts/activate.bat econometrics

ipython qtconsole --profile=econometrics

Launchers can be created for the both the virtual environment and the IPython interactive Python

console. First, open a text editor, enter

cmd /k "ANACONDA\Scripts\activate econometrics"

and save the file as ANACONDA\envs\econometrics\python-econometrics.bat. The batch file will open a com-

mand prompt in the econometrics virtual environment. Right click on the batch file and select Send To,

Desktop (Create Shortcut) which will place a shortcut on the desktop. Next, create a launcher to run

IPython in the standard Windows cmd.exe console. Open a text editor enter

cmd "/c ANACONDA\Scripts\activate econometrics && start "" "ipython.exe" --profile=

econometrics"

and save the file as ANACONDA\envs\econometrics\ipython-plain.bat. Finally, right click on ipython-plain.bat

select Sent To, Desktop (Create Shortcut). The icon of the shortcut will be generic, and if you want a more

meaningful icon, select the properties of the shortcut, and then Change Icon, and navigate to

c:\Anaconda\envs\econometrics\Menu\ and select IPython.ico. Opening the batch file should create a window

similar to that in figure 1.1.

Launching the QtConsole is similar. Start by entering the following command in a text editor

cmd "/c ANACONDA\Scripts\activate econometrics && start "" "pythonw" ANACONDA\envs\

econometrics\Scripts\ipython-script.py qtconsole --profile=econometrics"

and then saving the file as ANACONDA\envs\econometrics\ipython-qtconsole.bat. Create a shortcut for this

batch file, and change the icon if desired. Opening the batch file should create a window similar to that in

figure 1.2 (although the appearance might differ).

13

Figure 1.2: IPython running in a QtConsole session.

14

Windows (Direct)

If using the direct installation method on Windows, open a text editor, enter the following text

cmd "/c VIRTUALENV\Scripts\activate.bat && start "" "python" VIRTUALENV\Scripts\

ipython-script.py --profile=econometrics"

and save the file in VIRTUALENV as ipython.bat. Right-click on ipython.bat and Send To, Desktop (Create

Shortcut). The icon of the shortcut will be generic, and if you want a nice icon, select the properties of the

shortcut, and then Change Icon, and navigate to VIRTUALENV\Scripts\ and select IPython.ico.

The QtConsole can be configured to run by entering

cmd "/c VIRTUALENV\Scripts\activate.bat && start "" "pythonw" VIRTUALENV\Scripts\

ipython-script.py qtconsole --profile=econometrics"

saving the file as VIRTUALENV\ipython-qtconsole.bat and finally right-click and Sent To, Desktop (Create

Shortcut). The icon can be changed using the same technique as the basic IPython shell. Launching

IPython QtConsole will produce a window similar to that depicted in figure 1.2.

1.5.5 Getting Help

Help is available in IPython sessions using help(function). Some functions (and modules) have very long

help files. When using IPython, these can be paged using the command ?function or function? so that the

text can be scrolled using page up and down and q to quit. ??function or function?? can be used to type

the entire function including both the docstring and the code.

1.5.6 Running Python programs

While interactive programing is useful for learning a language or quickly developing some simple code,

complex projects require the use of complete programs. Programs can be run either using the IPython

magic work %run program.pyor by directly launching the Python program using the standard interpreter

using python program.py. The advantage of using the IPython environment is that the variables used in

the program can be inspected after the program run has completed. Directly calling Python will run the

program and then terminate, and so it is necessary to output any important results to a file so that they

can be viewed later.4

To test that you can successfully execute a Python program, input the code in the block below into a

text file and save it as firstprogram.py.

First Python program

from __future__ import print_function, division

import time

print(’Welcome to your first Python program.’)

raw_input(’Press enter to exit the program.’)

print(’Bye!’)

time.sleep(2)

4Programs can also be run in the standard Python interpreter using the command:
exec(compile(open(’filename.py’).read(),’filename.py’,’exec’))

15

Figure 1.3: A successful test that matplotlib, IPython, NumPy and SciPy were all correctly installed.

Once you have saved this file, open the console, activate the virtual environment, navigate to the direc-

tory you saved the file and run python firstprogram.py. Finally, run the program in IPython by first

launching IPython, and the using %cd to change to the location of the program, and finally executing the

program using %run firstprogram.py.

1.5.7 Testing the Environment

To make sure that you have successfully installed the required components, run IPython using the shortcut

previously created on windows, or by running ipython --pylab or ipython qtconsole --pylab in a

Unix terminal window. Enter the following commands, one at a time (the meaning of the commands will

be covered later in these notes).

>>> x = randn(100,100)

>>> y = mean(x,0)

>>> plot(y)

>>> import scipy as sp

If everything was successfully installed, you should see something similar to figure 1.3.

16

1.5.8 IPython Notebook

IPython notebooks are a useful method to share code with others. Notebooks allow for a fluid synthesis

of formatted text, typeset mathematics (using LATEX via MathJax) and Python. The primary method for

using IPython notebooks is through a web interface. The web interface allow creation, deletion, export

and interactive editing of notebooks. Before running IPython Notebook for the first time, it is useful to

open IPython and run the following two commands.

>>> from IPython.external.mathjax import install_mathjax

>>> install_mathjax()

These commands download a local copy of MathJax, a Javascript library for typesetting LATEX math on web

pages.

To launch the IPython notebook server on Anaconda/Windows, open a text editor, enter

cmd "/c ANACONDA\Scripts\activate econometrics && start "" "ipython.exe" notebook

--matplotlib=’inline’ --notebook-dir=u’c:\\PATH\\TO\\NOTEBOOKS\\’"

and save the file as ipython-notebook.bat.

If using Linux or OSX, run

source ANACONDA/bin/activate econometrics

ipython notebook --matplotlib=’inline’ --notebook-dir=’/PATH/TO/NOTEBOOKS/’

The command uses two optional argument. --matplotlib=’inline’ launches IPython with inline figures

so that they show in the browser, and is highly recommended. --notebook-dir=’/PATH/TO/NOTEBOOKS/’

allows the default path for storing the notebooks to be set. This can be set to any location, and if not

set, a default value is used. Note that both of these options can be set in ipython_notebook_config.py in

profile_econometrics using

c.IPKernelApp.matplotlib = ’inline’

c.FileNotebookManager.notebook_dir = ’/PATH/TO/NOTEBOOKS/’

and then the notebook should be started using only --profile=econometrics.

These commands will start the server and open the default browser which should be a modern version

of Chrome (preferable) Chromium or Firefox. If the default browser is Safari, Internet Explorer or Opera,

the URL can be copied into the Chrome address bar. The first screen that appears will look similar to figure

1.4, except that the list of notebooks will be empty. Clicking on New Notebook will create a new notebook,

which, after a bit of typing, can be transformed to resemble figure 1.5. Notebooks can be imported by

dragging and dropping and exported from the menu inside a notebook.

1.5.9 Integrated Development Environments

As you progress in Python and begin writing more sophisticated programs, you will find that using an In-

tegrated Development Environment (IDE) will increase your productivity. Most contain productivity en-

hancements such as built-in consoles, code completion (or intellisense, for completing function names)

and integrated debugging. Discussion of IDEs is beyond the scope of these notes, although Spyder is a

17

https://code.google.com/p/spyderlib/

Figure 1.4: The default IPython Notebook screen showing two notebooks.

Figure 1.5: An IPython notebook showing formatted markdown, LATEX math and cells containing code.

18

reasonable choice (free, cross-platform). Aptana Studio is another free alternative. My preferred IDE is

PyCharm, which has a community edition that is free for use (the professional edition is low cost for aca-

demics).

Spyder

Spyder is an IDE specialized for use in scientific application rather than for general purpose Python appli-

cation development. This is both an advantage and a disadvantage when compared to more full featured

IDEs such as PyCharm, PyDev or Aptana Studio. The main advantage is that many powerful but complex

features are not integrated into Spyder, and so the learning curve is much shallower. The disadvantage is

similar - in more complex projects, or if developing something that is not straight scientific Python, Spy-

der is less capable. However, netting these two, Spyder is almost certainly the IDE to use when starting

Python, and it is always relatively simple to migrate to a sophisticated IDE if needed.

Launching Spyder requires activating the virtual environment and then entering the commandspyder.

A window similar to that in figure 1.6 should appear. The main components are the the editor (1), the

object inspector (2), which dynamically will show help for functions that are used in the editor, and the

console (3). By default Spyder opens a standard Python console, although it also supports using the more

powerful IPython console. The object inspector window, by default, is grouped with a variable explorer,

which shows the variables that are in memory and the file explorer, which can be used to navigate the file

system. The console is grouped with an IPython console window (needs to be activated first using the

Interpreters menu along the top edge), and the history log which contains a list of commands executed.

The buttons along the top edge facilitate saving code, running code and debugging.

1.6 Exercises

1. Install Python.

2. Test the installation using the code in section 1.5.7.

3. Configure IPython using the start-up script in section 1.5.3.

4. Customize IPython QtConsole using a font or color scheme. More customizations can be found by

running ipython -h.

5. Explore tab completion in IPython by entering a<TAB> to see the list of functions which start with

a and are loaded by pylab. Next try i<TAB>, which will produce a list longer than the screen – press

ESC to exit the pager.

6. Launch IPython Notebook and run code in the testing section.

7. Open Spyder and explore its features.

1.A register_python.py

A complete listing of register_python.py is included in this appendix.

19

http://www.aptana.com/
http://www.jetbrains.com/pycharm/

Figure 1.6: The default Spyder IDE on Windows.

20

-*- encoding: utf-8 -*-

#

Script to register Python 2.0 or later for use with win32all

and other extensions that require Python registry settings

#

Adapted by Ned Batchelder from a script

written by Joakim Law for Secret Labs AB/PythonWare

#

source:

http://www.pythonware.com/products/works/articles/regpy20.htm

import sys

from _winreg import *

tweak as necessary

version = sys.version[:3]

installpath = sys.prefix

regpath = "SOFTWARE\\Python\\Pythoncore\\%s\\" % (version)

installkey = "InstallPath"

pythonkey = "PythonPath"

pythonpath = "%s;%s\\Lib\\;%s\\DLLs\\" % (

installpath, installpath, installpath

)

def RegisterPy():

try:

reg = OpenKey(HKEY_LOCAL_MACHINE, regpath)

except EnvironmentError:

try:

reg = CreateKey(HKEY_LOCAL_MACHINE, regpath)

except Exception, e:

print "*** Unable to register: %s" % e

return

SetValue(reg, installkey, REG_SZ, installpath)

SetValue(reg, pythonkey, REG_SZ, pythonpath)

CloseKey(reg)

print "--- Python %s at %s is now registered!" % (version, installpath)

if __name__ == "__main__":

RegisterPy()

21

22

Chapter 2

Python 2.7 vs. 3 (and the rest)

Python comes in a number of flavors which may be suitable for econometrics, statistics and numerical

analysis. This chapter explains why 2.7 was chosen for these notes and highlights some of the available

alternatives.

2.1 Python 2.7 vs. 3

Python 2.7 is the final version of the Python 2.x line – all future development work will focus on Python 3.

It may seem strange to learn an “old” language. The reasons for using 2.7 are:

• There are more modules available for Python 2.7. While all of the core python modules are available

for both Python 2.7 and 3, some of the more esoteric modules are either only available for 2.7 or

have not been extensively tested in Python 3. Over time, many of these modules will be available for

Python 3, but they aren’t ready today.

• The language changes relevant for numerical computing are very small – and these notes explicitly

minimize these so that there should few changes needed to run against Python 3+ in the future

(ideally none).

• Configuring and installing 2.7 is easier.

• Anaconda defaults to 2.7 and the selection of packages available for Python 3 is limited.

Learning Python 3 has some advantages:

• No need to update in the future.

• Some improved out-of-box behavior for numerical applications.

2.2 Intel Math Kernel Library and AMD Core Math Library

Intel’s MKL and AMD’s CML provide optimized linear algebra routines. The functions in these libraries

execute faster than basic those in linear algebra libraries and are, by default, multithreaded so that a many

linear algebra operations will automatically make use all of the processors on your system. Most standard

builds of NumPy do not include these, and so it is important to use a Python distribution built with an

23

appropriate linear algebra library (especially if computing inverses or eigenvalues of large matrices). The

three primary methods to access NumPy built with the Intel MKL are:

• Use Anaconda on any platform and secure a license for MKL (free for academic use, otherwise $29

at the time of writing).

• Use the pre-built NumPy binaries made available by Christoph Gohlke for Windows.

• Follow instructions for building NumPy on Linux with MKL, which is free on Linux.

There are no pre-built libraries using AMD’s CML, and so it is necessary to build NumPy from scratch if

using an AMD processor (or buy and Intel system, which is an easier solution).

2.3 Other Variants

Some other variants of the recommended version of Python are worth mentioning.

2.3.1 Enthought Canopy

Enthought Canopy is an alternative to Anaconda. It is available for Windows, Linux and OS X. Canopy

is regularly updated and is currently freely available in its basic version. The full version is also freely

available to academic users. Canopy is built using MKL, and so matrix algebra performance is very fast.

2.3.2 IronPython

IronPython is a variant which runs on the Common Language Runtime (CLR , aka Windows .NET). The

core modules – NumPy and SciPy – are available for IronPython, and so it is a viable alternative for nu-

merical computing, especially if already familiar with the C# or interoperation with .NET components

is important. Other libraries, for example, matplotlib (plotting) are not available, and so there are some

important limitations.

2.3.3 Jython

Jython is a variant which runs on the Java Runtime Environment (JRE). NumPy is not available in Jython

which severely limits Jython’s usefulness for numeric work. While the limitation is important, one advan-

tage of Python over other languages is that it is possible to run (mostly unaltered) Python code on a JVM

and to call other Java libraries.

2.3.4 PyPy

PyPy is a new implementation of Python which uses Just-in-time compilation to accelerate code, espe-

cially loops (which are common in numerical computing). It may be anywhere between 2 - 500 times

faster than standard Python. Unfortunately, at the time of writing, the core library, NumPy is only par-

tially implemented, and so it is not ready for use. Current plans are to have a version ready in the near

future, and if so, PyPy may quickly become the preferred version of Python for numerical computing.

24

http://www.lfd.uci.edu/~gohlke/pythonlibs/

2.A Relevant Differences between Python 2.7 and 3

Most differences between Python 2.7 and 3 are not important for using Python in econometrics, statistics

and numerical analysis. I will make three common assumptions which will allow 2.7 and 3 to be used

interchangeable. The configuration instructions in the previous chapter for IPython will produce the ex-

pected behavior when run interactively. Note that these differences are important in stand-alone Python

programs.

2.A.1 print

print is a function used to display test in the console when running programs. In Python 2.7, print is a

keyword which behaves differently from other functions. In Python 3, print behaves like most functions.

The standard use in Python 2.7 is

print ’String to Print’

while in Python 3 the standard use is

print(’String to Print’)

which resembles calling a standard function. Python 2.7 contains a version of the Python 3 print, which

can be used in any program by including

from __future__ import print_function

at the top of the file. I prefer the Python 3 version of print, and so I assume that all programs will include

this statement.

2.A.2 division

Python 3 changes the way integers are divided. In Python 2.7, the ratio of two integers was always an

integer, and so results are truncated towards 0 if the result was fractional. For example, in Python 2.7, 9/5

is 1. Python 3 gracefully converts the result to a floating point number, and so in Python 3, 9/5 is 1.8. When

working with numerical data, automatically converting ratios avoids some rare errors. Python 2.7 can use

the Python 3 behavior by including

from __future__ import division

at the top of the program. I assume that all programs will include this statement.

2.A.3 range and xrange

It is often useful to generate a sequence of number for use when iterating over the some data. In Python

2.7, the best practice is to use the keyword xrange to do this, while in Python 3, this keyword has been

renamed range. I will always use xrange and so it is necessary to replace xrange with range if using Python

3.

2.A.4 Unicode strings

Unicode is an industry standard for consistently encoding text. The computer alphabet was originally lim-

ited to 128 characters which is insufficient to contain the vast array of characters in all written languages.

25

Unicode expands the possible space to be up to 231 characters (depending on encoding). Python 3 treats

all strings as unicode unlike Python 2.7 where characters are a single byte, and unicode strings require the

special syntax u’unicode string’ or unicode(’unicode string’). In practice this is unlikely to impact

most numeric code written in Python except possibly when reading or writing data. If working in a lan-

guage where characters outside of the standard but limited 128 character set are commonly encountered,

it may be useful to use

from __future__ import unicode_literals

to will help with future compatibility when moving to Python 3.

26

Chapter 3

Built-in Data Types

Before diving into Python for analyzing data or running Monte Carlos, it is necessary to understand some

basic concepts about the core Python data types. Unlike domain-specific languages such as MATLAB or

R, where the default data type has been chosen for numerical work, Python is a general purpose pro-

gramming language which is also well suited to data analysis, econometrics and statistics. For example,

the basic numeric type in MATLAB is an array (using double precision, which is useful for floating point

mathematics), while the basic numeric data type in Python is a 1-dimensional scalar which may be either

an integer or a double-precision floating point, depending on the formatting of the number when input.

3.1 Variable Names

Variable names can take many forms, although they can only contain numbers, letters (both upper and

lower), and underscores (_). They must begin with a letter or an underscore and are CaSe SeNsItIve.

Additionally, some words are reserved in Python and so cannot be used for variable names (e.g. import or

for). For example,

x = 1.0

X = 1.0

X1 = 1.0

X1 = 1.0

x1 = 1.0

dell = 1.0

dellreturns = 1.0

dellReturns = 1.0

_x = 1.0

x_ = 1.0

are all legal and distinct variable names. Note that names which begin or end with an underscore, while

legal, are not normally used since by convention these convey special meaning.1 Illegal names do not

follow these rules.
1Variable names with a single leading underscores, for example _some_internal_value, indicate that the variable is for

internal use by a module or class. While indicated to be private, this variable will generally be accessible by calling code. Dou-
ble leading underscores, for example __some_private_value indicate that a value is actually private and is not accessible.
Variable names with trailing underscores are used to avoid conflicts with reserved Python words such as class_ or lambda_.
Double leading and trailing underscores are reserved for “magic” variable (e.g. __init__) , and so should be avoided except
when specifically accessing a feature.

27

Not allowed

x: = 1.0

1X = 1

X-1 = 1

for = 1

Multiple variables can be assigned on the same line using commas,

x, y, z = 1, 3.1415, ’a’

3.2 Core Native Data Types

3.2.1 Numeric

Simple numbers in Python can be either integers, floats or complex. Integers correspond to either 32

bit or 64-bit integers, depending on whether the python interpreter was compiled for a 32-bit or 64-bit

operating system, and floats are always 64-bit (corresponding to doubles in C/C++). Long integers, on the

other hand, do not have a fixed size and so can accommodate numbers which are larger than maximum

the basic integer type can handle. This chapter does not cover all Python data types, and instead focuses

on those which are most relevant for numerical analysis, econometrics and statistics. The byte, bytearray

and memoryview data types are not described.

3.2.1.1 Floating Point (float)

The most important (scalar) data type for numerical analysis is the float. Unfortunately, not all non-

complex numeric data types are floats. To input a floating data type, it is necessary to include a . (period,

dot) in the expression. This example uses the function type() to determine the data type of a variable.

>>> x = 1

>>> type(x)

int

>>> x = 1.0

>>> type(x)

float

>>> x = float(1)

>>> type(x)

float

This example shows that using the expression thatx = 1produces an integer-valued variable whilex = 1.0

produces a float-valued variable. Using integers can produce unexpected results and so it is important to

include “.0” when expecting a float.

3.2.1.2 Complex (complex)

Complex numbers are also important for numerical analysis. Complex numbers are created in Python

using j or the function complex().

28

>>> x = 1.0

>>> type(x)

float

>>> x = 1j

>>> type(x)

complex

>>> x = 2 + 3j

>>> x

(2+3j)

>>> x = complex(1)

>>> x

(1+0j)

Note that a+bj is the same as complex(a,b), while complex(a) is the same as a+0j.

3.2.1.3 Integers (int and long)

Floats use an approximation to represent numbers which may contain a decimal portion. The integer data

type stores numbers using an exact representation, so that no approximation is needed. The cost of the

exact representation is that the integer data type cannot express anything that isn’t an integer, rendering

integers of limited use in most numerical work.

Basic integers can be entered either by excluding the decimal (see float), or explicitly using the int()

function. The int() function can also be used to convert a float to an integer by round towards 0.

>>> x = 1

>>> type(x)

int

>>> x = 1.0

>>> type(x)

float

>>> x = int(x)

>>> type(x)

int

Integers can range from −231 to 231 − 1. Python contains another type of integer, known as a long

integer, which has no effective range limitation. Long integers are entered using the syntax x = 1L or by

calling long(). Additionally python will automatically convert integers outside of the standard integer

range to long integers.

>>> x = 1

>>> x

1

>>> type(x)

int

29

>>> x = 1L

>>> x

1L

>>> type(x)

long

>>> x = long(2)

>>> type(x)

long

>>> y = 2

>>> type(y)

int

>>> x = y ** 64 # ** is denotes exponentiation, y^64 in TeX

>>> x

18446744073709551616L

The trailing L after the number indicates that it is a long integer, rather than a standard integer.

3.2.2 Boolean (bool)

The Boolean data type is used to represent true and false, using the reserved keywords True and False.

Boolean variables are important for program flow control (see Chapter 13) and are typically created as a

result of logical operations (see Chapter 11), although they can be entered directly.

>>> x = True

>>> type(x)

bool

>>> x = bool(1)

>>> x

True

>>> x = bool(0)

>>> x

False

Non-zero, non-empty values generally evaluate to true when evaluated by bool(). Zero or empty values

such as bool(0), bool(0.0), bool(0.0j), bool(None), bool(’’) and bool([]) are all false.

3.2.3 Strings (str)

Strings are not usually important for numerical analysis, although they are frequently encountered when

dealing with data files, especially when importing or when formatting output for human consumption.

Strings are delimited using ’’ or "" but not using combination of the two delimiters (i.e. do not try ’") in

a single string, except when used to express a quotation.

>>> x = ’abc’

>>> type(x)

30

str

>>> y = ’"A quotation!"’

>>> print(y)

"A quotation!"

String manipulation is further discussed in Chapter 21.

3.2.3.1 Slicing Strings

Substrings within a string can be accessed using slicing. Slicing uses [] to contain the indices of the char-

acters in a string, where the first index is 0, and the last is n − 1 (assuming the string has n letters). The

following table describes the types of slices which are available. The most useful are s[i], which will re-

turn the character in position i , s[:i], which return the leading characters from positions 0 to i − 1, and

s[i:] which returns the trailing characters from positions i to n − 1. The table below provides a list of the

types of slices which can be used. The second column shows that slicing can use negative indices which

essentially index the string backward.

Slice Behavior Slice Behavior

s[:] Entire string s[i] Characters n − i

s[i] Charactersi s[−i] Charactersn − i , . . . , n − 1

s[i:] Charactersi , . . . , n − 1 s[−i:] Characters0, . . . , n − i

s[:i] Characters0, . . . , i − 1 s[:−i] Characters n − j , . . . , n − i

s[i: j] Charactersi , . . . , j − 1 s[− j:−i] Characters j , j − 1,. . .,i + 1

s[i: j:m] Charactersi ,i +m ,. . .i +mb j−i−1
m c s[− j:−i:m] Characters j , j −m ,. . ., j −mb j−i−1

m c

>>> text = ’Python strings are sliceable.’

>>> text[0]

’P’

>>> text[10]

’i’

>>> L = len(text)

>>> text[L] # Error

IndexError: string index out of range

>>> text[L-1]

’.’

>>> text[:10]

’Python str’

>>> text[10:]

’ings are sliceable.’

31

3.2.4 Lists (list)

Lists are a built-in data type which require other data types to be useful. A list is a collection of other objects

– floats, integers, complex numbers, strings or even other lists. Lists are essential to Python programming

and are used to store collections of other values. For example, a list of floats can be used to express a vector

(although the NumPy data types array and matrix are better suited). Lists also support slicing to retrieve

one or more elements. Basic lists are constructed using square braces, [], and values are separated using

commas.

>>> x = []

>>> type(x)

builtins.list

>>> x=[1,2,3,4]

>>> x

[1,2,3,4]

2-dimensional list (list of lists)

>>> x = [[1,2,3,4], [5,6,7,8]]

>>> x

[[1, 2, 3, 4], [5, 6, 7, 8]]

Jagged list, not rectangular

>>> x = [[1,2,3,4] , [5,6,7]]

>>> x

[[1, 2, 3, 4], [5, 6, 7]]

Mixed data types

>>> x = [1,1.0,1+0j,’one’,None,True]

>>> x

[1, 1.0, (1+0j), ’one’, None, True]

These examples show that lists can be regular, nested and can contain any mix of data types including

other lists.

3.2.4.1 Slicing Lists

Lists, like strings, can be sliced. Slicing is similar, although lists can be sliced in more ways than strings.

The difference arises since lists can be multi-dimensional while strings are always 1× n . Basic list slicing

is identical to slicing strings, and operations such as x[:], x[1:], x[:1] and x[-3:] can all be used. To

understand slicing, assume x is a 1-dimensioanl list with n elements and i ≥ 0, j > 0, i < j ,m ≥ 1.

Python uses 0-based indices, and so the n elements of x can be thought of as x0, x1, . . . , xn−1.

32

Slice Behavior, Slice Behavior

x[:] Return all x x[i] Return xi

x[i] Return xi x[−i] Returns xn−i except when i = −0

x[i:] Return xi , . . . xn−1 x[−i:] Return xn−i , . . . , xn−1

x[:i] Return x0, . . . , xi−1 x[:−i] Return x0, . . . , xn−i

x[i: j] Return xi , xi+1, . . . x j−1 x[− j:−i] Return xn− j , . . . , xn−i

x[i: j:m] Returns xi ,xi+m ,. . .xi+mb j−i−1
m c x[− j:−i:m] Returns x j ,x j−m ,. . .,x j−mb j−i−1

m c

The default list slice uses a unit stride (step size of one) . It is possible to use other strides using a third

input in the slice so that the slice takes the form x[i:j:m] where i is the index to start, j is the index to end

(exclusive) and m is the stride length. For example x[::2] will select every second element of a list and is

equivalent to x[0:n:2] where n = len(x). The stride can also be negative which can be used to select the

elements of a list in reverse order. For example, x[::-1] will reverse a list and is equivalent to x[0:n:-1] .

Examples of accessing elements of 1-dimensional lists are presented below.

>>> x = [0,1,2,3,4,5,6,7,8,9]

>>> x[0]

0

>>> x[5]

5

>>> x[10] # Error

IndexError: list index out of range

>>> x[4:]

[4, 5, 6, 7, 8, 9]

>>> x[:4]

[0, 1, 2, 3]

>>> x[1:4]

[1, 2, 3]

>>> x[-0]

0

>>> x[-1]

9

>>> x[-10:-1]

[0, 1, 2, 3, 4, 5, 6, 7, 8]

List can be multidimensional, and slicing can be done directly in higher dimensions. For simplicity, con-

sider slicing a 2-dimensional list x = [[1,2,3,4], [5,6,7,8]]. If single indexing is used, x[0] will return

the first (inner) list, and x[1] will return the second (inner) list. Since the list returned by x[0] is sliceable,

the inner list can be directly sliced using x[0][0] or x[0][1:4].

>>> x = [[1,2,3,4], [5,6,7,8]]

>>> x[0]

[1, 2, 3, 4]

>>> x[1]

[5, 6, 7, 8]

>>> x[0][0]

1

33

>>> x[0][1:4]

[2, 3, 4]

>>> x[1][-4:-1]

[5, 6, 7]

3.2.4.2 List Functions

A number of functions are available for manipulating lists. The most useful are

Function Method Description

list.append(x,value) x.append(value) Appends value to the end of the list.

len(x) – Returns the number of elements in the list.

list.extend(x,list) x.extend(list) Appends the values in list to the existing list.2

list.pop(x,index) x.pop(index) Removes the value in position index and returns the value.

list.remove(x,value) x.remove(value) Removes the first occurrence of value from the list.

list.count(x,value) x.count(value) Counts the number of occurrences of value in the list.

del x[slice] Deletes the elements in slice.

>>> x = [0,1,2,3,4,5,6,7,8,9]

>>> x.append(0)

>>> x

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0]

>>> len(x)

11

>>> x.extend([11,12,13])

>>> x

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13]

>>> x.pop(1)

1

>>> x

[0, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13]

>>> x.remove(0)

>>> x

[2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13]

Elements can also be deleted from lists using the keyword del in combination with a slice.

>>> x = [0,1,2,3,4,5,6,7,8,9]

>>> del x[0]

>>> x

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x[:3]

[1, 2, 3]

34

>>> del x[:3]

>>> x

[4, 5, 6, 7, 8, 9]

>>> del x[1:3]

>>> x

[4, 7, 8, 9]

>>> del x[:]

>>> x

[]

3.2.5 Tuples (tuple)

A tuple is in many ways like a list – tuple contain multiple pieces of data which may contain a mix of data

types. Aside from using a different syntax to construct a tuple, they are close enough to lists to ignore the

difference except that tuples are immutable. Immutability means that the elements the comprise a tuple

cannot be changed. It is not possible to add or remove elements form a tuple. However, if a tuple contains

a mutable data type, for example a tuple that contains a list, the contents mutable data type can change.

Tuples are constructed using parentheses (()), rather than square braces ([]) of lists. Tuples can be

sliced in an identical manner as lists. A list can be converted into a tuple using tuple() (Similarly, a tuple

can be converted to list using list()).

>>> x =(0,1,2,3,4,5,6,7,8,9)

>>> type(x)

tuple

>>> x[0]

0

>>> x[-10:-5]

(0, 1, 2, 3, 4)

>>> x = list(x)

>>> type(x)

list

>>> x = tuple(x)

>>> type(x)

tuple

>>> x= ([1,2],[3,4])

>>> x[0][1] = -10

>>> x # Contents can change, elements cannot

([1, -10], [3, 4])

Note that tuples containing a single element must a comma when created, so that x = (2,) is assign a

tuple to x, while x=(2) will assign 2 to x. The latter interprets the parentheses as if they are part of a math-

ematical formula rather than being used to construct a tuple. x = tuple([2]) can also be used to create

35

a single element tuple. Lists do not have this issue since square brackets do not have this ambiguity.

>>> x =(2)

>>> type(x)

int

>>> x = (2,)

>>> type(x)

tuple

>>> x = tuple([2])

>>> type(x)

tuple

3.2.5.1 Tuple Functions

Tuples are immutable, and so only have the methods index and count, which behave in an identical man-

ner to their list counterparts.

3.2.6 Xrange (xrange)

Axrange is a useful data type which is most commonly encountered when using afor loop. xrange(a,b,i)

creates the sequences that follows the pattern a , a + i , a +2i , . . . , a +(m−1)i where m = d b−a
i e. In other

words, it find all integers x starting with a such a ≤ x < b and where two consecutive values are sepa-

rated by i . xrange can be called with 1 or two parameters – xrange(a,b) is the same as xrange(a,b,1)

and xrange(b) is the same as xrange(0,b,1).

>>> x = xrange(10)

>>> type(x)

xrange

>>> print(x)

xrange(0, 10)

>>> list(x)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> x = xrange(3,10)

>>> list(x)

[3, 4, 5, 6, 7, 8, 9]

>>> x = xrange(3,10,3)

>>> list(x)

[3, 6, 9]

>>> y = range(10)

>>> type(y)

list

>>> y

36

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

xrange is not technically a list, which is why the statement print(x) returns xrange(0,10). Explicitly

converting with list produces a list which allows the values to be printed. Technically xrange is an itera-

tor which does not actually require the storage space of a list. This can be seen in the differences between

using y = range(10), which returns a list and y=xrange(10)which returns an xrange object. Best prac-

tice is to use xrange instead of range.3

3.2.7 Dictionary (dict)

Dictionaries are encountered far less frequently than then any of the previously described data types in

numerical Python. They are, however, commonly used to pass options into other functions such as op-

timizers, and so familiarity with dictionaries is important. Dictionaries in Python are composed of keys

(words) and values (definitions). Dictionaries keys must be unique primitive data types (e.g. strings, the

most common key), and values can contain any valid Python data type.4 Values are accessed using keys.

>>> data = {’age’: 34, ’children’ : [1,2], 1: ’apple’}

>>> type(data)

dict

>>> data[’age’]

34

Values associated with an existing key can be updated by making an assignment to the key in the dictio-

nary.

>>> data[’age’] = ’xyz’

>>> data[’age’]

’xyz’

New key-value pairs can be added by defining a new key and assigning a value to it.

>>> data[’name’] = ’abc’

>>> data

{1: ’apple’, ’age’: ’xyz’, ’children’: [1, 2], ’name’: ’abc’}

Key-value pairs can be deleted using the reserved keyword del.

>>> del data[’age’]

>>> data

{1: ’apple’, ’children’: [1, 2], ’name’: ’abc’}

3.2.8 Sets (set, frozenset)

Sets are collections which contain all unique elements of a collection. set and frozenset only differ in

that the latter is immutable (and so has higher performance), and so set is similar to a unique list while

frozenset is similar to a unique tuple . While sets are generally not important in numerical analysis, they

can be very useful when working with messy data – for example, finding the set of unique tickers in a long

list of tickers.
3xrange has been removed in Python 3 and range is always an iterator.
4Formally dictionary keys must support the __hash__ function, equality comparison and it must be the case that different

keys have different hashes.

37

3.2.8.1 Set Functions

A number of methods are available for manipulating sets. The most useful are

Function Method Description

set.add(x,element) x.add(element) Appends element to a set.

len(x) – Returns the number of elements in the set.

set.difference(x,set) x.difference(set) Returns the elements in x which are not in set.

set.intersection(x,set) x.intersection(set) Returns the elements of x which are also in set.

set.remove(x,element) x.remove(element) Removes element from the set.

set.union(x,set) x.union(set) Returns the set containing all elements of x and set.

The code below demonstrates the use of set. Note that ’MSFT’ is repeated in the list used to initialize

the set, but only appears once in the set since all elements must be unique.

>>> x = set([’MSFT’,’GOOG’,’AAPL’,’HPQ’,’MSFT’])

>>> x

{’AAPL’, ’GOOG’, ’HPQ’, ’MSFT’}

>>> x.add(’CSCO’)

>>> x

{’AAPL’, ’CSCO’, ’GOOG’, ’HPQ’, ’MSFT’}

>>> y = set([’XOM’, ’GOOG’])

>>> x.intersection(y)

{’GOOG’}

>>> x = x.union(y)

>>> x

{’AAPL’, ’CSCO’, ’GOOG’, ’HPQ’, ’MSFT’, ’XOM’}

>>> x.remove(’XOM’)

{’AAPL’, ’CSCO’, ’GOOG’, ’HPQ’, ’MSFT’}

A frozenset supports the same methods except add and remove.

3.3 Python and Memory Management

Python uses a highly optimized memory allocation system which attempts to avoid allocating unneces-

sary memory. As a result, when one variable is assigned to another (e.g. to y = x), these will actually point

to the same data in the computer’s memory. To verify this, id() can be used to determine the unique

identification number of a piece of data.5

>>> x = 1

>>> y = x

>>> id(x)

82970264L

>>> id(y)

5The ID numbers on your system will likely differ from those in the code listing.

38

82970264L

>>> x = 2.0

>>> id(x)

93850568L

>>> id(y)

82970264L

In the above example, the initial assignment of y = x produced two variables with the same ID. However,

once x was changed, its ID changed while the ID of y did not, indicating that the data in each variable was

stored in different locations. This behavior is both safe and efficient, and is common to the basic Python

immutable types: int, long, float, complex, string, tuple, frozenset and xrange.

3.3.1 Example: Lists

Lists are mutable and so assignment does not create a copy , and so changes to either variable affect both.

>>> x = [1, 2, 3]

>>> y = x

>>> y[0] = -10

>>> y

[-10, 2, 3]

>>> x

[-10, 2, 3]

Slicing a list creates a copy of the list and any immutable types in the list – but not mutable elements in

the list.

>>> x = [1, 2, 3]

>>> y = x[:]

>>> id(x)

86245960L

>>> id(y)

86240776L

To see that the inner lists are not copied, consider the behavior of changing one element in a nested list.

>>> x=[[0,1],[2,3]]

>>> y = x[:]

>>> y

[[0, 1], [2, 3]]

>>> id(x[0])

117011656L

>>> id(y[0])

117011656L

>>> x[0][0]

39

0.0

>>> id(x[0][0])

30390080L

>>> id(y[0][0])

30390080L

>>> y[0][0] = -10.0

>>> y

[[-10.0, 1], [2, 3]]

>>> x

[[-10.0, 1], [2, 3]]

When lists are nested or contain other mutable objects (which do not copy), slicing copies the outermost

list to a new ID, but the inner lists (or other objects) are still linked. In order to copy nested lists, it is

necessary to explicitly call deepcopy(), which is in the module copy.

>>> import copy as cp

>>> x=[[0,1],[2,3]]

>>> y = cp.deepcopy(x)

>>> y[0][0] = -10.0

>>> y

[[-10.0, 1], [2, 3]]

>>> x

[[0, 1], [2, 3]]

3.4 Exercises

1. Enter the following into Python, assigning each to a unique variable name:

(a) 4

(b) 3.1415

(c) 1.0

(d) 2+4j

(e) ’Hello’

(f) ’World’

2. What is the type of each variable? Use type if you aren’t sure.

3. Which of the 6 types can be:

(a) Added +

(b) Subtracted -

(c) Multiplied *

40

(d) Divided /

4. What are the types of the output (when an error is not produced) in the above operations?

5. Input the variableex = ’Python is an interesting and useful language for numerical computing!’.

Using slicing, extract:

(a) Python

(b) !

(c) computing

(d) in

Note: There are multiple answers for all.

(e) !gnitupmoc laciremun rof egaugnal lufesu dna gnitseretni na si nohtyP’ (Reversed)

(f) nohtyP

(g) Pto sa neetn n sfllnug o ueia optn!

6. What are the direct 2 methods to construct a tuple that has only a single item? How many ways are

there to construct a list with a single item?

7. Construct a nested list to hold the matrix [
1 .5

.5 1

]

so that item [i][j] corresponds to the position in the matrix (Remember that Python uses 0 index-

ing).

8. Assign the matrix you just created first to x, and then assign y=x. Change y[0][0] to 1.61. What

happens to x?

9. Next assign z=x[:] using a simple slice. Repeat the same exercise using y[0][0] = 1j. What hap-

pens to x and z ? What are the ids of x, y and z? What about x[0], y[0] and z[0]?

10. How could you create w from x so that w can be changed without affecting x?

11. Initialize a list containing 4, 3.1415, 1.0, 2+4j, ’Hello’, ’World’. How could you:

(a) Delete 1.0 if you knew its position? What if you didn’t know its position?

(b) How can the list [1.0, 2+4j, ’Hello’] be added to the existing list?

(c) How can the list be reversed?

(d) In the extended list, how can you count the occurrence of ’Hello’?

12. Construct a dictionary with the keyword-value pairs: ’alpha’ and 1.0, ’beta’ and 3.1415, ’gamma’

and -99. How can the value of alpha be retrieved?

13. Convert the final list at the end of problem 11 to a set. How is the set different from the list?

41

42

Chapter 4

Arrays and Matrices

NumPy provides the most important data types for econometrics, statistics and numerical analysis – ar-

rays and matrices. The difference between these two data types are:

• Arrays can have 1, 2, 3 or more dimensions, and matrices always have 2 dimensions. This means

that a 1 by n vector stored as an array has 1 dimension and n elements, while the same vector stored

as a matrix has 2-dimensions where the sizes of the dimensions are 1 and n (in either order).

• Standard mathematical operators on arrays operate element-by-element. This is not the case for

matrices, where multiplication (*) follows the rules of linear algebra. 2-dimensional arrays can be

multiplied using the rules of linear algebra using dot. Similarly, the function multiply can be used

on two matrices for element-by-element multiplication.

• Arrays are more common than matrices, and all functions are thoroughly tested with arrays. Func-

tions should also work with matrices, but an occasional strange result may be encountered.

• Arrays can be quickly treated as a matrix using either asmatrixor matwithout copying the underlying

data.

The best practice is to use arrays and to use the asmatrix view when writing linear algebra-heavy code. It is

also important to test any custom function with both arrays and matrices to ensure that false assumptions

about the behavior of multiplication have not been made.

4.1 Array

Arrays are the base data type in NumPy, are are arrays in some ways similar to lists since they both contain

collections of elements. The focus of this section is on homogeneous arrays containing numeric data

– that is, an array where all elements have the same numeric type (heterogeneous arrays are covered in

Chapters 16 and 17). Additionally, arrays, unlike lists, are always rectangular so that all rows have the same

number of elements.

Arrays are initialized from lists (or tuples) using array. Two-dimensional arrays are initialized using

lists of lists (or tuples of tuples, or lists of tuples, etc.), and higher dimensional arrays can be initialized by

further nesting lists or tuples.

43

>>> x = [0.0, 1, 2, 3, 4]

>>> y = array(x)

>>> y

array([0., 1., 2., 3., 4.])

>>> type(y)

numpy.ndarray

Two (or higher) -dimensional arrays are initialized using nested lists.

>>> y = array([[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]])

>>> y

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])

>>> shape(y)

(2L, 5L)

>>> y = array([[[1,2],[3,4]],[[5,6],[7,8]]])

>>> y

array([[[1, 2],

[3, 4]],

[[5, 6],

[7, 8]]])

>>> shape(y)

(2L, 2L, 2L)

4.1.1 Array dtypes

Homogeneous arrays can contain a variety of numeric data types. The most useful is ’float64’, which corre-

sponds to the python built-in data type of float (and C/C++double). By default, calls to arraywill preserve

the type of the input, if possible. If an input contains all integers, it will have a dtype of ’int32’ (similar to

the built in data type int). If an input contains integers, floats, or a mix of the two, the array’s data type will

be float64. If the input contains a mix of integers, floats and complex types, the array will be initialized

to hold complex data.

>>> x = [0, 1, 2, 3, 4] # Integers

>>> y = array(x)

>>> y.dtype

dtype(’int32’)

>>> x = [0.0, 1, 2, 3, 4] # 0.0 is a float

>>> y = array(x)

>>> y.dtype

dtype(’float64’)

>>> x = [0.0 + 1j, 1, 2, 3, 4] # (0.0 + 1j) is a complex

>>> y = array(x)

44

>>> y

array([0.+1.j, 1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j])

>>> y.dtype

dtype(’complex128’)

NumPy attempts to find the smallest data type which can represent the data when constructing an array.

It is possible to force NumPy to select a particular dtype by using the keyword argument dtype=datetype

when initializing the array.

>>> x = [0, 1, 2, 3, 4] # Integers

>>> y = array(x)

>>> y.dtype

dtype(’int32’)

>>> y = array(x, dtype=’float64’) # String dtype

>>> y.dtype

dtype(’float64’)

>>> y = array(x, dtype=float64) # NumPy type dtype

>>> y.dtype

dtype(’float64’)

4.2 Matrix

Matrices are essentially a subset of arrays, and behave in a virtually identical manner. The two important

differences are:

• Matrices always have 2 dimensions

• Matrices follow the rules of linear algebra for *

1- and 2-dimensional arrays can be copied to a matrix by calling matrix on an array. Alternatively, calling

mat or asmatrix provides a faster method where an array can behave like a matrix without copying any

data.

>>> x = [0.0,1, 2, 3, 4] # 1 Float makes all float

>>> y = array(x)

>>> type(y)

numpy.ndarray

>>> y * y # Element-by-element

array([1, 4])

>>> z = asmatrix(x)

>>> type(z)

numpy.matrixlib.defmatrix.matrix

>>> z * z # Error

ValueError: objects are not aligned

45

4.3 1-dimensional Arrays

A vector

x = [1 2 3 4 5]

is entered as a 1-dimensional array using

>>> x=array([1.0,2.0,3.0,4.0,5.0])

array([1., 2., 3., 4., 5.])

>>> ndim(x)

1

If an array with 2-dimensions is required, it is necessary to use a trivial nested list.

>>> x=array([[1.0,2.0,3.0,4.0,5.0]])

array([[1., 2., 3., 4., 5.]])

>>> ndim(x)

2

A matrix is always 2-dimensional and so a nested list is not required to initialize a a row matrix

>>> x=matrix([1.0,2.0,3.0,4.0,5.0])

>>> x

matrix([[1., 2., 3., 4., 5.]])

>>> ndim(x)

2

Notice that the output matrix representation uses nested lists ([[]]) to emphasize the 2-dimensional

structure of all matrices. The column vector,

x =


1

2

3

4

5


is entered as a matrix or 2-dimensional array using a set of nested lists

>>> x=matrix([[1.0],[2.0],[3.0],[4.0],[5.0]])

>>> x

matrix([[1.],

[2.],

[3.],

[4.],

[5.]])

>>> x = array([[1.0],[2.0],[3.0],[4.0],[5.0]])

>>> x

array([[1.],

46

[2.],

[3.],

[4.],

[5.]])

4.4 2-dimensional Arrays

Matrices and 2-dimensional arrays are rows of columns, and so

x =

 1 2 3

4 5 6

7 8 9

 ,

is input by enter the matrix one row at a time, each in a list, and then encapsulate the row lists in another

list.

>>> x = array([[1.0,2.0,3.0],[4.0,5.0,6.0],[7.0,8.0,9.0]])

>>> x

array([[1., 2., 3.],

[4., 5., 6.],

[7., 8., 9.]])

4.5 Multidimensional Arrays

Higher dimensional arrays are useful when tracking matrix valued processes through time, such as a time-

varying covariance matrices. Multidimensional (N -dimensional) arrays are available for N up to about 30,

depending on the size of each matrix dimension. Manually initializing higher dimension arrays is tedious

and error prone, and so it is better to use functions such as zeros((2, 2, 2)) or empty((2, 2, 2)).

4.6 Concatenation

Concatenation is the process by which one vector or matrix is appended to another. Arrays and matrices

can be concatenation horizontally or vertically. For example, suppose

x =

[
1 2

3 4

]
and y =

[
5 6

7 8

]
;

and

z =

[
x

y

]
.

needs to be constructed. This can be accomplished by treating x and y as elements of a new matrix and

using the function concatenate to join them. The inputs to concatenate must be grouped in a tuple and

the keyword argument axis specifies whether the arrays are to be vertically (axis = 0) or horizontally

(axis = 1) concatenated.

47

>>> x = array([[1.0,2.0],[3.0,4.0]])

>>> y = array([[5.0,6.0],[7.0,8.0]])

>>> z = concatenate((x,y),axis = 0)

>>> z

array([[1., 2.],

[3., 4.],

[5., 6.],

[7., 8.]])

>>> z = concatenate((x,y),axis = 1)

>>> z

array([[1., 2., 5., 6.],

[3., 4., 7., 8.]])

Concatenating is the code equivalent of block-matrix forms in standard matrix algebra. Alternatively, the

functions vstack and hstack can be used to vertically or horizontally stack arrays, respectively.

>>> z = vstack((x,y)) # Same as z = concatenate((x,y),axis = 0)

>>> z = hstack((x,y)) # Same as z = concatenate((x,y),axis = 1)

4.7 Accessing Elements of an Array

Four methods are available for accessing elements contained within an array: scalar selection, slicing,

numerical indexing and logical (or Boolean) indexing. Scalar selection and slicing are the simplest and so

are presented first. Numerical indexing and logical indexing both depends on specialized functions and

so these methods are discussed in Chapter 12.

4.7.1 Scalar Selection

Pure scalar selection is the simplest method to select elements from an array, and is implemented using

[i] for 1-dimensional arrays, [i, j] for 2-dimensional arrays and [i1,i2,. . .,in] for general n-dimensional

arrays.

>>> x = array([1.0,2.0,3.0,4.0,5.0])

>>> x[0]

1.0

>>> x = array([[1.0,2,3],[4,5,6]])

>>> x[1,2]

6.0

>>> type(x[1,2])

numpy.float64

Pure scalar selection always returns a single element which is not an array. The data type of the selected

element matches the data type of the array used in the selection. Scalar selection can also be used to

assign values in an array.

48

>>> x = array([1.0,2.0,3.0,4.0,5.0])

>>> x[0] = -5

>>> x

array([-5., 2., 3., 4., 5.])

4.7.2 Array Slicing

Arrays, like lists and tuples, can be sliced. Arrays slicing is virtually identical to lists slicing except that a

simpler slicing syntax is available since arrays are explicitly multidimensional and rectangular. Arrays are

sliced using the syntax [:,:,. . .,:] (where the number of dimensions of the arrays determines the size

of the slice).1 Recall that the slice notation a:b:s will select every sth element where the indices i satisfy

a ≤ i < b so that the starting value a is always included in the list and the ending value b is always

excluded. Additionally, a number of shorthand notations are commonly encountered

• : and :: are the same as 0:n:1 where n is the length of the array (or list).

• a: and a:n are the same as a:n:1 where n is the length of the array (or list).

• :b is the same as 0:b:1.

• ::s is the same as 0:n:s where n is the length of the array (or list).

Basic slicing of 1-dimensional arrays is identical to slicing a simple list, and the returned type of all slicing

operations matches the array being sliced.

>>> x = array([1.0,2.0,3.0,4.0,5.0])

>>> y = x[:]

array([1., 2., 3., 4., 5.])

>>> y = x[:2]

array([1., 2.])

>>> y = x[1::2]

array([2., 4.])

In 2-dimensional arrays, the first dimension specifies the row or rows of the slice and the second di-

mension specifies the the column or columns. Note that the 2-dimensional slice syntax y[a:b,c:d] is the

same as y[a:b,:][:,c:d] or y[a:b][:,c:d], although clearly the shorter form is preferred. In the case

where only row slicing in needed y[a:b], which is the equivalent to y[a:b,:], is the shortest syntax.

>>> y = array([[0.0, 1, 2, 3, 4],[5, 6, 7, 8, 9]])

>>> y

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])

>>> y[:1,:] # Row 0, all columns

array([[0., 1., 2., 3., 4.]])

1It is not necessary to include all trailing slice dimensions, and any omitted trailing slices are set to select all elements (the
slice :). For example, if x is a 3-dimensional array, x[0:2] is the same as x[0:2,:,:] and x[0:2,0:2] is the same as
x[0:2,0:2,:].

49

>> y[:1] # Same as y[:1,:]

array([[0., 1., 2., 3., 4.]])

>>> y[:,:1] # all rows, column 0

array([[0.],

[5.]])

>>> y[:1,0:3] # Row 0, columns 0 to 2

array([[0., 1., 2.]])

>>> y[:1][:,0:3] # Same as previous

array([[0., 1., 2.]])

>>> y[:,3:] # All rows, columns 3 and 4

array([[3., 4.],

[8., 9.]])

>>> y = array([[[1.0,2],[3,4]],[[5,6],[7,8]]])

>>> y[:1,:,:] # Panel 0 of 3D y

array([[[1, 2],

[3, 4]]])

In the previous examples, slice notation was always used even when only selecting 1 row or column. This

was done to emphasize the difference between using slice notation, which always returns an array with

the same dimension and using a scalar selector which will perform dimension reduction.

4.7.3 Mixed Selection using Scalar and Slice Selectors

When arrays have more than 1-dimension, it is often useful to mix scalar and slice selectors to select an

entire row, column or panel of a 3-dimensional array. This is similar to pure slicing with one important

caveat – dimensions selected using scalar selectors are eliminated. For example, if x is a 2-dimensional

array, then x[0,:] will select the first row. However, unlike the 2-dimensional array constructed using the

slice x[:1,:], x[0,:] will be a 1-dimensional array.

>>> x = array([[1.0,2],[3,4]])

>>> x[:1,:] # Row 1, all columns, 2-dimensional

array([[1., 2.]])

>>> x[0,:] # Row 1, all columns, dimension reduced

array([1., 2.])

While these two selections appear similar, the first produces a 2-dimensional array (note the [[]] syntax)

while the second is a 1-dimensional array. In most cases where a single row or column is required, using

scalar selectors such as y[0,:] is the best practice. It is important to be aware of the dimension reduc-

tion since scalar selections from a 2-dimensional arrays will no longer have 2-dimensions. This type of

dimension reduction may matter when evaluating linear algebra expression.

The principle adopted by NumPy is that slicing should always preserve the dimension of the under-

lying array, while scalar indexing should always collapse the dimension(s). This is consistent with x[0,0]

50

returning a scalar (or 0-dimensional array) since both selections are scalar. This is demonstrated in the

next example which highlights the differences between pure slicing, mixed slicing and pure scalar selec-

tion. Note that the function ndim returns the number of dimensions of an array.

>>> x = array([[0.0, 1, 2, 3, 4],[5, 6, 7, 8, 9]])

>>> x[:1,:] # Row 0, all columns, 2-dimensional

array([[0., 1., 2., 3., 4.]])

>>> ndim(x[:1,:])

2

>>> x[0,:] # Row 0, all column, dim reduction to 1-d array

array([0., 1., 2., 3., 4.])

>>> ndim(x[0,:])

1

>>> x[0,0] # Top left element, dim reduction to scalar (0-d array)

0.0

>>> ndim(x[0,0])

>>> x[:,0] # All rows, 1 column, dim reduction to 1-d array

array([0., 5.])

4.7.4 Assignment using Slicing

Slicing and scalar selection can be used to assign arrays that have the same dimension as the slice.2

>>> x = array([[0.0]*3]*3) # *3 repeats the list 3 times

>>> x

array([[0, 0, 0],

[0, 0, 0],

[0, 0, 0]])

>>> x[0,:] = array([1.0, 2.0, 3.0])

>>> x

array([[1., 2., 3.],

[0., 0., 0.],

[0., 0., 0.]])

>>> x[::2,::2] = array([[-99.0,-99],[-99,-99]]) # 2 by 2

>>> x

array([[-99., 2., -99.],

[0., 0., 0.],

[-99., 0., -99.]])

>>> x[1,1] = pi

2Formally, the array to be assigned must be broadcastable to the size of the slice. Broadcasting is described in Chapter 5, and
assignment using broadcasting is discussed in Chapter 12.

51

>>> x

array([[-99. , 2. , -99.],

[0. , 3.14159265, 0.],

[-99. , 0. , -99.]])

NumPy attempts to automatic (silent) data type conversion if an element with one data type is inserted

into an array wit a different data type. For example, if an array has an integer data type, place a float into

the array results in the float being truncated and stored as an integer. This is dangerous, and so in most

cases, arrays should be initialized to contain floats unless a considered decision is taken to use a different

data type.

>>> x = [0, 1, 2, 3, 4] # Integers

>>> y = array(x)

>>> y.dtype

dtype(’int32’)

>>> y[0] = 3.141592

>>> y

array([3, 1, 2, 3, 4])

>>> x = [0.0,1, 2, 3, 4] # 1 Float makes all float

>>> y = array(x)

>>> y.dtype

dtype(’float64’)

>>> y[0] = 3.141592

>>> y

array([3.141592, 1. , 2. , 3. , 4.])

4.7.5 Linear Slicing using flat

Data in matrices is stored in row-major order – elements are indexed by first counting across rows and

then down columns. For example, in the matrix

x =

 1 2 3

4 5 6

7 8 9


the first element of x is 1, the second element is 2, the third is 3, the fourth is 4, and so on.

In addition to slicing using the [:,:,. . .,:] syntax, k -dimensional arrays can be linear sliced. Linear

slicing assigns an index to each element of the array, starting with the first (0), the second (1), and so on

until the final element (n − 1). In 2-dimensions, linear slicing works by first counting across rows, and

then down columns. To use linear slicing, the method or function flat must first be used.

>>> y = reshape(arange(25.0),(5,5))

>>> y

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14.],

[15., 16., 17., 18., 19.],

52

[20., 21., 22., 23., 24.]])

>>> y[0] # Same as y[0,:], first row

array([0., 1., 2., 3., 4.])

>>> y.flat[0] # Scalar slice, flat is 1-dimensional

0

>>> y[6] # Error

IndexError: index out of bounds

>>> y.flat[6] # Element 6

6.0

>>> y.flat[12:15]

array([12., 13., 14.])

>>> y.flat[:] # All element slice

array([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,

11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,

22., 23., 24.]])

Note that arange and reshape are useful functions are described in later chapters.

4.8 Slicing and Memory Management

Unlike lists, slices of arrays are do not copy the underlying data. Instead a slice of an array returns a view of

the array which shares the data in the sliced array. This is important since changes in slices will propagate

to the underlying array and to any other slices which share the same element.

>>> x = reshape(arange(4.0),(2,2))

>>> x

array([[0., 1.],

[2., 3.]])

>>> s1 = x[0,:] # First row

>>> s2 = x[:,0] # First column

>>> s1[0] = -3.14 # Assign first element

>>> s1

array([-3.14, 1.])

>>> s2

array([-3.14, 2.])

>>> x

array([[-3.14, 1.],

[2. , 3.]])

If changes should not propagate to parent and sibling arrays, it is necessary to call copy on the slice. Al-

ternatively, they can also be copied by calling array on arrays, or matrix on matrices.

53

>>> x = reshape(arange(4.0),(2,2))

>>> s1 = copy(x[0,:]) # Function copy

>>> s2 = x[:,0].copy() # Method copy

>>> s3 = array(x[0,:]) # Create a new array

>>> s1[0] = -3.14

>>> s1

array([-3.14, 1.])

>>> s2

array([0., 2.])

>>> s3

array([0., 1.])

>>> x[0,0]

array([[0., 1.],

[2., 3.]])

There is one notable exception to this rule – when using pure scalar selection the (scalar) value returned

is always a copy.

>>> x = arange(5.0)

>>> y = x[0] # Pure scalar selection

>>> z = x[:1] # A pure slice

>>> y = -3.14

>>> y # y Changes

-3.14

>>> x # No propagation

array([0., 1., 2., 3., 4.])

>>> z # No changes to z either

array([0.])

>>> z[0] = -2.79

>>> y # No propagation since y used pure scalar selection

-3.14

>>> x # z is a view of x, so changes propagate

array([-2.79, 1. , 2. , 3. , 4.])

Finally, assignments from functions which change values will automatically create a copy of the un-

derlying array.

>>> x = array([[0.0, 1.0],[2.0,3.0]])

>>> y = x

>>> print(id(x),id(y)) # Same

129186368 129186368

>>> y = x + 1.0

>>> y

array([[1., 2.],

[3., 4.]])

54

>>> print(id(x),id(y)) # Different

129186368 129183104

>>> x # Unchanged

array([[0., 1.],

[2., 3.]])

>>> y = exp(x)

>>> print(id(x),id(y)) # Also Different

129186368 129185120

Even trivial function such asy = x + 0.0 create a copy of x, and so the only scenario where explicit copying

is required is when y is directly assigned using a slice of x, and changes to y should not propagate to x.

4.9 import and Modules

Python, by default, only has access to a small number of built-in types and functions. The vast majority of

functions are located in modules, and before a function can be accessed, the module which contains the

function must be imported. For example, when using ipython --pylab (or any variants), a large number

of modules are automatically imported, including NumPy and matplotlib. This is style of importing useful

for learning and interactive use, but care is needed to make sure that the correct module is imported when

designing more complex programs.

import can be used in a variety of ways. The simplest is to use from module import * which imports

all functions in module. This method of using import can dangerous since if you use it more than once,

it is possible for functions to be hidden by later imports. A better method is to just import the required

functions. This still places functions at the top level of the namespace, but can be used to avoid conflicts.

from pylab import log2 # Will import log2 only

from scipy import log10 # Will not import the log2 from SciPy

The functions log2 and log10 can both be called in subsequent code. An alternative, and more common,

method is to use import in the form

import pylab

import scipy

import numpy

which allows functions to be accessed using dot-notation and the module name, for example scipy.log2.

It is also possible to rename modules when imported using as

import pylab as pl

import scipy as sp

import numpy as np

The only difference between these two is that import scipy is implicitly calling import scipy as scipy.

When this form of import is used, functions are used with the “as” name. For example, the load provided

by NumPy is accessed using sp.log2, while the pylab load is pl.log2 – and both can be used where appro-

priate. While this method is the most general, it does require slightly more typing.

55

4.10 Calling Functions

Functions calls have different conventions than most other expressions. The most important difference

is that functions can take more than one input and return more than one output. The generic structure

of a function call is out1, out2, out3, . . . = functionname(in1, in2, in3, . . .). The important aspects of this

structure are

• If multiple outputs are returned, but only one output variable is provided, the output will (generally)

be a tuple.

• If more than one output variable is given in a function call, the number of output must match the

number of output provided by the function. It is not possible to ask for two output if a function re-

turns three – using an incorrect number of outputs results inValueError: too many values to unpack.

• Both inputs and outputs must be separated by commas (,)

• Inputs can be the result of other functions as long only one output is returned. For example, the

following are equivalent,

>>> y = var(x)

>>> mean(y)

and

>>> mean(var(x))

Required Arguments

Most functions have required arguments. For example, consider the definition of array from help(array),

array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)

Array has 1 required input, object, which is the list or tuple which contains values to use when creating

the array. Required arguments can be determined by inspecting the function signature since all of the

input follow the patters keyword=default except object – required arguments will not have a default value

provided. The other arguments can be called in order (array accepts at most 2 non-keyword arguments).

>>> array([[1.0,2.0],[3.0,4.0]])

array([[1., 2.],

[3., 4.]])

>>> array([[1.0,2.0],[3.0,4.0]], ’int32’)

array([[1, 2],

[3, 4]])

Keyword Arguments

All of the arguments to array can be called by their keyword, which is listed in the help file definition.

array(object=[[1.0,2.0],[3.0,4.0]])

array([[1.0,2.0],[3.0,4.0]], dtype=None, copy=True, order=None, subok=False, ndmin=0)

56

Keyword arguments have two important advantages. First, they do not have to appear in any order (Note:

randomly ordering arguments is not good practice, and this is only an example), and second, keyword

arguments can be used only when needed since a default value is always given.

>>> array(dtype=’complex64’, object = [[1.0,2.0],[3.0,4.0]], copy=True)

array([[1.+0.j, 2.+0.j],

[3.+0.j, 4.+0.j]], dtype=complex64)

Default Arguments

Functions have defaults for optional arguments. These are listed in the function definition and appear

in the help in the form keyword=default. Returning to array, all inputs have default arguments except

object – the only required input.

Multiple Outputs

Some functions can have more than 1 output. These functions can be used in a single output mode or in

multiple output mode. For example, shape can be used on an array to determine the size of each dimen-

sion.

>>> x = array([[1.0,2.0],[3.0,4.0]])

>>> s = shape(x)

>>> s

(2L, 2L)

Since shape will return as many outputs as there are dimensions, it can be called with 2 outputs when the

input is a 2-dimensional array.

>>> x = array([[1.0,2.0],[3.0,4.0]])

>>> M,N = shape(x)

>>> M

2L

>>> N

2L

Requesting more outputs than are required will produce an error.

>>> M,N,P = shape(x) # Error

ValueError: need more than 2 values to unpack

Similarly, providing two few output can also produce an error. Consider the case where the argument used

with shape is a 3-dimensional array.

>>> x = randn(10,10,10)

>>> shape(x)

(10L, 10L, 10L)

>>> M,N = shape(x) # Error

ValueError: too many values to unpack

57

4.11 Exercises

1. Input the following mathematical expressions into Python as both arrays and matrices.

u = [1 1 2 3 5 8]

v =



1

1

2

3

5

8


x =

[
1 0

0 1

]

y =

[
1 2

3 4

]

z =

 1 2 1 2

3 4 3 4

1 2 1 2


w =

[
x x

y y

]

Note: A column vector must be entered as a 2-dimensional array.

2. What command would pull x out of w ? (Hint: w[?,?] is the same as x .)

3. What command would pull
[

x ′ y ′
]′

out of w? Is there more than one? If there are, list all alternatives.

4. What command would pull y out of z ? List all alternatives.

5. Explore the options for creating an array using keyword arguments. Create an array containing

y =

[
1 −2

−3 4

]

with combination of keyword arguments in:

(a) dtype infloat, float64, int32 (32-bit integers), uint32 (32-bit unsigned integers) andcomplex128

(double precision complex numbers).

(b) copy either True or False.

(c) ndim either 3 or 4. Use shape(y) to see the effect of this argument.

6. Enter y = [1.6180 2.7182 3.1415] as an array. Define x = mat(y). How is x different from y ?

58

Chapter 5

Basic Math

Note: Python contains a math module providing functions which operate on built-in scalar data types

(e.g. float and complex). This and subsequent chapters assume mathematical functions must operate on

arrays and matrices, and so are imported from NumPy.

5.1 Operators

These standard operators are available:

Operator Meaning Example Algebraic

+ Addition x + y x + y

- Subtraction x - y x − y

* Multiplication x * y x y

/ Division (Left divide) x/y x
y

** Exponentiation x**y x y

When x and y are scalars, the behavior of these operators is obvious. The only possible exception

occurs when both x and y are integers for division, where x/y returns the smallest integer less than the

ratio (e.g. b x
y c). The simplest method to avoid this problem is use from __future__ import division

which changes the default behavior. Alternatively, declaring numeric values to be floats using 5.0 rather

than 5 will also mitigate this issue as well explicitly casting integers to floats before dividing.

>>> x = 9

>>> y = 5

>>> (type(x), type(y))

(int, int)

>>> x/y # Since division imported

1.8

>>> float(x)/y

1.8

When x and y are arrays or matrices, the behavior of mathematical operations is more complex. The

examples in this chapter refer to arrays, and except where explicit differences are noted, it is safe to assume

that the behavior of 2-dimensional arrays and matrices is identical.

59

I recommend using the import command from __future__ import division in all programs

and IPython. The “future” division avoids this issue by always casting division to floating point

when the result is not an exact integer.

5.2 Broadcasting

Under the normal rules of array mathematics, addition and subtraction are only defined for arrays with the

same shape or between an array and a scalar. For example, there is no obvious method to add a 5-element

vector and a 5 by 4 matrix. NumPy uses a technique called broadcasting to allow element-by-element

mathematical operations on arrays (and matrices) which would not be compatible under the standard

rules of array mathematics.

Arrays can be used in element-by-element mathematics if x is broadcastable to y. Suppose x is an m-

dimensional array with dimensions d = [d1, d2. . . dm], and y is an n-dimensional array with dimensions

f = [f1, f2. . . fn] where m ≥ n . Formally, two arrays are broadcastable if the following two conditions

hold.

1. If m > n , then treat y as a m-dimensional array with size g = [1, 1, . . . , 1, f1, f2. . . fn] where the

number of 1s prepended is m − n . The dimensions are g i = 1 for i = 1, . . . m − n and g i = fi−m+n

for i > m − n .

2. For i = 1, . . . , m , max (di , g i) /min (di , g i) ∈ {1, max (di , g i)}.

The first rule is simply states that if one array has fewer dimensions, it is treated as having the same num-

ber of dimensions as the larger array by prepending 1s. The second rule states that arrays will only be

broadcastable if either (a) they have the same dimension along axis i or (b) one has dimension 1 along

axis i . When 2 arrays are broadcastable, the dimension of the output array is max (di , g i) for i = 1, . . . n .

Consider the following examples where m , n and p are assumed to have different values.

x y Broadcastable Output Size x Operation y Operation

Any Scalar Ø Same as x x tile(y,shape(x))

m , 1 1, n or n Ø m , n tile(x,(1,n)) tile(y,(m,1))

m , 1 n , 1 ×
m , n 1, n or n Ø m , n x tile(y,(m,1))

m , n , 1 1, 1, p or 1, p or p Ø m , n , p tile(x,(1,1,p)) tile(y,(m,n,1))

m , n , p 1, 1, p or 1, p or p Ø m , n , p x tile(y,(m,n,1))

m , n , 1 p , 1 ×
m , 1, p 1, n , 1, 1, n , p or n , 1 Ø m , n , p tile(x,(1,n,1)) tile(y,(m,1,p))

One simple method to visualize broadcasting is to use an add and subtract operation where the addition

causes the smaller array to be broadcast, and then the subtract removes the values in the larger array. This

will produce a replicated version of the smaller array which shows the nature of the broadcasting.

60

>>> x = array([[1,2,3.0]])

>>> x

array([[1., 2., 3.]])

>>> y = array([[0],[0],[0.0]])

>>> y

array([[0.],

[0.],

[0.]])

>>> x + y # Adding 0 produces broadcast

array([[1., 2., 3.],

[1., 2., 3.],

[1., 2., 3.]])

In the next example, x is 3 by 5, so y must be either scalar or a 5-element array or a 1 × 5 array to be

broadcastable. When y is a 3-element array (and so matches the leading dimension), an error occurs.

>>> x = reshape(arange(15),(3,5))

>>> x

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9],

[10, 11, 12, 13, 14]])

>>> y = 1

>>> x + y - x

array([[5, 5, 5, 5, 5],

[5, 5, 5, 5, 5],

[5, 5, 5, 5, 5]])

>>> y = arange(5)

>>> y

array([0, 1, 2, 3, 4])

>>> x + y - x

array([[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4]])

>>> y = arange(3)

>>> y

array([0, 1, 2])

>>> x + y - x # Error

ValueError: operands could not be broadcast together with shapes (3,5) (3)

5.3 Array and Matrix Addition (+) and Subtraction (-)

Subject to broadcasting restrictions, addition and subtraction works element-by-element.

61

5.4 Array Multiplication (*)

The standard multiplication operator differs for variables with type array and matrix. For arrays, * per-

forms element-by-element multiplication and so inputs must be broadcastable. For matrices, * is matrix

multiplication as defined by linear algebra, and there is no broadcasting.

Conformable arrays can be multiplied according to the rules of matrix algebra using the function

dot(). For simplicity, assume x is N by M and y is K by L . If M = K , dot(x,y) will produce the array

N by L array z[i,j] = =dot(x[i,:], y[:,j]) where dot on 1-dimensional arrays is the usual vector

dot-product. The behavior of dot() is described as:

y

Scalar Array

Scalar Any Any

x z = x y zi j = x yi j

Array Any Inside Dimensions Match

zi j = y xi j zi j =
∑M

k=1 xi k yk j

These rules conform to the standard rules of matrix multiplication. dot() can also be used on higher

dimensional arrays, and is useful if x is T by M by N and y is N by P to produce an output matrix which

is T by M by P , where each of the M by P (T in total) have the form dot(x[i],y).

5.5 Matrix Multiplication (*)

If x is N by M and y is K by L and both are non-scalar matrices, x*y requires M = K . Similarly, y*x requires

L = N . If x is scalar and y is a matrix, then z=x*y produces z(i,j)=x*y(i,j). Suppose z=x * y where both

x and y are matrices:

y

Scalar Matrix

Scalar Any Any

x z = x y zi j = x yi j

Matrix Any Inside Dimensions Match

zi j = y xi j zi j =
∑M

k=1 xi k yk j

Note: These conform to the standard rules of matrix multiplication.

multiply()performs element-by-element multiplication of matrices, and will use broadcasting if nec-

essary. Matrices are identical to 2-dimensional arrays when performing element-by-element multiplica-

tion.

5.6 Array and Matrix Division (/)

Division is always element-by-element, and the rules of broadcasting are used.

5.7 Array Exponentiation (**)

Array exponentiation operates element-by-element, and the rules of broadcasting are used.

62

5.8 Matrix Exponentiation (**)

Matrix exponentiation differs from array exponentiation, and can only be used on square matrices. When

x is a square matrix and y is a positive integer, x**y produces x*x*...*x (y times). When y is a negative in-

teger, x**yproduces inv(x**abs(y))where invproduces the inverse, and so xmust have full rank. Python

does not support non-integer values for y, although x p can be defined (in linear algebra) using eigenvalues

and eigenvectors for a subset of all matrices.

5.9 Parentheses

Parentheses can be used in the usual way to control the order in which mathematical expressions are

evaluated, and can be nested to create complex expressions. See section 5.11 on Operator Precedence for

more information on the order mathematical expressions are evaluated.

5.10 Transpose

Matrix transpose is expressed using either the transpose function, or the shortcut .T. For instance, if x is

an M by N matrix, transpose(x), x.transpose() and x.T are all its transpose with dimensions N by M .

In practice, using the .T is the preferred method and will improve readability of code. Consider

>>> x = asmatrix(randn(2,2))

>>> xpx1 = x.T * x

>>> xpx2 = x.transpose() * x

>>> xpx3 = transpose(x) * x

Transpose has no effect on 1-dimensaional arrays. In 2-dimensions, transpose switches indices so that

if z=x.T, z[j,i] is that same as x[i,j]. In higher dimensions, transpose reverses the order or the indices.

For example, if x has 3 dimensions and z=x.T, then x[i,j,k] is the same as z[k,j,i]. Transpose takes an

optional second argument to specify the axis to use when permuting the array.

5.11 Operator Precedence

Computer math, like standard math, has operator precedence which determined how mathematical ex-

pressions such as

2**3+3**2/7*13

are evaluated. Best practice is to always use parentheses to avoid ambiguity in the order or operations.

The order of evaluation is:

63

Operator Name Rank

(), [] , (,) Parentheses, Lists, Tuples 1

** Exponentiation 2

~ Bitwise NOT 3

+,- Unary Plus, Unary Minus 3

*, /, //, % Multiply, Divide, Modulo 4

+,- Addition and Subtraction 5

& Bitwise AND 6

^ Bitwise XOR 7

Bitwise OR 8

<, <=, >, >= Comparison operators 9

==, != Equality operators 9

in, not in Identity Operators 9

is, is not Membership Operators 9

not Boolean NOT 10

and Boolean AND 11

or Boolean OR 12

=,+=,-=,/=,*=,**= Assignment Operators 13

Note that some rows of the table have the same precedence, and are only separated since they are con-

ceptually different. In the case of a tie, operations are executed left-to-right. For example, x**y**z is inter-

preted as (x**y)**z. This table has omitted some operators available in Python which are not generally

useful in numerical analysis (e.g. shift operators).

Note: Unary operators are + or - operations that apply to a single element. For example, consider the

expression (-4). This is an instance of a unary negation since there is only a single operation and so

(-4)**2 produces 16. On the other hand, -4**2 produces -16 since ∗∗ has higher precedence than unary

negation and so is interpreted as -(4**2). -4 * -4produces 16 since it is interpreted as (-4) * (-4), since

unary negation has higher precedence than multiplication.

5.12 Exercises

1. Using the arrays entered in exercise 1 of chapter 4, compute the values of u + v ′, v + u ′, v u , u v and

x y (where the multiplication is as defined as linear algebra).

2. Repeat exercise 1 treating the inputs as matrices.

3. Which of the arrays in exercise 1 are broadcastable with:

a = [3 2],

b =

[
3

2

]
,

c = [3 2 1 0] ,

64

d =


3

2

1

0

 .

4. Is x/1 legal? If not, why not. What about 1/x?

5. Compute the values (x+y)**2 and x**2+x*y+y*x+y**2. Are they the same when x and y are arrays?

What if they are matrices?

6. Is x**2+2*x*y+y**2 the same as any of the above?

7. When will x**y for matrices be the same as x**y for vectors?

8. For conformable arrays, is a*b+a*c the same as a*b+c? If so, show with an example. If not, how can

the second be changed so they are equal.

9. Suppose a command x**y*w+z was entered. What restrictions on the dimensions of w, x, y and z

must be true for this to be a valid statement?

10. What is the value of -2**4? What about (-2)**4? What about -2*-2*-2*-2?

65

66

Chapter 6

Basic Functions and Numerical Indexing

6.1 Generating Arrays and Matrices

linspace

linspace(l,u,n) generates a set of n points uniformly spaced between l, a lower bound (inclusive) and u,

an upper bound (inclusive).

>>> x = linspace(0, 10, 11)

>>> x

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

logspace

logspace(l,u,n) produces a set of logarithmically spaced points between 10l and 10u . It is identical to

10**linspace(l,u,n).

arange

arange(l,u,s) produces a set of points spaced by s between l, a lower bound (inclusive) and u, an up-

per bound (exclusive). arange can be used with a single parameter, so that arange(n) is equivalent to

arange(0,n,1). Note that arange will return integer data type if all inputs are integer.

>>> x = arange(11)

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

>>> x = arange(11.0)

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.])

>>> x = arange(4, 10, 1.25)

array([4. , 5.25, 6.5 , 7.75, 9.])

meshgrid

meshgrid broadcasts two vectors to produce two 2-dimensional arrays, and is a useful function when plot-

ting 3-dimensional functions.

67

>>> x = arange(5)

>>> y = arange(3)

>>> X,Y = meshgrid(x,y)

>>> X

array([[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4],

[0, 1, 2, 3, 4]])

>>> Y

array([[0, 0, 0, 0, 0],

[1, 1, 1, 1, 1],

[2, 2, 2, 2, 2]])

r_

r_ is a convenience function which generates 1-dimensional arrays from slice notation. While r_ is highly

flexible, the most common use it r_[start : end : stepOrCount] where start and end are the start and end

points, and stepOrCount can be either a step size, if a real value, or a count, if complex.

>>> r_[0:10:1] # arange equiv

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> r_[0:10:.5] # arange equiv

array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5, 5. ,

5.5, 6. , 6.5, 7. , 7.5, 8. , 8.5, 9. , 9.5])

>>> r_[0:10:5j] # linspace equiv, includes end point

array([0. , 2.5, 5. , 7.5, 10.])

r_ can also be used to concatenate slices using commas to separate slice notation blocks.

>>> r_[0:2, 7:11, 1:4]

array([0, 1, 7, 8, 9, 10, 1, 2, 3])

Note that r_ is not a function and that is used with [].

c_

c_ is virtually identical to r_ except that column arrays are generates, which are 2-dimensional (second

dimension has size 1)

>>> c_[0:5:2]

array([[0],

[2],

[4]])

>>> c_[1:5:4j]

array([[1.],

[2.33333333],

[3.66666667],

[5.]])

c_, like r_, is not a function and is used with [].

68

ix_

ix_(a,b) constructs an n-dimensional open mesh from n 1-dimensional lists or arrays. The output of

ix_ is an n-element tuple containing 1-dimensional arrays. The primary use of ix_ is to simplify selecting

slabs inside a matrix. Slicing can also be used to select elements from an array as long as the slice pattern is

regular. ix_ is particularly useful for selecting elements from an array using indices which are not regularly

spaced, as in the final example.

>>> x = reshape(arange(25.0),(5,5))

>>> x

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14.],

[15., 16., 17., 18., 19.],

[20., 21., 22., 23., 24.]])

>>> x[ix_([2,3],[0,1,2])] # Rows 2 & 3, cols 0, 1 and 2

array([[10., 11., 12.],

[15., 16., 17.]])

>>> x[2:4,:3] # Same, standard slice

array([[10., 11., 12.],

[15., 16., 17.]])

>>> x[ix_([0,3],[0,1,4])] # No slice equiv

mgrid

mgrid is very similar to meshgrid but behaves like r_ and c_ in that it takes slices as input, and uses a

real valued variable to denote step size and complex to denote number of values. The output is an n + 1

dimensional vector where the first index of the output indexes the meshes.

>>> mgrid[0:3,0:2:.5]

array([[[0. , 0. , 0. , 0.],

[1. , 1. , 1. , 1.],

[2. , 2. , 2. , 2.]],

[[0. , 0.5, 1. , 1.5],

[0. , 0.5, 1. , 1.5],

[0. , 0.5, 1. , 1.5]]])

>>> mgrid[0:3:3j,0:2:5j]

array([[[0. , 0. , 0. , 0. , 0.],

[1.5, 1.5, 1.5, 1.5, 1.5],

[3. , 3. , 3. , 3. , 3.]],

[[0. , 0.5, 1. , 1.5, 2.],

[0. , 0.5, 1. , 1.5, 2.],

[0. , 0.5, 1. , 1.5, 2.]]])

69

ogrid

ogrid is identical to mgrid except that the arrays returned are always 1-dimensional. ogrid output is gen-

erally more appropriate for looping code, while mgrid is usually more appropriate for vectorized code.

When the size of the arrays is large, then ogrid uses much less memory.

>>> ogrid[0:3,0:2:.5]

[array([[0.],

[1.],

[2.]]), array([[0. , 0.5, 1. , 1.5]])]

>>> ogrid[0:3:3j,0:2:5j]

[array([[0.],

[1.5],

[3.]]),

array([[0. , 0.5, 1. , 1.5, 2.]])]

6.2 Rounding

around, round

around rounds to the nearest integer, or to a particular decimal place when called with two arguments.

>>> x = randn(3)

array([0.60675173, -0.3361189 , -0.56688485])

>>> around(x)

array([1., 0., -1.])

>>> around(x, 2)

array([0.61, -0.34, -0.57])

around can also be used as a method on an ndarray – except that the method is named round. For example,

x.round(2) is identical to around(x, 2). The change of names is needed to avoid conflicting with the

Python built-in function round.

floor

floor rounds to the next smallest integer.

>>> x = randn(3)

array([0.60675173, -0.3361189 , -0.56688485])

>>> floor(x)

array([0., -1., -1.])

ceil

ceil rounds to the next largest integer.

70

>>> x = randn(3)

array([0.60675173, -0.3361189 , -0.56688485])

>>> ceil(x)

array([1., -0., -0.])

Note that the values returned are still floating points and so -0. is the same as 0..

6.3 Mathematics

sum, cumsum

sum sums elements in an array. By default, it will sum all elements in the array, and so the second argument

is normally used to provide the axis to use – 0 to sum down columns, 1 to sum across rows. cumsumproduces

the cumulative sum of the values in the array, and is also usually used with the second argument to indicate

the axis to use.

>>> x = randn(3,4)

>>> x

array([[-0.08542071, -2.05598312, 2.1114733 , 0.7986635],

[-0.17576066, 0.83327885, -0.64064119, -0.25631728],

[-0.38226593, -1.09519101, 0.29416551, 0.03059909]])

>>> sum(x) # all elements

-0.62339964288008698

>>> sum(x, 0) # Down rows, 4 elements

array([-0.6434473 , -2.31789529, 1.76499762, 0.57294532])

>>> sum(x, 1) # Across columns, 3 elements

array([0.76873297, -0.23944028, -1.15269233])

>>> cumsum(x,0) # Down rows

array([[-0.08542071, -2.05598312, 2.1114733 , 0.7986635],

[-0.26118137, -1.22270427, 1.47083211, 0.54234622],

[-0.6434473 , -2.31789529, 1.76499762, 0.57294532]])

sum and cumsum can both be used as function or as methods. When used as methods, the first input is the

axis so that sum(x,0) is the same as x.sum(0).

prod, cumprod

prod and cumprod behave similarly to sum and cumsum except that the product and cumulative product are

returned. prod and cumprod can be called as function or methods.

diff

diff computes the finite difference of a vector (also array) and returns n-1 an element vector when used on

an n element vector. diff operates on the last axis by default, and so diff(x) operates across columns and

returns x[:,1:size(x,1)]-x[:,:size(x,1)-1] for a 2-dimensional array. diff takes an optional keyword

71

argument axis so that diff(x, axis=0) will operate across rows. diff can also be used to produce higher

order differences (e.g. double difference).

>>> x= randn(3,4)

>>> x

array([[-0.08542071, -2.05598312, 2.1114733 , 0.7986635],

[-0.17576066, 0.83327885, -0.64064119, -0.25631728],

[-0.38226593, -1.09519101, 0.29416551, 0.03059909]])

>>> diff(x) # Same as diff(x,1)

-0.62339964288008698

>>> diff(x, axis=0)

array([[-0.09033996, 2.88926197, -2.75211449, -1.05498078],

[-0.20650526, -1.92846986, 0.9348067 , 0.28691637]])

>>> diff(x, 2, axis=0) # Double difference, column-by-column

array([[-0.11616531, -4.81773183, 3.68692119, 1.34189715]])

exp

exp returns the element-by-element exponential (e x) for an array.

log

log returns the element-by-element natural logarithm (ln(x)) for an array.

log10

log10 returns the element-by-element base-10 logarithm (log10 (x)) for an array.

sqrt

sqrt returns the element-by-element square root (
√

x) for an array.

square

square returns the element-by-element square (x 2) for an array, and is equivalent to calling x**2.0 when

x is an array (but not a matrix)

absolute, abs

abs and absolute returns the element-by-element absolute value for an array. Complex modulus is re-

turned when the input is complex valued (|a + b i | =
√

a 2 + b 2).

sign

sign returns the element-by-element sign function, defined as 0 if x = 0, and x/|x | otherwise.

72

6.4 Complex Values

real

real returns the real elements of a complex array. real can be called either as a function real(x) or as an

attribute x.real.

imag

imag returns the complex elements of a complex array. imag can be called either as a function imag(x) or

as an attribute x.imag.

conj, conjugate

conj returns the element-by-element complex conjugate for a complex array. conj can be called either as

a function conj(x) or as a method x.conj(). conjugate is identical to conj.

6.5 Set Functions

unique

unique returns the unique elements in an array. It only operates on the entire array. An optional second

argument can be returned which contains the original indices of the unique elements.

>>> x = repeat(randn(3),(2))

array([0.11335982, 0.11335982, 0.26617443, 0.26617443, 1.34424621,

1.34424621])

>>> unique(x)

array([0.11335982, 0.26617443, 1.34424621])

>>> y,ind = unique(x, True)

>>> ind

array([0, 2, 4], dtype=int64)

>>> x.flat[ind]

array([0.11335982, 0.26617443, 1.34424621])

in1d

in1d returns a Boolean array with the same size as the first input array indicating the elements which are

also in a second array.

>>> x = arange(10.0)

>>> y = arange(5.0,15.0)

>>> in1d(x,y)

array([False, False, False, False, False, True, True, True, True, True], dtype=bool)

73

intersect1d

intersect1d is similar to in1d, except that it returns the elements rather than a Boolean array, and only

unique elements are returned. It is equivalent to unique(x.flat[in1d(x,y)]).

>>> x = arange(10.0)

>>> y = arange(5.0,15.0)

>>> intersect1d(x,y)

array([5., 6., 7., 8., 9.])

union1d

union1d returns the unique set of elements in 2 arrays.

>>> x = arange(10.0)

>>> y = arange(5.0,15.0)

>>> union1d(x,y)

array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.,

11., 12., 13., 14.])

setdiff1d

setdiff1d returns the set of the elements which are only in the first array but not in the second array.

>>> x = arange(10.0)

>>> y = arange(5.0,15.0)

>>> setdiff1d(x,y)

array([0., 1., 2., 3., 4.])

setxor1d

setxor1d returns the set of elements which are in one (and only one) of two arrays.

>>> x = arange(10.0)

>>> y = arange(5.0,15.0)

>>> setxor1d(x,y)

array([0., 1., 2., 3., 4., 10., 11., 12., 13., 14.])

6.6 Sorting and Extreme Values

sort

sort sorts the elements of an array. By default, it sorts using the last axis of x. It uses an optional second

argument to indicate the axis to use for sorting (i.e. 0 for column-by-column, None for sorting all elements).

sort does not alter the input when called as function, unlike the method version of sort.

>>> x = randn(4,2)

>>> x

array([[1.29185667, 0.28150618],

[0.15985346, -0.93551769],

74

[0.12670061, 0.6705467],

[2.77186969, -0.85239722]])

>>> sort(x)

array([[0.28150618, 1.29185667],

[-0.93551769, 0.15985346],

[0.12670061, 0.6705467],

[-0.85239722, 2.77186969]])

>>> sort(x, 0)

array([[0.12670061, -0.93551769],

[0.15985346, -0.85239722],

[1.29185667, 0.28150618],

[2.77186969, 0.6705467]])

>>> sort(x, axis=None)

array([-0.93551769, -0.85239722, 0.12670061, 0.15985346, 0.28150618,

0.6705467 , 1.29185667, 2.77186969])

ndarray.sort, argsort

ndarray.sort is a method for ndarrays which performs an in-place sort. It economizes on memory use,

although x.sort() is different from x after the function, unlike a call to sort(x). x.sort() sorts along

the last axis by default, and takes the same optional arguments as sort(x). argsort returns the indices

necessary to produce a sorted array, but does not actually sort the data. It is otherwise identical to sort,

and can be used either as a function or a method.

>>> x = randn(3)

>>> x

array([2.70362768, -0.80380223, -0.10376901])

>>> sort(x)

array([-0.80380223, -0.10376901, 2.70362768])

>>> x

array([2.70362768, -0.80380223, -0.10376901])

>>> x.sort() # In-place, changes x

>>> x

array([-0.80380223, -0.10376901, 2.70362768])

max, amax, argmax, min, amin, argmin

max and min return the maximum and minimum values from an array. They take an optional second ar-

gument which indicates the axis to use.

>>> x = randn(3,4)

>>> x

array([[-0.71604847, 0.35276614, -0.95762144, 0.48490885],

75

[-0.47737217, 1.57781686, -0.36853876, 2.42351936],

[0.44921571, -0.03030771, 1.28081091, -0.97422539]])

>>> amax(x)

2.4235193583347918

>>> x.max()

2.4235193583347918

>>> x.max(0)

array([0.44921571, 1.57781686, 1.28081091, 2.42351936])

>>> x.max(1)

array([0.48490885, 2.42351936, 1.28081091])

max and min can only be used on arrays as methods. When used as a function, amax and amin must be used

to avoid conflicts with the built-in functions max and min. This behavior is also seen in around and round.

argmax and argmin return the index or indices of the maximum or minimum element(s). They are used in

an identical manner to max and min, and can be used either as a function or method.

minimum, maximum

maximum and minimum can be used to compute the maximum and minimum of two arrays which are broad-

castable.

>>> x = randn(4)

>>> x

array([-0.00672734, 0.16735647, 0.00154181, -0.98676201])

>>> y = randn(4)

array([-0.69137963, -2.03640622, 0.71255975, -0.60003157])

>>> maximum(x,y)

array([-0.00672734, 0.16735647, 0.71255975, -0.60003157])

6.7 Nan Functions

NaN function are convenience function which act similarly to their non-NaN versions, only ignoring NaN

values (rather than propagating) when computing the function.

nansum

nansum is identical sum, except that NaNs are ignored. nansum can be used to easily generate other NaN-

functions, such as nanstd (standard deviation, ignoring nans) since variance can be implemented using 2

sums.

>>> x = randn(4)

>>> x[1] = nan

>>> x

76

array([-0.00672734, nan, 0.00154181, -0.98676201])

>>> sum(x)

nan

>>> nansum(x)

-0.99194753275859726

>>> nansum(x) / sum(x[logical_not(isnan(x))])

1.0

>>> nansum(x) / sum(1-isnan(x)) # nanmean

-0.33064917999999999

nanmax, nanargmax, nanmin, nanargmin

nanmax, nanmin, nanargmax and nanargmin are identical to their non-NaN counterparts, except that NaNs

are ignored.

6.8 Functions and Methods/Properties

Many operations on NumPy arrays and matrices can be performed using a function or as a method of the

array. For example, consider reshape.

>>> x = arange(25.0)

>>> y = x.reshape((5,5))

>>> y

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14.],

[15., 16., 17., 18., 19.],

[20., 21., 22., 23., 24.]])

>>> z = reshape(x,(5,5))

>>> z

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.],

[10., 11., 12., 13., 14.],

[15., 16., 17., 18., 19.],

[20., 21., 22., 23., 24.]])

Both the function and method produce the same output and the choice of which to use is ultimately a

personal decision. I use both and the choice primarily depends on the context. For example, to get the

shape of an array, my preference is for x.shape over shape(x) since shape appears to be integral to x.1 On

the other hand, I prefer shape(y+z) over (y+z).shape due to the presence of the mathematical operation.

1Formally shape is a property of an array, not a method since it does not require a function call.

77

6.9 Exercises

1. Construct each of the following sequences using linspace, arange and r_:

0, 1, . . . , 10

4, 5, 6, . . . , 13

0, .25, .5, .75, 1

0,−1,−2, . . . ,−5

2. Show that logspace(0,2,21) can be constructed using linspace and 10 (and **). Similarly, show

how linsapce(2,10,51) can be constructed with logspace and log10.

3. Determine the differences between the rounding by applying round (or around), ceil and floor to

y = [0, 0.5, 1.5, 2.5, 1.0, 1.0001,−0.5,−1,−1.5,−2.5]

4. Prove the relationship that
∑n

j=1 j = n (n + 1)/2 for 0 ≤ n ≤ 10 using cumsum and directly using

math on an array.

5. randn(20) will generate an array containing draws from a standard normal random variable. If

x=randn(20), which element of y=cumsum(x) is the same as sum(x)?

6. cumsum computes the cumulative sum while diff computes the difference. Is diff(cumsum(x)) the

same as x? If not, how can a small modification be made to the this statement to recover x?

7. Compute the exp of

y = [ln 0.5 ln 1 ln e]

Note: You should use log and the constant numpy.e to construct y.

8. What is absolute of 0.0, -3.14, and 3+4j?

9. Suppose x = [−4 2 − 9 − 8 10]. What is the difference between y = sort(x) and x.sort()?

10. Using the same x as in the previous problem, find the max. Also, using argmax and a slice, retrieve

the same value.

11. Show that setdiff1d could be replaced with in1d and intersect1d using x = [1 2 3 4 5] and y =
[1 2 4 6]? How could setxor1d be replaced with union1d, intersect1d and in1d?

12. Suppose y = [nan 2.2 3.9 4.6 nan 2.4 6.1 1.8] . How can nansum be used to compute the variance or

the data? Note: sum(1-isnan(y)) will return the count of non-NaN values.

78

Chapter 7

Special Arrays

Functions are available to construct a number of useful, frequently encountered arrays.

ones

ones generates an array of 1s and is generally called with one argument, a tuple, containing the size of

each dimension. ones takes an optional second argument (dtype) to specify the data type. If omitted, the

data type is float.

>>> M, N = 5, 5

>>> x = ones((M,N)) # M by N array of 1s

>>> x = ones((M,M,N)) # 3D array

>>> x = ones((M,N), dtype=’int32’) # 32-bit integers

ones_like creates an array with the same shape and data type as the input. Calling ones_like(x) is equiv-

alent to calling ones(x.shape,x.dtype).

zeros

zeros produces an array of 0s in the same way ones produces an array of 1s, and commonly used to ini-

tialize an array to hold values generated by another procedure. zeros takes an optional second argument

(dtype) to specify the data type. If omitted, the data type is float.

>>> x = zeros((M,N)) # M by N array of 0s

>>> x = zeros((M,M,N)) # 3D array of 0s

>>> x = zeros((M,N),dtype=’int64’) # 64 bit integers

zeros_like creates an array with the same size and shape as the input. Calling zeros_like(x) is equivalent

to calling zeros(x.shape,x.dtype).

empty

emptyproduces an empty (uninitialized) array to hold values generated by another procedure. empty takes

an optional second argument (dtype) which specifies the data type. If omitted, the data type is float.

79

>>> x = empty((M,N)) # M by N empty array

>>> x = empty((N,N,N,N)) # 4D empty array

>>> x = empty((M,N),dtype=’float32’) # 32-bit floats (single precision)

Using empty is slightly faster than calling zeros since it does not assign 0 to all elements of the array –

the “empty” array created will be populated with (essential random) non-zero values. empty_like cre-

ates an array with the same size and shape as the input. Calling empty_like(x) is equivalent to calling

empty(x.shape,x.dtype).

eye, identity

eye generates an identity array – an array with ones on the diagonal, zeros everywhere else. Normally,

an identity array is square and so usually only 1 input is required. More complex zero-padded arrays

containing an identity matrix can be produced using optional inputs.

>>> In = eye(N)

identity is a virtually identical function with similar use, In = identity(N).

7.1 Exercises

1. Produce two arrays, one containing all zeros and one containing only ones, of size 10× 5.

2. Multiply (linear algebra) these two arrays in both possible ways.

3. Produce an identity matrix of size 5. Take the exponential of this matrix, element-by-element.

4. How could ones and zeros be replaced with tile?

5. How could eye be replaced with diag and ones?

6. What is the value of y=empty((1,))? Is it the same as any element in y=empty((10,))?

80

Chapter 8

Array and Matrix Functions

Many functions operate exclusively on array inputs, including functions which are mathematical in na-

ture, for example computing the eigenvalues and eigenvectors and functions for manipulating the ele-

ments of an array.

8.1 Views

Views are computationally efficient methods to produce objects of one type which behave as other objects

of another type without copying data. For example, an array x can always be converted to a matrix using

matrix(x), which will copy the elements in x. View “fakes” the call to matrix and only inserts a thin layer

so that x viewed as a matrix behaves like a matrix.

view

view can be used to produce a representation of an array, matrix or recarray as another type without copy-

ing the data. Using view is faster than copying data into a new class.

>>> x = arange(5)

>>> type(x)

numpy.ndarray

>>> x.view(matrix)

matrix([[0, 1, 2, 3, 4]])

>>> x.view(recarray)

rec.array([0, 1, 2, 3, 4])

asmatrix, mat

asmatrix and mat can be used to view an array as a matrix. This view is useful since matrix views will use

matrix multiplication by default.

>>> x = array([[1,2],[3,4]])

>>> x * x # Element-by-element

array([[1, 4],

[9, 16]])

81

>>> mat(x) * mat(x) # Matrix multiplication

matrix([[7, 10],

[15, 22]])

Both commands are equivalent to using view(matrix).

asarray

asarray work in a similar matter as asmatrix, only that the view produced is that of ndarray. Calling

asarray is equivalent to using view(ndarray)

8.2 Shape Information and Transformation

shape

shape returns the size of all dimensions or an array or matrix as a tuple. shape can be called as a function

or an attribute. shape can also be used to reshape an array by entering a tuple of sizes. Additionally, the

new shape can contain -1 which indicates to expand along this dimension to satisfy the constraint that

the number of elements cannot change.

>>> x = randn(4,3)

>>> x.shape

(4L, 3L)

>>> shape(x)

(4L, 3L)

>>> M,N = shape(x)

>>> x.shape = 3,4

>>> x.shape

(3L, 4L)

>>> x.shape = 6,-1

>>> x.shape

(6L, 2L)

reshape

reshape transforms an array with one set of dimensions and to one with a different set, preserving the

number of elements. Arrays with dimensions M by N can be reshaped into an array with dimensions K

by L as long as M N = K L . The most useful call to reshape switches an array into a vector or vice versa.

>>> x = array([[1,2],[3,4]])

>>> y = reshape(x,(4,1))

>>> y

array([[1],

[2],

[3],

82

[4]])

>>> z=reshape(y,(1,4))

>>> z

array([[1, 2, 3, 4]])

>>> w = reshape(z,(2,2))

array([[1, 2],

[3, 4]])

The crucial implementation detail of reshape is that arrays are stored using row-major notation. Elements

in arrays are counted first across rows and then then down columns. reshape will place elements of the

old array into the same position in the new array and so after calling reshape, x (1) = y (1), x (2) = y (2),
and so on.

size

size returns the total number of elements in an array or matrix. size can be used as a function or an

attribute.

>>> x = randn(4,3)

>>> size(x)

12

>>> x.size

12

ndim

ndim returns the size of all dimensions or an array or matrix as a tuple. ndim can be used as a function or

an attribute .

>>> x = randn(4,3)

>>> ndim(x)

2

>>> x.ndim

2

tile

tile, along with reshape, are two of the most useful non-mathematical functions. tile replicates an array

according to a specified size vector. To understand how tile functions, imagine forming an array com-

posed of blocks. The generic form of tile is tile(X , (M , N)) where X is the array to be replicated, M is

the number of rows in the new block array, and N is the number of columns in the new block array. For

example, suppose X was an array

X =

[
1 2

3 4

]

83

and the block array

Y =

[
X X X

X X X

]
was required. This could be accomplished by manually constructing y using hstack and vstack.

>>> x = array([[1,2],[3,4]])

>>> z = hstack((x,x,x))

>>> y = vstack((z,z))

However, tile provides a much easier method to construct y

>>> w = tile(x,(2,3))

>>> y - w

array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]])

tile has two clear advantages over manual allocation: First, tile can be executed using parameters de-

termined at run-time, such as the number of explanatory variables in a model and second tile can be

used for arbitrary dimensions. Manual array construction becomes tedious and error prone with as few

as 3 rows and columns. repeat is a related function which copies data is a less useful manner.

ravel

ravel returns a flattened view (1-dimensional) of an array or matrix. ravel does not copy the underlying

data (when possible), and so it is very fast.

>>> x = array([[1,2],[3,4]])

>>> x

array([[1, 2],

[3, 4]])

>>> x.ravel()

array([1, 2, 3, 4])

>>> x.T.ravel()

array([1, 3, 2, 4])

flatten

flatten works much like ravel, only that is copies the array when producing the flattened version.

flat

flat produces a numpy.flatiter object (flat iterator) which is an iterator over a flattened view of an array.

Because it is an iterator, it is especially fast and memory friendly. flat can be used as an iterator in a for

loop or with slicing notation.

84

>>> x = array([[1,2],[3,4]])

>>> x.flat

<numpy.flatiter at 0x6f569d0>

>>> x.flat[2]

3

>>> x.flat[1:4] = -1

>>> x

array([[1, -1],

[-1, -1]])

broadcast, broadcast_arrays

broadcast can be used to broadcast two broadcastable arrays without actually copying any data. It returns

a broadcast object, which works like an iterator.

>>> x = array([[1,2,3,4]])

>>> y = reshape(x,(4,1))

>>> b = broadcast(x,y)

>>> b.shape

(4L, 4L)

>>> for u,v in b:

... print(’x: ’, u, ’ y: ’,v)

x: 1 y: 1

x: 2 y: 1

x: 3 y: 1

x: 4 y: 1

x: 1 y: 2

...

broadcast_arrays works similarly to broadcast, except that it copies the broadcast arrays into new arrays.

broadcast_arrays is generally slower than broadcast, and should be avoided if possible.

>>> x = array([[1,2,3,4]])

>>> y = reshape(x,(4,1))

>>> b = broadcast_arrays(x,y)

>>> b[0]

array([[1, 2, 3, 4],

[1, 2, 3, 4],

[1, 2, 3, 4],

[1, 2, 3, 4]])

>>> b[1]

array([[1, 1, 1, 1],

[2, 2, 2, 2],

[3, 3, 3, 3],

[4, 4, 4, 4]])

85

vstack, hstack

vstack, and hstack stack compatible arrays and matrices vertically and horizontally, respectively. Arrays

are vstack compatible if they have the same number of columns, and are hstack compatible if they have

the same number of rows. Any number of arrays can be stacked by placing the input arrays in a list or

tuple, e.g. (x,y,z).

>>> x = reshape(arange(6),(2,3))

>>> y = x

>>> vstack((x,y))

array([[0, 1, 2],

[3, 4, 5],

[0, 1, 2],

[3, 4, 5]])

>>> hstack((x,y))

array([[0, 1, 2, 0, 1, 2],

[3, 4, 5, 3, 4, 5]])

concatenate

concatenate generalizes vstack and hsplit to allow concatenation along any axis using the keyword ar-

gument axis.

split, vsplit, hsplit

vsplit and hsplit split arrays and matrices vertically and horizontally, respectively. Both can be used to

split an array into n equal parts or into arbitrary segments, depending on the second argument. If scalar,

the array is split into n equal sized parts. If a 1 dimensional array, the array is split using the elements of

the array as break points. For example, if the array was [2,5,8], the array would be split into 4 pieces using

[:2] , [2:5], [5:8] and [8:]. Both vsplit and hsplit are special cases of split, which can split along an

arbitrary axis.

>>> x = reshape(arange(20),(4,5))

>>> y = vsplit(x,2)

>>> len(y)

2

>>> y[0]

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

>>> y = hsplit(x,[1,3])

>>> len(y)

3

>>> y[0]

array([[0],

[5],

86

[10],

[15]])

>>> y[1]

array([[1, 2],

[6, 7],

[11, 12],

[16, 17]])

delete

delete removes values from an array, and is similar to splitting an array, and then concatenating the values

which are not deleted. The form of delete is delete(x,rc, axis) where rc are the row or column indices to

delete, and axis is the axis to use (0 or 1 for a 2-dimensional array). If axis is omitted, delete operated on

the flattened array.

>>> x = reshape(arange(20),(4,5))

>>> delete(x,1,0) # Same as x[[0,2,3]]

array([[0, 1, 2, 3, 4],

[10, 11, 12, 13, 14],

[15, 16, 17, 18, 19]])

>>> delete(x,[2,3],1) # Same as x[:,[0,1,4]]

array([[0, 1, 4],

[5, 6, 9],

[10, 11, 14],

[15, 16, 19]])

>>> delete(x,[2,3]) # Same as hstack((x.flat[:2],x.flat[4:]))

array([0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19])

squeeze

squeeze removes singleton dimensions from an array, and can be called as a function or a method.

>>> x = ones((5,1,5,1))

>>> shape(x)

(5L, 1L, 5L, 1L)

>>> y = x.squeeze()

>>> shape(y)

(5L, 5L)

>>> y = squeeze(x)

fliplr, flipud

fliplr and flipud flip arrays in a left-to-right and up-to-down directions, respectively. flipud reverses

the elements in a 1-dimensional array, and flipud(x) is identical to x[::-1]. fliplr cannot be used with

87

1-dimensional arrays.

>>> x = reshape(arange(4),(2,2))

>>> x

array([[0, 1],

[2, 3]])

>>> fliplr(x)

array([[1, 0],

[3, 2]])

>>> flipud(x)

array([[2, 3],

[0, 1]])

diag

The behavior of diag differs depending depending on the form of the input. If the input is a square array, it

will return a column vector containing the elements of the diagonal. If the input is an vector, it will return

an array containing the elements of the vector along its diagonal. Consider the following example:

>>> x = array([[1,2],[3,4]])

>>> x

array([[1, 2],

[3, 4]])

>>> y = diag(x)

>>> y

array([1, 4])

>>> z = diag(y)

>>> z

array([[1, 0],

[0, 4]])

triu, tril

triu and tril produce upper and lower triangular arrays, respectively.

>>> x = array([[1,2],[3,4]])

>>> triu(x)

array([[1, 2],

[0, 4]])

>>> tril(x)

array([[1, 0],

[3, 4]])

88

8.3 Linear Algebra Functions

matrix_power

matrix_power raises a square array or matrix to an integer power, and matrix_power(x,n) is identical to

x**n.

svd

svd computes the singular value decomposition of a matrix X , defined as

X = UΣV

whereΣ is diagonal, and U and V are unitary arrays (orthonormal if real valued). SVDs are closely related

to eigenvalue decompositions when X is a real, positive definite matrix. The returned value is a tuple

containing (U,s,V) where Σ = diag (s).

cond

cond computes the condition number of a matrix, which measures how close to singular a matrix is. Lower

numbers indicate that the input is better conditioned (further from singular).

>>> x = matrix([[1.0,0.5],[.5,1]])

>>> cond(x)

3

>>> x = matrix([[1.0,2.0],[1.0,2.0]]) # Singular

>>> cond(x)

inf

slogdet

slogdet computes the sign and log of the absolute value of the determinant. slogdet is useful for com-

puting determinants which may be very large or small to avoid numerical problems.

solve

solve solves the system X β = y when X is square and invertible so that the solution is exact.

>>> X = array([[1.0,2.0,3.0],[3.0,3.0,4.0],[1.0,1.0,4.0]])

>>> y = array([[1.0],[2.0],[3.0]])

>>> solve(X,y)

array([[0.625],

[-1.125],

[0.875]])

89

lstsq

lstsq solves the system X β = y when X is n by k , n > k by finding the least squares solution. lstsq

returns a 4-element tuple where the first element isβ and the second element is the sum of squared resid-

uals. The final two outputs are diagnostic – the third is the rank of X and the fourth contains the singular

values of X .

>>> X = randn(100,2)

>>> y = randn(100)

>>> lstsq(X,y)

(array([0.03414346, 0.02881763]),

array([3.59331858]),

2,

array([3.045516 , 1.99327863]))array([[0.625],

[-1.125],

[0.875]])

cholesky

cholesky computes the Cholesky factor of a positive definite matrix or array. The Cholesky factor is a lower

triangular matrix and is defined as C in

C C ′ = Σ

where Σ is a positive definite matrix.

>>> x = matrix([[1,.5],[.5,1]])

>>> C = cholesky(x)

>>> C*C.T - x

matrix([[1. , 0.5],

[0.5, 1.]])

det

det computes the determinant of a square matrix or array.

>>> x = matrix([[1,.5],[.5,1]])

>>> det(x)

0.75

eig

eig computes the eigenvalues and eigenvectors of a square matrix. When used with one output, the eigen-

values and eigenvectors are returned as a tuple.

>>> x = matrix([[1,.5],[.5,1]])

>>> val,vec = eig(x)

>>> vec*diag(val)*vec.T

matrix([[1. , 0.5],

[0.5, 1.]])

eigvals can be used if only eigenvalues are needed.

90

eigh

eigh computes the eigenvalues and eigenvectors of a symmetric array. When used with one output, the

eigenvalues and eigenvectors are returned as a tuple. eigh is faster than eig for symmetrix inputs since it

exploits the symmetry of the input. eigvalsh can be used if only eigenvalues are needed from a symmetric

array.

inv

inv computes the inverse of an array. inv(R) can alternatively be computed using x**(-1) when x is a

matrix.

>>> x = array([[1,.5],[.5,1]])

>>> xInv = inv(x)

>>> dot(x,xInv)

array([[1., 0.],

[0., 1.]])

>>> x = asmatrix(x)

>>> x**(-1)*x

matrix([[1., 0.],

[0., 1.]])

kron

kron computes the Kronecker product of two arrays,

z = x ⊗ y

and is written as z = kron(x,y).

trace

trace computes the trace of a square array (sum of diagonal elements). trace(x) equals sum(diag(x)).

matrix_rank

matrix_rank computes the rank of an array using a SVD.

>>> x = array([[1,.5],[1,.5]])

>>> x

array([[1. , 0.5],

[1. , 0.5]])

>>> matrix_rank(x)

1

91

8.4 Exercises

1. Let x = arange(12.0). Use both shape and reshape to produce 1× 12, 2× 6, 3× 4,4× 3, 6× 2 and

2× 2× 3 versions or the array. Finally, return x to its original size.

2. Let x = reshape(arange(12.0),(4,3)). Use ravel, flatten and flat to extract elements 1, 3, . . ., 11

from the array (using a 0 index).

3. Let x be 2 by 2 array, y be a 1 by 1 array, and z be a 3 by 2 array. Construct

w =


x

y y y

y y y

z
z ′

y y y


using hstack, vstack, and tile.

4. Let x = reshape(arange(12.0),(2,2,3)). What does squeeze do to x ?

5. How can a diagonal matrix containing the diagonal elements of

y =

[
2 .5

.5 4

]

be constructed using diag?

6. Using the y array from the previous problem, verify that cholesky work by computing the Cholesky

factor, and then multiplying to get y again.

7. Using the y array from the previous problem, verify that the sum of the eigenvalues is the same as

the trace, and the product of the eigenvalues is the determinant.

8. Using the y array from the previous problem, verify that the inverse of y is equal to V D−1V ′ where

V is the array containing the eigenvectors, and D is a diagonal array containing the eigenvalues.

9. Simulate some data where x = randn(100,2), e = randn(100,1), B = array([[1],[0.5]]) and y =
xβ + ε. Use lstsq to estimate β from x and y .

10. Suppose

y =

 5 −1.5 −3.5

−1.5 2 −0.5

−3.5 −0.5 4


use matrix_rank to determine the rank of this array. Verify the results by inspecting the eigenvalues

using eig and check that the determinant is 0 using det.

11. Let x = randn(100,2). Use kron to compute

I2 ⊗ ΣX

92

where ΣX is the 2 by 2 covariance matrix of x .

93

94

Chapter 9

Importing and Exporting Data

9.1 Importing Data using pandas

Pandas is an increasingly important component of the Python scientific stack, and a complete discussion

of its main features is included in Chapter 17. All of the data readers in pandas load data into a pandas

DataFrame (see Section 17.1.2), and so these examples all make use of the values property to extract a

NumPy array. In practice, the DataFrame is much more useful since it includes useful information such

as column names read from the data source. In addition to the three formats presented here, pandas can

also read json, SQL, html tables or from the clipboard, which is particularly useful for interactive work

since virtually any source that can be copied to the clipboard can be imported.

9.1.1 CSV and other formatted text files

Comma-separated value (CSV) files can be read using read_csv. When the CSV file contains mixed data,

the default behavior will read the file into an array with an object data type, and so further processing is

usually required to extract the individual series.

>>> from pandas import read_csv

>>> csv_data = read_csv(’FTSE_1984_2012.csv’)

>>> csv_data = csv_data.values

>>> csv_data[:4]

array([[’2012-02-15’, 5899.9, 5923.8, 5880.6, 5892.2, 801550000L, 5892.2],

[’2012-02-14’, 5905.7, 5920.6, 5877.2, 5899.9, 832567200L, 5899.9],

[’2012-02-13’, 5852.4, 5920.1, 5852.4, 5905.7, 643543000L, 5905.7],

[’2012-02-10’, 5895.5, 5895.5, 5839.9, 5852.4, 948790200L, 5852.4]], dtype=object)

>>> open = csv_data[:,1]

When the entire file is numeric, the data will be stored as a homogeneous array using one of the numeric

data types, typically float64. In this example, the first column contains Excel dates as numbers, which are

the number of days past January 1, 1900.

>>> csv_data = read_csv(’FTSE_1984_2012_numeric.csv’)

>>> csv_data = csv_data.values

>>> csv_data[:4,:2]

array([[40954. , 5899.9],

[40953. , 5905.7],

95

[40952. , 5852.4],

[40949. , 5895.5]])

9.1.2 Excel files

Excel files, both 97/2003 (xls) and 2007/10/13 (xlsx), can be imported using read_excel. Two inputs are

required to use read_excel, the filename and the sheet name containing the data. In this example, pandas

makes use of the information in the Excel workbook that the first column contains dates and converts

these to datetimes. Like the mixed CSV data, the array returned has object data type.

>>> from pandas import read_excel

>>> excel_data = read_excel(’FTSE_1984_2012.xls’,’FTSE_1984_2012’)

>>> excel_data = excel_data.values

>>> excel_data[:4,:2]

array([[datetime.datetime(2012, 2, 15, 0, 0), 5899.9],

[datetime.datetime(2012, 2, 14, 0, 0), 5905.7],

[datetime.datetime(2012, 2, 13, 0, 0), 5852.4],

[datetime.datetime(2012, 2, 10, 0, 0), 5895.5]], dtype=object)

>>> open = excel_data[:,1]

9.1.3 STATA files

Pandas also contains a method to read STATA files.

>>> from pandas import read_stata

>>> stata_data = read_stata(’FTSE_1984_2012.dta’)

>>> stata_data = stata_data.values

>>> stata_data[:4,:2]

array([[0.00000000e+00, 4.09540000e+04],

[1.00000000e+00, 4.09530000e+04],

[2.00000000e+00, 4.09520000e+04],

[3.00000000e+00, 4.09490000e+04]])

9.2 Importing Data without pandas

Importing data without pandas ranges from easy when files contain only numbers to difficult, depending

on the data size and format. A few principles can simplify this task:

• The file imported should contain numbers only, with the exception of the first row which may con-

tain the variable names.

• Use another program, such as Microsoft Excel, to manipulate data before importing.

• Each column of the spreadsheet should contain a single variable.

• Dates should be converted to YYYYMMDD, a numeric format, before importing. This can be done

in Excel using the formula:

=10000*YEAR(A1)+100*MONTH(A1)+DAY(A1)+(A1-FLOOR(A1,1))

96

• Store times separately from dates using a numeric format such as seconds past midnight or HH-

mmSS.sss.

9.2.1 CSV and other formatted text files

A number of importers are available for regular (e.g. all rows have the same number of columns) comma-

separated value (CSV) data. The choice of which importer to use depends on the complexity and size of the

file. Purely numeric files are the simplest to import, although most files which have a repeated structure

can be directly imported (unless they are very large).

loadtxt

loadtxt is a simple, fast text importer. The basic use is loadtxt(filename), which will attempt to load the

data in file name as floats. Other useful named arguments include delim, which allow the file delimiter to

be specified, and skiprows which allows one or more rows to be skipped.

loadtxt requires the data to be numeric and so is only useful for the simplest files.

>>> data = loadtxt(’FTSE_1984_2012.csv’,delimiter=’,’) # Error

ValueError: could not convert string to float: Date

Fails since CSV has a header

>>> data = loadtxt(’FTSE_1984_2012_numeric.csv’,delimiter=’,’) # Error

ValueError: could not convert string to float: Date

>>> data = loadtxt(’FTSE_1984_2012_numeric.csv’,delimiter=’,’,skiprows=1)

>>> data[0]

array([4.09540000e+04, 5.89990000e+03, 5.92380000e+03, 5.88060000e+03, 5.89220000e+03,

8.01550000e+08, 5.89220000e+03])

genfromtxt

genfromtxt is a slightly slower, more robust importer. genfromtxt is called using the same syntax asloadtxt,

but will not fail if a non-numeric type is encountered. Instead, genfromtxt will return a NaN (not-a-

number) for fields in the file it cannot read.

>>> data = genfromtxt(’FTSE_1984_2012.csv’,delimiter=’,’)

>>> data[0]

array([nan, nan, nan, nan, nan, nan, nan])

>>> data[1]

array([nan, 5.89990000e+03, 5.92380000e+03, 5.88060000e+03, 5.89220000e+03, 8.01550000e+08,

5.89220000e+03])

Tab delimited data can be read in a similar manner using delimiter=’\t’.

>>> data = genfromtxt(’FTSE_1984_2012_numeric_tab.txt’,delimiter=’\t’)

97

csv2rec

csv2rec is an even more robust – and slower – CSV importer which imports non-numeric data such as

dates. It attempts to find the best data type for each column. Note that when pandas is available, read_csv

is a better option than csv2rec.

>>> data = csv2rec(’FTSE_1984_2012.csv’,delimiter=’,’)

>>> data[0]

(datetime.date(2012, 2, 15), 5899.9, 5923.8, 5880.6, 5892.2, 801550000L, 5892.2)

Unlike loadtxt and genfromtxt, which both return an array, csv2rec returns a record array (see Chap-

ter 16) which is, in many ways, like a list. csv2rec converted each row of the input file into a datetime

(see Chapter 14), followed by 4 floats for open, high, low and close, then a long integer for volume, and

finally a float for the adjusted close. When the data contain non-numeric values, returned array is not

homogeneous, and so it is necessary to create an array to store the numeric content of the imported data.

>>> open = data[’open’]

>>> open

array([5899.9, 5905.7, 5852.4, ..., 1095.4, 1095.4, 1108.1])

9.2.2 Excel Files

xlrd

Reading Excel files in Python is more involved, and it is simpler to convert the xls to CSV. Excel files can be

read using xlrd (which is part of xlutils).

from __future__ import print_function

import xlrd

wb = xlrd.open_workbook(’FTSE_1984_2012.xls’)

To read xlsx change the filename

wb = xlrd.open_workbook(’FTSE_1984_2012.xlsx’)

sheetNames = wb.sheet_names()

Assumes 1 sheet name

sheet = wb.sheet_by_name(sheetNames[0])

excelData = [] # List to hold data

for i in xrange(sheet.nrows):

excelData.append(sheet.row_values(i))

Subtract 1 since excelData has the header row

open = empty(len(excelData) - 1)

for i in xrange(len(excelData) - 1):

open[i] = excelData[i+1][1]

The listing does a few things. First, it opens the workbook for reading (open_workbook(’FTSE_1984_2012.xls’)),

then it gets the sheet names (wb.sheet_names()) and opens a sheet (wb.sheet_by_name(sheetNames[0])).

From the sheet, it gets the number of rows (sheet.nrows), and fills a list with the values, row-by-row. Once

the data has been read-in, the final block fills an array with the opening prices. This is substantially more

complicated than importing from a CSV file, although reading Excel files is useful for automated work (e.g.

you have no choice but to import from an Excel file since it is produced by some other software).

98

openpyxl

openpyxl reads and write the modern Excel file format that is the default in Office 2007 or later. openpyxl

also supports a reader and writer which is optimized for large files, a feature not available in xlrd. Unfor-

tunately, openpyxl uses a different syntax from xlrd, and so some modifications are required when using

openpyxl.

from __future__ import print_function

import openpyxl

wb = openpyxl.load_workbook(’FTSE_1984_2012.xlsx’)

sheetNames = wb.get_sheet_names()

Assumes 1 sheet name

sheet = wb.get_sheet_by_name(sheetNames[0])

rows = sheet.rows

Subtract 1 since excelData has the header row

open = empty(len(rows) - 1)

for i in xrange(len(excelData) - 1):

open[i] = rows[i+1][1].value

The strategy with 2007/10/13 xlsx files is essentially the same as with 97/2003 files. The main difference is

that the command sheet.rows() returns a tuple containing the all of the rows in the selected sheet. Each

row is itself a tuple which contains Cells (which are a type created by openpyxl), and each cell has a value

(Cells also have other useful attributes such as data_type and methods such as is_date()) .

Using the optimized reader is similar. The primary differences are:

• The workbook must be opened using the keyword argument use_iterators = True

• The rows are sequentially accessible using iter_rows().

• value is not available, and so internal_value must be used.

• The number of rows is not known, and so it isn’t possible to pre-allocate the storage variable with

the correct number of rows.

from __future__ import print_function

import openpyxl

wb = openpyxl.load_workbook(’FTSE_1984_2012.xlsx’, use_iterators = True)

sheetNames = wb.get_sheet_names()

Assumes 1 sheet name

sheet = wb.get_sheet_by_name(sheetNames[0])

Use list to store data

open = []

Changes since access is via memory efficient iterator

Note () on iter_rows

for row in sheet.iter_rows():

Must use internal_value

99

open.append(row[1].internal_value)

Burn first row and convert to array

open = array(open[1:])

9.2.3 MATLAB Data Files (.mat)

SciPy enables MATLAB data files (mat files) to be read excluding except the latest V7.3 format, which can

be read using PyTables or h5py. Data from compatible mat files can be loaded using loadmat. The data is

loaded into a dictionary, and individual variables are accessed using the keys of the dictionary.

>>> import scipy.io as sio

>>> matData = sio.loadmat(’FTSE_1984_2012.mat’)

>>> type(matData)

dict

>>> matData.keys()

[’volume’,

’__header__’,

’__globals__’,

’high’,

’adjclose’,

’low’,

’close’,

’__version__’,

’open’]

>>> open = matData[’open’]

MATLAB data files in the newest V7.3 format can be easily read using PyTables.

>>> import tables

>>> matfile = tables.openFile(’FTSE_1984_2012_v73.mat’)

>>> matfile.root

/ (RootGroup) ’’

children := [’volume’ (CArray), ’high’ (CArray), ’adjclose’ (CArray), ’low’ (CArray), ’

close’ (CArray), ’open’ (CArray)]

>>> matfile.root.open

/open (CArray(1, 7042), zlib(3)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (1, 7042)

>>> open = matfile.root.open.read()

open = matfile.root.open.read()

>>> matfile.close() # Close the file

100

9.2.4 Reading Complex Files

Python can be programmed to read any text file format since it contains functions for directly accessing

files and parsing strings. Reading poorly formatted data files is an advanced technique and should be

avoided if possible. However, some data is only available in formats where reading in data line-by-line is

the only option. For example, the standard import methods fail if the raw data is very large (too large for

Excel) and is poorly formatted. In this case, the only possibility may be to write a program to read the file

line-by-line (or in blocks) and to directly process the raw text.

The file IBM_TAQ.txt contains a simple example of data that is difficult to import. This file was down-

loaded from Wharton Research Data Services and contains all prices for IBM from the TAQ database be-

tween January 1, 2001 and January 31, 2001. It is too large to use in Excel and has both numbers, dates

and text on each line. The following code block shows one method for importing this data set.

import io

from numpy import array

f = io.open(’IBM_TAQ.txt’, ’r’)

line = f.readline()

Burn the first list as a header

line = f.readline()

date = []

time = []

price = []

volume = []

while line:

data = line.split(’,’)

date.append(int(data[1]))

price.append(float(data[3]))

volume.append(int(data[4]))

t = data[2]

time.append(int(t.replace(’:’,’’)))

line = f.readline()

Convert to arrays, which are more useful than lists

for numeric data

date = array(date)

price = array(price)

volume = array(volume)

time = array(time)

allData = array([date,price,volume,time])

f.close()

This block of code does a few thing:

• Open the file directly using file

• Reads the file line by line using readline

101

• Initializes lists for all of the data

• Rereads the file parsing each line by the location of the commas using split(’,’) to split the line at

each comma into a list

• Uses replace(’:’,’’) to remove colons from the times

• Uses int() and float() to convert strings to numbers

• Closes the file directly using close()

9.3 Saving or Exporting Data using pandas

Pandas supports writing to CSV, general delimited text files, Excel files, json, html tables, HDF5 and STATA.

An understanding of the pandas’ DataFrame is required prior to using pandas file writing facilities, and

Chapter 17 provides further information.

9.4 Saving or Exporting Data without pandas

Native NumPy Format

A number of options are available for saving data. These include using native npz data files, MATLAB data

files, CSV or plain text. Multiple numpy arrays can be saved usingsavez_compressed (numpy.savez_compressed).

x = arange(10)

y = zeros((100,100))

savez_compressed(’test’,x,y)

data = load(’test.npz’)

If no name is given, arrays are generic names arr_1, arr_2, etc

x = data[’arr_1’]

savez_compressed(’test’,x=x,otherData=y)

data = load(’test.npz’)

x=x provides the name x for the data in x

x = data[’x’]

otherDate = y saves the data in y as otherData

y = data[’otherData’]

A version which does not compress data but is otherwise identical is savez. Compression is usually a good

idea and is very helpful for storing arrays which have repeated values and are large.

9.4.1 Writing MATLAB Data Files (.mat)

SciPy enables MATLAB data files to be written. Data can be written using savemat, which takes two inputs,

a file name and a dictionary containing data, in its simplest form.

from __future__ import print_function

import scipy.io as sio

102

x = array([1.0,2.0,3.0])

y = zeros((10,10))

Set up the dictionary

saveData = {’x’:x, ’y’:y}

sio.savemat(’test’,saveData,do_compression=True)

Read the data back in

matData = sio.loadmat(’test.mat’)

savemat uses the optional argument do_compression = True, which compresses the data, and is generally

a good idea on modern computers and/or for large datasets.

9.4.2 Exporting Data to Text Files

Data can be exported to a tab-delimited text files using savetxt. By default, savetxt produces tab delim-

ited files, although then can be changed using the names argument delimiter.

x = randn(10,10)

Save using tabs

savetxt(’tabs.txt’,x)

Save to CSV

savetxt(’commas.csv’,x,delimiter=’,’)

Reread the data

xData = loadtxt(’commas.csv’,delimiter=’,’)

9.5 Exercises

Note: There are no exercises using pandas in this chapter. For exercises using pandas to read or write data,

see Chapter 17.

1. The file exercise3.xls contains three columns of data, the date, the return on the S&P 500, and the

return on XOM (ExxonMobil). Using Excel, convert the date to YYYYMMDD format and save the

file.

2. Save the file as both CSV and tab delimited. Use the three text readers to read the file, and compare

the arrays returned.

3. Parse loaded data into three variables, dates, SP500 and XOM.

4. Save NumPy, compressed NumPy and MATLAB data files with all three variables. Which files is the

smallest?

5. Construct a new variable, sumreturns as the sum of SP500 and XOM. Create another new variable,

outputdata as a horizontal concatenation of dates and sumreturns.

6. Export the variable outputdata to a new CSV file using savetxt.

7. (Difficult) Read in exercise3.xls directly using xlrd.

8. (Difficult) Save exercise3.xls as exercise3.xlsx and read in directly using openpyxl.

103

104

Chapter 10

Inf, NaN and Numeric Limits

10.1 inf and NaN

inf represents infinity and inf is distinct from -inf. inf can be constructed in a number for ways, for

example or exp(710). nan stands for Not a Number, and nans are created whenever a function produces

a result that cannot be clearly evaluated to produce a number or infinity. For example, inf/inf results in

nan. nans often cause problems since most mathematical operations involving a nan produce a nan.

>>> x = nan

>>> 1.0 + x

nan

>>> 1.0 * x

nan

>>> 0.0 * x

nan

>>> mean(x)

nan

10.2 Floating point precision

All numeric software has limited precision; Python is no different. The easiest to understand the upper

and lower limits, which are 1.7976×10308 (see finfo(float).max) and−1.7976×10308 (finfo(float).min).

Numbers larger (in absolute value) than these are inf. The smallest positive number that can be expressed

is 2.2250× 10−308 (see finfo(float).tiny). Numbers between−2.2251× 10−308 and 2.2251× 10−308 are

numerically 0.

However, the hardest concept to understand about numerical accuracy is the limited relative preci-

sion which is 2.2204× 10−16 on most x86 and x86_64 systems. This value is returned from the command

finfo(float).eps and may vary based on the type of CPU and/or the operating system used. Numbers

which differ by less than 2.2204×10−16 are numerically the same. To explore the role of precision, examine

the results of the following:

>>> x = 1.0

105

>>> eps = finfo(float).eps

>>> x = x+eps/2

>>> x == 1

True

>>> x-1

0.0

>>> x = 1 + 2*eps

>>> x == 1

False

>>> x-1

ans = 4.4408920985006262e-16

Moreover, any number y where y <
(

x × 2.2204× 10−16
)

is treated as 0 when added or subtracted.

This is referred to as relative range.

>>> x=10

>>> x+2*eps

>>> x-10

0

>>> (x-10) == 0

True

>>> (1e120 - 1e103) == 1e120

True

>>> 1e103 / 1e120

1e-17

In the first example, eps/2<epswhen compared to 1 so it has no effect while 2*eps>epsand so this value

is different from 1. In the second example, 2*eps/10<eps, it has no effect when added. The final example

subtracts 10103 from 10120 and shows that this is numerically the same as 10120 – again, this occurs since

10103/10120 = 10−17 <eps. While numeric limits is a tricky concept to understand, failure to understand

these limits can results in errors in code that appears to be otherwise correct. The practical usefulness of

limited precision is to consider data scaling since many variables have natural scales which are differ by

many orders of magnitude.

10.3 Exercises

Let eps = finfo(float).eps in the following exercises.

1. What is the value of log(exp(1000)) both analytically and in Python? Why do these differ?

2. Is eps/10 different from 0? If x = 1 + eps/10 - 1, is x different from 0?

3. Is 1-eps/10-1 difference from 0? What about 1-1-eps/10?

4. Is .1 different from .1+eps/10?

106

5. Is x = 10.0**120 (1× 10120) different from y = 10.0**120 + 10.0**102? (Hint: Test with x == y)

6. Why is x = 10**120 (1× 10120) different from y = 10**120 + 10**102?

7. Suppose x = 2.0. How many times (n) can x = 1.0 + (x-1.0)/2.0 be run before x==1 shows True?

What is the value of 2.0**(-n). Is this value surprising?

107

108

Chapter 11

Logical Operators and Find

Logical operators are useful when writing batch files or custom functions. Logical operators, when com-

bined with flow control, allow for complex choices to be compactly expressed.

11.1 >, >=, <, <=, ==, !=

The core logical operators are

Symbol Function Definition

> greater Greater than

>= greater_equal Greater than or equal to

< less Less than

<= less_equal Less than or equal to

== equal Equal to

!= not_equal Not equal to

Logical operators can be used on scalars, arrays or matrices. All comparisons are done element-by-

element and return either True or False. For example, suppose x and y are arrays which are broadcastable.

z= x < y will be an array of the same size as broadcast(x,y).shape composed of True and False. Alter-

natively, if one is scalar, say y, then the elements of z are z[i,j] = x[i,j] < y. For instance, suppose

z = xLy where L is one of the logical operators above such as < or ==. The following table examines the

behavior when x and/or y are scalars or arrays. Suppose z = x < y:

y

Scalar Array

Scalar Any Any

x z = x < y zi j = x < yi j

Array Any Broadcastable

zi j = xi j < y zi j = x̃i j < ỹi j

where x̃ and ỹ are the post-broadcasting versions of x and y . Logical operators are frequently used in por-

tions of programs known as flow control (e.g. if ... else ... blocks) which are be discussed in Chapter

13. It is important to remember that array logical operations return arrays and that flow control blocks

require scalar logical expressions.

109

>>> x = array([[1,2],[-3,-4]])

>>> x > 0

array([[True, True],

[False, False]], dtype=bool)

>>> x == -3

array([[False, False],

[True, False]], dtype=bool)

>>> y = array([1,-1])

>>> x < y # y broadcast to be (2,2)

array([[False, False],

[True, True]], dtype=bool)

>>> z = array([[1,1],[-1,-1]]) # Same as broadcast y

>>> x < z

array([[False, False],

[True, True]], dtype=bool)

11.2 and, or, not and xor

Logical expressions can be combined using four logical devices,

Keyword (Scalar) Function Bitwise True if . . .

and logical_and & Both True

or logical_or Either or Both True

not logical_not ~ Not True

logical_xor ^ One True and One False

There are three versions of all operators except XOR. The keyword version (e.g. and) can only be used

with scalars and so it not useful when working with NumPy. Both the function and bitwise operators

can be used with NumPy arrays, although care is requires when using the bitwise operators. Bitwise op-

erators have high priority – higher than logical comparisons – and so parentheses are requires around

comparisons. For example, (x>1) & (x<5) is a valid statement, while x>1 & x<5, which is evaluated as

(x>(1 & x))<5, produces an error.

>>> x = arange(-2.0,4)

>>> y = x >= 0

>>> z = x < 2

>>> logical_and(y, z)

array([False, False, True, True, False, False], dtype=bool)

>>> y & z

array([False, False, True, True, False, False], dtype=bool)

>>> (x > 0) & (x < 2)

array([False, False, True, True, False, False], dtype=bool)

110

>>> x > 0 & x < 4 # Error

TypeError: ufunc ’bitwise_and’ not supported for the input types, and the inputs could not

be safely coerced to any supported types according to the casting rule ’’safe’’

>>> ~(y & z) # Not

array([True, True, False, False, True, True], dtype=bool)

These operators follow the same rules as most mathematical operators on arrays, and so require the broad-

castable input arrays.

11.3 Multiple tests

all and any

The commands all and any take logical input and are self-descriptive. all returns True if all logical ele-

ments in an array are 1. If all is called without any additional arguments on an array, it returns True if all

elements of the array are logical true and 0 otherwise. any returns logical(True) if any element of an array

is True. Both all and any can be also be used along a specific dimension using a second argument or the

keyword argument axis to indicate the axis of operation (0 is column-wise and 1 is row-wise). When used

column- or row-wise, the output is an array with one less dimension than the input, where each element

of the output contains the truth value of the operation on a column or row.

>>> x = array([[1,2][3,4]])

>>> y = x <= 2

>>> y

array([[True, True],

[False, False]], dtype=bool)

>>> any(y)

True

>>> any(y,0)

array([[True, True]], dtype=bool)

>>> any(y,1)

array([[True],

[False]], dtype=bool)

allclose

allclose can be used to compare two arrays for near equality. This type of function is important when

comparing floating point values which may be effectively the same although not identical.

>>> eps = np.finfo(np.float64).eps

>>> eps

2.2204460492503131e-16

>>> x = randn(2)

>>> y = x + eps

111

>>> x == y

array([False, False], dtype=bool)

>>> allclose(x,y)

True

The tolerance for being close can be set using keyword arguments either relatively (rtol) or absolutely

(atol).

array_equal

array_equal tests if two arrays have the same shape and elements. It is safer than comparing arrays di-

rectly since comparing arrays which are not broadcastable produces an error.

array_equiv

array_equiv tests if two arrays are equivalent, even if they do not have the exact same shape. Equivalence

is defined as one array being broadcastable to produce the other.

>>> x = randn(10,1)

>>> y = tile(x,2)

>>> array_equal(x,y)

False

>>> array_equiv(x,y)

True

11.4 is*

A number of special purpose logical tests are provided to determine if an array has special characteristics.

Some operate element-by-element and produce an array of the same dimension as the input while other

produce only scalars. These functions all begin with is.

Operator True if . . . Method of operation

isnan 1 if nan element-by-element

isinf 1 if inf element-by-element

isfinite 1 if not inf and not nan element-by-element

isposfin,isnegfin 1 for positive or negative inf element-by-element

isreal 1 if not complex valued element-by-element

iscomplex 1 if complex valued element-by-element

isreal 1 if real valued element-by-element

is_string_like 1 if argument is a string scalar

is_numlike 1 if is a numeric type scalar

isscalar 1 if scalar scalar

isvector 1 if input is a vector scalar

112

x=array([4,pi,inf,inf/inf])

isnan(x)

array([[False, False, False, True]], dtype=bool)

isinf(x)

array([[False, False, True, False]], dtype=bool)

isfinite(x)

array([[True, True, False, False]], dtype=bool)

isnan(x) isinf(x) isfinite(x) always equals True for elements of a numeric array, implying any ele-

ment falls into one (and only one) of these categories.

11.5 Exercises

1. Using the data file created in Chapter 9, count the number of negative returns in both the S&P 500

and ExxonMobil.

2. For both series, create an indicator variable that takes the value 1 if the return is larger than 2 stan-

dard deviations or smaller than -2 standard deviations. What is the average return conditional on

falling each range for both returns.

3. Construct an indicator variable that takes the value of 1 when both returns are negative. Compute

the correlation of the returns conditional on this indicator variable. How does this compare to the

correlation of all returns?

4. What is the correlation when at least 1 of the returns is negative?

5. What is the relationship between all and any. Write down a logical expression that allows one or

the other to be avoided (i.e. write def myany(x) and def myall(y)).

113

114

Chapter 12

Advanced Selection and Assignment

Elements from NumPy arrays can be selected using four methods: scalar selection, slicing, numerical (or

list-of-locations) indexing and logical (or Boolean) indexing. Chapter 4 described scalar selection and slic-

ing, which are the basic methods to access elements in an array. Numerical indexing and logical indexing

are closely related and allow for more flexible selection. Numerical indexing uses lists or arrays of locations

to select elements while logical indexing uses arrays containing Boolean values to select elements.

12.1 Numerical Indexing

Numerical indexing, also called list-of-location indexing, is an alternative to slice notation. The funda-

mental idea underlying numerical indexing is to use coordinates to select elements, which is similar to

the underlying idea behind slicing. Numerical indexing differs from standard slicing in three important

ways:

• Arrays created using numerical indexing are copies of the underlying data, while slices are views

(and so do not copy the data). This means that while changing elements in a slice also changes

elements in the slice’s parent, changing elements in an array constructed using numerical indexing

does not. This also can create performance concerns and slicing should generally be used whenever

it is capable of selecting the required elements.

• Numerical indices can contain repeated values and are not required to be monotonic, allowing for

more flexible selection. The sequences produced using slice notation are always monotonic with

unique values.

• The shape of the array selected is determined by the shape of the numerical indices. Slices are sim-

ilar to 1-dimensional arrays but the shape of the slice is determined by the slice inputs.

Numerical indexing in 1-dimensional arrays uses the numerical index values as locations in the array (0-

based indexing) and returns an array with the same dimensions as the numerical index. To understand the

core concept behind numerical indexing, consider the case of selecting 4 elements form a 1-dimensional

array with locations i1, . . ., i4. Numerical indexing uses the four indices and arranges them to determine

the shape (and order) of the output. For example, if the order was[
i3 i2

i4 i1

]

115

then the array selected would be 2 by 2 with elements[
xi3 xi2

xi4 xi1

]
.

Numerical indexing allows for arbitrary shapes and repetition, and so the selection matrix i3 i2 i3 i2

i4 i1 i3 i2

i4 i1 i4 i1


could be used to produce a 4 by 2 array containing the corresponding elements of x . In these examples

the indices are not used in any particular order and are repeated to highlight the flexibility of numerical

indexing.

Note that the numerical index can be either a list or a NumPy array and must contain integer data.

>>> x = 10 * arange(5.0)

>>> x[[0]] # List with 1 element

array([0.])

>>> x[[0,2,1]] # List

array([0., 20., 10.])

>>> sel = array([4,2,3,1,4,4]) # Array with repetition

>>> x[sel]

array([40., 20., 30., 10., 40., 40.])

>>> sel = array([[4,2],[3,1]]) # 2 by 2 array

>>> x[sel] # Selection has same size as sel

array([[40., 20.],

[30., 10.]])

>>> sel = array([0.0,1]) # Floating point data

>>> x[sel] # Error

IndexError: arrays used as indices must be of integer (or boolean) type

>>> x[sel.astype(int)] # No error

array([10., 20.])

>>> x[0] # Scalar selection, not numerical indexing

1.0

These examples show that the numerical indices determine the element location and the shape of the

numerical index array determines the shape of the output. The final three examples show slightly different

behavior. The first two of these demonstrate that only integer arrays can be used in numerical indexing,

while the final example shows that there is a subtle difference between x[[0]] (or x[array([0])]), which is

using numerical indexing and x[0] which is using a scalar selector. x[[0]] returns a 1-dimensional array

since the list has 1 dimension while x[0] returns a non-array (or scalar or 0-dimensional array) since the

input is not a list or array.

116

Numerical indexing in 2- or higher-dimensional arrays uses numerical index arrays for each dimen-

sion. The fundamental idea behind numerical indexing in 2-dimensional arrays is to format coordinate

pairs of the form (ik , jk) into separate arrays. The size of the arrays will determine the shape of the array

selected. For example, if the two selection arrays were

[i1, i3, i2, i4] and [j1, j3, j2, j4]

then a 1-dimensional array would be selected containing the elements

[x (ii , ji) , x (i3, j3) , x (i2, j2) , x (i4, j4)] .

In practice multidimensional indexing is more flexible that this simple example since the arrays used as

selectors can have either the same shape or can be broadcastable (see Section 5.2).

Consider the following four examples.

>>> x = reshape(arange(10.0), (2,5))

>>> x

array([[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])

>>> sel = array([0,1])

>>> x[sel,sel] # 1-dim arrays, no broadcasting

array([0., 6.])

>>> x[sel, sel+1]

array([1., 7.])

>>> sel_row = array([[0,0],[1,1]])

>>> sel_col = array([[0,1],[0,1]])

>>> x[sel_row,sel_col] # 2 by 2, no broadcasting

array([[0., 1.],

[5., 6.]])

>>> sel_row = array([[0],[1]])

>>> sel_col = array([[0,1]])

>>> x[sel_row,sel_col] # 2 by 1 and 1 by 2 - difference shapes, broadcasted as 2 by 2

array([[0., 1.],

[5., 6.]])

In the first example, sel is a 1-dimensional array containing [0,1], and so the returned value is also a

1-dimensional array containing the (0, 0) and (1, 1) elements of x. Numerical indexing uses the array in

the first position to determine row locations and the array in the second position to determine column

locations. The first element of the row selection is paired with the first element of column selection (as is

the second element). This is why x[sel,sel+1] selects the elements in the (0, 1) and (1, 2) positions (1 and

7, respectively). The third example uses 2-dimensional arrays and selects the elements (0, 0), (0, 1), (1, 0)
and (1, 1). The final example also uses 2-dimensional arrays but with different sizes – 2 by 1 and 1 by 2 –

which are broadcastable to a common shape of 2 by 2 arrays.

Next, consider what happens when non-broadcastable arrays are used in as numerical indexing.

117

>>> sel_row = array([0,1]) # 1-dimensional with shape (2,)

>>> sel_col = array([1,2,3]) # 1-dimensional with shape (3,)

>>> x[sel_row,sel_col] # Error

ValueError: shape mismatch: objects cannot be broadcast to a single shape

An error occurs since these two 1-dimensional arrays are not broadcastable. ix_ can be used to easily se-

lect rows and columns using numerical indexing by translating the 1-dimesnional arrays to be the correct

size for broadcasting.

>>> x[ix_([0,1],[1,2,3])]

array([[2., 3., 4.],

[7., 8., 9.]])

12.1.1 Mixing Numerical Indexing with Scalar Selection

NumPy permits using difference types of indexing in the same expression. Mixing numerical indexing

with scalar selection is trivial since any scalar can be broadcast to any array shape.

>>> sel=array([[1],[2]]) # 2 by 1

>>> x[0,sel] # Row 0, elements sel

array([[1.],

[2.]])

>>> sel_row = array([[0],[0]])

>>> x[sel_row,sel] # Identical

array([[1.],

[2.]])

12.1.2 Mixing Numerical Indexing with Slicing

Mixing numerical indexing and slicing allow for entire rows or columns to be selected.

>>> x[:,[1]]

array([[2.],

[7.]])

>>> x[[1],:]

array([[6., 7., 8., 9., 10.]])

Note that the mixed numerical indexing and slicing uses a list ([1]) so that it is not a scalar. This is impor-

tant since using a scalar will result in dimension reduction.

>>> x[:,1] # 1-dimensional

array([2., 7.])

Numerical indexing and slicing can be mixed in more than 2-dimensions, although some care is required.

In the simplest case where only one numerical index is used which is 1-dimensional, then the selection is

equivalent to calling ix_ where the slice a:b:s is replaced with arange(a,b,s).

>>> x = reshape(arange(3**3), (3,3,3)) # 3-d array

>>> sel1 = x[::2,[1,0],:1]

>>> sel2 = x[ix_(arange(0,3,2),[1,0],arange(0,1))]

118

>>> sel1.shape

(2L, 2L, 1L)

>>> sel2.shape

(2L, 2L, 1L)

>>> amax(abs(sel1-sel2))

0

When more than 1 numerical index is used, the selection can be viewed as a 2-step process.

1. Select using only slice notation where the dimensions using numerical indexing use the slice :.

2. Apply the numerical indexing to the array produced in step 1.

>>> sel1 = x[[0,0],[1,0],:1]

>>> step1 = x[:,:,:1]

>>> step2 = x[[0,0],[1,0],:]

>>> step2.shape

(2L, 1L)

>>> amax(abs(sel1-step2))

0

In the previous example, the shape of the output was (2L, 1L) which may seem surprising since the

numerical indices where both 1-dimensional arrays with 2 elements. The “extra” dimension comes from

the slice notation which always preserves its dimension. In the next example, the output is 3-dimensional

since the numerical indices are 1-dimensional and the 2 slices preserve their dimension.

>>> x = reshape(arange(4**4), (4,4,4,4))

>>> sel = x[[0,1],[0,1],:2,:2] # 1-dimensional numerical and 2 slices

>>> sel.shape

(2L, 2L, 2L)

It is possible to mix multidimensional numerical indexing with slicing and multidimensional arrays. This

type of selection is not explicitly covered since describing the output is complicated and this type of se-

lection is rarely encountered.

12.1.3 Linear Numerical Indexing using flat

Like slicing, numerical indexing can be combined with flat to select elements from an array using the

row-major ordering of the array. The behavior of numerical indexing with flat is identical to that of using

numerical indexing on a flattened version of the underlying array.

>>> x.flat[[3,4,9]]

array([4., 5., 10.])

>>> x.flat[[[3,4,9],[1,5,3]]]

array([[4., 5., 10.],

[2., 6., 4.]])

119

12.1.4 Mixing Numerical Indexing with Slicing and Scalar Selection

Mixing the three is identical to using numerical indexing and slicing since the scalar selection is always

broadcast to be compatible with the numerical indices.

12.2 Logical Indexing

Logical indexing differs from slicing and numeric indexing by using logical indices to select elements, rows

or columns. Logical indices act as light switches and are either “on” (True) or “off” (False). Pure logical

indexing uses a logical indexing array with the same size as the array being used for selection and always

returns a 1-dimensional array.

>>> x = arange(-3,3)

>>> x < 0

array([True, True, True, False, False, False], dtype=bool)

>>> x[x < 0]

array([-3, -2, -1])

>>> x[abs(x) >= 2]

array([-3, -2, 2])

>>> x = reshape(arange(-8, 8), (4,4))

>>> x[x < 0]

array([-8, -7, -6, -5, -4, -3, -2, -1])

It is tempting to use two 1-dimensional logical arrays to act as row and column masks on a 2-dimensional

array. This does not work, and it is necessary to use ix_ if interested in this type of indexing.

>>> x = reshape(arange(-8,8),(4,4))

>>> cols = any(x < -6, 0)

>>> rows = any(x < 0, 1)

>>> cols

array([True, True, False, False], dtype=bool

>>> rows

array([True, True, False, False], dtype=bool)

>>> x[cols,rows] # Not upper 2 by 2

array([-8, -3])

>>> x[ix_(cols,rows)] # Upper 2 by 2

array([[-8, -7],

[-4, -3]])

The difference between the final 2 commands is due to how logical indexing operates when more than

logical array is used. When using 2 or more logical indices, they are first transformed to numerical in-

dices using nonzero which returns the locations of the non-zero elements (which correspond to the True

elements of a Boolean array).

>>> cols.nonzero()

120

(array([0, 1], dtype=int64),)

>>> rows.nonzero()

(array([0, 1], dtype=int64),)

The corresponding numerical index arrays have compatible sizes – both are 2-element, 1-dimensional

arrays – and so numeric selection is possible. Attempting to use two logical index arrays which have

non-broadcastable dimensions produces the same error as using two numerical index arrays with non-

broadcastable sizes.

>>> cols = any(x < -6, 0)

>>> rows = any(x < 4, 1)

>>> rows

array([True, True, True, False], dtype=bool)

>>> x[cols,rows] # Error

ValueError: shape mismatch: objects cannot be broadcast to a single shape

12.2.1 Mixing Logical Indexing with Scalar Selection

Logical indexing can be combined with scalar selection to select elements from a specific row or column

in a 2-dimensional array. Combining these two types of indexing is no different from first applying the

scalar selection to the array and then applying the logical indexing.

>>> x = reshape(arange(-8,8), (4,4))

>>> x

array([[-8, -7, -6, -5],

[-4, -3, -2, -1],

[0, 1, 2, 3],

[4, 5, 6, 7]])

>>> sum(x, 0)

array([-8, -4, 0, 4])

>>> sum(x, 0) >= 0

array([False, False, True, True], dtype=bool)

>>> x[0,sum(x, 0) >= 0]

array([-6, -5])

12.2.2 Mixing Logical Indexing with Slicing

Logical indexing can be freely mixed with slices by using 1-dimensional logical index arrays which act as

selectors for columns or rows.

>>> sel = sum(x < -1, 0) >= 2

>>> sel

array([True, True, True, False], dtype=bool)

>>> x[:,sel] # All rows, sel selects columns

121

array([[-8, -7, -6],

[-4, -3, -2],

[0, 1, 2],

[4, 5, 6]])

>>> x[1:3,sel] # Rows 1 and 2, sel selects columns

array([[-4, -3, -2],

[0, 1, 2]])

>>> x[sel,2:] # sel selects rows, columns 2 and 3

array([[-6, -5],

[-2, -1],

[2, 3]])

12.2.3 Mixing Logical Indexing with Numerical Indexing

Mixing numerical indexing and logical indexing behaves identically to numerically indexing where the

logical index is converted to a numerical index using nonzero. It must be the case that the array returned

by nonzero and the numerical index arrays are broadcastable.

>>> sel = array([True,True,False,False])

>>> sel.nonzero()

(array([0, 1], dtype=int64),)

>>> x[[2,3],sel] # Elements (2,0) and (3,1)

array([0, 5])

>>> x[[2,3],[0,1]] # Identical

array([0, 5])

12.2.4 Logical Indexing Functions

nonzero and flatnonzero

nonzero is an useful function for working with multiple data series. nonzero takes logical inputs and re-

turns a tuple containing the indices where the logical statement is true. This tuple is suitable for indexing

so that the corresponding elements can be accessed using x[indices].

>>> x = array([[1,2],[3,4]])

>>> sel = x <= 3

>>> indices = nonzero(sel)

>>> indices

(array([0, 0, 1], dtype=int64), array([0, 1, 0], dtype=int64))

>>> x[indices]

array([[1, 2, 3]])

flatnonzero is similar to nonzero except that the indices returned are for the flattened version of the input.

>>> flatnonzero(sel)

array([0, 1, 2], dtype=int64)

122

>>> x.flat[flatnonzero(sel)]

array([1, 2, 3])

argwhere

argwhere returns an array containing the locations of elements where a logical condition is True. It is the

same as transpose(nonzero(x))

>>> x = randn(3)

>>> x

array([-0.5910316 , 0.51475905, 0.68231135])

>>> argwhere(x<0.6)

array([[0],

[1]], dtype=int64)

>>> argwhere(x<-10.0) # Empty array

array([], shape=(0L, 1L), dtype=int64)

>>> x = randn(3,2)

>>> x

array([[0.72945913, 1.2135989],

[0.74005449, -1.60231553],

[0.16862077, 1.0589899]])

>>> argwhere(x<0)

array([[1, 1]], dtype=int64)

>>> argwhere(x<1)

array([[0, 0],

[1, 0],

[1, 1],

[2, 0]], dtype=int64)

extract

extract is similar to argwhere except that it returns the values where the condition is true rather than the

indices.

>>> x = randn(3)

>>> x

array([-0.5910316 , 0.51475905, 0.68231135])

>>> extract(x<0, x)

array([-0.5910316])

>>> extract(x<-10.0, x) # Empty array

array([], dtype=float64)

123

>>> x = randn(3,2)

>>> x

array([[0.72945913, 1.2135989],

[0.74005449, -1.60231553],

[0.16862077, 1.0589899]])

>>> extract(x>0,x)

array([0.72945913, 1.2135989 , 0.74005449, 0.16862077, 1.0589899])

12.3 Performance Considerations and Memory Management

Arrays constructed using any numerical indexing and/or logical indexing are always copies of the under-

lying array. This is different from the behavior of slicing and scalar selection which returns a view, not a

copy, of an array. This is easily verified by selecting the same elements using different types of selectors.

>>> x = reshape(arange(9), (3,3))

>>> s_slice = x[:1,:] # Pure slice

>>> s_scalar = x[0] # Scalar selection

>>> s_numeric = x[[0],:] # Numeric indexing

>>> s_logical = x[array([True,False,False]),:] # Logical indexing

>>> s_logical[0,0] = -40

>>> s_numeric[0,0] = -30

>>> s_numeric # -30

array([[-10, 1, 2]])

>>> s_logical # -40, not -30

array([[-40, 1, 2]])

>>> s_scalar[0] = -10

>>> s_scalar

array([-10, 1, 2])

>>> x # Has a -10

array([[-10, 1, 2],

[3, 4, 5],

[6, 7, 8]])

>>> s_slice # Has a -10

array([[-10, 1, 2]])

Since both numerical and logical indexing produce copies, some care is needed when using these selectors

on large arrays.

12.4 Assignment with Broadcasting

Any of the selection methods can be used for assignment. When the shape of the array to be assigned is

the same as the selection, the assignment simply replaces elements using an element-by-element corre-

spondence.

124

>>> x = arange(-2,2.0)

>>> x

array([-2., -1., 0., 1.])

>>> x[0] = 999 # Scalar

>>> x

array([999., -1., 0., 1.])

>>> x[:2] = array([99.0,99]) # Slice

>>> x

array([99., 99., 0., 1.])

>>> x[[0,1,2]] = array([-3.14,-3.14,-3.14]) # Numerical indexing

>>> x

array([-3.14, -3.14, -3.14, 1.])

>>> x[x<0] = zeros(3) # Logical indexing

array([0., 0., 0., 1.])

Assignment is not limited to arrays with exact shape matches, and any assignment where two conditions

are met is allowed:

• Each dimension of the array to be assigned is either 1 or matches the selection.

• The array to be assigned and the selection are broadcastable.

These two conditions ensure that the array to be assigned can be broadcast up to the shape of the selection

– it is not sufficient that the selection and the array to be assigned are simply broadcastable. The simplest

form of broadcasting assigns a scalar to a selection, and since a scalar can always be broadcast to any

shape this is always possible.

>>> x = arange(-2,2.0)

>>> x[:2] = 99.0

>>> x

array([99., 99., 0., 1.])

>>> x = log(x-2.0)

>>> x

array([4.57471098, 4.57471098, nan, nan])

>>> x[isnan(x)] = 0 # Logical indexing

>>> x

array([4.57471098, 4.57471098, 0. , 0.])

>>> x.shape = (2,2)

>>> x[:,:] = 3.14 # Could also use x[:]

>>> x

array([[3.14, 3.14],

[3.14, 3.14]])

While broadcasting a scalar is the most frequently encountered case, there are useful applications of vector

(or 1-dimensional array) to 2-dimensional array assignment. For example, it may be necessary to replace

all rows in an array where some criteria is met in the row.

125

>>> x = reshape(arange(-10,10.0),(4,5))

array([[-10., -9., -8., -7., -6.],

[-5., -4., -3., -2., -1.],

[0., 1., 2., 3., 4.],

[5., 6., 7., 8., 9.]])

>>> x[sum(x,1)<0,:] = arange(5.0) # Replace rows w/ negative sum

>>> x = reshape(arange(-10,10.0),(4,5))

>>> x[:,sum(x,1)<0] = arange(4.0) # Error

ValueError: array is not broadcastable to correct shape

>>> x[:,sum(x,1)<0] = reshape(arange(4.0),(4,1)) # Correct col replacement

array([[0., 0., -8., -7., -6.],

[1., 1., -3., -2., -1.],

[2., 2., 2., 3., 4.],

[3., 3., 7., 8., 9.]])

The error in the previous example occurs because the slice selects a 4 by 2 array, but the array to be assigned

is 1-dimensional with 4 elements. The rules of broadcasting always prepend 1s when determining whether

two arrays are broadcastable, and so the 1-dimensional array is considered to be a 1 by 4 array, which is

not broadcastable to a 4 by 2 array. Using an explicitly 2-dimensional array with shape 4 by 1 allows for

broadcasting.

12.5 Exercises

Let x=arange(10.0), y=reshape(arange(25.0),(5,5)) and z=reshape(arange(64.0),(4,4,4)) in all exer-

cises.

1. List all methods to select 4.0 from x.

2. List all methods to select the first 5 elements of x.

3. List all methods to select every second element of x.

4. List all methods to select the row 2 from y.

5. List all methods to select the rows 2 and 4 from y.

6. List all methods to select the rows 2 and 4 and columns 2, 3 and 4 from y.

7. Select all rows of y which have at least one number divisible by 5 and at least one divisible by 7.

8. List all the methods to select panel 1 from z.

9. List all the methods to select rows 2 and 3 from all panels of z.

10. Assign 0 to every second element of z. List the alternative methods.

11. Assign [−1,−1,−1,−1] to all rows of z which have at least one number divisible by 4 and one divis-

ible by 6. For example, the row containing [16, 17, 18, 19] satisfies this criteria.

126

12. (Difficult) Define sel = array([[0,1],[1,0]]), What shape does y[sel,:] have? Can this be ex-

plained?

127

128

Chapter 13

Flow Control, Loops and Exception Handling

The previous chapter explored one use of logical variables, selecting elements from an array. Flow control

also utilizes logical variables to allow different code to be executed depending on whether certain condi-

tions are met. Flow control in Python comes in two forms - conditional statement and loops.

13.1 Whitespace and Flow Control

Python uses white space changes to indicate the start and end of flow control blocks, and so indention

matters. For example, when using if . . . elif . . . else blocks, all of the control blocks must have the same

indentation level and all of the statements inside the control blocks should have the same level of indenta-

tion. Returning to the previous indentation level instructs Python that the block is complete. Best practice

is to only use spaces (and not tabs), and to use 4 spaces when starting a indented level, which is a good

balance between readability and wasted space.

13.2 if . . . elif . . . else

if . . . elif . . . else blocks always begin with an if statement immediately followed by a scalar logical

expression. elif and else are optional and can always be replicated using nested if statements at the

expense of more complex logic and deeper nesting. The generic form of an if . . . elif . . . else block is

if logical_1:

Code to run if logical_1

elif logical_2:

Code to run if logical_2 and not logical_1

elif logical_3:

Code to run if logical_3 and not logical_1 or logical_2

...

...

else:

Code to run if all previous logicals are false

However, simpler forms are more common,

if logical:

Code to run if logical true

129

or

if logical:

Code to run if logical true

else:

Code to run if logical false

Important: Remember that all logicals should be scalar logical values. While it is possible to use arrays

containing a single element, attempting to use an array with more than 1 element results in an error.

A few simple examples

>>> x = 5

>>> if x<5:

... x += 1

... else:

... x -= 1

>>> x

4

and

>>> x = 5;

>>> if x<5:

... x = x + 1

... elif x>5:

... x = x - 1

... else:

... x = x * 2

>>> x

10

These examples have all used simple logical expressions. However, any scalar logical expressions, such

as (y<0 or y>1), (x<0 or x>1) and (y<0 or y>1) or isinf(x) or isnan(x), can be used in if . . . elif . . .

else blocks.

13.3 for

for loops begin with for item in iterable:, and the generic structure of a for loop is

for item in iterable:

Code to run

item is an element from iterable, and iterable can be anything that is iterable in Python. The most common

examples are xrange or range, lists, tuples, arrays or matrices. The for loop will iterate across all items in

iterable, beginning with item 0 and continuing until the final item. When using multidimensional arrays,

only the outside dimension is directly iterable. For example, if x is a 2-dimensional array, then the iterable

elements are x[0], x[1] and so on.

count = 0

for i in xrange(100):

130

count += i

count = 0

x = linspace(0,500,50)

for i in x:

count += i

count = 0

x = list(arange(-20,21))

for i in x:

count += i

The first loop will iterate over i = 0, 1, 2,. . . , 99. The second loops over the values produced by the

function linspace, which returns an array with 50 uniformly spaced points between 0 and 500, inclusive.

The final loops over x, a vector constructed from a call to list(arange(-20,21)), which produces a list

containing the series−20,−19,. . . , 0, . . .19,20. All three – range, arrays, and lists – are iterable. The key to

understanding for loop behavior is that for always iterates over the elements of the iterable in the order

they are presented (i.e. iterable[0], iterable[1], . . .).

Python 2.7 vs. 3 Note: This chapter exclusively uses xrange in loops rather than range.

xrange is the preferred iterator in Python 2.7 since it avoids large memory allocations. range

has replaced xrange in Python 3.

Loops can also be nested

count = 0

for i in xrange(10):

for j in xrange(10):

count += j

or can contain flow control variables

returns = randn(100)

count = 0

for ret in returns:

if ret<0:

count += 1

This for expression can be equivalently expressed using xrange as the iterator and len to get the number

of items in the iterable.

returns = randn(100)

count = 0

for i in xrange(len(returns)):

if returns[i]<0:

count += 1

Finally, these ideas can be combined to produce nested loops with flow control.

x = zeros((10,10))

for i in xrange(size(x,0)):

131

for j in xrange(size(x,1)):

if i<j:

x[i,j]=i+j;

else:

x[i,j]=i-j

or loops containing nested loops that are executed based on a flow control statement.

x = zeros((10,10))

for i in xrange(size(x,0)):

if (i % 2) == 1:

for j in xrange(size(x,1)):

x[i,j] = i+j

else:

for j in xrange(int(i/2)):

x[i,j] = i-j

Important: The iterable variable should not be reassigned once inside the loop. Consider, for example,

x = range(10)

for i in x:

print(i)

print(’Length of x:’, len(x))

x = range(5)

This produces the output

Output

0

Length of x: 10

1

Length of x: 5

2

Length of x: 5

3

...

8

Length of x: 5

9

Length of x: 5

It is not safe to modify the sequence of the iterable when looping over it. The means that the iterable

should not change size, which can occur when using a list and the functions pop(), insert() or append()

or the keyword del. The loop below would never terminate (except for the if statement that breaks the

loop) since L is being extended each iteration.

L = [1, 2]

for i in L:

print(i)

L.append(i+2)

if i>5:

break

132

Finally, for loops can be used with 2 items when the iterable is wrapped in enumerate, which allows the

elements of the iterable to be directly accessed, as well as their index in the iterable.

x = linspace(0,100,11)

for i,y in enumerate(x):

print(’i is :’, i)

print(’y is :’, y)

13.3.1 Whitespace

Like if . . . elif . . . else flow control blocks, for loops are whitespace sensitive. The indentation of the line

immediately below the for statement determines the indentation that all statements in the block must

have.

13.3.2 break

A loop can be terminated early using break. break is usually used after an if statement to terminate the

loop prematurely if some condition has been met.

x = randn(1000)

for i in x:

print(i)

if i > 2:

break

Since for loops iterate over an iterable with a fixed size, break is generally more useful in while loops.

13.3.3 continue

continue can be used to skip an iteration of a loop, immediately returning to the top of the loop using the

next item in iterable. continue is commonly used to avoid a level of nesting, such as in the following two

examples.

x = randn(10)

for i in x:

if i < 0:

print(i)

for i in x:

if i >= 0:

continue

print(i)

Avoiding excessive levels of indentation is essential in Python programming – 4 is usually considered the

maximum reasonable level. continue is particularly useful since it can be used to in a for loop to avoid

one level of indentation.

13.4 while

while loops are useful when the number of iterations needed depends on the outcome of the loop con-

tents. while loops are commonly used when a loop should only stop if a certain condition is met, such as

133

when the change in some parameter is small. The generic structure of a while loop is

while logical:

Code to run

Update logical

Two things are crucial when using a while loop: first, the logical expression should evaluate to true

when the loop begins (or the loop will be ignored) and second, the inputs to the logical expression must

be updated inside the loop. If they are not, the loop will continue indefinitely (hit CTRL+C to break an

interminable loop in IPython). The simplest while loops are (wordy) drop-in replacements for for loops:

count = 0

i = 1

while i<10:

count += i

i += 1

which produces the same results as

count=0;

for i in xrange(0,10):

count += i

while loops should generally be avoided when for loops are sufficient. However, there are situations where

no for loop equivalent exists.

randn generates a standard normal random number

mu = abs(100*randn(1))

index = 1

while abs(mu) > .0001:

mu = (mu+randn(1))/index

index=index+1

In the block above, the number of iterations required is not known in advance and since randn is a standard

normal pseudo-random number, it may take many iterations until this criteria is met. Any finite for loop

cannot be guaranteed to meet the criteria.

13.4.1 break

break can be used in a while loop to immediately terminate execution. Normally, break should not be

used in a while loop – instead the logical condition should be set to False to terminate the loop. However,

break can be used to avoid running code below the break statement even if the logical condition is False.

condition = True

i = 0

x = randn(1000000)

while condition:

if x[i] > 3.0:

break # No printing if x[i] > 3

print(x[i])

i += 1

It is better to update the logical statement which determines whether the while loop should execute.

134

i = 0

while x[i] <= 3:

print(x[i])

i += 1

13.4.2 continue

continue can be used in a while loop to skip any remaining code in the loop, immediately returning to the

top of the loop, which then checks the while condition, and executes the loop if it still true. Using continue

when the logical condition in the while loop is False is the same as using break.

13.5 try . . . except

Exception handling is an advanced programming technique which can be used to make code more re-

silient (often at the cost of speed). try . . . except blocks are useful for running code which may fail for

reasons outside of the programmer’s control. In most numerical applications, code should be determin-

istic and so dangerous code can usually be avoided. When it can’t, for example, if reading data from a data

source which isn’t always available (e.g. a website), then try . . . except can be used to attempt to execute

the code, and then to do something if the code fails to execute. The generic structure of a try . . . except

block is

try:

Dangerous Code

except ExceptionType1:

Code to run if ExceptionType1 is raised

except ExceptionType2:

Code to run if ExceptionType1 is raised

...

...

except:

Code to run if an unlisted exception type is raised

A simple example of exception handling occurs when attempting to convert text to numbers.

text = (’a’,’1’,’54.1’,’43.a’)

for t in text:

try:

temp = float(t)

print(temp)

except ValueError:

print(’Not convertable to a float’)

13.6 List Comprehensions

List comprehensions are an optimized method of building a list which may simplify code when an iterable

object is looped across and the results are saved to a list, possibly conditional on some logical test. Simple

list can be used to convert a for loop which includes an append into a single line statement.

135

>>> x = arange(5.0)

>>> y = []

>>> for i in xrange(len(x)):

... y.append(exp(x[i]))

>>> y

[1.0,

2.7182818284590451,

7.3890560989306504,

20.085536923187668,

54.598150033144236]

>>> z = [exp(x[i]) for i in xrange(len(x))]

>>> z

[1.0,

2.7182818284590451,

7.3890560989306504,

20.085536923187668,

54.598150033144236]

This simple list comprehension saves 2 lines of typing. List comprehensions can also be extended to in-

clude a logical test.

>>> x = arange(5.0)

>>> y = []

>>> for i in xrange(len(x)):

... if floor(i/2)==i/2:

... y.append(x[i]**2)

>>> y

[0.0, 4.0, 16.0]

>>> z = [x[i]**2 for i in xrange(len(x)) if floor(i/2)==i/2]

>>> z

[0.0, 4.0, 16.0]

List comprehensions can also be used to loop over multiple iterable inputs.

>>> x1 = arange(5.0)

>>> x2 = arange(3.0)

>>> y = []

>>> for i in xrange(len(x1)):

... for j in xrange(len(x2)):

... y.append(x1[i]*x2[j])

>>> y

[0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 2.0, 4.0, 0.0, 3.0, 6.0, 0.0, 4.0, 8.0]

>>> z = [x1[i]*x2[j] for i in xrange(len(x1)) for j in xrange(len(x2))]

[0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0, 2.0, 4.0, 0.0, 3.0, 6.0, 0.0, 4.0, 8.0]

>>> # Only when i==j

>>> z = [x1[i]*x2[j] for i in xrange(len(x1)) for j in xrange(len(x2)) if i==j]

[0.0, 1.0, 4.0]

136

While list comprehensions are powerful methods to compactly express complex operations, they are never

essential to Python programming.

13.7 Tuple, Dictionary and Set Comprehensions

The other mutable Python structures, the dictionary and the set, support construction using comprehen-

sion, as does the immutable type tuple. Set and dictionary comprehensions use {} while tuple compre-

hensions require an explicit call to tuple since () has another meaning.

>>> x = arange(-5.0,5.0)

>>> z_set = {x[i]**2.0 for i in xrange(len(x))}

>>> z_set

{0.0, 1.0, 4.0, 9.0, 16.0, 25.0}

>>> z_dict = {i:exp(i) for i in x}

{-5.0: 0.006737946999085467,

-4.0: 0.018315638888734179,

-3.0: 0.049787068367863944,

-2.0: 0.1353352832366127,

-1.0: 0.36787944117144233,

...

>>> z_tuple = tuple(i**3 for i in x)

(-125.0, -64.0, -27.0, -8.0, -1.0, 0.0, 1.0, 8.0, 27.0, 64.0)

13.8 Exercises

1. Write a code block that would take a different path depending on whether the returns on two series

are simultaneously positive, both are negative, or they have different signs using an if . . . elif . . .

else block.

2. Simulate 1000 observations from an ARMA(2,2) where εt are independent standard normal innova-

tions. The process of an ARMA(2,2) is given by

yt = φ1 yt−1 + φ2 yt−2 + θ1εt−1 + θ2εt−2 + εt

Use the values φ1 = 1.4, φ2 = −.8, θ1 = .4 and θ2 = .8. Note: A T vector containing standard

normal random variables can be simulated using e = randn(T). When simulating a process, always

simulate more data than needed and throw away the first block of observations to avoid start-up

biases. This process is fairly persistent, at least 100 extra observations should be computed.

3. Simulate a GARCH(1,1) process whereεt are independent standard normal innovations. A GARCH(1,1)

process is given by

yt = σt εt

σ2
t = ω + αy 2

t−1 + βσ
2
t−1

137

Use the valuesω = 0.05, α = 0.05 and β = 0.9, and set h0 = ω/ (1− α− β).

4. Simulate a GJR-GARCH(1,1,1) process where εt are independent standard normal innovations. A

GJR-GARCH(1,1) process is given by

yt = σt εt

σ2
t = ω + αy 2

t−1 + γy 2
t−1I[yt−1<0] + βσ2

t−1

Use the values ω = 0.05, α = 0.02 γ = 0.07 and β = 0.9 and set h0 = ω/
(

1− α− 1
2γ− β

)
. Note

that some form of logical expression is needed in the loop. I[εt−1<0] is an indicator variable that takes

the value 1 if the expression inside the [] is true.

5. Simulate a ARMA(1,1)-GJR-GARCH(1,1)-in-mean process,

yt = φ1 yt−1 + θ1σt−1εt−1 + λσ2
t + σt εt

σ2
t = ω + ασ

2
t−1ε

2
t−1 + γσ

2
t−1ε

2
t−1I[εt−1<0] + βσ2

t−1

Use the values from Exercise 4 for the GJR-GARCH model and use the φ1 = −0.1, θ1 = 0.4 and

λ = 0.03.

6. Find two different methods to use a for loop to fill a 5× 5 array with i × j where i is the row index,

and j is the column index. One will use xrange as the iterable, and the other should directly iterate

on the rows, and then the columns of the matrix.

7. Using a while loop, write a bit of code that will do a bisection search to invert a normal CDF. A

bisection search cuts the interval in half repeatedly, only keeping the sub interval with the target

in it. Hint: keep track of the upper and lower bounds of the random variable value and use flow

control. This problem requires stats.norm.cdf.

8. Test out the loop using by finding the inverse CDF of 0.01, 0.5 and 0.975. Verify it is working by taking

the absolute value of the difference between the final value and the value produced bystats.norm.ppf.

9. Write a list comprehension that will iterate over a 1-dimensional array and extract the negative ele-

ments to a list. How can this be done using only logical functions (no explicit loop), without the list

comprehension (and returning an array)?

138

Chapter 14

Dates and Times

Date and time manipulation is provided by a built-in Python module datetime. This chapter assumes that

datetime has been imported using import datetime as dt.

14.1 Creating Dates and Times

Dates are created using date by providing integer values for year, month and day and times are created

using time using hours, minutes, seconds and microseconds.

>>> import datetime as dt

>>> yr, mo, dd = 2012, 12, 21

>>> dt.date(yr, mo, dd)

datetime.date(2012, 12, 21)

>>> hr, mm, ss, ms= 12, 21, 12, 21

>>> dt.time(hr, mm, ss, ms)

dt.time(12,21,12,21)

Dates created using date do not allow times, and dates which require a time stamp can be created using

datetime, which combine the inputs from date and time, in the same order.

>>> dt.datetime(yr, mo, dd, hr, mm, ss, ms)

datetime.datetime(2012, 12, 21, 12, 21, 12, 21)

14.2 Dates Mathematics

Date-times and dates (but not times, and only within the same type) can be subtracted to produce a

timedelta, which consists of three values, days, seconds and microseconds. Time deltas can also be added

to dates and times compute different dates – although date types will ignore any information in the time

delta hour or millisecond fields.

>>> d1 = dt.datetime(yr, mo, dd, hr, mm, ss, ms)

>>> d2 = dt.datetime(yr + 1, mo, dd, hr, mm, ss, ms)

>>> d2-d1

datetime.timedelta(365)

139

Date Unit Common Name Range Time Unit Common Name Range

Y Year ±9.2× 1018 years h Hour ±1.0× 1015 years
M Month ±7.6× 1017 years m Minute ±1.7× 1013 years
W Week ±1.7× 1017 years s Second ±2.9× 1012 years
D Day ±2.5× 1016 years ms Millisecond ±2.9× 109 years

us Microsecond ±2.9× 106 years
ns Nanosecond ±292 years
ps Picosecond ±106 days
fs Femtosecond ±2.6 hours
as Attosecond ±9.2 seconds

Table 14.1: NumPy datetime64 range. The absolute range is January 1, 1970 plus the range.

>>> d2 + dt.timedelta(30,0,0)

datetime.datetime(2014, 1, 20, 12, 21, 12, 20)

>>> dt.date(2012,12,21) + dt.timedelta(30,12,0)

datetime.date(2013, 1, 20)

If times stamps are important, date types can be promoted to datetime using combine and a time.

>>> d3 = dt.date(2012,12,21)

>>> dt.datetime.combine(d3, dt.time(0))

datetime.datetime(2012, 12, 21, 0, 0)

Values in dates, times and datetimes can be modified using replace through keyword arguments.

>>> d3 = dt.datetime(2012,12,21,12,21,12,21)

>>> d3.replace(month=11,day=10,hour=9,minute=8,second=7,microsecond=6)

datetime.datetime(2012, 11, 10, 9, 8, 7, 6)

14.3 Numpy datetime64

Version 1.7.0 of NumPy introduces a NumPy native datetime type known as datetime64 (to distinguish it

from the usual datetime type). The NumPy datetime type is considered experimental and is not fully sup-

ported in the scientific python stack at the time of writing these notes. This said, it is already widely used

and should see complete support in the near future. Additionally, the native NumPy data type is generally

better suited to data storage and analysis and extends the Python datetime with additional features such

as business day functionality.

NumPy contains both datetime (datetime64) and timedelta (timedelta64) objects. These differ from

the standard Python datetime since they always store the datetime or timedelta using a 64-bit integer plus

a date or time unit. The choice of the date/time unit affects both the resolution of the datetime as well

as the permissible range. The unit directly determines the resolution - using a date unit of a day (’D’)

limits to resolution to days. Using a date unit of a week (’W’) will allow a minimum of 1 week difference.

Similarly, using a time unit of a second (’s’) will allow resolution up to the second (but not millisecond).

The set of date and time units, and their range are presented in Table 14.1.

NumPy datetimes can be initialized using either human readable strings or using numeric values. The

string initialization is simple and datetimes can be initialized using year only, year and month, the com-

plete date or the complete date including a time (and optional timezone). The default time resolution is

nanoseconds (10−9) and T is used to separate the time from the date.

140

>>> datetime64(’2013’)

numpy.datetime64(’2013’)

>>> datetime64(’2013-09’)

numpy.datetime64(’2013-09’)

>>> datetime64(’2013-09-01’)

numpy.datetime64(’2013-09-01’)

>>> datetime64(’2013-09-01T12:00’) # Time

numpy.datetime64(’2013-09-01T12:00+0100’)

>>> datetime64(’2013-09-01T12:00:01’) # Seconds

numpy.datetime64(’2013-09-01T12:00:01+0100’)

>>> datetime64(’2013-09-01T12:00:01.123456789’) # Nanoseconds

numpy.datetime64(’2013-09-01T12:00:01.123456789+0100’)

Date or time units can be explicitly included as the second input. The final example shows that rounding

can occur if the date input is not exactly representable using the date unit chosen.

>>> datetime64(’2013-01-01T00’,’h’)

numpy.datetime64(’2013-01-01T00:00+0000’,’h’)

>>> datetime64(’2013-01-01T00’,’s’)

numpy.datetime64(’2013-01-01T00:00:00+0000’)

>>> datetime64(’2013-01-01T00’,’ms’)

numpy.datetime64(’2013-01-01T00:00:00.000+0000’)

>>> datetime64(’2013-01-01’,’W’)

numpy.datetime64(’2012-12-27’)

NumPy datetimes can also be initialized from arrays.

>>> dates = array([’2013-09-01’,’2013-09-02’],dtype=’datetime64’)

>>> dates

array([’2013-09-01’, ’2013-09-02’], dtype=’datetime64[D]’)

>>> dates[0]

numpy.datetime64(’2013-09-01’)

The NumPy datetime type also supports including timezone information, and when no timezone is

provided the local timezone is used (currently BST on this computer, which is GMT+0100). These two

commands show a time in US/Central (using -0600) and in GMT (using Z for Zulu). Note that the returned

time is always displayed in the local time zone and so the time stamp is changed. Warning: datetime64

that have times always include a timezone – this may be problematic in some situations.

>>> datetime64(’2013-09-01T12:00:00-0600’)

numpy.datetime64(’2013-09-01T19:00:00+0100’)

>>> datetime64(’2013-09-01T19:00:00Z’)

141

numpy.datetime64(’2013-09-01T20:00:00+0100’)

Dates which are initialized using one of the shorter forms are initialized at the earliest date (and time) in

the period.

>>> datetime64(’2013’)==datetime64(’2013-01-01’)

True

>>> datetime64(’2013-09’)==datetime64(’2013-09-01’)

True

However, dates which contain time information are not always equal to dates which have no time infor-

mation. This occurs since time information forces a timezone onto the datetime while the pure date has

no timezone information.

>>> datetime64(’2013-09-01’)==datetime64(’2013-09-01T00:00:00’)

False

>>> datetime64(’2013-09-01’)==datetime64(’2013-09-01T00:00:00Z’)

True

>>> datetime64(’2013-09-01T00:00:00’) # Time is 00:00:00+0100

numpy.datetime64(’2013-09-01T00:00:00+0100’)

>>> datetime64(’2013-09-01T00:00:00Z’) # Time is 01:00:00+0100

numpy.datetime64(’2013-09-01T01:00:00+0100’)

A corresponding timedelta class, similarly named timedelta64, is created when dates are differenced.

The second example shows why the previous equality test returned False – the dates differ by 1 hour due

to the timezone difference.

>>> datetime64(’2013-09-02’) - datetime64(’2013-09-01’)

numpy.timedelta64(1,’D’)

>>> datetime64(’2013-09-01’) - datetime64(’2013-09-01T00:00:00’)

numpy.timedelta64(3600,’s’)

timedelta64 types contain two pieces of information, a number indicating the number of steps between

the two dates and the size of the step.

142

Chapter 15

Graphics

Matplotlib is a complete plotting library capable of high-quality graphics. Matplotlib contains both high

level functions which produce specific types of figures, for example a simple line plot or a bar chart, as

well as a low level API for creating highly customized charts. This chapter covers the basics of producing

plots and only scratches the surface of the capabilities of matplotlib. Further information is available on

the matplotlib website or in books dedicated to producing print quality graphics using matplotlib.

15.1 2D Plotting

Throughout this chapter, the following modules have been imported.

>>> import matplotlib.pyplot as plt

>>> import scipy.stats as stats

Other modules will be included only when needed for a specific graphic.

15.1.1 Line Plots

The most basic, and often most useful 2D graphic is a line plot. Basic line plots are produced using plot

using a single input containing a 1-dimensional array.

>>> y = randn(100)

>>> plot(y)

The output of this command is presented in panel (a) of figure 15.1. A more flexible form adds a format

string which has 1 to 3 elements: a color, represented using a letter (e.g. g for green), a marker symbol

which is either a letter of a symbol (e.g. s for square, ^ for triangle up), and a line style, which is always a

symbol or series of symbols. In the next example, ’g--’ indicates green (g) and dashed line (–).

>>> plot(y,’g--’)

Format strings may contain any of the elements in the next table.

143

http://matplotlib.org/

Color Marker Line Style

Blue b Point . Solid -

Green g Pixel , Dashed --

Red r Circle o Dash-dot -.

Cyan c Square s Dotted :

Magenta m Diamond D

Yellow y Thin diamond d

Black k Cross x

White w Plus +

Star *

Hexagon H

Alt. Hexagon h

Pentagon p

Triangles ^, v, <, >

Vertical Line

Horizontal Line _

The default behavior is to use a blue solid line with no marker (unless there is more than one line, in

which case the colors will alter, in order, through those in the Colors column, skipping white). The format

string contains 1 or more or the three categories of formatting information. For example, kx-- would

produce a black dashed line with crosses marking the points, *: would produce a dotted line with the

default color using stars to mark points and yH would produce a solid yellow line with a hexagon marker.

When plot is called with one array, the default x-axis values 1,2, . . . are used. plot(x,y) can be used

to plot specific x values against y values. Panel (c) shows the results of running the following code.

>>> x = cumsum(rand(100))

>>> plot(x,y,’r-’)

While format strings are useful for quickly adding meaningful colors or line styles to a plot, they only

expose a limited range of the available customizations. The next example shows how keyword arguments

are used to add customizations to a plot. Panel (d) contains the plot produced by the following code.

>>> plot(x,y,alpha = 0.5, color = ’#FF7F00’, \

... label = ’Line Label’, linestyle = ’-.’, \

... linewidth = 3, marker = ’o’, markeredgecolor = ’#000000’, \

... markeredgewidth = 2, markerfacecolor = ’#FF7F00’, \

... markersize=30)

Note that in the previous example, \ is used to indicate to the Python interpreter that a statement is span-

ning multiple lines. Some of the more useful keyword arguments are listed in the table below.

144

Keyword Description

alpha Alpha (transparency) of the plot – default is 1 (no transparency)

color Color description for the line.1

label Label for the line – used when creating legends

linestyle A line style symbol

linewidth A positive integer indicating the width of the line

marker A marker shape symbol or character

markeredgecolor Color of the edge (a line) around the marker

markeredgewidth Width of the edge (a line) around the marker

markerfacecolor Face color of the marker

markersize A positive integer indicating the size of the marker

Many more keyword arguments are available for a plot. The full list can be found in the docstring or

by running the following code. The functions getp and setp can be used to get the list of properties for a

line (or any matplotlib object), and setp can also be used to set a particular property.

>>> h = plot(randn(10))

>>> getp(h)

agg_filter = None

alpha = None

animated = False

...

>>> setp(h, ’alpha’)

alpha: float (0.0 transparent through 1.0 opaque)

>>> setp(h, ’color’)

color: any matplotlib color

>>> setp(h, ’linestyle’)

linestyle: [‘‘’-’‘‘ | ‘‘’--’‘‘ | ‘‘’-.’‘‘ | ‘‘’:’‘‘ | ‘‘’None’‘‘ | ‘‘’ ’‘‘ | ‘‘’’‘‘]

and any drawstyle in combination with a linestyle, e.g. ‘‘’steps--’‘‘.

>>> setp(h, ’linestyle’, ’--’) # Change the line style

Note that setp(h,prop) returns a description of the property and setp(h,prop,value) sets prop to value.

15.1.2 Scatter Plots

scatter produces a scatter plot between 2 1-dimensional arrays. All examples use a set of simulated nor-

mal data with unit variance and correlation of 50%. The output of the basic scatter command is presented

in figure 15.2, panel (a).

>>> z = randn(100,2)

>>> z[:,1] = 0.5*z[:,0] + sqrt(0.5)*z[:,1]

>>> x=z[:,0]

>>> y=z[:,1]

>>> scatter(x,y)

145

(a) (b)

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(c) (d)

0 10 20 30 40 50 60
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Figure 15.1: Line plots produced using plot.

146

(a) (b) (c)

3 2 1 0 1 2 3 4
2

1

0

1

2

3

3 2 1 0 1 2 3 4
2

1

0

1

2

3

3 2 1 0 1 2 3 4
2

1

0

1

2

3

Figure 15.2: Scatter plots produced using scatter.

Scatter plots can also be modified using keyword arguments. The most important are included in the next

example, and have identical meaning to those used in the line plot examples. The effect of these keyword

arguments is shown in panel (b).

>>> scatter(x,y, s = 60, c = ’#FF7F00’, marker=’s’, \

... alpha = .5, label = ’Scatter Data’)

One interesting use of scatter is to add a 3rd dimension to the plot by including an array of size data

which uses the shapes to convey an extra dimension of data. The use of variable size data is illustrated in

the code below, which produced the scatter plot in panel (c).

>>> size_data = exp(exp(exp(rand(100))))

>>> size_data = 200 * s/amax(size_data)

>>> size_data[size_data<1]=1.0

>>> scatter(x,y, s = size_data, c = ’#FF7F00’, marker=’s’, \

... label = ’Scatter Data’)

15.1.3 Bar Charts

bar produces bar charts using two 1-dimensional arrays . The first specifies the left ledge of the bars and

the second the bar heights. The next code segment produced the bar chart in panel (a) of figure 15.3.

>>> y = rand(5)

>>> x = arange(5)

>>> bar(x,y)

Bar charts take keyword arguments to alter colors and bar width. Panel (b) contains the output of the

following code.

>>> bar(x,y, width = 0.5, color = ’#FF7F00’, \

... edgecolor = ’#000000’, linewidth = 5)

Finally, barh can be used instead of bar to produce a horizontal bar chart. The next code snippet produces

the horizontal bar chart in panel (c), and demonstrates the use of a list of colors to alter the appearance

of the chart.

>>> colors = [’#FF0000’,’#FFFF00’,’#00FF00’,’#00FFFF’,’#0000FF’]

>>> barh(x, y, height = 0.5, color = colors, \

... edgecolor = ’#000000’, linewidth = 5)

147

(a) (b) (c)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 15.3: Bar charts produced using bar and barh.

(a) (b)

One

26

Two

22

Three

19

Four

18
Five

15

Figure 15.4: Pie charts produced using pie.

15.1.4 Pie Charts

pie produces pie charts using a 1-dimensional array of data (the data can have any values, and does not

need to sum to 1). The basic use of pie is illustrated below, and the figure produced appears in panel (a)

of figure 15.4.

>>> y = rand(5)

>>> y = y/sum(y)

>>> y[y<.05] = .05

>>> pie(y)

Pie charts can be modified using a large number of keyword arguments, including labels and custom

colors. Exploded views of a pie chart can be produced by providing a vector of distances to the keyword

argument explode. Note that autopct = ’%2.0f’ is using an old style format string to format the numeric

labels. The results of running this code is shown in panel (b).

>>> explode = array([.2,0,0,0,0])

>>> colors = [’#FF0000’,’#FFFF00’,’#00FF00’,’#00FFFF’,’#0000FF’]

>>> labels = [’One’,’Two’,’Three’,’Four’,’Five’]

>>> pie(y, explode = explode, colors = colors, \

... labels = labels, autopct = ’%2.0f’, shadow = True)

148

(a) (b)

3 2 1 0 1 2 3 4
0

20

40

60

80

100

3 2 1 0 1 2 3 4
0

200

400

600

800

1000

Figure 15.5: Histograms produced using hist.

15.1.5 Histograms

Histograms can be produced using hist. A basic histogram produced using the code below is presented

in Figure 15.5, panel (a). This example sets the number of bins used in producing the histogram using the

keyword argument bins.

>>> x = randn(1000)

>>> hist(x, bins = 30)

Histograms can be further modified using keyword arguments. In the next example, cumulative=True

produces the cumulative histogram. The output of this code is presented in figure (b).

>>> hist(x, bins = 30, cumulative=True, color=’#FF7F00’)

15.2 Advanced 2D Plotting

15.2.1 Multiple Plots

In some scenarios it is advantageous to have multiple plots or charts in a single figure. Implementing this

is simple using figure to initialize the figure window and then using add_subplot. Subplots are added to

the figure using a grid notation with m rows and n columns where 1 is the upper left, 2 is the right of 1, and

so on until the end of a row, where the next element is below 1. For example, the plots in a 3 by 2 subplot

have indices  1 2

3 4

5 6

 .

add_subplot is called using the notation add_subplot(mni) or add_subplot(m,n,i)where m is the number

of rows, n is the number of columns and i is the index of the subplot.

Note that add_subplot must be called as a method from figure. Note that the next code block is suffi-

cient long that it isn’t practical to run interactively, and so draw() is used to force an update to the window

to ensure that all plots and charts are visible. Figure 15.6 contains the result running the code below.

149

from matplotlib.pyplot import figure, plot, bar, pie, draw, scatter

from numpy.random import randn, rand

from numpy import sqrt, arange

fig = figure()

Add the subplot to the figure

Panel 1

ax = fig.add_subplot(2, 2, 1)

y = randn(100)

plot(y)

ax.set_title(’1’)

Panel 2

y = rand(5)

x = arange(5)

ax = fig.add_subplot(2, 2, 2)

bar(x, y)

ax.set_title(’2’)

Panel 3

y = rand(5)

y = y / sum(y)

y[y < .05] = .05

ax = fig.add_subplot(2, 2, 3)

pie(y)

ax.set_title(’3’)

Panel 4

z = randn(100, 2)

z[:, 1] = 0.5 * z[:, 0] + sqrt(0.5) * z[:, 1]

x = z[:, 0]

y = z[:, 1]

ax = fig.add_subplot(2, 2, 4)

scatter(x, y)

ax.set_title(’4’)

draw()

15.2.2 Multiple Plots on the Same Axes

Occasionally two different types of plots are needed in the same axes, for example, plotting a histogram

and a PDF. Multiple plots can be added to the same axes by plotting the first one (e.g. a histogram), calling

hold(True) to “hold” the contents of the axes (rather than overdrawing), and then plotting any remaining

data. In general it is a good idea to call hold(False) when finished.

The code in the next example begins by initializing a figure window and then adding axes. A histogram

is then added to the axes, hold is called, and then a Normal PDF is plotted. legend() is called to produce

a legend using the labels provided in the potting commands. get_xlim and get_ylim are used to get the

150

0 20 40 60 80 100
3

2

1

0

1

2

3
1

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
2

3

3 2 1 0 1 2
3

2

1

0

1

2

3
4

Figure 15.6: A figure containing a 2 by 2 subplot produced using add_subplot.

limits of the axis after adding the histogram. These points are used when computing the PDF, and finally

set_ylim is called to increase the axis height so that the PDF is against the top of the chart. Figure 15.7

contains the output of these commands.

from matplotlib.pyplot import figure, hold, plot, legend, draw

from numpy import linspace

import scipy.stats as stats

from numpy.random import randn

x = randn(100)

fig = figure()

ax = fig.add_subplot(111)

ax.hist(x, bins=30, label=’Empirical’)

xlim = ax.get_xlim()

ylim = ax.get_ylim()

pdfx = linspace(xlim[0], xlim[1], 200)

pdfy = stats.norm.pdf(pdfx)

pdfy = pdfy / pdfy.max() * ylim[1]

hold(True)

plot(pdfx, pdfy, ’r-’, label=’PDF’)

ax.set_ylim((ylim[0], 1.2 * ylim[1]))

legend()

hold(False)

draw()

15.2.3 Adding a Title and Legend

Titles are added with title and legends are added with legend. legend requires that lines have labels,

which is why 3 calls are made to plot – each series has its own label. Executing the next code block pro-

duces a the image in figure 15.8, panel (a).

151

4 3 2 1 0 1 2 3 4
0

20

40

60

80

100

120

PDF
Empirical

Figure 15.7: A figure containing a histogram and a line plot on the same axes using hold.

>>> x = cumsum(randn(100,3), axis = 0)

>>> plot(x[:,0],’b-’,label = ’Series 1’)

>>> hold(True)

>>> plot(x[:,1],’g-.’,label = ’Series 2’)

>>> plot(x[:,2],’r:’,label = ’Series 3’)

>>> legend()

>>> title(’Basic Legend’)

legend takes keyword arguments which can be used to change its location (loc and an integer, see the

docstring), remove the frame (frameon) and add a title to the legend box (title). The output of a simple

example using these options is presented in panel (b).

>>> plot(x[:,0],’b-’,label = ’Series 1’)

>>> hold(True)

>>> plot(x[:,1],’g-.’,label = ’Series 2’)

>>> plot(x[:,2],’r:’,label = ’Series 3’)

>>> legend(loc = 0, frameon = False, title = ’The Legend’)

>>> title(’Improved Legend’)

15.2.4 Dates on Plots

Plots with date x-values on the x-axis are important when using time series data. Producing basic plots

with dates is as simple as plot(x,y) where x is a list or array of dates. This first block of code simulates a

random walk and constructs 2000 datetime values beginning with March 1, 2012 in a list.

from numpy import cumsum

from numpy.random import randn

from matplotlib.pyplot import figure, draw

import matplotlib.dates as mdates

import datetime as dt

152

(a) (b)

0 20 40 60 80 100
15

10

5

0

5

10

15

20
Basic Legend

Series 1
Series 2
Series 3

0 20 40 60 80 100
15

10

5

0

5

10

15

20
Improved Legend

The Legend

Series 1
Series 2
Series 3

Figure 15.8: Figures with titles and legend produced using title and legend.

Simulate data

T = 2000

x = []

for i in xrange(T):

x.append(dt.datetime(2012,3,1)+dt.timedelta(i,0,0))

y = cumsum(rnd.randn(T))

A basic plot with dates only requires calling plot(x,y) on the x and y data. The output of this code is in

panel (a) of figure 15.9.

fig = figure()

ax = fig.add_subplot(111)

ax.plot(x,y)

draw()

Once the plot has been produced autofmt_xdate() is usually called to rotate and format the labels on the

x-axis. The figure produced by running this command on the existing figure is in panel (b).

fig.autofmt_xdate()

draw()

Sometime, depending on the length of the sample plotted, automatic labels will not be adequate. To

show a case where this issue arises, a shorted sample with only 100 values is simulated.

T = 100

x = []

for i in xrange(1,T+1):

x.append(dt.datetime(2012,3,1)+dt.timedelta(i,0,0))

y = cumsum(rnd.randn(T))

A basic plot is produced in the same manner, and is depicted in panel (c). Note the labels overlap and so

this figure is not acceptable.

fig = figure()

ax = fig.add_subplot(111)

ax.plot(x,y)

draw()

153

A call to autofmt_xdate() can be used to address the issue of overlapping labels. This is shown in panel

(d).

fig.autofmt_xdate()

draw()

While the formatted x-axis dates are an improvement, they are still unsatisfactory in that the date

labels have too much information (month, day and year) and are not at the start of the month. The next

piece of code shows how markers can be placed at the start of the month using MonthLocator which is in

the matplotlib.dates module. This idea is to construct a MonthLocator instance (which is a class), and

then to pass this axes using xaxis.set_major_locator which determines the location of major tick marks

(minor tick marks can be set using xaxis.set_mijor_locator). This will automatically place ticks on the

1st of every month. Other locators are available, including YearLocator and WeekdayLocator, which place

ticks on the first day of the year and on week days, respectively. The second change is to format the labels

on the x-axis to have the short month name and year. This is done using DateFormatter which takes a

custom format string containing the desired format. Options for formatting include:

• %Y - 4 digit numeric year

• %m - Numeric month

• %d - Numeric day

• %b - Short month name

• %H - Hour

• %M - Minute

• %D - Named day

These can be combined along with other characters to produce format strings. For example, %b %d, %Y

would produce a string with the format Mar 1, 2012. Finally autofmt_xdate is used to rotate the labels.

The result of running this code is in panel (e).

months = mdates.MonthLocator()

ax.xaxis.set_major_locator(months)

fmt = mdates.DateFormatter(’%b %Y’)

ax.xaxis.set_major_formatter(fmt)

fig.autofmt_xdate()

draw()

Note that March 1 is not present in the figure in panel (e). This is because the plot doesn’t actually

include the date March 1 12:00:00 AM, but starts slightly later. To address this, simply change the axis

limits using first calling get_xlim to get the 2-element tuple containing the limits, change the it to include

March 1 12:00:00 AM using set_xlim. The line between these call is actually constructing the correctly

formatted date. Internally, matplotlib uses serial dates which are simply the number of days past some

initial date. For example March 1, 2012 12:00:00 AM is 734563.0, March 2, 2012 12:00:00 AM is 734564.0

and March 2, 2012 12:00:00 PM is 734563.5. The function date2num can be used to convert datetimes to

serial dates. The output of running this final price of code on the existing figure is presented in panel (f)

154

xlim = list(ax.get_xlim())

xlim[0] = mdates.date2num(dt.datetime(2012,3,1))

ax.set_xlim(xlim)

draw()

15.2.5 Shading Areas

For a simple demonstration of the range of matplotlib, consider the problem of producing a plot of Macroe-

conomic time series with shaded regions to indicate business conditions. Capacity utilization data from

FRED has been used to illustrate the steps needed to produce a plot with the time series, dates and shaded

regions indicate periods classified as recessions by the National Bureau of Economic Research.

The code has been split into two parts. The first is the code needed to read the data, find the common

dates, and finally format the data so that only the common sample is retained.

Reading the data

from matplotlib.pyplot import figure, plot_date, axis, draw

import matplotlib.mlab as mlab

csv2rec for simplicity

recessionDates = mlab.csv2rec(’USREC.csv’,skiprows=0)

capacityUtilization = mlab.csv2rec(’TCU.csv’)

d1 = set(recessionDates[’date’])

d2 = set(capacityUtilization[’date’])

Find the common dates

commonDates = d1.intersection(d2)

commonDates = list(commonDates)

commonDates.sort()

And the first date

firstDate = min(commonDates)

Find the data after the first date

plotData = capacityUtilization[capacityUtilization[’date’]>firstDate]

shadeData = recessionDates[recessionDates[’date’]>firstDate]

The second part of the code produces the plot. Most of the code is very simple. It begins by construct-

ing a figure, then add_subplot to the figure, and the plotting the data using plot. fill_between is only one

of many useful functions in matplotlib – it fills an area whenever a variable is 1, which is the structure of

the recession indicator. The final part of the code adds a title with a custom font (set using a dictionary),

and then changes the font and rotation of the axis labels. The output of this code is figure 15.10.

The shaded plot

x = plotData[’date’]

y = plotData[’value’]

z is the shading values, 1 or 0

z = shadeData[’value’]!=0

155

(a) (b)

2013 2014 2015 2016 2017
70

60

50

40

30

20

10

0

10

20

2013
2014

2015
2016

2017
70

60

50

40

30

20

10

0

10

20

(c) (d)

Mar 02 2012Mar 16 2012Mar 30 2012Apr 13 2012Apr 27 2012May 11 2012May 25 2012Jun 08 2012
15

10

5

0

5

10

Mar 0
2 2012

Mar 1
6 2012

Mar 3
0 2012

Apr 1
3 2012

Apr 2
7 2012

May 11 2012

May 25 2012

Jun 08 2012
15

10

5

0

5

10

(e) (f)

Apr 2
012

May 2012

Jun 2012
15

10

5

0

5

10

Mar 2
012

Apr 2
012

May 2012

Jun 2012
15

10

5

0

5

10

Figure 15.9: Figures with dates and additional formatting.

156

0 20 40 60 80 100

time (τ)

46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

50.0

50.5

P
ri

ce

Geometric Random Walk: dlnpt =µdt+σdWt

Figure 15.10: A plot of capacity utilization (US data) with shaded regions indicating NBER recession dates.

Figure

fig = figure()

ax = fig.add_subplot(111)

plot_date(x,y,’r-’)

limits = axis()

font = { ’fontname’:’Times New Roman’, ’fontsize’:14 }

ax.fill_between(x, limits[2], limits[3], where=z, edgecolor=’#BBBBBB’, \

facecolor=’#BBBBBB’, alpha=0.5)

axis(ymin=limits[2])

ax.set_title(’Capacity Utilization’,font)

xl = ax.get_xticklabels()

for label in xl:

label.set_fontname(’Times New Roman’)

label.set_fontsize(14)

label.set_rotation(45)

yl = ax.get_yticklabels()

for label in yl:

label.set_fontname(’Times New Roman’)

label.set_fontsize(14)

draw()

15.2.6 TEX in plots

Matplotlib supports using TEX in plots. The only steps needed are the first three lines in the code below,

which configure some settings. the labels use raw mode (r’...’) to avoid needing to escape the \ in the

TEX string. The final plot with TEX in the labels is presented in figure 15.11.

>>> from matplotlib import rc

>>> rc(’text’, usetex=True)

>>> rc(’font’, family=’serif’)

157

0 20 40 60 80 100

time (τ)

46.0

46.5

47.0

47.5

48.0

48.5

49.0

49.5

50.0

50.5

P
ri

ce

Geometric Random Walk: dlnpt =µdt+σdWt

Figure 15.11: A plot that uses TEX in the labels.

>>> y = 50*exp(.0004 + cumsum(.01*randn(100)))

>>> plot(y)

>>> xlabel(r’time (τ)’)

>>> ylabel(r’Price’,fontsize=16)

>>> title(r’Geometric Random Walk: $d\ln p_t = \mu dt + \sigma dW_t$’,fontsize=16)

>>> rc(’text’, usetex=False)

15.3 3D Plotting

The 3D plotting capabilities of matplotlib are decidedly weaker than the 2D plotting facilities, and yet

the 3D capabilities are typically adequate for most application (especially since 3D graphics are rarely

necessary, and often distracting).

15.3.1 Line Plots

Line plot in 3D are virtually identical to plotting in 2D, except that 3 1-dimensional vectors are needed: x ,

y and z (height). This simple example demonstrates how plot can be used with the keyword argument

zs to construct a 3D line plot. The line that sets up the axis using Axed3D(fig) is essential when producing

3D graphics. The other new command, view_init, is used to rotate the view using code (the view can be

interactive rotated in the figure window). The result of running the code below is presented in figure 15.12.

>>> from mpl_toolkits.mplot3d import Axes3D

>>> x = linspace(0,6*pi,600)

>>> z = x.copy()

>>> y = sin(x)

>>> x= cos(x)

>>> fig = plt.figure()

>>> ax = Axes3D(fig) # Different usage

>>> ax.plot(x, y, zs=z, label=’Spiral’)

158

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

0

5

10

15

20

Figure 15.12: A 3D line plot constructed using plot.

>>> ax.view_init(15,45)

>>> plt.draw()

15.3.2 Surface and Mesh (Wireframe) Plots

Surface and mesh or wireframe plots are occasionally useful for visualizing functions with 2 inputs, such

as a bivariate probability density. This example produces both types of plots for a bivariate normal PDF

with mean 0, unit variances and correlation of 50%. The first block of code generates the points to use in

the plot with meshgrid and evaluates the PDF for all combinations of x and y .

from numpy import linspace, meshgrid, mat, zeros, shape, sqrt

import numpy.linalg as linalg

x = linspace(-3,3,100)

y = linspace(-3,3,100)

x,y = meshgrid(x,y)

z = mat(zeros(2))

p = zeros(shape(x))

R = matrix([[1,.5],[.5,1]])

Rinv = linalg.inv(R)

for i in xrange(len(x)):

for j in xrange(len(y)):

z[0,0] = x[i,j]

z[0,1] = y[i,j]

p[i,j] = 1.0/(2*pi)*sqrt(linalg.det(R))*exp(-(z*Rinv*z.T)/2)

The next code segment produces a mesh (wireframe) plot using plot_wireframe. The setup of the

case is identical to that of the 3D line, and the call ax = Axes3D(fig) is again essential. The figure is drawn

using the 2-dimensional arrays x , y and p . The output of this code is presented in panel (a) of 15.13.

159

(a) (b)

3210123

3

2

1

0

1

2

3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

3210123

3

2

1

0

1

2

3

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 15.13: 3D figures produced using plot_wireframe and plot_surface.

>>> from mpl_toolkits.mplot3d import Axes3D

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.plot_wireframe(x, y, p, rstride=5, cstride=5)

>>> ax.view_init(29,80)

>>> plt.draw()

Producing a surface plot is identical, only that a color map is needed from the module matplotlib.cm to

provide different colors across the range of values. The output of this code is presented in panel (b).

>>> import matplotlib.cm as cm

>>> fig = plt.figure()

>>> ax = Axes3D(fig)

>>> ax.plot_surface(x, y, p, rstride=5, cstride=5, cmap=cm.jet)

>>> ax.view_init(29,80)

>>> plt.draw()

15.3.3 Contour Plots

Contour plots are not technically 3D, although they are used as a 2D representation of 3D data. Since they

are ultimately 2D, little setup is needed, aside from a call to contourusing the same inputs as plot_surface

and plot_wireframe. The output of the code below is in figure 15.14.

>>> fig = plt.figure()

>>> ax = fig.gca()

>>> ax.contour(x,y,p)

>>> plt.draw()

160

3 2 1 0 1 2 3
3

2

1

0

1

2

3

Figure 15.14: Contour plot produced using contour.

15.4 General Plotting Functions

figure

figure is used to open a figure window, and can be used to generate axes. fig = figure(n) produces a

figure object with id n , and assigns the object to fig.

add_subplot

add_subplot is used to add axes to a figure. ax = fig.add_subplot(111) can be used to add a basic axes

to a figure. ax = fig.add_subplot(m,n,i) can be used to add an axes to a non-trivial figure with a m by n

grid of plots.

close

close closes figures. close(n) closes the figure with id n , and close(’all’) closes all figure windows.

show

show is used to force an update to a figure, and pauses execution if not used in an interactive console (close

the figure window to resume execution). show should not be used in standalone Python programs – draw

should be used instead.

draw

draw forces an update to a figure.

15.5 Exporting Plots

Exporting plots is simple using savefig(’filename.ext’) where ext determines the type of exported file to

produce. ext can be one of png, pdf, ps, eps or svg.

161

>>> plot(randn(10,2))

>>> savefig(’figure.pdf’) # PDF export

>>> savefig(’figure.png’) # PNG export

>>> savefig(’figure.svg’) # Scalable Vector Graphics export

savefig has a number of useful keyword arguments. In particular, dpi is useful when exporting png files.

The default dpi is 100.

>>> plot(randn(10,2))

>>> savefig(’figure.png’, dpi = 600) # High resolution PNG export

15.6 Exercises

1. Download data for the past 20 years for the S&P 500 from Yahoo!. Plot the price against dates, and

ensure the date display is reasonable.

2. Compute Friday-to-Friday returns using the log difference of closing prices and produce a histogram.

Experiment with the number of bins.

3. Compute the percentage of weekly returns and produce a pie chart containing the percentage of

weekly returns in each of:

(a) r ≤ −2%

(b) −2% < r ≤ 0%

(c) 0 < r ≤ 2%

(d) r > 2%

4. Download 20 years of FTSE data, and compute Friday-to-Friday returns. Produce a scatter plot of

the FTSE returns against the S&P 500 returns. Be sure to label the axes and provide a title.

5. Repeat exercise 4, but add in the fit line showing is the OLS fit of regressing FTSE on the S&P plus a

constant.

6. Compute EWMA variance for both the S&P 500 and FTSE and plot against dates. An EWMA variance

hasσ2
t ‘ = (1− λ) r 2

t−1 + σ
2
t−1 where r 2

0 = σ
2
0 is the full sample variance and λ = 0.97.

7. Explore the chart gallery on the matplotlib website.

162

http://matplotlib.sourceforge.net/examples/

Chapter 16

Structured Arrays

pandas, the topic of Chapter 17, has substantially augmented the structured arrays provided by NumPy.

The pandas Series and DataFrame types are the preferred method to handle heterogeneous data and/or

data sets which have useful metadata. This chapter has been retained since the NumPy data structures may

be encountered when using some functions, or in legacy code produced by others.

The standard, homogeneous NumPy array is a highly optimized data structure where all elements

have the same data type (e.g. float) and can be accessed using slicing in many dimensions. These data

structures are essential for high-performance numerical computing – especially for linear algebra. Unfor-

tunately, actual data is often heterogeneous (e.g. mixtures of dates, strings and numbers) and it is useful to

track series by meaningful names, not just “column 0”. These features are not available in a homogeneous

NumPy array. However, NumPy also supports mixed arrays which solve both of these issues and so are

a useful data structures for managing data prior to statistical analysis. Conceptually, a mixed array with

named columns is similar to a spreadsheet where each column can have its own name and data type.

16.1 Mixed Arrays with Column Names

A mixed NumPy array can be initialized using array, zerosor other functions which create arrays and allow

the data type to be directly specified. Mixed arrays are in many ways similar to standard NumPy arrays,

except that the dtype input to the function is specified either using tuples of the form (name,type), or

using a dictionary of the form {’names’:names,’formats’:formats) where names is a tuple of column

names and formats is a tuple of NumPy data types.

>>> x = zeros(4,[(’date’,’int’),(’ret’,’float’)])

>>> x = zeros(4,{’names’: (’date’,’ret’), ’formats’: (’int’, ’float’)})

>>> x

array([(0, 0.0), (0, 0.0), (0, 0.0), (0, 0.0)],

dtype=[(’date’, ’<i4’), (’ret’, ’<f8’)])

These two command are identical, and illustrate the two methods to create an array which contain a

named column “date”, for integer data, and a named column “ret” for floats. Named columns allows for

access using dictionary-type syntax.

>>> x[’date’]

array([0, 0, 0, 0])

163

>>> x[’ret’]

array([0.0, 0.0, 0.0, 0.0])

Standard multidimensional slice notation is not available since heterogeneous arrays behave like nested

lists and not homogeneous NumPy arrays.

>>> x[0] # Data tuple 0

(0, 0.0)

>>> x[:3] # Data tuples 0, 1 and 2

array([(0, 0.0), (0, 0.0), (0, 0.0)],

dtype=[(’date’, ’<i4’), (’ret’, ’<f8’)])

>>> x[:,1] # Error

IndexError: too many indices

The first two commands show that the array is composed of tuples and so differs from standard homo-

geneous NumPy arrays. The error in the third command occurs since columns are accessed using names

and not multidimensional slices.

16.1.1 Data Types

A large number of primitive data types are available in NumPy.

Type Syntax Description

Boolean b True/False

Integers i1,i2,i4,i8 1 to 8 byte signed integers (−2B−1, . . . 2B−1 − 1)

Unsigned Integers u1,u2,u4,u8 1 to 8 byte signed integers (0, . . . 2B)

Floating Point f4,f8 Single (4) and double (8) precision float

Complex c8,c16 Single (8) and double (16) precision complex

Object On Generic n-byte object

String Sn , an n-letter string

Unicode String Un n-letter unicode string

The majority of data types are for numeric data, and are simple to understand. The n in the string data

type indicates the maximum length of a string. Attempting to insert a string with more than n characters

will truncate the string. The object data type is somewhat abstract, but allows for storing Python objects

such as datetimes.

Custom data types can be built using dtype. The constructed data type can then be used in the con-

struction of a mixed array.

>>> type = dtype([(’var1’,’f8’), (’var2’,’i8’), (’var3’,’u8’)])

>>> type

dtype([(’var1’, ’<f8’), (’var2’, ’<i8’), (’var3’, ’<u8’)])

Data types can even be nested to create a structured environment where one of the “variables” has mul-

tiple values. Consider this example which uses a nested data type to contain the bid and ask price of a

stock, along with the time of the transaction.

>>> ba_type = dtype([(’bid’,’f8’), (’ask’,’f8’)])

164

>>> t = dtype([(’date’, ’O8’), (’prices’, ba_type)])

>>> data = zeros(2,t)

>>> data

array([(0, (0.0, 0.0)), (0, (0.0, 0.0))],

dtype=[(’date’, ’O’), (’prices’, [(’bid’, ’<f8’), (’ask’, ’<f8’)])])

>>> data[’prices’]

array([(0.0, 0.0), (0.0, 0.0)],

dtype=[(’bid’, ’<f8’), (’ask’, ’<f8’)])

>>> data[’prices’][’bid’]

array([0., 0.])

In this example, data is an array where each item has 2 elements, the date and the price. Price is also an ar-

ray with 2 elements. Names can also be used to access values in nested arrays (e.g. data[’prices’][’bid’]

returns an array containing all bid prices). In practice nested arrays can almost always be expressed as a

non-nested array without loss of fidelity.

Determining the size of object NumPy arrays can store objects which are anything which fall outside

of the usual data types. One example of a useful, but abstract, data type is datetime. One method to

determine the size of an object is to create a plain array containing the object – which will automatically

determine the data type – and then to query the size from the array.

>>> import datetime as dt

>>> x = array([dt.datetime.now()])

>>> x.dtype.itemsize # The size in bytes

>>> x.dtype.descr # The name and description

16.1.2 Example: TAQ Data

TAQ is the NYSE Trade and Quote database which contains all trades and quotes of US listed equities

which trade on major US markets (not just the NYSE). A record from a trade contains a number of fields:

• Date - The Date in YYYYMMDD format stored as a 4-byte unsigned integer

• Time - Time in HHMMSS format, stored as a 4-byte unsigned integer

• Size - Number of shares trades, stores as a 4 byte unsigned integer

• G127 rule indicator - Numeric value, stored as a 2 byte unsigned integer

• Correction - Numeric indicator of a correction, stored as a 2 byte unsigned integer

• Condition - Market condition, a 2 character string

• Exchange - The exchange where the trade occurred, a 1-character string

First consider a data type which stores the data in an identical format.

165

>>> t = dtype([(’date’, ’u4’), (’time’, ’u4’),

(’size’, ’u4’), (’price’, ’f8’),

(’g127’, ’u2’), (’corr’, ’u2’),

(’cond’, ’S2’), (’ex’, ’S2’)])

>>> taqData = zeros(10, dtype=t)

>>> taqData[0] = (20120201,120139,1,53.21,0,0,’’,’N’)

An alternative is to store the date and time as a datetime, which is an 8-byte object.

>>> import datetime as dt

>>> t = dtype([(’datetime’, ’O8’), (’size’, ’u4’), (’price’, ’f8’), \

(’g127’, ’u2’), (’corr’, ’u2’), (’cond’, ’S2’), (’ex’, ’S2’)])

>>> taqData = zeros(10, dtype=t)

>>> taqData[0] = (dt.datetime(2012,2,1,12,01,39),1,53.21,0,0,’’,’N’)

16.2 Record Arrays

The main feature of record arrays, that the series can be accessed by series name as a property of a variable,

is also available in a pandas’ DataFrame.

Record arrays are closely related to mixed arrays with names. The primary difference is that elements

record arrays can be accessed using variable.name format.

>>> x = zeros((4,1),[(’date’,’int’),(’ret’,’float’)])

>>> y = rec.array(x)

>>> y.date

array([[0],

[0],

[0],

[0]])

>>> y.date[0]

array([0])

In practice record arrays may be slower than standard arrays, and unless the variable.name is really im-

portant, record arrays are not compelling.

166

Chapter 17

pandas

pandas is a high-performance module that primarily provides a comprehensive set of structures for work-

ing with data. pandas excels at handling structured data, such as data sets containing many variables,

working with missing values and merging across multiple data sets. While extremely useful, pandas is

not an essential component of the Python scientific stack unlike NumPy, SciPy or matplotlib, and so while

pandas doesn’t make data analysis possible in Python, it makes it much easier. pandas also provides high-

performance, robust methods for importing from and exporting to to a wide range of formats.

17.1 Data Structures

pandas provides a set of data structures which include Series, DataFrames and Panels. Series are 1-dimensional

arrays. DataFrames are collections of Series and so are 2-dimensional, and Panels are collections of DataFrames,

and so are 3-dimensional.

Note that the Panel type is relatively immature and is not covered in this chapter.

17.1.1 Series

Series are the primary building block of the data structures in pandas, and in many ways a Series behaves

similarly to a NumPy array. A Series is initialized using a list or tupel, or directly from a NumPy array.

>>> a = array([0.1, 1.2, 2.3, 3.4, 4.5])

>>> a

array([0.1, 1.2, 2.3, 3.4, 4.5])

>>> from pandas import Series

>>> s = Series([0.1, 1.2, 2.3, 3.4, 4.5])

>>> s

0 0.1

1 1.2

2 2.3

3 3.4

4 4.5

dtype: float64

>>> s = Series(a) # Direct from NumPy array

167

Series, like arrays, are sliceable. However, unlike a 1-dimensional array, a Series has an additional

column, an index – that is, a set of values which are associated to the rows of the Series. In this example,

pandas has automatically generated an index using the sequence 0, 1, . . . since none was provided. It is

also possible to use other values as the index when initializing the Series using a keyword argument.

>>> s = Series([0.1, 1.2, 2.3, 3.4, 4.5], index = [’a’,’b’,’c’,’d’,’e’])

>>> s

a 0.1

b 1.2

c 2.3

d 3.4

e 4.5

dtype: float64

The index is part of the “magic” of the pandas’s data structures (Series and DataFraame) and allows for

dictionary-like access to elements in the index (in addition to both numeric slicing and logical indices).1

>>> s[’a’]

0.10000000000000001

>>> s[0]

0.10000000000000001

>>> s[[’a’,’c’]]

a 0.1

c 2.3

dtype: float64

>>> s[[0,2]]

a 0.1

c 2.3

dtype: float64

>>> s[:2]

a 0.1

b 1.2

dtype: float64

>>> s[s>2]

c 2.3

d 3.4

e 4.5

dtype: float64

In this examples, ’a’ and ’c’ behave in the same manner as 0 and 2 would in a standard NumPy array.

The elements of an index do not have to be unique which another way in which a Series generalizes a

NumPy array.

>>> s = Series([0.1, 1.2, 2.3, 3.4, 4.5], index = [’a’,’b’,’c’,’a’,’b’])

1Using numeric index values other than the default sequence will break scalar selection since there is ambiguity between
numerical slicing and index access. For this reason, custom numerical indices should be used with care.

168

>>> s

a 0.1

b 1.2

c 2.3

a 3.4

b 4.5

dtype: float64

>>> s[’a’]

a 0.1

a 3.4

dtype: float64

Series can also be initialized directly from dictionaries.

>>> s = Series({’a’: 0.1, ’b’: 1.2, ’c’: 2.3})

>>> s

a 0.1

b 1.2

c 2.3

dtype: float64

Series are like NumPy arrays in that they support most numerical operations.

>>> s = Series({’a’: 0.1, ’b’: 1.2, ’c’: 2.3})

>>> s * 2.0

a 0.2

b 2.4

c 4.6

dtype: float64

>>> s - 1.0

a 0.2

b 2.4

c 4.6

dtype: float64

However, Series are different from arrays when math operations are performed across two Series. In

particular, math operations involving two series will perform operations by aligning indices. The mathe-

matical operation is performed in two steps. First, the union of all indices is created, and then the math-

ematical operation is performed on matching indices. Indices that do not match are given the value NaN

(not a number), and values are computed for all unique pairs of repeated indices.

>>> s1 = Series({’a’: 0.1, ’b’: 1.2, ’c’: 2.3})

>>> s2 = Series({’a’: 1.0, ’b’: 2.0, ’c’: 3.0})

>>> s3 = Series({’c’: 0.1, ’d’: 1.2, ’e’: 2.3})

>>> s1 + s2

a 1.1

b 3.2

c 5.3

dtype: float64

169

>>> s1 * s2

a 0.1

b 2.4

c 6.9

dtype: float64

>>> s1 + s3

a NaN

b NaN

c 2.4

d NaN

e NaN

dtype: float64

Mathematical operations performed on series which have non-unique indices will broadcast the op-

eration to all indices which are common. For example, when one array has 2 elements with the same

index, and another has 3, adding the two will produce 6 outputs.

>>> s1 = Series([1.0,2,3],index=[’a’]*3)

>>> s2 = Series([4.0,5],index=[’a’]*2)

>>> s1 + s2

a 5

a 6

a 6

a 7

a 7

a 8

dtype: float64

The underlying NumPy array is accessible through the values property, and the index is accessible the

index property, which returns an Index type. The NumPy array underlying the index can be retrieved

using values on the Index object returned.

>>> s1 = Series([1.0,2,3])

>>> s1.values

array([1., 2., 3.])

>>> s1.index

Index([u’a’, u’a’, u’a’], dtype=object)

>>> s1.index.values

array([0, 1, 2], dtype=int64)

>>> s1.index = [’cat’,’dog’,’elephant’]

>>> s1.index

Index([u’cat’, u’dog’, u’elephant’], dtype=object)

Notable Methods and Properties

Series provide a large number of methods to manipulate data. These can broadly be categorized into

mathematical and non-mathematical functions. The mathematical functions are generally very similar

170

to those in NumPy due to the underlying structure of a Series, and generally do not warrant a separate

discussion. In contrast, the non-mathematical methods are unique to pandas.

head and tail

head() shows the first 5 rows of a series, and tail() shows the last 5 rows.

isnull and notnull

isnull() returns a Series with the same indices containing Boolean values indicating True for null values

which include NaN and None, among others. notnull() returns the negation of isnull() – that is, True for

non-null values, and False otherwise.

ix

ix is the indexing function and s.ix[0:2] is the same as s[0:2]. ix is more useful for DataFrames.

describe

describe() returns a simple set of summary statistics about a Series. The value returned is a series where

the index values are name of the statistic computed.

>>> s1 = Series(arange(10.0,20.0))

>>> s1.describe()

count 10.00000

mean 14.50000

std 3.02765

min 10.00000

25% 12.25000

50% 14.50000

75% 16.75000

max 19.00000

dtype: float64

>>> summ = s1.describe()

>>> summ[’mean’]

nunique

nunique() returns the number of unique values in a Series.

drop and dropna

drop(labels) drop elements with the selected labels form a Series.

>>> s1 = Series(arange(1.0,6),index=[’a’,’a’,’b’,’c’,’d’])

>>> s1

a 1

a 2

b 3

171

c 4

d 5

dtype: float64

>>> s1.drop(’a’)

b 3

c 4

d 5

dtype: float64

dropna() is similar to drop() except that it only drops null values – NaN or similar.

>>> s1 = Series(arange(1.0,4.0),index=[’a’,’b’,’c’])

>>> s2 = Series(arange(1.0,4.0),index=[’c’,’d’,’e’])

>>> s3 = s1 + s2

>>> s3

a NaN

b NaN

c 4

d NaN

e NaN

dtype: float64

>>> s3.dropna()

c 4

dtype: float64

fillna

fillna(value) fills all null values in a series with a specific value.

>>> s1 = Series(arange(1.0,4.0),index=[’a’,’b’,’c’])

>>> s2 = Series(arange(1.0,4.0),index=[’c’,’d’,’e’])

>>> s3 = s1 + s2

>>> s3.fillna(-1.0)

a -1

b -1

c 4

d -1

e -1

dtype: float64

append

append(series) appends one series to another, and is similar to list.append.

replace

replace(list,values) replaces a set of values in a Series with a new value. replace is similar to fillna

except that replace also replaces non-null values.

172

update

update(series) replaces values in a series with those in another series, matching on the index.

>>> s1 = Series(arange(1.0,4.0),index=[’a’,’b’,’c’])

>>> s1

a 1

b 2

c 3

dtype: float64

>>> s2 = Series(-1.0 * arange(1.0,4.0),index=[’c’,’d’,’e’])

>>> s1.update(s2)

>>> s1

a 1

b 2

c -1

dtype: float64

17.1.2 DataFrame

While the Series class is the building block of data structures in pandas, the DataFrame is the work-horse.

DataFrames collect multiple series in the same way that a spreadsheet collects multiple columns of data.

In a simple sense, a DataFrame is like a 2-dimensions NumPy array – and when all data is numeric and

of the same type (e.g. float64), it is virtually indistinguishable. However, a DataFrame is composed of

Series and each Series has its own data type, and so not all DataFrames are representable as homogeneous

NumPy arrays.

A number of methods are available to initialize a DataFrame. The simplest is from a homogeneous

NumPy array.

>>> from pandas import DataFrame

>>> df = DataFrame(array([[1,2],[3,4]]))

>>> df

0 1

0 1 2

1 3 4

Like a Series, a DataFrame contains the input data as well as row labels. However, since a DataFrame

is a collection of columns, it also contains column labels (located along the top edge). When none are

provided, the numeric sequence 0, 1, . . . is used.

Column names are entered using a keyword argument or later by assigning to columns.

>>> df = DataFrame(array([[1,2],[3,4]]),columns=[’a’,’b’])

>>> df

a b

0 1 2

173

1 3 4

>>> df = DataFrame(array([[1,2],[3,4]]))

>>> df.columns = [’dogs’,’cats’]

>>> df

dog cat

0 1 2

1 3 4

Index values are similarly assigned using either the keyword argument index or by setting the index prop-

erty.

>>> df = DataFrame(array([[1,2],[3,4]]), columns=[’dogs’,’cats’], index=[’Alice’,’Bob’])

>>> df

dogs cats

Alice 1 2

Bob 3 4

DataFrames can also be created form NumPy arrays with structured data.

>>> import datetime

>>> t = dtype([(’datetime’, ’O8’), (’value’, ’f4’)])

>>> x = zeros(1,dtype=t)

>>> x[0][0] = datetime.datetime(2013,01,01)

>>> x[0][1] = -99.99

>>> x

array([(datetime.datetime(2013, 1, 1, 0, 0), -99.98999786376953)],

dtype=[(’datetime’, ’O’), (’value’, ’<f4’)])

>>> df = DataFrame(x)

>>> df

datetime value

0 2013-01-01 00:00:00 -99.989998

In the previous example, the DataFrame has automatically pulled the column names and column types

from the NumPy structured data.

The final method to create a DataFrame uses a dictionary containing Series, where the keys contain

the column names. The DataFrame will automatically align the data using the common indices.

>>> s1 = Series(arange(0.0,5))

>>> s2 = Series(arange(1.0,3))

>>> DataFrame({’one’: s1, ’two’: s2})

one two

0 0 1

1 1 2

2 2 3

3 3 4

4 4 5

>>> s3 = Series(arange(0.0,3))

>>> DataFrame({’one’: s1, ’two’: s2, ’three’: s3})

one three two

0 0 0 1

174

1 1 1 2

2 2 2 3

3 3 NaN 4

4 4 NaN 5

In the final example, the third series (s3) has fewer values and the DataFrame automatically fills missing

values as NaN. Note that is possible to create DataFrames from Series which do not have unique index

values, although in these cases the index values of the two series must match exactly – that is, have the

same index values in the same order.

Manipulating DataFrames

The use of DataFrames will be demonstrated using a data set containing a mix of data types using state-

level GDP data from the US. The data set contains both the GDP level between 2009 and 2012 (constant

2005 US$) and the growth rates for the same years as well as a variable containing the region of the state.

The data is loaded directly into a DataFrame using read_excel, which is described in Section 17.4.

>>> from pandas import read_excel

>>> state_gdp = read_excel(’US_state_GDP.xls’,’Sheet1’)

>>> state_gdp.head()

state_code state gdp_2009 gdp_2010 gdp_2011 gdp_2012

0 AK Alaska 44215 43472 44232 44732

1 AL Alabama 149843 153839 155390 157272

2 AR Arkansas 89776 92075 92684 93892

3 AZ Arizona 221405 221016 224787 230641

4 CA California 1667152 1672473 1692301 1751002

gdp_growth_2009 gdp_growth_2010 gdp_growth_2011 gdp_growth_2012 region

0 7.7 -1.7 1.7 1.1 FW

1 -3.9 2.7 1.0 1.2 SE

2 -2.0 2.6 0.7 1.3 SE

3 -8.2 -0.2 1.7 2.6 SW

4 -5.1 0.3 1.2 3.5 FW

Selecting Columns

Single columns are selectable using the column name, as in state_gdp[’state’], and the value returned in

a Series. Multiple columns are similarly selected using a list of column names as instate_gdp[[’state_code’,

’state’]], or equivalently using an Index object.

>>> state_gdp[[’state_code’,’state’]].head()

state_code state

0 AL Alabama

1 AK Alaska

2 AZ Arizona

3 AR Arkansas

4 CA California

>>> index = state_gdp.index

>>> state_gdp[index[1:3]].head() # Elements 1 and 2 (0-based counting)

175

state gdp_2009

0 Alabama 149843

1 Alaska 44215

2 Arizona 221405

3 Arkansas 89776

4 California 1667152

Finally, single columns can also be selected using dot-notation and the column name.2

>>> state_gdp.state_code.head()

0 AL

1 AK

2 AZ

3 AR

4 CA

Name: state_code, dtype: object

Selecting Rows

Row selection uses standard numerical slices.

>>> state_gdp[1:3]

state_code state gdp_2009 gdp_2010 gdp_2011 gdp_2012

1 AL Alabama 149843 153839 155390 157272

2 AR Arkansas 89776 92075 92684 93892

gdp_growth_2009 gdp_growth_2010 gdp_growth_2011 gdp_growth_2012 region

1 -3.9 2.7 1.0 1.2 SE

2 -2.0 2.6 0.7 1.3 SE

A function version is also available using iloc[rows] which is identical to the standard slicing syntax.

Labeled rows can also be selected using the method loc(label).

Finally, rows can also be selected using logical selection using a Boolean array with the same number

of elements as the number of rows as the DataFrame.

>>> state_long_recession = state_gdp[’gdp_growth_2010’]<0

>>> state_gdp[state_long_recession].head()

state_code state gdp_2009 gdp_2010 gdp_2011 gdp_2012

1 AK Alaska 44215 43472 44232 44732

2 AZ Arizona 221405 221016 224787 230641

28 NV Nevada 110001 109610 111574 113197

50 WY Wyoming 32439 32004 31231 31302

gdp_growth_2009 gdp_growth_2010 gdp_growth_2011 gdp_growth_2012

1 7.7 -1.7 1.7 1.1

2 -8.2 -0.2 1.7 2.6

28 -8.2 -0.4 1.8 1.5

50 3.4 -1.3 -2.4 0.2

2The column name must be a legal Python variable name, and so cannot contain spaces or reserved notation.

176

Selecting Rows and Columns

Since the behavior of slicing depends on whether the input is text (selects columns) or numeric/Boolean

(selects rows), it isn’t possible to use standard slicing to select both rows and columns. Instead, the selector

method ix[rowselector,colselector] allows joint selection where rowselector is either a scalar selector, a

slice selector, a Boolean array, a numeric selector or a row label or list of row labels and colselector is a

scalar selector, a slice selector, a Boolean array, a numeric selector or a column name or list of column

names.

>>> state_gdp.ix[state_long_recession,’state’]

1 Alaska

2 Arizona

28 Nevada

50 Wyoming

Name: state, dtype: object

>>> state_gdp.ix[state_long_recession,[’state’,’gdp_growth_2009’,’gdp_growth_2010’]]

state gdp_growth_2009 gdp_growth_2010

1 Alaska 7.7 -1.7

2 Arizona -8.2 -0.2

28 Nevada -8.2 -0.4

50 Wyoming 3.4 -1.3

>>> state_gdp.ix[10:15,0] # Slice and scalar

10 GA

11 HI

12 IA

13 ID

14 IL

15 IN

Adding Columns

Columns are added using one of three methods. The most obvious is to add a Series merging along the

index using a dictionary-like syntax.

>>> state_gdp_2012 = state_gdp[[’state’,’gdp_2012’]]

>>> state_gdp_2012.head()

state gdp_2012

0 Alabama 157272

1 Alaska 44732

2 Arizona 230641

3 Arkansas 93892

4 California 1751002

>>> state_gdp_2012[’gdp_growth_2012’] = state_gdp[’gdp_growth_2012’]

>>> state_gdp_2012.head()

state gdp_2012 gdp_growth_2012

0 Alabama 157272 1.2

1 Alaska 44732 1.1

177

2 Arizona 230641 2.6

3 Arkansas 93892 1.3

This syntax always adds the column at the end. insert(location,column_name,series) inserts a Series

at an specified location, where location uses 0-based indexing (i.e. 0 places the column first, 1 places it

second, etc.), column_name is the name of the column to be added and series is the series data. series is

either a Series or another object that is readily convertible into a Series such as a NumPy array.

>>> state_gdp_2012 = state_gdp[[’state’,’gdp_2012’]]

>>> state_gdp_2012.insert(1,’gdp_growth_2012’,state_gdp[’gdp_growth_2012’])

>>> state_gdp_2012.head()

state gdp_growth_2012 gdp_2012

0 Alabama 1.2 157272

1 Alaska 1.1 44732

2 Arizona 2.6 230641

3 Arkansas 1.3 93892

4 California 3.5 1751002

Inserting columns with different indices or fewer items than the DataFrame results in a DataFrame with

the original indices with NaN-filled missing values in the new Series.

>>> state_gdp_2012 = state_gdp.ix[0:2,[’state’,’gdp_2012’]]

>>> state_gdp_2012

state gdp_2012

0 Alabama 157272

1 Alaska 44732

2 Arizona 230641

>>> gdp_2011 = state_gdp.ix[1:4,’gdp_2011’]

>>> state_gdp_2012[’gdp_2011’] = gdp_2011

state gdp_2012 gdp_2011

0 Alabama 157272 NaN

1 Alaska 44732 44232

2 Arizona 230641 224787

Deleting Columns

Columns are deleted using either the del keyword or by using pop(column) on the DataFrame. The be-

havior of these two differs slightly: del will simply delete the Series from the DataFrame while pop() will

delete the Series and return the Series as an output.

>>> state_gdp_copy = state_gdp.copy()

>>> state_gdp_copy = state_gdp_copy[[’state_code’,’gdp_growth_2011’,’gdp_growth_2012’]]

>>> state_gdp_copy.index = state_gdp[’state_code’]

>>> state_gdp_copy.head()

gdp_growth_2011 gdp_growth_2012

state_code

AK 1.7 1.1

AL 1.0 1.2

AR 0.7 1.3

AZ 1.7 2.6

178

CA 1.2 3.5

>>> gdp_growth_2012 = state_gdp_copy.pop(’gdp_growth_2012’)

>>> gdp_growth_2012.head()

state_code

AK 1.1

AL 1.2

AR 1.3

AZ 2.6

CA 3.5

Name: gdp_growth_2012, dtype: float64

>>> state_gdp_copy.head()

gdp_growth_2011

state_code

AK 1.7

AL 1.0

AR 0.7

AZ 1.7

CA 1.2

>>> del state_gdp_copy[’gdp_growth_2011’]

>>> state_gdp_copy.head()

Empty DataFrame

Columns: []

Index: [AK, AL, AR, AZ, CA]

Notable Properties and Methods

drop, dropna and drop_duplicates

drop(), dropna() and drop_duplicates() can all be used to drop rows or columns from a DataFrame.

drop(labels)drops rows based on the row labels in a label or list labels. drop(column_name,axis=1)drops

columns based on a column name or list column names.

dropna() drops rows with any NaN (or null) values. It can also be used with the keyword argument

dropna(how=’all’) to only drop rows which have missing values for all variables. Finally, drop_duplicates()

removes rows which are duplicates or other rows, and is used with the keyword argumentdrop_duplicates(cols=col_list)

to only consider a subset of all columns when checking for duplicates.

values and index

values retrieves a the NumPy array (structured if the data columns are heterogeneous) underlying the

DataFrame, and index returns the index of the DataFrame or can be assigned to to set the index.

fillna

fillna() fills NaN or other null values with other values. The simplest use fill all NaNs with a single value

and is called fillna(value=value). Using a dictionary allows for more sophisticated na-filling with col-

179

umn names as the keys and the replacements as the values.

>>> df = DataFrame(array([[1, nan],[nan, 2]]))

>>> df.columns = [’one’,’two’]

>>> replacements = {’one’:-1, ’two’:-2}

>>> df.fillna(value=replacements)

one two

0 1 -2

1 -1 2

T and transpose

T and transpose are identical – both swap rows and columns of a DataFrame. T operates like a property,

while transpose is used as a method.

sort and sort_index

sort and sort_index are identical in their outcome and only differ in the inputs. The default behavior of

sort is to sort by the row labels. Using a keyword argument axis=1 sorts the DataFrame by the column

names. Both can also be used to sort by the data in the DataFrame. sort does this using the keyword ar-

gument columns, which is either a single column name or a list of column names. Using a list produces a

nested sort. sort_index uses the keyword argument by to do the same. Another keyword argument deter-

mines the direction of the sort (ascending by default). sort(ascending=False) will produce a descending

sort, and when using a nested sort, the sort direction is specified using a listsort(columns=[’one’,’two’],

ascending=[True,False]) where each entry corresponds to the columns used to sort.

>>> df = DataFrame(array([[1, 3],[1, 2],[3, 2],[2,1]]), columns=[’one’,’two’])

>>> df.sort(columns=’one’)

one two

0 1 3

1 1 2

3 2 1

2 3 2

>>> df.sort(columns=[’one’,’two’])

one two

1 1 2

0 1 3

3 2 1

2 3 2

>>> df.sort(columns=[’one’,’two’], ascending=[0,1])

one two

2 3 2

3 2 1

1 1 2

0 1 3

The default behavior is to not sort in-place and so it is necessary to assign the output of a sort. Using the

keyword argument inplace=True will change the default behavior.

180

pivot

pivot reshapes a table using column values when reshaping. pivot takes three inputs. The first, index, de-

fines the column to use as the index of the pivoted table. The second, columns, defines the column to use

to form the column names, and values defines the columns to for the data in the constructed DataFrame.

The following example show how a flat DataFrame with repeated values is transformed into a more mean-

ingful representation.

>>> prices = [101.0,102.0,103.0]

>>> tickers = [’GOOG’,’AAPL’]

>>> import itertools

>>> data = [v for v in itertools.product(tickers,prices)]

>>> dates = pandas.date_range(’2013-01-03’,periods=3)

>>> df = DataFrame(data, columns=[’ticker’,’price’])

>>> df[’dates’] = dates.append(dates)

>>> df

ticker price dates

0 GOOG 101 2013-01-03 00:00:00

1 GOOG 102 2013-01-04 00:00:00

2 GOOG 103 2013-01-05 00:00:00

3 AAPL 101 2013-01-03 00:00:00

4 AAPL 102 2013-01-04 00:00:00

5 AAPL 103 2013-01-05 00:00:00

>>> df.pivot(index=’dates’,columns=’ticker’,values=’price’)

ticker AAPL GOOG

dates

2013-01-03 101 101

2013-01-04 102 102

2013-01-05 103 103

stack and unstack

stack and unstack transform a DataFrame to a Series (stack) and back to a DataFrame (unstack).

concat and append

append appends rows of another DataFrame to the end of an existing DataFrame. If the data appended

has a different set of columns, missing values are NaN-filled. The keyword argument ignore_index=True

instructs append to ignore the existing index in the appended DataFrame. This is useful when index values

are not meaningful, such as when they are simple numeric values.

FIXME: Concat!!!

reindex, reindex_like and reindex_axis

reindex changes the labels while null-filling any missing values, which is useful for selecting subsets of a

DataFrame or re-ordering rows. reindex_likebehaves similarly, but uses the index from another DataFrame.

The keyword argument axis directs reindex_axis to alter either rows or columns.

181

>>> original = DataFrame([[1,1],[2,2],[3.0,3]],index=[’a’,’b’,’c’], columns=[’one’,’two’])

>>> original.reindex(index=[’b’,’c’,’d’])

one two

b 2 2

c 3 3

d NaN NaN

>>> different = DataFrame([[1,1],[2,2],[3.0,3]],index=[’c’,’d’,’e’], columns=[’one’,’two’])

>>> original.reindex_like(different)

one two

c 3 3

d NaN NaN

e NaN NaN

>>> original.reindex_axis([’two’,’one’], axis = 1)

merge and join

merge and join provide SQL-like operations for merging the DataFrames using row labels or the contents

of columns. The primary difference between the two is that mergedefaults to using column contents while

joindefaults to using index labels. Both commands take a large number of optional inputs. The important

keyword arguments are:

• how, which must be one of ’left’, ’right’, ’outer’, ’inner’ describes which set of indices to use

when performing the join. ’left’ uses the indices of the DataFrame that is used to call the method

and ’right’ uses the DataFrame input into merge or join. ’outer’ uses a union of all indices from

both DataFrames and ’inner’ uses an intersection from the two DataFrames.

• on is a single column name of list of column names to use in the merge. on assumes the names are

common. If no value is given for onor left_on/right_on, then the common column names are used.

• left_on and right_on allow for a merge using columns with different names. When left_on and

right_on contains the same column names, the behavior is the same as on.

• left_index and right_index indicate that the index labels are the join key for the left and right

DataFrames.

>>> left = DataFrame([[1,2],[3,4],[5,6]],columns=[’one’,’two’])

>>> right = DataFrame([[1,2],[3,4],[7,8]],columns=[’one’,’three’])

>>> left.merge(right,on=’one’) # Same as how=’inner’

one two three

0 1 2 2

1 3 4 4

>>> left.merge(right,on=’one’, how=’left’)

one two three

0 1 2 2

1 3 4 4

2 5 6 NaN

182

>>> left.merge(right,on=’one’, how=’right’)

one two three

0 1 2 2

1 3 4 4

2 7 NaN 8

>>> left.merge(right,on=’one’, how=’outer’)

one two three

0 1 2 2

1 3 4 4

2 5 6 NaN

3 7 NaN 8

update

update updates the values in one DataFrame using the non-null values from another DataFrame, using

the index labels to determine which records to update.

>>> left = DataFrame([[1,2],[3,4],[5,6]],columns=[’one’,’two’])

>>> left

one two

0 1 2

1 3 4

2 5 6

>>> right = DataFrame([[nan,12],[13,nan],[nan,8]],columns=[’one’,’two’],index=[1,2,3])

>>> right

one two

1 NaN 12

2 13 NaN

3 NaN 8

>>> left.update(right) # Updates values in left

>>> left

one two

0 1 2

1 3 12

2 13 6

groupby

groupbyproduces a DataFrameGroupBy object which is a grouped DataFrame, and is useful when a DataFrame

has columns containing group data (e.g. sex or race in cross-sectional data). By itself, groupby does not

produce any output, and so it is necessary to use other functions on the output DataFrameGroupBy.

>>> subset = state_gdp[[’gdp_growth_2009’,’gdp_growth_2010’,’region’]]

>>> subset.head()

gdp_growth_2009 gdp_growth_2010 region

0 7.7 -1.7 FW

183

1 -3.9 2.7 SE

2 -2.0 2.6 SE

3 -8.2 -0.2 SW

4 -5.1 0.3 FW

>>> grouped_data = subset.groupby(by=’region’)

>>> grouped_data.groups # Lists group names and index labels for group membership

{u’FW’: [0L, 4L, 11L, 33L, 37L, 47L],

u’GL’: [14L, 15L, 22L, 35L, 48L],

u’MW’: [7L, 8L, 20L, 31L, 34L, 38L],

u’NE’: [6L, 19L, 21L, 30L, 39L, 46L],

u’PL’: [12L, 16L, 23L, 24L, 28L, 29L, 41L],

u’RM’: [5L, 13L, 26L, 44L, 50L],

u’SE’: [1L, 2L, 9L, 10L, 17L, 18L, 25L, 27L, 40L, 42L, 45L, 49L],

u’SW’: [3L, 32L, 36L, 43L]}

>>> grouped_data.mean() # Same as a pivot table

gdp_growth_2009 gdp_growth_2010

region

FW -2.483333 1.550000

GL -5.400000 3.660000

MW -1.250000 2.433333

NE -2.350000 2.783333

PL -1.357143 2.900000

RM -0.940000 1.380000

SE -2.633333 2.850000

SW -2.175000 1.325000

>>> grouped_data.std() # Can use other methods

gdp_growth_2009 gdp_growth_2010

region

FW 5.389403 2.687564

GL 2.494995 1.952690

MW 2.529624 1.358921

NE 0.779102 1.782601

PL 2.572196 2.236068

RM 2.511573 1.522170

SE 2.653071 1.489051

SW 4.256270 1.899781

apply

apply executes a function along the columns or rows of a DataFrame. The following example applies the

mean function both down columns and across rows, which is a trivial since mean could be executed on the

DataFrame directly. apply is more general since it allows custom functions to be applied to a DataFrame.

>>> subset = state_gdp[[’gdp_growth_2009’,’gdp_growth_2010’,’gdp_growth_2011’,’gdp_growth_2012’]]

>>> subset.index = state_gdp[’state_code’].values

>>> subset.head()

gdp_growth_2009 gdp_growth_2010 gdp_growth_2011 gdp_growth_2012

184

AK 7.7 -1.7 1.7 1.1

AL -3.9 2.7 1.0 1.2

AR -2.0 2.6 0.7 1.3

AZ -8.2 -0.2 1.7 2.6

CA -5.1 0.3 1.2 3.5

>>> subset.apply(mean) # Same as subset.mean()

gdp_growth_2009 -2.313725

gdp_growth_2010 2.462745

gdp_growth_2011 1.590196

gdp_growth_2012 2.103922

dtype: float64

>>> subset.apply(mean, axis=1).head() # Same as subset.mean(axis=1)

AK 2.200

AL 0.250

AR 0.650

AZ -1.025

CA -0.025

dtype: float64

applymap

applymap is similar to apply, only that it applies element-by-element rather than column- or row-wise.

pivot_table

Pivot tables provide a method to summarize data by groups. A pivot table first forms groups based on

an keyword argument rows and then returns an aggregate of all values within the group (using mean by

default). The keyword argument aggfun allows for other aggregation function.

>>> subset = state_gdp[[’gdp_growth_2009’,’gdp_growth_2010’,’region’]]

>>> subset.head()

gdp_growth_2009 gdp_growth_2010 region

0 7.7 -1.7 FW

1 -3.9 2.7 SE

2 -2.0 2.6 SE

3 -8.2 -0.2 SW

4 -5.1 0.3 FW

>>> subset.pivot_table(rows=’region’)

gdp_growth_2009 gdp_growth_2010

region

FW -2.483333 1.550000

GL -5.400000 3.660000

MW -1.250000 2.433333

NE -2.350000 2.783333

PL -1.357143 2.900000

RM -0.940000 1.380000

SE -2.633333 2.850000

185

SW -2.175000 1.325000

17.2 Statistical Function

pandas Series and DataFrame are derived from NumPy arrays and so the vast majority of simple statisti-

cal functions are available. This list includes sum, mean, std, var, skew, kurt, prod, median, quantile, abs,

cumsum, and cumprod. DataFrame also supports cov and corr – the keyword argument axis determines the

direction of the operation (0 for down columns, 1 for across rows). Novel statistical routines are described

below.

count

count returns number of non-null values – that is, those which are not NaN or another null value such as

None or NaT (not a time, for datetimes).

describe

describe provides a summary of the Series or DataFrame.

>>> state_gdp.describe()

gdp_2009 gdp_2010 gdp_2011 gdp_2012

count 51.000000 51.000000 51.000000 51.000000

mean 246866.980392 252840.666667 256995.647059 263327.313725

std 299134.165365 304446.797050 309689.475995 319842.518074

min 22108.000000 23341.000000 23639.000000 23912.000000

25% 64070.500000 65229.000000 65714.000000 66288.000000

50% 149843.000000 153839.000000 155390.000000 157272.000000

75% 307522.500000 318748.500000 327488.500000 337016.000000

max 1667152.000000 1672473.000000 1692301.000000 1751002.000000

gdp_growth_2009 gdp_growth_2010 gdp_growth_2011 gdp_growth_2012

count 51.000000 51.000000 51.000000 51.000000

mean -2.313725 2.462745 1.590196 2.103922

std 3.077663 1.886474 1.610497 1.948944

min -9.100000 -1.700000 -2.600000 -0.100000

25% -3.900000 1.450000 0.900000 1.250000

50% -2.400000 2.300000 1.700000 1.900000

75% -1.050000 3.300000 2.200000 2.500000

max 7.700000 7.200000 7.800000 13.400000

value_counts

value_counts performs histogramming or the Series or DataFrame.

>>> state_gdp.region.value_counts()

SE 12

PL 7

186

NE 6

FW 6

MW 6

GL 5

RM 5

SW 4

dtype: int64

17.3 Time-series Data

The pandas TimeSeries object is currently limited to a span of about 585 years centered at 1970. While this

is unlikely to create problems, it may not be appropriate for some applications to historical data.

pandas includes a substantial number of routines which are primarily designed to work with time-

series data. A TimeSeries is basically a series where the index contains datetimes index values (more for-

mally the class TimeSeries inherits from Series), and Series constructor will automatically promote a Series

with datetime index values to a TimeSeries. The TimeSeries examples all make use of US real GDP data

from the Federal Reserve Economic Database (FRED).

>>> GDP_data = read_excel(’GDP.xls’,’GDP’,skiprows=19)

>>> GDP_data.head()

DATE VALUE

0 1947-01-01 00:00:00 243.1

1 1947-04-01 00:00:00 246.3

2 1947-07-01 00:00:00 250.1

3 1947-10-01 00:00:00 260.3

4 1948-01-01 00:00:00 266.2

>>> type(GDP_data.VALUE)

pandas.core.series.Series

>>> gdp = GDP_data.VALUE

>>> gdp.index = GDP_data.DATE

>>> gdp.head()

DATE

1947-01-01 243.1

1947-04-01 246.3

1947-07-01 250.1

1947-10-01 260.3

1948-01-01 266.2

Name: VALUE, dtype: float64

>>> type(gdp)

pandas.core.series.TimeSeries

TimeSeries have some useful indexing tricks. For example, all of the data for a particular year can retrieved

using gdp[’yyyy’] syntax where yyyy is a year.

>>> gdp[’2009’]

DATE

187

2009-01-01 14381.2

2009-04-01 14342.1

2009-07-01 14384.4

2009-10-01 14564.1

Name: VALUE, dtype: float64

>>> gdp[’2009-04’] # All for a particular month

DATE

2009-04-01 14342.1

Name: VALUE, dtype: float6

Dates can also be used for slicing using the notation gdp[’d1:d2:’] where d1 and d2 are both valid date

formats (e.g ’2009’ or ’2009-01-01’)

>>> gdp[’2009’:’2010’]

DATE

2009-01-01 14381.2

2009-04-01 14342.1

2009-07-01 14384.4

2009-10-01 14564.1

2010-01-01 14672.5

2010-04-01 14879.2

2010-07-01 15049.8

2010-10-01 15231.7

Name: VALUE, dtype: float64

>>> gdp[’2009-06-01’:’2010-06-01’]

DATE

2009-07-01 14384.4

2009-10-01 14564.1

2010-01-01 14672.5

2010-04-01 14879.2

Name: VALUE, dtype: float64

Slicing indexing can also be accomplished using datetime, for examplegdp[datetime(2009,01,01):datetime(2011,12,31)]

where datetime has been imported using from pandas import datetime.

date_range

date_range is a very useful function provided by pandas to generate ranges of dates (from pandas import date_range).

The basic use is either date_range(beginning_date,ending_date) which will produce a daily series be-

tween the two dates (inclusive) or date_range(beginning_date, periods=periods) which will produce a

daily series starting at beginning_date with periods periods.

>>> from pandas import date_range

>>> date_range(’2013-01-03’,’2013-01-05’)

<class ’pandas.tseries.index.DatetimeIndex’>

[2013-01-03 00:00:00, ..., 2013-01-05 00:00:00]

Length: 3, Freq: D, Timezone: None

>>> date_range(’2013-01-03’, periods = 3)

188

<class ’pandas.tseries.index.DatetimeIndex’>

[2013-01-03 00:00:00, ..., 2013-01-05 00:00:00]

Length: 3, Freq: D, Timezone: None

The keyword argument freq changes the frequency, and common choices include

S seconds U micro-second

T minutes L millisecond

H hourly BD daily (business)

D daily BM month (end, business)

W weekly BMS month (start, business)

M monthly (end) MS monthly (start)

Q quarterly (end) QS quarterly (start)

A annual (end) AS annual (start)

Scaling the frequency produces skips that are a multiple of the default, such as in 2D which uses every

other day. Combining multiple frequencies produces less regular skips, e.g. 2H10T.

>>> from pandas import date_range

>>> date_range(’2013-01-03’,periods=4, freq=’Q’).values

array([’2013-03-31T00:00:00.000000000+0000’,

’2013-06-30T01:00:00.000000000+0100’,

’2013-09-30T01:00:00.000000000+0100’,

’2013-12-31T00:00:00.000000000+0000’], dtype=’datetime64[ns]’)

>>> date_range(’2013-01-03’,periods=4, freq=’7D4H’).values

array([’2013-01-03T00:00:00.000000000+0000’,

’2013-01-10T04:00:00.000000000+0000’,

’2013-01-17T08:00:00.000000000+0000’,

’2013-01-24T12:00:00.000000000+0000’], dtype=’datetime64[ns]’)

Note that the underlying array uses NumPy’s datetime64 as the data type (with nano-second resolution,

indicated by [ns]).

resample

pandas supports sophisticated resampling which is useful for aggregating form a higher frequency to a

lower one using resample. This example uses annual (’A’) and alternative aggregation functions.

>>> gdp.resample(’A’,how=mean).tail() # Annual average

DATE

2009-12-31 14417.950

2010-12-31 14958.300

2011-12-31 15533.825

2012-12-31 16244.575

2013-12-31 16601.600

Freq: A-DEC, dtype: float64

>>> gdp.resample(’A’,how=max).tail() # Maximum

189

DATE

2009-12-31 14564.1

2010-12-31 15231.7

2011-12-31 15818.7

2012-12-31 16420.3

2013-12-31 16667.9

Freq: A-DEC, dtype: float64

pct_change

Growth rates are computed using pct_change. The keyword argument periods constructs overlapping

growth rates which are useful when using seasonal data.

>>> gdp.pct_change().tail()

DATE

2012-04-01 0.007406

2012-07-01 0.012104

2012-10-01 0.003931

2013-01-01 0.007004

2013-04-01 0.008019

Name: VALUE, dtype: float64

>>> gdp.pct_change(periods=4).tail() # Quarterly data, annual difference

DATE

2012-04-01 0.045176

2012-07-01 0.047669

2012-10-01 0.038031

2013-01-01 0.030776

2013-04-01 0.031404

Name: VALUE, dtype: float64

17.4 Importing and Exporting Data

In addition to providing data management tools, pandas also excels at importing and exporting data. pan-

das supports reading and Excel, csv and other delimited files, Stata files, fixed-width text, html, json, HDF5

and from SQL databases. The functions to read follow the common naming convention read_type where

type is the file type, e.g. excel or csv. The writers are all methods of Series or DataFrame and follow the

naming convention to_type.

Reading Data

read_excel

read_excel supports reading data from both xls (Excel 2003) and xlsx (Excel 2007/10/13) formats. Reading

these formats depends on the Python package xlrd. The basic usage required two inputs, the file name

and the sheet name. Other notable keyword arguments include:

• header, an integer indicating which row to use for the column labels. The default is 0 (top) row, and

if skiprows is used, this value is relative.

190

• skiprows, typically an integer indicating the number of rows at the top of the sheet to skip before

reading the file. The default is 0.

• skip_footer, typically an integer indicating the number of rows at the bottom of the sheet to skip

when reading the file. The default is 0.

• index_col, an integer indicating the column to use as the index. If not provided, a basic numeric

index is generated.

• parse_cols, None, an integer, a list of integers or a string, tells pandas whether to attempt to parse

a column. The default is None which will parse all columns. Alternatively, if an integer is provided

then the value is interpreted as the last column to parse. Finally, if a list of integers is provided, the

values are interpreted as the columns to parse (0-based, e.g. [0,2,5]). The string version takes one

of the forms ’A’, ’A,C,D’, ’A:D’ or a mix of the latter two (’A,C:D,G,W:Z’).

read_csv

read_csv reads comma separated value files. The basic use only requires one input, a file name. read_csv

also accepts valid URLs (http, ftp, or s3 (Amazon) if the boto package is available) or any object that pro-

vides a read method in places of the file name. A huge range of options are available, and so only the most

relevant are presented in the list below.

• delimiter, the delimiter used to separate values. The default is ’,’. Complicated delimiters are

matched using a regular expression.

• delim_whitespace, Boolean indicating that the delimiter is white space (a space or tab). This is pre-

ferred to using a regular expression to detect white space.

• header, an integer indicating the row number to use for the column names. The default is 0.

• skiprows, similar to skiprows in read_excel.

• skip_footer, similar to skip_footer in read_excel.

• index_col, similar to index_col in read_excel.

• names, a list of column names to use in-place of any found in the file Must use header=0 (the default

value).

• parse_dates, a Boolean indicating whether to parse dates encountered. Supports more complicated

options to combine columns (see read_csv).

• date_parser, a function to use when parsing dates. The default parser is dateutil.parser.

• dayfirst, a Boolean indicating whether to use European date format (DD/MM, True) or American

date format (MM/DD False) when encountering dates. The default is False.

• error_bad_lines, when True stops processing on a bad line. If False, continues skipping any bad

lines encountered.

• encoding, a string containing the file encoding (e.g. ’utf-8’ or ’latin-1’).

191

• converters, a dictionary of functions for converting values in certain columns, where keys can either

integers (column-number) or column labels.

• nrows, an integer, indicates the maximum number of rows to read. This is useful for reading a subset

of a file.

• usecols, a list of integers or column names indicating which column to retain.

• dtype A data type to use for the read data or a dictionary of data types using the column names as

keys. If not provided, the type is inferred.

read_table

read_table is similar to read_csv and both are wrappers around the private read function provided by

pandas.

read_hdf

read_hdf is primarily for reading pandas DataTables which were written using DataTable.to_hdf

Writing Data

Writing data from a Series or DataFrame is much simpler since the starting point (the Series or the DataFrame)

is well understood by pandas. While the file writing methods all have a number of options, most can safely

be ignored.

>>> state_gdp.to_excel(’state_gdp_from_dataframe.xls’)

>>> state_gdp.to_excel(’state_gdp_from_dataframe_sheetname.xls’, sheet_name=’State GDP’)

>>> state_gdp.to_excel(’state_gdp_from_dataframe.xlsx’)

>>> state_gdp.to_csv(’state_gdp_from_dataframe.csv’)

>>> import StringIO

>>> sio = StringIO.StringIO()

>>> state_gdp.to_json(sio)

>>> sio.seek(0)

>>> sio.buf[:50]

’{"state_code":{"0":"AK","1":"AL","2":"AR","3":"AZ"’

>>> state_gdp.to_string()[:50]

u’ state_code state gdp_2009 gdp’

One writer, to_hdf is worth special mention. to_hdfwrites pandas DataFrames to HDF5 files which are

binary files which support compression. HDF5 files can achieve fantastic compression ratios when data

are regular, and so are often much more useful than csv or xlsx (which is also compressed). The usage of

to_hdf is not meaningfully different from the other writers except that:

• In addition to the filename, an argument is required containing the key, which is usually the variable

name.

• Two additional arguments must be passed for the output file to be compressed. These two keyword

arguments are complib and complevel, which I recommend to setting to ’zlib’ and 6, respectively.

192

>>> df = DataFrame(zeros((1000,1000)))

>>> df.to_csv(’size_test.csv’)

>>> df.to_hdf(’size_test.h5’,’df’) # h5 is the usual extension for HDF5

h5 is the usual extension for HDF5

>>> df.to_hdf(’size_test_compressed.h5’,’df’,complib=’zlib’,complevel=6)

>>> ls size_* # Ignore

09/19/2013 04:16 PM 4,008,782 size_test.csv

09/19/2013 04:16 PM 8,029,368 size_test.h5

09/19/2013 04:16 PM 33,812 size_test_compressed.h5

>>> import gzip

>>> f = gzip.open(’size_test.csvz’,’w’)

>>> df.to_csv(f)

>>> f.close()

>>> ls size_test.csvz # Ignore

09/19/2013 04:18 PM 10,533 size_test.csvz

>>> from pandas import read_csv

>>> df_from_csvz = read_csv(’size_test.csvz’,compression=’gzip’)

The final block of lines shows how a csv with gzip compression is written and directly read using pandas.

This method also achieves a very high level of compression.

Any NumPy array is easily written to a file using a single, simple line using pandas.

>>> x = randn(100,100)

>>> DataFrame(x).to_csv(’numpy_array.csv’,header=False,index=False)

17.5 Graphics

pandas provides a set of useful plotting routines based on matplotlib which makes use of the structure

of a DataFrame. Everything in pandas plot library is reproducible using matplotlib, although often at the

cost of additional typing and code complexity (for example, axis labeling).

plot

plot is the main plotting method, and by default will produce a line graph of the data in a DataFrame.

Calling plot on a DataFrame will plot all series using different colors and generate a legend. A number of

keyword argument are available to affect the contents and appearance of the plot.

• style, a list of matplotlib styles, one for each series plotted. A dictionary using column names as

keys and the line styles as values allows for further customization.

• title, a string containing the figure title.

• subplots, a Boolean indicating whether to plot using one subplot per series (True). The default it

False.

• legend, a Boolean indicating whether to show a legend

• secondary_y, a Boolean indicating whether to plot a series on a secondary set of axis values. See the

example below.

193

• ax, a matplotlib axis object to use for the plot. If no axis is provided, then a new axis is created.

• kind, a string, one of:

– ’line’, the default

– ’bar’ to produce a bar chart. Can also use the keyword argument stacked=True to produce a

stacked bar chart.

– ’barh’ to produce a horizontal bar chart. Also support stacked=True.

– ’kde’ or ’density’ to produce a kernel density plot.

hist

hist produces a histogram plot, and is similar to producing a bar plot using the output of value_count.

boxplot

boxplot produces box plots of the series in a DataFrame.

scatter_plot

scatter_plot produce a scatter plot from two series in a DataFrame. Three inputs are required: the

DataFrame, the column name for the x-axis data and the column name for the y-axis data. scatter_plot

is located in pandas.tools.plotting.

scatter_matrix

scatter_matrix produces a n by n set of subplots where each subplot contains the bivariate scatter of

two series. One input is required, the DataFrame. scatter_matrix is located in pandas.tools.plotting.

By default, the diagonal elements are histograms, and the keyword argument diagonal=’kde’ produces a

kernel density plot.

lag_plot

lag_plot produces a scatter plot of a series against its lagged value. The keyword argument lag chooses

the lag used in the plot (default is 1).

17.6 Examples

17.6.1 FRED Data

The Federal Reserve Economics Database is a comprehensive database of US, and increasingly global,

macroeconomics data. This example will directly download a small macroeconomics data set from FRED

and merge it into a single DataFrame. The data in FRED is available in csv using the url pattern http:

//research.stlouisfed.org/fred2/data/CODE.csvwhere CODE is the series code. This example will

make use of Real GDP, Industrial Production, Core CPI the Unemployment Rate, the Treasury yield slope

(10 year yield minus 1 year yield) and the default premium, based on the difference between BAA and AAA

rated bonds. The list of series is in table 17.1.

194

http://research.stlouisfed.org/fred2/data/CODE.csv
http://research.stlouisfed.org/fred2/data/CODE.csv

Series Code Frequency

Real GDP GDPC1 Quarterly
Industrial Production INDPRO Quarterly
Core CPI CPILFESL Monthly
Unemployment Rate UNRATE Monthly
10 Year Yield GS10 Monthly
1 Year Yield GS1 Monthly
Baa Yield BAA Monthly
Aaa Yield AAA Monthly

Table 17.1: The series, codes and their frequencies used in the FRED example.

The initial block of code imports the future functions, read_csv, DataFrame and scatter_matrix, the

only pandas functions directly used in this example. It also sets up lists containing the codes and nice

names for the series. Finally, the url root to use to fetch the data is included.

from __future__ import print_function, division

from pandas import read_csv

from pandas.tools.plotting import scatter_matrix

codes = [’GDPC1’,’INDPRO’,’CPILFESL’,’UNRATE’,’GS10’,’GS1’,’BAA’,’AAA’]

names = [’Real GDP’,’Industrial Production’,’Core CPI’,’Unemployment Rate’,\

’10 Year Yield’,’1 Year Yield’,’Baa Yield’,’Aaa Yield’]

r to disable escape

base_url = r’http://research.stlouisfed.org/fred2/data/’

The next piece of code starts with an empty list to hold the DataFrames produced by read_csv. The codes

are then looped over and directly used in the csv reader.

data = []

for code in codes:

print(code)

url = base_url + code + ’.csv’

data.append(read_csv(url))

Next, the data is merged into a single DataFrame by building a dictionary where the keys are the codes

and the values are the Series from each downloaded DataFrame. This block makes use of zip to quickly

concatenate two lists into a single iterable.

time_series = {}

for code, d in zip(codes,data):

d.index = d.DATE

time_series[code] = d.VALUE

merged_data = DataFrame(time_series)

Unequal length series

print(merged_data)

The next step is to construct the Term and Default premia series using basic math on the series. The re-

sulting Series are given a name, which is requires to the join operation. Finally, the non-required columns

are dropped.

195

term_premium = merged_data[’GS10’] - merged_data[’GS1’]

term_premium.name = ’Term’

merged_data = merged_data.join(term_premium,how=’outer’)

default_premium = merged_data[’BAA’] - merged_data[’AAA’]

default_premium.name = ’Default’

merged_data = merged_data.join(default_premium,how=’outer’)

merged_data = merged_data.drop([’AAA’,’BAA’,’GS10’,’GS1’],axis=1)

print(merged_data.tail())

The next block forms a quarterly data set by dropping the rows with any null values.

quarterly = merged_data.dropna()

print(quarterly.tail())

Finally, it is necessary to transform some of the series to be growth rates since the data contains both I (0)
and I (1) series. This is done using pct_change on a subset of the quarterly data.

growth_rates_selector = [’GDPC1’,’INDPRO’,’CPILFESL’]

growth_rates = quarterly[growth_rates_selector].pct_change()

final = quarterly.drop(growth_rates_selector, axis=1).join(growth_rates)

The last step is to rename some of the columns using rename with the keyword argument columns. The

names are changed using a dictionary where the key is the old name and the value is the new name. The

last two lines save the final version of the data to HDF5 and to an excel file.

new_names = {’GDPC1’:’GDP_growth’,’INDPRO’:’IP_growth’,’CPILFESL’:’Inflation’,’UNRATE’:’Unemp_rate’}

final = final.rename(columns = new_names).dropna()

final.to_hdf(’FRED_data.h5’,’FRED’,complevel=6,complib=’zlib’)

final.to_excel(’FRED_data.xlsx’)

The plots provide a simple method to begin exploring the data. Both plots are shown in Figure 17.1.

ax = final[[’GDP_growth’,’IP_growth’,’Unemp_rate’]].plot(subplots=True)

fig = ax[0].get_figure()

fig.savefig(’FRED_data_line_plot.pdf’)

ax = scatter_matrix(final[[’GDP_growth’,’IP_growth’,’Unemp_rate’]], diagonal=’kde’)

fig = ax[0,0].get_figure()

fig.savefig(’FRED_data_scatter_matrix.pdf’)

17.6.2 NSW Data

The National Supported Work Demonstration was a program to determine whether giving disadvantaged

workers useful job skills would translate into increased earnings. The data set used here is a subset of the

complete data set and contains the variables in table 17.2.

The first block contains the standard imports as well as the functions which are used in this example.

Both sqrt and stats are used to perform a t-test.

from __future__ import print_function, division

from pandas import read_excel

from numpy import sqrt

import scipy.stats as stats

196

0.03
0.02
0.01
0.00
0.01
0.02
0.03
0.04

GDP_growth

0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08
0.10

IP_growth

1957-04-01 1969-10-01 1982-04-01 1994-10-01 2007-04-01
3
4
5
6
7
8
9

10
11

Unemp_rate

0

10

20

30

40

50

60

G
D

P
_g

ro
w

th

0.10

0.05

0.00

0.05

0.10

0.15

IP
_g

ro
w

th

0
.0

4

0
.0

3

0
.0

2

0
.0

1

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

GDP_growth

3

4

5

6

7

8

9

10

11

U
n
e
m

p
_r

a
te

0
.1

0

0
.0

5

0
.0

0

0
.0

5

0
.1

0

0
.1

5

IP_growth

3 4 5 6 7 8 9

1
0

1
1

Unemp_rate

Figure 17.1: The top panel contains line plots of the FRED data. The bottom panel shows the output of
scatter_matrix using kernel density plots along the diagonal.

197

Series Description

Treated Dummy indicating whether the candidate received the treatment
Age Age in years
Education (years) Years of Education
Black Dummy indicating African-American
Hispanic Dummy indicating Hispanic
Married Dummy indicating married
Real income Before ($) Income before program
Real income After ($) Income after program

Table 17.2: The series, codes and their frequencies used in the FRED example.

The data is contained in a well-formatted Excel file, and so importing the data using read_excel is straight-

forward. The second line in this block prints the standard descriptive statistics.

NSW = read_excel(’NSW.xls’,’NSW’)

print(NSW.describe())

rename is then used to give the columns some more useful names – names with spaces cannot be directly

accessed using dot notation (i.e. NSW.Income_after works, but there is not method to do the same using

NSW.’Real income After ($)’.

NSW = NSW.rename(columns={’Real income After ($)’:’Income_after’,

’Real income Before ($)’:’Income_before’,

’Education (years)’:’Education’})

NSW[’Minority’] = NSW[’Black’]+NSW[’Hispanic’]

Next, pivot_table is used to look at the variable means using some of the groups. The third use does a

double sort.

print(NSW.pivot_table(rows=’Treated’))

print(NSW.pivot_table(rows=’Minority’))

print(NSW.pivot_table(rows=[’Minority’,’Married’]))

Next, density plots of the income before and after are plotted. Figure 17.2 shows the plots.

ax = NSW[[’Income_before’,’Income_after’]].plot(kind=’kde’,subplots=True)

fig = ax[0].get_figure()

fig.savefig(’NSW_density.pdf’)

Finally a t-test of equal incomes using the before and after earnings for the treated and non-treated is

computed. The t-stat has a one-sided p-val of .9%, indicating rejection of the null of no impact at most

significance levels.

income_diff = NSW[’Income_after’]-NSW[’Income_before’]

t = income_diff[NSW[’Treated’]==1]

nt = income_diff[NSW[’Treated’]==0]

tstat = (t.mean() - nt.mean())/sqrt(t.var()/t.count() - nt.var()/nt.count())

pval = 1 - stats.norm.cdf(tstat)

print(’T-stat: {0:.2f}, P-val: {1:.3f}’.format(tstat,pval))

198

0.00000
0.00002
0.00004
0.00006
0.00008
0.00010
0.00012
0.00014
0.00016
0.00018

D
e
n
si

ty

Income_before

40000 20000 0 20000 40000 60000 80000 100000
0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

D
e
n
si

ty

Income_after

Figure 17.2: Density plot of the before and after income.

199

200

Chapter 18

Custom Function and Modules

Python supports a wide range of programming styles including procedural (imperative), object oriented

and functional. While object oriented programming and functional programming are powerful program-

ming paradigms, especially in large, complex software, procedural is often both easier to understand and a

direct representation of a mathematical formula. The basic idea of procedural programming is to produce

a function or set of function (generically) of the form

y = f (x).

That is, the functions take one or more inputs and produce one or more outputs.

18.1 Functions

Python functions are very simple to declare and can occur in the same file as the main program or a stan-

dalone file. Functions are declared using the def keyword, and the value produced is returned using the

return keyword. Consider a simple function which returns the square of the input, y = x 2.

from __future__ import print_function, division

def square(x):

return x**2

Call the function

x = 2

y = square(x)

print(x,y)

In this example, the same Python file contains the main program – the final 3 lines – as well as the function.

More complex function can be crafted with multiple inputs.

from __future__ import print_function, division

def l2distance(x,y):

return (x-y)**2

Call the function

201

x = 3

y = 10

z = l2distance(x,y)

print(x,y,z)

Function can also be defined using NumPy arrays and matrices.

from __future__ import print_function, division

import numpy as np

def l2_norm(x,y):

d = x - y

return np.sqrt(np.dot(d,d))

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

z = l2_norm(x,y)

print(x-y)

print("The L2 distance is ",z)

When multiple outputs are returned but only a single variable is available for assignment, all outputs are

returned in a tuple. Alternatively, the outputs can be directly assigned when the function is called with

the same number of variables as outputs.

from __future__ import print_function, division

import numpy as np

def l1_l2_norm(x,y):

d = x - y

return sum(np.abs(d)),np.sqrt(np.dot(d,d))

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

Using 1 output returns a tuple

z = l1_l2_norm(x,y)

print(x-y)

print("The L1 distance is ",z[0])

print("The L2 distance is ",z[1])

Using 2 output returns the values

l1,l2 = l1_l2_norm(x,y)

print("The L1 distance is ",l1)

print("The L2 distance is ",l2)

All of these functions have been placed in the same file as the main program. Placing functions in modules

allows for reuse in multiple programs, and will be discussed later in this chapter.

202

18.1.1 Keyword Arguments

All input variables in functions are automatically keyword arguments, so that the function can be accessed

either by placing the inputs in the order they appear in the function (positional arguments), or by calling

the input by their name using keyword=value.

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p):

d = x - y

return sum(abs(d)**p)**(1/p)

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

z1 = lp_norm(x,y,2)

z2 = lp_norm(p=2,x=x,y=y)

print("The Lp distances are ",z1,z2)

Because variable names are automatically keywords, it is important to use meaningful variable names

when possible, rather than generic variables such as a, b, c or x, y and z. In some cases, x may be a reason-

able default, but in the previous example which computed the Lp norm, calling the third input z would

be bad idea.

18.1.2 Default Values

Default values are set in the function declaration using the syntax input=default.

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p = 2):

d = x - y

return sum(abs(d)**p)**(1/p)

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

Inputs with default values can be ignored

l2 = lp_norm(x,y)

l1 = lp_norm(x,y,1)

print("The l1 and l2 distances are ",l1,l2)

print("Is the default value overridden?", sum(abs(x-y))==l1)

Default values should not normally be mutable (e.g. lists or arrays) since they are only initialized the first

time the function is called. Subsequent calls will use the same value, which means that the default value

could change every time the function is called.

from __future__ import print_function, division

import numpy as np

203

def bad_function(x = zeros(1)):

print(x)

x[0] = np.random.randn(1)

Call the function

bad_function()

bad_function()

bad_function()

Each call to bad_function shows that x has a different value – despite the default being 0. The solution

to this problem is to initialize mutable objects to None, and then the use an if to check and initialize only

if the value is None. Note that tests for None use the is keyword rather the testing for equality using ==.

from __future__ import print_function, division

import numpy as np

def good_function(x = None):

if x is None:

x = zeros(1)

print(x)

x[0] = np.random.randn(1)

Call the function

good_function()

good_function()

Repeated calls to good_function() all show x as 0.

18.1.3 Variable Number of Inputs

Most function written as an “end user” have an known (ex ante) number of inputs. However, functions

which evaluate other functions often must accept variable numbers of input. Variable inputs can be han-

dled using the *args (arguments) or **kwargs (keyword arguments) syntax. The *args syntax will generate

tuple a containing all inputs past the required input list. For example, consider extending the Lp function

so that it can accept a set of p values as extra inputs (Note: in practice it would make more sense to accept

an array for p).

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p = 2, *args):

d = x - y

print(’The L’ + str(p) + ’ distance is :’, sum(abs(d)**p)**(1/p))

out = [sum(abs(d)**p)**(1/p)]

print(’Number of *args:’, len(args))

for p in args:

print(’The L’ + str(p) + ’ distance is :’, sum(abs(d)**p)**(1/p))

out.append(sum(abs(d)**p)**(1/p))

204

return tuple(out)

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

x & y are required inputs and so are not in *args

lp = lp_norm(x,y)

Function takes 3 inputs, so no *args

lp = lp_norm(x,y,1)

Inputs with default values can be ignored

lp = lp_norm(x,y,1,2,3,4,1.5,2.5,0.5)

The alternative syntax, **kwargs, generates a dictionary with all keyword inputs which are not in the

function signature. One reason for using **kwargs is to allow a long list of optional inputs without hav-

ing to have an excessively long function definition. This is how this input mechanism operates in many

matplotlib functions such as plot.

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p = 2, **kwargs):

d = x - y

print(’Number of *kwargs:’, len(kwargs))

for key in kwargs:

print(’Key :’, key, ’ Value:’, kwargs[key])

return sum(abs(d)**p)

Call the function

x = np.random.randn(10)

y = np.random.randn(10)

Inputs with default values can be ignored

lp = lp_norm(x,y,kword1=1,kword2=3.2)

The p keyword is in the function def, so not in **kwargs

lp = lp_norm(x,y,kword1=1,kword2=3.2,p=0)

It is possible to use both *args and **kwargs in a function definition and their role does not change –

*args appears in the function as a tuple that contains all extraneous non-keyword inputs, and **kwargs

appears inside the function as a dictionary that contains all keyword arguments not appearing in the func-

tion definition. Functions with both often have the simple signature y = f(*args, **kwargs) which allows

for any set of inputs.

18.1.4 The Docstring

The docstring is one of the most important elements of any function – especially a function written for

use by others. The docstring is a special string, enclosed with triple-quotation marks, either ’’’ or """,

which is available using help(). When help(fun) is called (or fun?/?fun in IPython), Python looks for the

docstring which is placed immediately below the function definition.

205

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p = 2):

""" The docstring contains any available help for

the function. A good docstring should explain the

inputs and the outputs, provide an example and a list

of any other related function.

"""

d = x - y

return sum(abs(d)**p)

Calling help(lp_norm) produces

>>> help(lp_norm)

Help on function lp_norm in module __main__:

lp_norm(x, y, p=2)

The docstring contains any available help for

the function. A good docstring should explain the

inputs and the outputs, provide an example and a list

of any other related function.

This docstring is not a good example. I suggest following the NumPy guidelines, currently available at the

NumPy source repository (or search for numpy docstring). Also see NumPy example.py These differ from

and are more specialized than the standard Python docstring guidelines, and are more appropriate for

numerical code. A better docstring for lp_norm would be

from __future__ import print_function, division

import numpy as np

def lp_norm(x,y,p = 2):

r""" Compute the distance between vectors.

The Lp normed distance is sum(abs(x-y)**p)**(1/p)

Parameters

x : ndarray

First argument

y : ndarray

Second argument

p : float, optional

Power used in distance calculation, >=0

Returns

output : scalar

Returns the Lp normed distance between x and y

Notes

206

https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://github.com/numpy/numpy/blob/master/doc/example.py

For p>=1, returns the Lp norm described above. For 0<=p<1,

returns sum(abs(x-y)**p). If p<0, p is set to 0.

Examples

>>> x=[0,1,2]

>>> y=[1,2,3]

L2 norm is the default

>>> lp_norm(x,y)

Lp can be computed using the optional third input

>>> lp_norm(x,y,1)

"""

if p<0: p=0

d = x - y

if p == 0:

return sum(d != 0)

elif p < 1:

return sum(abs(d)**p)

else:

return sum(abs(d)**p)**(1/p)

Convention is to use triple double-quotes in docstrings, with r"""used to indicate “raw” strings, which will

ignore backslashes rather than treating them like an escape character (use u""" if the docstring contains

Unicode text, which is not usually necessary). A complete docstring may contain, in order:

• Parameters - a description of key inputs

• Returns - a description of outputs

• Other Parameters - a description of seldom used inputs

• Raises - an explanation of any exceptions raised. See Section 13.5.

• See also - a list of related functions

• Notes - details of the algorithms or assumptions used

• References - any bibliographic information

• Examples - demonstrates use form console

207

18.2 Variable Scope

Variable scope determines which functions can access, and possibly modify a variable. Python determines

variable scope using two principles: where the variable appears in the file, and whether the variable is

inside a function or in the main program. Variables declared inside a function are local variables and

are only available to that function. Variables declared outside a function are global variables, and can be

accessed but not modified (unless using global) . Consider the example which shows that variables at the

root of the program that have been declared before a function definition can be printed by that function.

from __future__ import print_function, division

import numpy as np

a, b, c = 1, 3.1415, ’Python’

def scope():

print(a)

print(b)

print(c)

print(d) #Error, d has not be declared yet

scope()

d = np.array(1)

def scope2():

print(a)

print(b)

print(c)

print(d) # Ok now

scope2()

def scope3():

a = ’Not a number’ # Local variable

print(’Inside scope3, a is ’, a)

print(’a is ’,a)

scope3()

print(’a is now ’,a)

Using the name of a global variable inside a function does produce any changes outside of the function. In

scope3, a is given a different value. That value is specific to the function scope3 and outside of the function,

awill have its global value. Generally, global variables can be accessed, but not modified inside a function.

The only exception is when a variable is declared inside the function using the keyword global.

from __future__ import print_function, division

import numpy as np

a = 1

def scope_local():

208

a = -1

print(’Inside scope_local, a is ’,a)

def scope_global():

global a

a = -10

print(’Inside scope_global, a is ’,a)

print(’a is ’,a)

scope_local()

print(’a is now ’,a)

scope_global()

print(’a is now ’,a)

One word of caution: a variable name cannot be used as a local and global variable in the same func-

tion. Attempting to access the variable as a global (e.g. for printing) and then locally assign the variable

produces an error.

18.3 Example: Least Squares with Newey-West Covariance

Estimating cross-section regressions using time-series data is common practice. When regressors are per-

sistent, and errors are not white noise, standard inference, including White standard errors, is no longer

consistent. The most common solution is to use a long-run covariance estimator, and the most common

long-run covariance estimator is known as the Newey-West covariance estimator which uses a Bartlett

kernel applied to the autocovariances of the scores. This example produces a function which returns

parameter estimates, the estimated asymptotic covariance matrix of the parameters, the variance of the

regression error, the R 2, and adjusted R 2 and the fit values (or errors, since actual is equal to fit plus er-

rors). These are computed using a T -vector for the regressand (dependent variable), a T by k matrix for

the regressors, an indicator for whether to include a constant in the model (default True), and the num-

ber of lags to include in the long-run covariance (default behavior is to automatically determine based on

sample size). The steps required to produce the function are:

1. Determine the size of the variables

2. Append a constant, if needed

3. Compute the regression coefficients

4. Compute the errors

5. Compute the covariance or the errors

6. Compute the covariance of the parameters

7. Compute the R 2 and R̄ 2

The function definition is simple and allows for up to 4 inputs, where 2 have default values: def olsnw(y,

X, constant=True, lags=None):. The size of the variables is then determined using size and the constant

is prepended to the regressors, if needed, using hstack. The regression coefficients are computed using

209

lstsq, and then the Newey-West covariance is computed for both the errors and scores. The covariance

of the parameters is then computed using the NW covariance of the scores. Finally the R 2 and R̄ 2 are

computed. A complete code listing is presented in the appendix to this chapter.

18.4 Anonymous Functions

Python support anonymous functions using the keyword lambda. Anonymous functions are usually en-

countered when another function expects a function as an input and a simple function will suffice. Anony-

mous function take the generic form lambda a,b,c,. . .:code using a,b,c. The key elements are the keyword

lambda, a list of comma separated inputs, a colon between the inputs and the actual function code. For

example lambda x,y:x+y would return the sum of the variables x and y.

Anonymous functions are simple but useful. For example, when lists containing other lists it isn’t

directly possible to sort on an arbitrary element of the nested list. Anonymous functions allow sorting

through the keyword argument key by returning the element Python should use to sort. In this exam-

ple, a direct call to sort() will sort on the first element (first name). Using the anonymous function

lambda x:x[1] to return the second element of the tuple allows for sorting on the last name. lambda x:x[2]

would allow for sorting on the University.

>>> nested = [(’John’,’Doe’,’Oxford’),\

... (’Jane’,’Dearing’,’Cambridge’),\

... (’Jerry’,’Dawn’,’Harvard’)]

>>> nested.sort()

>>> nested

[(’Jane’, ’Dearing’, ’Cambridge’),

(’Jerry’, ’Dawn’, ’Harvard’),

(’John’, ’Doe’, ’Oxford’)]

>>> nested.sort(key=lambda x:x[1])

>>> nested

[(’Jerry’, ’Dawn’, ’Harvard’),

(’Jane’, ’Dearing’, ’Cambridge’),

(’John’, ’Doe’, ’Oxford’)]

18.5 Modules

The previous examples all included the function in inside the same Python file that contained the main

program. While this is convenient, especially when coding the function, it hinders use in other code.

Modules allow multiple functions to be combined in a single Python file and accessed usingimportmodule

and then module.function syntax. Suppose a file named core.py contains the following code:

r"""Demonstration module.

This is the module docstring.

"""

def square(x):

r"""Returns the square of a scalar input

210

"""

return x*x

def cube(x):

r"""Returns the cube of a scalar input

"""

return x*x*x

The functions square and cube can be accessed by other files in the same directory using

from __future__ import print_function, division

import core

y = -3

print(core.square(y))

print(core.cube(y))

The functions in core.py can be imported using any of the standard import methods: import core as c,

from core import squareor from core import * in which case both functions could be directly accessed.

18.5.1 __main__

Normally modules should only have code required for the module to run, and other code should reside

in a different function. However, it is possible that a module could be both directly importable and also

directly runnable. If this is the case, it is important that the directly runnable code should not be exe-

cuted when the module is imported by other code. This can be accomplished using a special construct,

if __name__=="__main__": before any code that should execute when the module is run as a standalone

program. Consider the following simple example in a module namedtest.py.

from __future__ import print_function, division

def square(x):

return x**2

if __name__=="__main__":

print(’Program called directly.’)

else:

print(’Program called indirectly using name: ’, __name__)

Running and importing test cause the different paths to be executed.

>>> %run test.py

Program called directly.

>>> import test

Program called indirectly using name: test

18.6 Packages

As a modules grows, organizing large amounts of code a single file – especially code that serve very dif-

ferent purposes – becomes difficult. Packages solve this problem by allowing multiple files to exist in the

211

same namespace, as well as sub-namespaces. Python packages are constructed using directory struc-

tures using a special file name: __init__.py. A Python package begins with a file folder using the name

of the package. For example, consider developing a package called metrics which will contain common

econometrics routines. The minimal package structure would have

metrics/

__init__.py

The __init__.py file instructs Python to treat this directory as part of a package. __init__.py is a stan-

dard Python file, although it is not necessary to include any code in this file. However, code included in

__init__.py will appear in the root of the package namespace. Suppose __init__.py contained a function with

the name reg. Assuming import corewas used to import the module, this function would be accessible as

core.reg. Next, suppose other Python files are included in the directory under core, so that the directory

structure looks like

core/

__init__.py

crosssection.py

timeseries.py

This would allow functions to be directly included the core namespace by including the function in __init__.py.

Functions that resided in crosssection.py would be accessible using import core.crosssection as cs and

then cs.reg.

Finally, suppose that crosssection.py was replaced with a directory where the directory contained other

Python files, including __init__.py.

core/

__init__.py

crosssection/

__init__.py

regression.py

limdep.py

timeseries/

__init__.py

arma.py

var.py

This structure allows functions to be accessible directly from coreusing the __init__.py file, accessible from

core.crosssectionusing the __init__.py located in the directory crosssection or accessible usingcore.crosssection.regression

for functions inside the file regression.py.

__init__.py is useful in Python packages beyond simply instructing Python that a directory is part of a

package. It can be used to initialize any common information required by functions in the module or to

“fake” the location of a deeply nested functions. __init__.py is executed whenever a package is imported,

and since it can contain standard Python code, it is possible define variables in the package namespace or

execute code which will be commonly used by functions in the module (e.g. reading a config file). Suppose

that the __init__.py located in the directory core contains

from core.crosssection.regression import *

This single import will make all functions in the file regression.py available directly after runningimport core.

For example, suppose regression.py contains the function leastsquares. Without the import statement

212

in __init__.py, leastsquares would only be available through core.crosssection.regression. However,

after including the import statement in __init__.py, leastsquares is directly accessible from core. Using

__init__.py allows for a flexible file and directory structure that reflects the code’s function while avoiding

complex import statements.

18.7 PYTHONPATH

While it is simple to reference files in the same current working directory, this behavior is undesirable for

code shared between multiple projects. The PYTHONPATH allows directories to be added so that they are

automatically searched if a matching module cannot be found in the current directory. The current path

can be checked by running

>>> import sys

>>> sys.path

Additional directories can be added at runtime using

import sys

New directory is first to be searched

sys.path.insert(0, ’c:\\path\\to\add’)

New directory is last to be searched

sys.path.append(’c:\\path\\to\add’)

Directories can also be added permanently by adding or modifying the environment variable PYTHON-

PATH. On Windows, the System environment variables can be found in My Computer > Properties > Ad-

vanced System Settings > Environment Variables. PYTHONPATH should be a System Variable. If it is

present, it can be edited, and if not, added. The format of PYTHONPATH is

c:\dir1;c:\dir2;c:\dir2\dir3;

which will add 3 directories to the path. On Linux, PYTHONPATH is stored in either ~/.bash_rc or ~/.bash_profile,

and it should resemble

PYTHONPATH="${PYTHONPATH}:/dir1/:/dir2/:/dir2/dir3/"

export PYTHONPATH

after three directories have been added, using : as a separator between directories. On OSX the PYTHON-

PATH is stored in ~/.profile.

18.8 Python Coding Conventions

There are a number of common practices which can be adopted to produce Python code which looks

more like code found in other modules:

1. Use 4 spaces to indent blocks – avoid using tab, except when an editor automatically converts tabs

to 4 spaces

2. Avoid more than 4 levels of nesting, if possible

3. Limit lines to 79 characters. The \ symbol can be used to break long lines

213

4. Use two blank lines to separate functions, and one to separate logical sections in a function.

5. Use ASCII mode in text editors, not UTF-8

6. One module per import line

7. Avoid from module import * (for any module). Use either from module import func1, func2 or

import module as shortname.

8. Follow the NumPy guidelines for documenting functions

More suggestions can be found in PEP8.

18.9 Exercises

1. Write a function which takes an array with T elements contains categorical data (e.g. 1,2,3), and re-

turns a T by C array of indicator variables where C is the number of unique values of the categorical

variable, and each column of the output is an indicator variable (0 or 1) for whether the input data

belonged to that category. For example, if x = [1 2 1 1 2], then the output is
1 0

0 1

1 0

1 0

0 1


The function should provide a second output containing the categories (e.g. [1 2] in the example).

2. Write a function which takes a T by K array X , a T by 1 array y , and a T by T array Ω are computes

the GLS parameter estimates. The function definition should be

def gls(X, y, Omega = None)

and if Ω is not provided, an identity matrix should be used.

3. Write a function which will compute the partial correlation. Lower partial correlation is defined as∑
S
(

ri ,1 − r̄1,S
) (

ri ,2 − r̄2,S
)∑

S
(

r j ,1 − r̄1,S
)2∑

S
(

rk ,2 − r̄2,S
)2

where S is the set where r1,i and r2,i are both less than their (own) quantile q . Upper partial corre-

lation uses returns greater than quantile q . The function definition should have definition

def partial_corr(x, y=None, quantile = 0.5, tail = ’Lower’)

and should take either a T by K array for x , or T by 1 arrays for x and y . If x is T by K , then y is

ignored and the partial correlation should be computed pairwise. quantile determines the quantile

to use for the cut off. Note: if S is empty or has 1 element, nan should be returned. tail is either

’Lower’ or ’Upper’, and determined whether the lower or upper tail is used. The function should

return both the partial correlation matrix (K by K), and the number of observations used in com-

puting the partial correlation.

214

http://www.python.org/dev/peps/pep-0008/

18.A Listing of econometrics.py

The complete code listing of econometrics, which contains the function olsnw, is presented below.

from __future__ import print_function, division

from numpy import dot, mat, asarray, mean, size, shape, hstack, ones, ceil, \

zeros, arange

from numpy.linalg import inv, lstsq

def olsnw(y, X, constant=True, lags=None):

r""" Estimation of a linear regression with Newey-West covariance

Parameters

y : array_like

The dependent variable (regressand). 1-dimensional with T elements.

X : array_like

The independent variables (regressors). 2-dimensional with sizes T

and K. Should not include a constant.

constant: bool, optional

If true (default) includes model includes a constant.

lags: int or None, optional

If None, the number of lags is set to 1.2*T**(1/3), otherwise the

number of lags used in the covariance estimation is set to the value

provided.

Returns

b : ndarray, shape (K,) or (K+1,)

Parameter estimates. If constant=True, the first value is the

intercept.

vcv : ndarray, shape (K,K) or (K+1,K+1)

Asymptotic covariance matrix of estimated parameters

s2 : float

Asymptotic variance of residuals, computed using Newey-West variance

estimator.

R2 : float

Model R-square

R2bar : float

Adjusted R-square

e : ndarray, shape (T,)

Array containing the model errors

Notes

The Newey-West covariance estimator applies a Bartlett kernel to estimate

the long-run covariance of the scores. Setting lags=0 produces White’s

Heteroskedasticity Robust covariance matrix.

215

See also

np.linalg.lstsq

Example

>>> X = randn(1000,3)

>>> y = randn(1000,1)

>>> b,vcv,s2,R2,R2bar = olsnw(y, X)

Exclude constant:

>>> b,vcv,s2,R2,R2bar = olsnw(y, X, False)

Specify number of lags to use:

>>> b,vcv,s2,R2,R2bar = olsnw(y, X, lags = 4)

"""

T = y.size

if size(X, 0) != T:

X = X.T

T,K = shape(X)

if constant:

X = copy(X)

X = hstack((ones((T,1)),X))

K = size(X,1)

if lags is None:

lags = int(ceil(1.2 * float(T)**(1.0/3)))

Parameter estimates and errors

out = lstsq(X,y)

b = out[0]

e = y - dot(X,b)

Covariance of errors

gamma = zeros((lags+1))

for lag in xrange(lags+1):

gamma[lag] = dot(e[:T-lag],e[lag:]) / T

w = 1 - arange(0,lags+1)/(lags+1)

w[0] = 0.5

s2 = dot(gamma,2*w)

216

Covariance of parameters

Xe = mat(zeros(shape(X)))

for i in xrange(T):

Xe[i] = X[i] * float(e[i])

Gamma = zeros((lags+1,K,K))

for lag in xrange(lags+1):

Gamma[lag] = Xe[lag:].T*Xe[:T-lag]

Gamma = Gamma/T

S = Gamma[0].copy()

for i in xrange(1,lags+1):

S = S + w[i]*(Gamma[i]+Gamma[i].T)

XpX = dot(X.T,X)/T

XpXi = inv(XpX)

vcv = mat(XpXi)*S*mat(XpXi)/T

vcv = asarray(vcv)

R2, centered or uncentered

if constant:

R2 = dot(e,e)/dot(y-mean(y),y-mean(y))

else:

R2 = dot(e,e)/dot(y,y)

R2bar = 1-R2*(T-1)/(T-K)

R2 = 1 - R2

return b,vcv,s2,R2,R2bar,e

217

218

Chapter 19

Probability and Statistics Functions

This chapter is divided into two main parts, one for NumPy and one for SciPy. Both packages contain

important functions for simulation, probability distributions and statistics.

NumPy

19.1 Simulating Random Variables

19.1.1 Core Random Number Generators

NumPy random number generators are all stored in the module numpy.random. These can be imported

with using import numpy as np and then calling np.random.rand, for example, or by importing import

numpy.random as rnd and using rnd.rand.1

rand, random_sample

randand random_sampleare uniform random number generators which are identical except that rand takes

a variable number of integer inputs – one for each dimension – while random_sample takes a n-element

tuple. random_sample is the preferred NumPy function, and rand is a convenience function primarily for

MATLAB users.

>>> x = rand(3,4,5)

>>> y = random_sample((3,4,5))

randn, standard_normal

randn and standard_normal are standard normal random number generators. randn, like rand, takes a

variable number of integer inputs, and standard_normal takes an n-element tuple. Both can be called

with no arguments to generate a single standard normal (e.g. randn()). standard_normal is the preferred

NumPy function, and randn is a convenience function primarily for MATLAB users .

>>> x = randn(3,4,5)

>>> y = standard_normal((3,4,5))

1Other import methods can also be used, such as from numpy.random import rand and then calling rand.

219

randint, random_integers

randint and random_integers are uniform integer random number generators which take 3 inputs, low,

high and size. Low is the lower bound of the integers generated, high is the upper and size is a n-element

tuple. randint and random_integers differ in that randint generates integers exclusive of the value in high

(as do most Python functions), while random_integers includes the value in high in its range.

>>> x = randint(0,10,(100))

>>> x.max() # Is 9 since range is [0,10)

9

>>> y = random_integers(0,10,(100))

>>> y.max() # Is 10 since range is [0,10]

10

19.1.2 Random Array Functions

shuffle

shuffle randomly reorders the elements of an array in place.

>>> x = arange(10)

>>> shuffle(x)

>>> x

array([4, 6, 3, 7, 9, 0, 2, 1, 8, 5])

permutation

permutation returns randomly reordered elements of an array as a copy while not directly changing the

input.

>>> x = arange(10)

>>> permutation(x)

array([2, 5, 3, 0, 6, 1, 9, 8, 4, 7])

>>> x

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

19.1.3 Select Random Number Generators

NumPy provides a large selection of random number generators for specific distribution. All take between

0 and 2 required inputs which are parameters of the distribution, plus a tuple containing the size of the

output. All random number generators are in the module numpy.random.

Bernoulli

There is no Bernoulli generator. Instead usebinomial(1,p) to generate a single draw orbinomial(1,p,(10,10))

to generate an array where p is the probability of success.

220

beta

beta(a,b) generates a draw from the Beta(a , b)distribution. beta(a,b,(10,10)) generates a 10 by 10 array

of draws from a Beta(a , b) distribution.

binomial

binomial(n,p) generates a draw from the Binomial(n , p) distribution. binomial(n,p,(10,10)) generates

a 10 by 10 array of draws from the Binomial(n , p) distribution.

chisquare

chisquare(nu)generates a draw from theχ2
ν distribution, whereν is the degree of freedom. chisquare(nu,(10,10))

generates a 10 by 10 array of draws from the χ2
ν distribution.

exponential

exponential()generates a draw from the Exponential distribution with scale parameterλ = 1. exponential(

lambda, (10,10)) generates a 10 by 10 array of draws from the Exponential distribution with scale param-

eter λ.

f

f(v1,v2) generates a draw from the distribution Fν1,ν2 distribution where ν1 is the numerator degree of

freedom and ν2 is the denominator degree of freedom. f(v1,v2,(10,10)) generates a 10 by 10 array of

draws from the Fν1,ν2 distribution.

gamma

gamma(a) generates a draw from the Gamma(α, 1) distribution, where α is the shape parameter. gamma(a,

theta, (10,10)) generates a 10 by 10 array of draws from the Gamma(α, θ) distribution where θ is the

scale parameter.

laplace

laplace() generates a draw from the Laplace (Double Exponential) distribution with centered at 0 and

unit scale. laplace(loc, scale, (10,10)) generates a 10 by 10 array of Laplace distributed data with lo-

cation loc and scale scale. Using laplace(loc, scale) is equivalent to calling loc + scale*laplace().

lognormal

lognormal() generates a draw from a Log-Normal distribution with µ = 0 and σ = 1. lognormal(mu,

sigma, (10,10)) generates a 10 by 10 array or Log-Normally distributed data where the underlying Nor-

mal distribution has mean parameter µ and scale parameterσ.

221

multinomial

multinomial(n, p) generates a draw from a multinomial distribution using n trials and where each out-

come has probability p , a k -element array where Σk
i=1p = 1. Note that p must be an array or other

iterable value. The output is a k -element array containing the number of successes in each category.

multinomial(n, p, (10,10)) generates a 10 by 10 by k array of multinomially distributed data with n

trials and probabilities p .

multivariate_normal

multivariate_normal(mu, Sigma) generates a draw from a multivariate Normal distribution with mean µ

(k -element array) and covarianceΣ (k by k array). multivariate_normal(mu, Sigma, (10,10)) generates

a 10 by 10 by k array of draws from a multivariate Normal distribution with mean µ and covariance Σ.

negative_binomial

negative_binomial(n, p) generates a draw from the Negative Binomial distribution where n is the num-

ber of failures before stopping and p is the success rate. negative_binomial(n, p, (10, 10)) generates a

10 by 10 array of draws from the Negative Binomial distribution where n is the number of failures before

stopping and p is the success rate.

normal

normal() generates draws from a standard Normal (Gaussian). normal(mu, sigma) generates draws from

a Normal with mean µ and standard deviation σ. normal(mu, sigma, (10,10)) generates a 10 by 10 ar-

ray of draws from a Normal with mean µ and standard deviation σ. normal(mu, sigma) is equivalent to

mu + sigma * standard_normal().

poisson

poisson() generates a draw from a Poisson distribution with λ = 1. poisson(lambda) generates a draw

from a Poisson distribution with expectation λ. poisson(lambda, (10,10)) generates a 10 by 10 array of

draws from a Poisson distribution with expectation λ.

standard_t

standard_t(nu) generates a draw from a Student’s t with shape parameter ν. standard_t(nu, (10,10))

generates a 10 by 10 array of draws from a Student’s t with shape parameter ν.

uniform

uniform() generates a uniform random variable on (0, 1). uniform(low, high) generates a uniform on

(l , h). uniform(low, high, (10,10)) generates a 10 by 10 array of uniforms on (l , h).

222

19.2 Simulation and Random Number Generation

Computer simulated random numbers are usually constructed from very complex but ultimately deter-

ministic functions. Because they are not actually random, simulated random numbers are generally de-

scribed to as pseudo-random. All pseudo-random numbers in NumPy use one core random number gen-

erator based on the Mersenne Twister, a generator which can produce a very long series of pseudo-random

data before repeating (up to 219937 − 1 non-repeating values).

RandomState

RandomState is the class used to control the random number generators. Multiple generators can be ini-

tialized by RandomState.

>>> gen1 = np.random.RandomState()

>>> gen2 = np.random.RandomState()

>>> gen1.uniform() # Generate a uniform

0.6767614077579269

>>> state1 = gen1.get_state()

>>> gen1.uniform()

0.6046087317893271

>>> gen2.uniform() # Different, since gen2 has different seed

0.04519705909244154

>>> gen2.set_state(state1)

>>> gen2.uniform() # Same uniform as gen1 after assigning state

0.6046087317893271

19.2.1 State

Pseudo-random number generators track a set of values known as the state. The state is usually a vec-

tor which has the property that if two instances of the same pseudo-random number generator have the

same state, the sequence of pseudo-random numbers generated will be identical. The state of the de-

fault random number generator can be read using numpy.random.get_state and can be restored using

numpy.random.set_state.

>>> st = get_state()

>>> randn(4)

array([0.37283499, 0.63661908, -1.51588209, -1.36540624])

>>> set_state(st)

>>> randn(4)

array([0.37283499, 0.63661908, -1.51588209, -1.36540624])

The two sequences are identical since they the state is the same when randn is called. The state is a 5-

element tuple where the second element is a 625 by 1 vector of unsigned 32-bit integers. In practice the

state should only be stored using get_state and restored using set_state.

223

get_state

get_state() gets the current state of the random number generator, which is a 5-element tuple. It can be

called as a function, in which case it gets the state of the default random number generator, or as a method

on a particular instance of RandomState.

set_state

set_state(state) sets the state of the random number generator. It can be called as a function, in which

case it sets the state of the default random number generator, or as a method on a particular instance of

RandomState. set_state should generally only be called using a state tuple returned by get_state.

19.2.2 Seed

numpy.random.seed is a more useful function for initializing the random number generator, and can be

used in one of two ways. seed() will initialize (or reinitialize) the random number generator using some

actual random data provided by the operating system.2 seed(s) takes a vector of values (can be scalar) to

initialize the random number generator at particular state. seed(s) is particularly useful for producing

simulation studies which are reproducible. In the following example, calls to seed() produce different

random numbers, since these reinitialize using random data from the computer, while calls to seed(0)

produce the same (sequence) of random numbers.

>>> seed()

>>> randn()

array([0.62968838])

>>> seed()

>>> randn()

array([2.230155])

>>> seed(0)

>>> randn()

array([1.76405235])

>>> seed(0)

>>> randn()

array([1.76405235])

NumPy always callsseed()when the first random number is generated. As a result. callingstandard_normal()

across two “fresh” sessions will not produce the same random number.

seed

seed(value) uses value to seed the random number generator. seed() takes actual random data from the

operating system when initializing the random number generator (e.g. /dev/random on Linux, or CryptGen-

Random in Windows).

2All modern operating systems collect data that is effectively random by collecting noise from device drivers and other system
monitors.

224

19.2.3 Replicating Simulation Data

It is important to have reproducible results when conducting a simulation study. There are two methods

to accomplish this:

1. Call seed() and then state = get_state(), and save state to a file which can then be loaded in the

future when running the simulation study.

2. Call seed(s) at the start of the program (where s is a constant).

Either of these will allow the same sequence of random numbers to be used.

Warning: Do not over-initialize the pseudo-random number generators. The generators should be ini-

tialized once per session and then allowed to produce the pseudo-random sequence. Repeatedly re-

initializing the pseudo-random number generators will produce a sequence that is decidedly less random

than the generator was designed to provide.

Considerations when Running Simulations on Multiple Computers

Simulation studies are ideally suited to parallelization, although parallel code makes reproducibility more

difficult. There are 2 methods which can ensure that a parallel study is reproducible.

1. Have a single process produce all of the random numbers, where this process has been initialized

using one of the two methods discussed in the previous section. Formally this can be accomplished

by pre-generating all random numbers, and then passing these into the simulation code as a pa-

rameter, or equivalently by pre-generating the data and passing the state into the function. Inside

the simulation function, the random number generator will be set to the state which was passed as

a parameter. The latter is a better option if the amount of data per simulation is large.

2. Seed each parallel worker independently, and then return the state from the simulation function

along with the simulation results. Since the state is saved for each simulation, it is possible to use

the same state if repeating the simulation using, for example, a different estimator.

19.3 Statistics Functions

mean

mean computes the average of an array. An optional second argument provides the axis to use (default is

to use entire array). mean can be used either as a function or as a method on an array.

>>> x = arange(10.0)

>>> x.mean()

4.5

>>> mean(x)

4.5

>>> x= reshape(arange(20.0),(4,5))

>>> mean(x,0)

225

array([7.5, 8.5, 9.5, 10.5, 11.5])

>>> x.mean(1)

array([2., 7., 12., 17.])

median

median computed the median value in an array. An optional second argument provides the axis to use

(default is to use entire array).

>>> x= randn(4,5)

>>> x

array([[-0.74448693, -0.63673031, -0.40608815, 0.40529852, -0.93803737],

[0.77746525, 0.33487689, 0.78147524, -0.5050722 , 0.58048329],

[-0.51451403, -0.79600763, 0.92590814, -0.53996231, -0.24834136],

[-0.83610656, 0.29678017, -0.66112691, 0.10792584, -1.23180865]])

>>> median(x)

-0.45558017286810903

>>> median(x, 0)

array([-0.62950048, -0.16997507, 0.18769355, -0.19857318, -0.59318936])

Note that when an array or axis dimension contains an even number of elements (n), median returns the

average of the 2 inner elements.

std

std computes the standard deviation of an array. An optional second argument provides the axis to use

(default is to use entire array). std can be used either as a function or as a method on an array.

var

var computes the variance of an array. An optional second argument provides the axis to use (default is

to use entire array). var can be used either as a function or as a method on an array.

corrcoef

corrcoef(x) computes the correlation between the rows of a 2-dimensional array x . corrcoef(x, y) com-

putes the correlation between two 1- dimensional vectors. An optional keyword argument rowvar can be

used to compute the correlation between the columns of the input – this is corrcoef(x, rowvar=False)

and corrcoef(x.T) are identical.

>>> x= randn(3,4)

>>> corrcoef(x)

array([[1. , 0.36780596, 0.08159501],

[0.36780596, 1. , 0.66841624],

[0.08159501, 0.66841624, 1.]])

>>> corrcoef(x[0],x[1])

226

array([[1. , 0.36780596],

[0.36780596, 1.]])

>>> corrcoef(x, rowvar=False)

array([[1. , -0.98221501, -0.19209871, -0.81622298],

[-0.98221501, 1. , 0.37294497, 0.91018215],

[-0.19209871, 0.37294497, 1. , 0.72377239],

[-0.81622298, 0.91018215, 0.72377239, 1.]])

>>> corrcoef(x.T)

array([[1. , -0.98221501, -0.19209871, -0.81622298],

[-0.98221501, 1. , 0.37294497, 0.91018215],

[-0.19209871, 0.37294497, 1. , 0.72377239],

[-0.81622298, 0.91018215, 0.72377239, 1.]])

cov

cov(x) computes the covariance of an array x . cov(x,y) computes the covariance between two 1-dimensional

vectors. An optional keyword argument rowvar can be used to compute the covariance between the

columns of the input – this is cov(x, rowvar=False) and cov(x.T) are identical.

histogram

histogram can be used to compute the histogram (empirical frequency, using k bins) of a set of data. An

optional second argument provides the number of bins. If omitted, k =10 bins are used. histogram returns

two outputs, the first with a k -element vector containing the number of observations in each bin, and the

second with the k + 1 endpoints of the k bins.

>>> x = randn(1000)

>>> count, binends = histogram(x)

>>> count

array([7, 27, 68, 158, 237, 218, 163, 79, 36, 7])

>>> binends

array([-3.06828057, -2.46725067, -1.86622077, -1.26519086, -0.66416096,

-0.06313105, 0.53789885, 1.13892875, 1.73995866, 2.34098856,

2.94201846])

>>> count, binends = histogram(x, 25)

histogram2d

histogram2d(x,y) computes a 2-dimensional histogram for 1-dimensional vectors. An optional keyword

argument bins provides the number of bins to use. bins can contain either a single scalar integer or a

2-element list or array containing the number of bins to use in each dimension.

227

SciPy

SciPy provides an extended range of random number generators, probability distributions and statistical

tests.

import scipy

import scipy.stats as stats

19.4 Continuous Random Variables

SciPy contains a large number of functions for working with continuous random variables. Each function

resides in its own class (e.g. norm for Normal or gamma for Gamma), and classes expose methods for ran-

dom number generation, computing the PDF, CDF and inverse CDF, fitting parameters using MLE, and

computing various moments. The methods are listed below, where dist is a generic placeholder for the

distribution name in SciPy. While the functions available for continuous random variables vary in their

inputs, all take 3 generic arguments:

1. *args a set of distribution specific non-keyword arguments. These must be entered in the order

listed in the class docstring. For example, when using a F -distribution, two arguments are needed,

one for the numerator degree of freedom, and one for the denominator degree of freedom.

2. loc a location parameter, which determines the center of the distribution.

3. scale a scale parameter, which determine the scaling of the distribution. For example, if z is a stan-

dard normal, then s × z is a scaled standard normal.

dist.rvs

Pseudo-random number generation. Generically, rvs is called using dist.rvs(*args, loc=0,scale=1, size=size)

where size is an n-element tuple containing the size of the array to be generated.

dist.pdf

Probability density function evaluation for an array of data (element-by-element). Generically, pdf is

called using dist.pdf(x, *args, loc=0, scale=1)where x is an array that contains the values to use when

evaluating PDF.

dist.logpdf

Log probability density function evaluation for an array of data (element-by-element). Generically, logpdf

is called using dist.logpdf(x, *args, loc=0, scale=1) where x is an array that contains the values to use

when evaluating log PDF.

dist.cdf

Cumulative distribution function evaluation for an array of data (element-by-element). Generically, cdf

is called using dist.cdf(x, *args, loc=0, scale=1) where x is an array that contains the values to use

when evaluating CDF.

228

dist.ppf

Inverse CDF evaluation (also known as percent point function) for an array of values between 0 and 1.

Generically, ppf is called using dist.ppf(p, *args, loc=0, scale=1) where p is an array with all elements

between 0 and 1 that contains the values to use when evaluating inverse CDF.

dist.fit

Estimate shape, location, and scale parameters from data by maximum likelihood using an array of data.

Generically, fit is called using dist.fit(data, *args, floc=0, fscale=1) where data is a data array used

to estimate the parameters. floc forces the location to a particular value (e.g. floc=0). fscale similarly

forces the scale to a particular value (e.g. fscale=1) . It is necessary to use floc and/or fscale when

computing MLEs if the distribution does not have a location and/or scale. For example, the gamma dis-

tribution is defined using 2 parameters, often referred to as shape and scale. In order to use ML to estimate

parameters from a gamma, floc=0 must be used.

dist.median

Returns the median of the distribution. Generically, median is called using dist.median(*args, loc=0, scale=1).

dist.mean

Returns the mean of the distribution. Generically, mean is called using dist.mean(*args, loc=0, scale=1).

dist.moment

nth non-central moment evaluation of the distribution. Generically, moment is called using dist.moment(r, *args,

loc=0, scale=1) where r is the order of the moment to compute.

dist.varr

Returns the variance of the distribution. Generically, var is called using dist.var(*args, loc=0, scale=1).

dist.std

Returns the standard deviation of the distribution. Generically, std is called using dist.std(*args,loc=0, scale=1).

19.4.1 Example: gamma

The gamma distribution is used as an example. The gamma distribution takes 1 shape parameter a (a is

the only element of *args), which is set to 2 in all examples.

>>> import scipy.stats as stats

>>> gamma = stats.gamma

>>> gamma.mean(2), gamma.median(2), gamma.std(2), gamma.var(2)

(2.0, 1.6783469900166608, 1.4142135623730951, 2.0)

>>> gamma.moment(2,2) - gamma.moment(1,2)**2 # Variance

2

229

>>> gamma.cdf(5, 2), gamma.pdf(5, 2)

(0.95957231800548726, 0.033689734995427337)

>>> gamma.ppf(.95957231800548726, 2)

5.0000000000000018

>>> log(gamma.pdf(5, 2)) - gamma.logpdf(5, 2)

0.0

>>> gamma.rvs(2, size=(2,2))

array([[1.83072394, 2.61422551],

[1.31966169, 2.34600179]])

>>> gamma.fit(gamma.rvs(2, size=(1000)), floc = 0) # a, 0, shape

(2.209958533078413, 0, 0.89187262845460313)

19.4.2 Important Distributions

SciPy provides classes for a large number of distribution. The most important are listed in the table be-

low, along with any required arguments (shape parameters). All classes can be used with the keyword

arguments loc and scale to set the location and scale, respectively. The default location is 0 and the de-

fault scale is 1. Setting loc to something other than 0 is equivalent to adding loc to the random variable.

Similarly setting scale to something other than 0 is equivalent to multiplying the variable by scale.
Distribution Name SciPy Name Required Arguments Notes

Normal norm Use loc to set mean (µ), scale to set std. dev. (σ)

Beta(a , b) beta a : a, b : b

Cauchy cauchy

χ2
ν chi2 ν: df

Exponential(λ) expon Use scale to set shape parameter (λ)

Exponential Power exponpow shape: b Nests normal when b=2, Laplace when b=1

F(ν1,ν2) f ν1: dfn, ν2: dfd

Gamma(a , b) gamma a : a Use scale to set scale parameter (b)

Laplace, Double Exponential laplace Use loc to set mean (µ), scale to set std. dev. (σ)

Log Normal(µ,σ2) lognorm σ: s Use scale to set µwhere scale=exp(mu)

Student’s-tν t ν: df

19.4.3 Frozen Random Variable Object

Random variable objects can be used in one of two ways:

1. Calling the class along with any shape, location and scale parameters, simultaneously with the method.

For example gamma(1, scale=2).cdf(1).

2. Initializing the class with any shape, location and scale arguments and assigning a variable name.

Using the assigned variable name with the method. For example:

>>> g = scipy.stats.gamma(1, scale=2)

>>> g.cdf(1)

230

0.39346934028736652

The second method is known as using a frozen random variable object. If the same distribution (with fixed

parameters) is repeatedly used, frozen objects can be used to save typing potentially improve performance

since frozen objects avoid re-initializing the class.

19.5 Select Statistics Functions

mode

mode computes the mode of an array. An optional second argument provides the axis to use (default is to

use entire array). Returns two outputs: the first contains the values of the mode, the second contains the

number of occurrences.

>>> x=randint(1,11,1000)

>>> stats.mode(x)

(array([4.]), array([112.]))

moment

moment computed the rth central moment for an array. An optional second argument provides the axis to

use (default is to use entire array).

>>> x = randn(1000)

>>> moment = stats.moment

>>> moment(x,2) - moment(x,1)**2

0.94668836546169166

>>> var(x)

0.94668836546169166

>>> x = randn(1000,2)

>>> moment(x,2,0) # axis 0

array([0.97029259, 1.03384203])

skew

skew computes the skewness of an array. An optional second argument provides the axis to use (default is

to use entire array).

>>> x = randn(1000)

>>> skew = stats.skew

>>> skew(x)

0.027187705042705772

>>> x = randn(1000,2)

>>> skew(x,0)

array([0.05790773, -0.00482564])

231

kurtosis

kurtosis computes the excess kurtosis (actual kurtosis minus 3) of an array. An optional second argument

provides the axis to use (default is to use entire array). Setting the keyword argument fisher=False will

compute the actual kurtosis.

>>> x = randn(1000)

>>> kurtosis = stats.kurtosis

>>> kurtosis(x)

-0.2112381820194531

>>> kurtosis(x, fisher=False)

2.788761817980547

>>> kurtosis(x, fisher=False) - kurtosis(x) # Must be 3

3.0

>>> x = randn(1000,2)

>>> kurtosis(x,0)

array([-0.13813704, -0.08395426])

pearsonr

pearsonr computes the Pearson correlation between two 1-dimensional vectors. It also returns the 2-

tailed p-value for the null hypothesis that the correlation is 0.

>>> x = randn(10)

>>> y = x + randn(10)

>>> pearsonr = stats.pearsonr

>>> corr, pval = pearsonr(x, y)

>>> corr

0.40806165708698366

>>> pval

0.24174029858660467

spearmanr

spearmanr computes the Spearman correlation (rank correlation). It can be used with a single 2-dimensional

array input, or 2 1-dimensional arrays. Takes an optional keyword argument axis indicating whether to

treat columns (0) or rows (1) as variables. If the input array has more than 2 variables, returns the correla-

tion matrix. If the input array as 2 variables, returns only the correlation between the variables.

>>> x = randn(10,3)

>>> spearmanr = stats.spearmanr

>>> rho, pval = spearmanr(x)

>>> rho

array([[1. , -0.02087009, -0.05867387],

[-0.02087009, 1. , 0.21258926],

[-0.05867387, 0.21258926, 1.]])

232

>>> pval

array([[0. , 0.83671325, 0.56200781],

[0.83671325, 0. , 0.03371181],

[0.56200781, 0.03371181, 0.]])

>>> rho, pval = spearmanr(x[:,1],x[:,2])

>>> corr

-0.020870087008700869

>>> pval

0.83671325461864643

kendalltau

kendalltau computed Kendall’s τ between 2 1-dimensonal arrays.

>>> x = randn(10)

>>> y = x + randn(10)

>>> kendalltau = stats.kendalltau

>>> tau, pval = kendalltau(x,y)

>>> tau

0.46666666666666673

>>> pval

0.06034053974834707

linregress

linregress estimates a linear regression between 2 1-dimensional arrays. It takes two inputs, the indepen-

dent variables (regressors) and the dependent variable (regressand). Models always include a constant.

>>> x = randn(10)

>>> y = x + randn(10)

>>> linregress = stats.linregress

>>> slope, intercept, rvalue, pvalue, stderr = linregress(x,y)

>>> slope

1.6976690163576993

>>> rsquare = rvalue**2

>>> rsquare

0.59144988449163494

>>> x.shape = 10,1

>>> y.shape = 10,1

>>> z = hstack((x,y))

>>> linregress(z) # Alternative form, [x y]

(1.6976690163576993,

-0.79983724584931648,

0.76905779008578734,

233

0.0093169560056056751,

0.4988520051409559)

19.6 Select Statistical Tests

normaltest

normaltest tests for normality in an array of data. An optional second argument provides the axis to use

(default is to use entire array). Returns the test statistic and the p-value of the test. This test is a small

sample modified version of the Jarque-Bera test statistic.

kstest

kstest implements the Kolmogorov-Smirnov test. Requires two inputs, the data to use in the test and the

distribution, which can be a string or a frozen random variable object. If the distribution is provided as

a string, then any required shape parameters are passed in the third argument using a tuple containing

these parameters, in order.

>>> x = randn(100)

>>> kstest = stats.kstest

>>> stat, pval = kstest(x, ’norm’)

>>> stat

0.11526423481470172

>>> pval

0.12963296757465059

>>> ncdf = stats.norm().cdf # No () on cdf to get the function

>>> kstest(x, ncdf)

(0.11526423481470172, 0.12963296757465059)

>>> x = gamma.rvs(2, size = 100)

>>> kstest(x, ’gamma’, (2,)) # (2,) contains the shape parameter

(0.079237623453142447, 0.54096739528138205)

>>> gcdf = gamma(2).cdf

>>> kstest(x, gcdf)

(0.079237623453142447, 0.54096739528138205)

ks_2samp

ks_2samp implements a 2-sample version of the Kolmogorov-Smirnov test. It is called ks_2samp(x,y)

where both inputs are 1-dimensonal arrays, and returns the test statistic and p-value for the null that

the distribution of x is the same as that of y .

234

shapiro

shapiro implements the Shapiro-Wilk test for normality on a 1-dimensional array of data. It returns the

test statistic and p-value for the null of normality.

19.7 Exercises

1. For each of the following distributions, simulate 1000 pseudo-random numbers:

(a) N (0, 12)

(b) N
(

3, 32
)

(c) U ni f (0, 1)

(d) U ni f (−1, 1)

(e) G a mma (1, 2)

(f) Lo g N
(

.08, .22
)

2. Use kstest to compute the p-value for each set of simulated data.

3. Use seed to re-initialize the random number generator.

4. Use get_state and set_state to produce the same set of pseudo-random numbers.

5. Write a custom function that will take a T vector of data and returns the mean, standard deviation,

skewness and kurtosis (not excess) as a 4-element array.

6. Generate a 100 by 2 array of normal data with covariance matrix

1 −.5

−.5 1

and compute the Pearson and Spearman correlation and Kendall’s τ.

7. Compare the analytical median of a Gamma(1, 2) with that of 10,000 simulated data points. (You

will need a hist , which is discussed in the graphics chapter to finish this problem.)

8. For each of the sets of simulated data in exercise 1, plot the sorted CDF values to verify that these lie

on a 45o line. (You will need plot , which is discussed in the graphics chapter to finish this problem.)

235

236

Chapter 20

Optimization

SciPy contains a number of routines to the find extremum of a user-supplied objective function located

in scipy.optimize. Most of these implement a version of the Newton-Raphson algorithm which uses the

gradient to find the minimum of a function. However, this is not a limitation since if f is a function to be

maximized,− f is a function with the minimum at located the same point as the maximum of f .

A custom function that returns the function value at a set of parameters – for example a log-likelihood

or a GMM quadratic form – is required to use one an optimizer. All optimization targets must have the

parameters as the first argument. For example, consider finding the minimum of x 2. A function which

allows the optimizer to work correctly has the form

def optim_target1(x):

return x**2

When multiple parameters (a parameter vector) are used, the objective function must take the form

def optim_target2(params):

x, y = params

return x**2-3*x+3+y*x-3*y+y**2

Optimization targets can also have additional inputs that are not parameters of interest such as data or

hyper-parameters.

def optim_target3(params,hyperparams):

x, y = params

c1, c2, c3=hyperparams

return x**2+c1*x+c2+y*x+c3*y+y**2

This form is especially useful when optimization targets require both parameters and data. Once an op-

timization target has been specified, the next step is to use one of the optimizers find the minimum. The

remainder of this chapter assumes that the following import is used to import the SciPy optimizers.

import scipy.optimize as opt

237

20.1 Unconstrained Optimization

A number of functions are available for unconstrained optimization using derivative information. Each

uses a different algorithm to determine the best direction to move and the best step size to take in the

direction. The basic structure of all of the unconstrained optimizers is

optimizer(f, x0)

where optimizer is one of fmin_bfgs, fmin_cg, fmin_ncg or fmin_powell, f is a callable function and x0 is

an initial value used to start the algorithm. All of the unconstrained optimizers take the following keyword

arguments, except where noted:

Keyword Description Note

fprime Function returning derivative of f. Must take same inputs as f (1)

args Tuple containing extra parameters to pass to f

gtol Gradient norm for terminating optimization (1)

norm Order of norm (e.g. inf or 2) (1)

epsilon Step size to use when approximating f ′ (1)

maxiter Integer containing the maximum number of iterations

disp Boolean indicating whether to print convergence message

full_output Boolean indicating whether to return additional output

retall Boolean indicating whether to return results for each iteration.

callback User supplied function to call after each iteration.

(1) Except fmin, fmin_powell.

fmin_bfgs

fmin_bfgs is a classic optimizer which uses information in the 1st derivative to estimate the second deriva-

tive, an algorithm known as BFGS (after the initials of the creators). This should usually be the first option

explored when optimizing a function without constraints. A function which returns the first derivative of

the problem can also be provided, and if not provided, the first derivative is numerically approximated.

The basic use of fmin_bfgs for finding the minimum of optim_target1 is shown below.

>>> opt.fmin_bfgs(optim_target1, 2)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 2

Function evaluations: 12

Gradient evaluations: 4

array([-7.45132576e-09])

This is a very simple function to minimize and the solution is accurate to 8 decimal places. fmin_bfgs can

also use first derivative information, which is provided using a function which must have the same inputs

are the optimization target. In this simple example, f ′ (x) = 2x .

def optim_target1_grad(x):

return 2*x

238

The derivative information is used through the keyword argument fprime. Using analytic derivatives typ-

ically improves both the accuracy of the solution and the time required to find the optimum.

>>> opt.fmin_bfgs(optim_target1, 2, fprime = optim_target1_grad)

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 2

Function evaluations: 4

Gradient evaluations: 4

array([2.71050543e-20])

Multivariate optimization problems are defined using an array for the starting values, but are otherwise

identical.

>>> opt.fmin_bfgs(optim_target2, array([1.0,2.0]))

Optimization terminated successfully.

Current function value: 0.000000

Iterations: 3

Function evaluations: 20

Gradient evaluations: 5

array([1. , 0.99999999])

Additional inputs are can be passed to the optimization target using the keyword argument args and a

tuple containing the input arguments in the correct order. Note that since there is a single additional

input, the comma is necessary in (hyperp,) to let Python know that this is a tuple.

>>> hyperp = array([1.0,2.0,3.0])

>>> opt.fmin_bfgs(optim_target3, array([1.0,2.0]), args=(hyperp,))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 3

Function evaluations: 20

Gradient evaluations: 5

array([0.33333332, -1.66666667])

Derivative functions can be produced in a similar manner, although the derivative of a scalar function with

respect to an n-element vector is an n-element vector. It is important that the derivative (or gradient)

returned has the same order as the input parameters. Note that the inputs must both be present, even

when not needed, and in the same order.

def optim_target3_grad(params,hyperparams):

x, y = params

c1, c2, c3=hyperparams

return array([2*x+c1+y, x+c3+2*y])

Using the analytical derivative reduces the number of function evaluations and produces the same solu-

tion.

>>> optimum = opt.fmin_bfgs(optim_target3, array([1.0,2.0]), fprime=optim_target3_grad, args=(hyperp ,))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 3

239

Function evaluations: 5

Gradient evaluations: 5

>>> optimum

array([0.33333333, -1.66666667])

>>> optim_target3_grad(optimum, hyperp) # Numerical zero

array([-2.22044605e-16, 0.00000000e+00])

fmin_cg

fmin_cg uses a nonlinear conjugate gradient method to minimize a function. A function which returns

the first derivative of the problem can be provided, and when not provided, the gradient is numerically

approximated.

>>> opt.fmin_cg(optim_target3, array([1.0,2.0]), args=(hyperp ,))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 7

Function evaluations: 59

Gradient evaluations: 12

array([0.33333334, -1.66666666])

fmin_ncg

fmin_ncg use a Newton conjugate gradient method. fmin_ncg requires a function which can compute the

first derivative of the optimization target, and can also take a function which returns the second derivative

(Hessian) of the optimization target. It not provided, the Hessian will be numerically approximated.

>>> opt.fmin_ncg(optim_target3, array([1.0,2.0]), optim_target3_grad, args=(hyperp,))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 5

Function evaluations: 6

Gradient evaluations: 21

Hessian evaluations: 0

array([0.33333333, -1.66666666])

The hessian can optionally be provided to fmin_ncg using the keyword argument fhess. The hessian re-

turns ∂ 2 f /∂ x∂ x ′, which is an n by n array of derivatives. In this simple problem, the hessian does not

depend on the hyper-parameters, although the Hessian function must take the same inputs are the opti-

mization target.

def optim_target3_hess(params,hyperparams):

x, y = params

c1, c2, c3=hyperparams

return(array([[2, 1],[1, 2]]))

Using an analytical Hessian can reduce the number of function evaluations. While in theory an analytical

Hessian should produce better results, it may not improve convergence, especially if the Hessian is nearly

singular for some parameter values (for example, near a saddle point which is not a minimum).

240

>>> opt.fmin_ncg(optim_target3, array([1.0,2.0]), optim_target3_grad, \

... fhess = optim_target3_hess, args=(hyperp ,))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 5

Function evaluations: 6

Gradient evaluations: 5

Hessian evaluations: 5

array([0.33333333, -1.66666667])

In addition to the keyword argument outlined in the main table, fmin_ncg can take the following additional

arguments.

Keyword Description Note

fhess_p Function returning second derivative of f times Only fmin_ncg

a vector p . Must take same inputs as f

fhess Function returning second derivative of f. Only fmin_ncg

Must take same inputs as f

avestol Average relative error to terminate optimizer. Only fmin_ncg

20.2 Derivative-free Optimization

Derivative free optimizers do not use gradients and so can be used in a wider variety of problems such as

functions which are not continuously differentiable. They can also be used for functions which are con-

tinuously differentiable, although they are likely to be slower than derivative-based optimizers. Derivative

free optimizers take some alternative keyword arguments.

Keyword Description Note

xtol Change in x to terminate optimization

ftol Change in function to terminate optimization

maxfun Maximum number of function evaluations

direc Initial direction set, same size as x0 by m Only fmin_powell

fmin

fmin uses a simplex algorithm to minimize a function. The optimization in a simplex algorithm is often

described as an amoeba which crawls around on the function surface expanding and contracting while

looking for lower points. The method is derivative free, and so optimization target need not be continu-

ously differentiable(e.g. the “tick” loss function used in estimation of quantile regression).

def tick_loss(quantile, data, alpha):

e = data - quantile

return dot((alpha - (e<0)),e)

241

The tick loss function is used to estimate the median by using α = 0.5. This loss function is not continu-

ously differential and so standard derivative-based optimizers cannot be used.

>>> data = randn(1000)

>>> opt.fmin(tick_loss, 0, args=(data, 0.5))

Optimization terminated successfully.

Current function value: -0.333333

Iterations: 48

Function evaluations: 91

array([-0.00475])

>>> median(data)

-0.0047118168472319406

The estimate is close to the sample median, as expected.

fmin_powell

fmin_powell used Powell’s method, which is derivative free, to minimize a function. It is an alternative to

fmin which uses a different algorithm.

>>> opt.fmin_powell(tick_loss, 0, args=(data, 0.5))

Optimization terminated successfully.

Current function value: 396.760642

Iterations: 1

Function evaluations: 17

array(-0.004673123552046776)

fmin_powell converged quickly and requires far fewer function calls.

20.3 Constrained Optimization

Constrained optimization is frequently encountered in economic problems where parameters are only

meaningful in some particular range – for example, a variance which must be weakly positive. The relevant

class constrained optimization problems can be formulated

minθ f (θ) subject to

g (θ) = 0 (equality)

h (θ) ≥ 0 (inequality)

θL ≤ θ ≤ θH (bounds)

where the bounds constraints are redundant if the optimizer allows for general inequality constraints since

when a scalar x satisfies xL ≤ x ≤ xH , then x − xL ≥ 0 and xH − x ≥ 0. The optimizers in SciPy allow

for different subsets of these constraints.

fmin_slsqp

fmin_slsqp is the most general constrained optimizer and allows for equality, inequality and bounds con-

straints. While bound constraints are redundant, constraints which take the form of bounds should be

implemented using bounds since this provides more information directly to the optimizer. Constraints

242

are provided either as list of callable functions or as a single function which returns an array. The latter is

simpler if there are multiple constraints, especially if the constraints can be easily calculated using linear

algebra. Functions which compute the derivative of the optimization target, the derivative of the equality

constraints, and the derivative of the inequality constraints can be optionally provided. If not provided,

these are numerically approximated.

As an example, consider the problem of optimizing a CRS Cobb-Douglas utility function of the form

U (x1, x2) = xλ1 x 1−λ
2 subject to a budget constraint p1 x1 + p2 x2 ≤ 1. This is a nonlinear function subject

to a linear constraint (note that is must also be that case that x1 ≥ 0 and x2 ≥ 0). First, specify the

optimization target

def utility(x, p, alpha):

Minimization, not maximization so -1 needed

return -1.0 * (x[0]**alpha)*(x[1]**(1-alpha))

There are three constraints, x1 ≥ 0, x2 ≥ 0 and the budget line. All constraints must take the form of≥ 0

constraint, so that the budget line can be reformulated as 1−p1 x1−p2 x2 ≥ 0 . Note that the arguments in

the constraint must be identical to those of the optimization target, which is why the utility function takes

prices as an input, even though the prices are not required to compute the utility. Similarly the constraint

function takes α as an unnecessary input.

def utility_constraints(x, p, alpha):

return array([x[0], x[1], 1 - p[0]*x[0] - p[1]*x[1]])

The optimal combination of goods can be computed using fmin_slsqp once the starting values and other

inputs for the utility function and budget constraint are constructed.

>>> p = array([1.0,1.0])

>>> alpha = 1.0/3

>>> x0 = array([.4,.4])

>>> opt.fmin_slsqp(utility, x0, f_ieqcons=utility_constraints, args=(p, alpha))

Optimization terminated successfully. (Exit mode 0)

Current function value: -0.529133683989

Iterations: 2

Function evaluations: 8

Gradient evaluations: 2

array([0.33333333, 0.66666667])

fmin_slsqp can also take functions which compute the gradient of the optimization target, as well as the

gradients of the constraint functions (both inequality and equality). The gradient of the optimization

function should return a n-element vector, one for each parameter of the problem.

def utility_grad(x, p, alpha):

grad = zeros(2)

grad[0] = -1.0 * alpha * (x[0]**(alpha-1))*(x[1]**(1-alpha))

grad[1] = -1.0 * (1-alpha) * (x[0]**(alpha))*(x[1]**(-alpha))

return grad

The gradient of the constraint function returns a m by n array where m is the number of constraints.

When both equality and inequality constraints are used, the number of constraints will be me q and mi n

which will generally not be the same.

def utility_constraint_grad(x, p, alpha):

243

grad = zeros((3,2)) # 3 constraints, 2 variables

grad[0,0] = 1.0

grad[0,1] = 0.0

grad[1,0] = 0.0

grad[1,1] = 1.0

grad[2,0] = -p[0]

grad[2,1] = -p[1]

return grad

The two gradient functions can be passed using keyword arguments.

>>> opt.fmin_slsqp(utility, x0, f_ieqcons=utility_constraints, args=(p, alpha), \

... fprime = utility_grad, fprime_ieqcons = utility_constraint_grad)

Optimization terminated successfully. (Exit mode 0)

Current function value: -0.529133683989

Iterations: 2

Function evaluations: 2

Gradient evaluations: 2

array([0.33333333, 0.66666667])

Like in other problems, gradient information reduces the number of iterations and/or function evalua-

tions needed to find the optimum.

fmin_slsqp also accepts bounds constraints. Since two of the three constraints are x1 ≥ 0 and x2 ≥ 0,

these can be easily specified as a bound. Bounds are given as a list of tuples, where there is a tuple for

each variable with an upper and lower bound. It is not always possible to use np.inf as the upper bound,

even if there is no implicit upper bound since this may produce a nan. In this example, 2 was used as the

upper bound since it was outside of the possible range given the constraint. Using bounds also requires

reformulating the budget constraint to only include the budget line.

def utility_constraints_alt(x, p, alpha):

return array([1 - p[0]*x[0] - p[1]*x[1]])

Bounds are used with the keyword argument bounds.

>>> opt.fmin_slsqp(utility, x0, f_ieqcons=utility_constraints_alt, args=(p, alpha), \

... bounds = [(0.0,2.0),(0.0,2.0)])

Optimization terminated successfully. (Exit mode 0)

Current function value: -0.529133683989

Iterations: 2

Function evaluations: 8

Gradient evaluations: 2

array([0.33333333, 0.66666667])

The use of non-linear constraints can be demonstrated by formulating the dual problem of cost min-

imization subject to achieving a minimal amount of utility. In this alternative formulation, the optimiza-

tion problems becomes

min
x1,x2

p1 x1 + p2 x2 subject to U (x1, x2) ≥ Ū

def total_expenditure(x,p,alpha,Ubar):

return dot(x,p)

244

def min_utility_constraint(x,p,alpha,Ubar):

x1,x2 = x

u=x1**(alpha)*x2**(1-alpha)

return array([u - Ubar]) # >= constraint, must be array, even if scalar

The objective and the constraint are used along with a bounds constraint to solve the constrained

optimization problem.

>>> x0 = array([1.0,1.0])

>>> p = array([1.0,1.0])

>>> alpha = 1.0/3

>>> Ubar = 0.529133683989

>>> opt.fmin_slsqp(total_expenditure, x0, f_ieqcons=min_utility_constraint, \

... args=(p, alpha, Ubar), bounds =[(0.0,2.0),(0.0,2.0)])

Optimization terminated successfully. (Exit mode 0)

Current function value: 0.999999999981

Iterations: 6

Function evaluations: 26

Gradient evaluations: 6

Out[84]: array([0.33333333, 0.66666667])

As expected, the solution is the same.

fmin_tnc

fmin_tnc supports only bounds constraints.

fmin_l_bfgs_b

fmin_l_bfgs_b supports only bounds constraints.

fmin_cobyla

fmin_cobyla supports only inequality constraints, which must be provided as a list of functions. Since it

supports general inequality constraints, bounds constraints are included as a special case, although these

must be included in the list of constraint functions.

def utility_constraints1(x, p, alpha):

return x[0]

def utility_constraints2(x, p, alpha):

return x[1]

def utility_constraints3(x, p, alpha):

return (1 - p[0]*x[0] - p[1]*x[1])

Note that fmin_cobyla takes a list rather than an array for the starting values. Using an array produces a

warning, but otherwise works.

>>> p = array([1.0,1.0])

>>> alpha = 1.0/3

>>> x0 = array([.4,.4])

245

>>> cons = [utility_constraints1, utility_constraints2, utility_constraints3]

>>> opt.fmin_cobyla(utility, x0, cons, args=(p, alpha), rhoend=1e-7)

array([0.33333326, 0.66666674])

20.3.1 Reparameterization

Many constrained optimization problems can be converted into an unconstrained program by reparam-

eterizing from the space of unconstrained variables into the space where the parameters must reside. For

example, the constraints in the utility function optimization problem require 0 ≤ x1 ≤ 1/p1 and 0 ≤ x2 ≤
1/p2. Additionally the budget constraint must be satisfied so that if x1 ∈ [0, 1/p1], x2 ∈ [0, (1− p1 x1)/p2].
These constraints can be implemented using a “squasher” function which maps x1 into its domain, and

x2 into its domain and is one-to-one and onto (i.e. a bijective relationship). For example,

x1 =
1

p1

e z1

1 + e z1
, x2 =

1− p1 x1

p2

e z2

1 + e z2

will always satisfy the constraints, and so the constrained utility function can be mapped to an uncon-

strained problem, which can then be optimized using an unconstrained optimizer.

def reparam_utility(z,p,alpha,printX = False):

x = exp(z)/(1+exp(z))

x[0] = (1.0/p[0]) * x[0]

x[1] = (1-p[0]*x[0])/p[1] * x[1]

if printX:

print(x)

return -1.0 * (x[0]**alpha)*(x[1]**(1-alpha))

The unconstrained utility function can be minimized using fmin_bfgs. Note that the solution returned

is in the transformed space, and so a special call to reparam_utility is used to print the actual values of x

at the solution (which are virtually identical to those found using the constrained optimizer).

>>> x0 = array([.4,.4])

>>> optX = opt.fmin_bfgs(reparam_utility, x0, args=(p,alpha))

Optimization terminated successfully.

Current function value: -0.529134

Iterations: 24

Function evaluations: 104

Gradient evaluations: 26

>>> reparam_utility(optX, p, alpha, printX=True)

[0.33334741 0.66665244]

20.4 Scalar Function Minimization

SciPy provides a number of scalar function minimizers. These are very fast since additional techniques

are available for solving scalar problems which are not applicable when the parameter vector has more

than 1 element. A simple quadratic function will be used to illustrate the scalar solvers. Scalar function

minimizers do not require starting values, but may require bounds for the search.

def optim_target5(x, hyperparams):

246

c1,c2,c3 = hyperparams

return c1*x**2 + c2*x + c3

fminbound

fminbound finds the minimum of a scalar function between two bounds.

>>> hyperp = array([1.0, -2.0, 3])

>>> opt.fminbound(optim_target5, -10, 10, args=(hyperp,))

1.0000000000000002

>>> opt.fminbound(optim_target5, -10, 0, args=(hyperp,))

-5.3634455116374429e-06

golden

golden uses a golden section search algorithm to find the minimum of a scalar function. It can optionally

be provided with bracketing information which can speed up the solution.

>>> hyperp = array([1.0, -2.0, 3])

>>> opt.golden(optim_target5, args=(hyperp,))

0.999999992928981

>>> opt.golden(optim_target5, args=(hyperp,), brack=[-10.0,10.0])

0.9999999942734483

brent

brent uses Brent’s method to find the minimum of a scalar function.

>>> opt.brent(optim_target5, args=(hyperp,))

0.99999998519

20.5 Nonlinear Least Squares

Non-linear least squares (NLLS) is similar to general function minimization. In fact, a generic function

minimizer can (attempt to) minimize a NLLS problem. The main difference is that the optimization target

returns a vector of errors rather than the sum of squared errors.

def nlls_objective(beta, y, X):

b0 = beta[0]

b1 = beta[1]

b2 = beta[2]

return y - b0 - b1 * (X**b2)

A simple non-linear model is used to demonstrate leastsq, the NLLS optimizer in SciPy.

yi = β1 + 2β2 xβ3 + ei

247

where x and e are i.i.d. standard normal random variables. The true parameters are β1 = 10, β2 = 2 and

β3 = 1.5.

>>> X = 10 *rand(1000)

>>> e = randn(1000)

>>> y = 10 + 2 * X**(1.5) + e

>>> beta0 = array([10.0,2.0,1.5])

>>> opt.leastsq(nlls_objective, beta0, args = (y, X))

(array([10.08885711, 1.9874906 , 1.50231838]), 1)

leastsq returns a tuple containing the solution, which is very close to the true values, as well as a flag

indicating that convergence was achieved. leastsq takes many of the same additional keyword arguments

as other optimizers, including full_output, ftol, xtol, gtol, maxfev (same as maxfun). It has the additional

keyword argument:

Keyword Description Note

Ddun Function to compute the Jacobian of the problem.

Element i , j should be ∂ ei /∂ β j

col_deriv Direction to use when computing Jacobian numerically

epsfcn Step to use in numerical Jacobian calculation.

diag Scalar factors for the parameters.

Used to rescale if scale is very different.

factor used to determine the initial step size. Only fmin_powell

20.6 Exercises

1. The MLE forµ in a normal random variable is the sample mean. Write a function which takes a scalar

parameter µ (1st argument) and a T vector of data and computes the negative of the log-likelihood,

assuming the data is random and the variance is 1. Minimize the function (starting from something

other than the same mean) using fmin_bfgs and fmin.

2. Extend to previous example where the first input is a 2-element vector containing µ and σ2, and

compute the negative log-likelihood. Use fmin_slsqp along with a lower bound of 0 forσ2.

3. Repeat the exercise in problem 2, except using reparameterization so that σ is input (and then

squared).

4. Verify that the OLS β is the MLE by writing a function which takes 3 inputs: K vector β ,T by K

array X and T by 1 array y , and computes the negative log-likelihood for these values. Minimize

the function using fmin_bfgs starting at the OLS estimates of β .

248

Chapter 21

String Manipulation

Strings are usually less interesting than numerical values in econometrics and statistics. There are, how-

ever, some important uses for strings:

• Reading complex data formats

• Outputting formatted results to screen or file

Recall that strings are sliceable, but unlike arrays, are immutable, and so it is not possible to replace part

of a string.

21.1 String Building

21.1.1 Adding Strings (+)

Strings are concatenated using +.

>>> a = ’Python is’

>>> b = ’a rewarding language.’

>>> a + ’ ’ + b

’Python is a rewarding language.’

While + is a simple method to joint strings, the modern method is to use join. join is a string method

which joins a list of strings (the input) using the object calling the string as the separator.

>>> a = ’Python is’

>>> b = ’a rewarding language.’

>>> ’ ’.join([a,b])

’Python is a rewarding language.’

Alternatively, the same output may be constructed using an empty string ’’.

>>> a = ’Python is’

>>> b = ’a rewarding language.’

>>> ’’.join([a,’ ’,b])

’Python is a rewarding language.’

join is also useful for producing comma separated lists.

249

>>> words = [’Python’,’is’,’a’,’rewarding’,’language’]

>>> ’,’.join(words)

’Python,is,a,rewarding,language’

21.1.2 Multiplying Strings (*)

Strings, like lists, can be repeated using *.

>>> a = ’Python is ’

>>> 2*a

’Python is Python is ’

21.1.3 Using cStringIO

While adding strings using + or join is extremely simple, concatenation is slow for large strings. The mod-

ule cStringIO provides an optimized class for performing string operations, including buffering strings

for fast string building. This example shows how write(string) fills a StringIO buffer. Before reading the

contents seek(0) is called to return to cursor to the beginning of the buffer, and then read() returns the

entire string from the buffer.

>>> import cStringIO

>>> sio = cStringIO.StringIO()

>>> for i in xrange(10000):

... sio.write(’cStringIO is faster than +! ’)

>>> sio.seek(0)

>>> sio.read()

Note that this example is trivial since * could have been used instead.

21.2 String Functions

21.2.1 split and rsplit

split splits a string into a list based on a character, for example a comma. An optional third argument

maxsplit can be used to limit the number of outputs in the list. rsplit works identically to split, only

scanning from the end of the string – split and rsplit only differ when maxsplit is used.

>>> s = ’Python is a rewarding language.’

>>> s.split(’ ’)

[’Python’, ’is’, ’a’, ’rewarding’, ’language.’]

>>> s.split(’ ’,3)

[’Python’, ’is’, ’a’, ’rewarding language.’]

>>> s.rsplit(’ ’,3)

[’Python is’, ’a’, ’rewarding’, ’language.’]

250

21.2.2 join

join concatenates a list or tuple of strings, using an optional argument sep which specified a separator

(default is space).

>>> import string

>>> a = ’Python is’

>>> b = ’a rewarding language.’

>>> string.join((a,b))

’Python is a rewarding language.’

>>> string.join((a,b),’:’)

’Python is:a rewarding language.’

>>> ’ ’.joint((a,b)) # Method version

’Python is a rewarding language.’

21.2.3 strip, lstrip, and rstrip

strip removes leading and trailing whitespace from a string. An optional input char removes leading

and trailing occurrences of the input value (instead of space). lstrip and rstrip work identically, only

stripping from the left and right, respectively.

>>> s = ’ Python is a rewarding language. ’

>>> s=s.strip()

’Python is a rewarding language.’

>>> s.strip(’P’)

’ython is a rewarding language.’

21.2.4 find and rfind

find locates the lowest index of a substring in a string and returns -1 if not found. Optional arguments

limit the range of the search, and s.find(’i’,10,20) is identical to s[10:20].find(’i’). rfind works

identically, only returning the highest index of the substring.

>>> s = ’Python is a rewarding language.’

>>> s.find(’i’)

7

>>> s.find(’i’,10,20)

18

>>> s.rfind(’i’)

18

find and rfind are commonly used in flow control.

>>> words = [’apple’,’banana’,’cherry’,’date’]

>>> words_with_a = []

>>> for word in words:

251

... if word.find(’a’)>=0:

... words_with_a.append(word)

>>> words_with_a

[’apple’, ’banana’, ’date’]

21.2.5 index and rindex

index returns the lowest index of a substring, and is identical to find except that an error is raised if the

substring does not exist. As a result, index is only safe to use in a try . . . except block.

>>> s = ’Python is a rewarding language.’

>>> s.index(’i’)

7

>>> s.index(’q’) # Error

ValueError: substring not found

21.2.6 count

count counts the number of occurrences of a substring, and takes optional arguments to limit the search

range.

>>> s = ’Python is a rewarding language.’

>>> s.count(’i’)

2

>>> s.count(’i’, 10, 20)

1

21.2.7 lower and upper

lower and upper convert strings to lower and upper case, respectively. They are useful to remove case

when comparing strings.

>>> s = ’Python is a rewarding language.’

>>> s.upper()

’PYTHON IS A REWARDING LANGUAGE.’

>>> s.lower()

’python is a rewarding language.’

21.2.8 ljust, rjust and center

ljust, rjust and center left justify, right justify and center, respectively, a string while expanding its size

to a given length. If the desired length is smaller than the string, the unchanged string is returned.

>>> s = ’Python is a rewarding language.’

>>> s.ljust(40)

’Python is a rewarding language. ’

252

>>> s.rjust(40)

’ Python is a rewarding language.’

>>> s.center(40)

’ Python is a rewarding language. ’

21.2.9 replace

replace replaces a substring with an alternative string, which can have different size. An optional argu-

ment limits the number of replacement.

>>> s = ’Python is a rewarding language.’

>>> s.replace(’g’,’Q’)

’Python is a rewardinQ lanQuaQe.’

>>> s.replace(’is’,’Q’)

’Python Q a rewarding language.’

>>> s.replace(’g’,’Q’,2)

’Python is a rewardinQ lanQuage.’

21.2.10 textwrap.wrap

The module textwrap contains a function wrap which reformats a long string into a fixed width paragraph

stored line-by-line in a list. An optional argument changes the width of the output paragraph form the

default of 70 characters.

>>> import textwrap

>>> s = ’Python is a rewarding language. ’

>>> s = 10*s

>>> textwrap.wrap(s)

[’Python is a rewarding language. Python is a rewarding language. Python’,

’is a rewarding language. Python is a rewarding language. Python is a’,

’rewarding language. Python is a rewarding language. Python is a’,

’rewarding language. Python is a rewarding language. Python is a’,

’rewarding language. Python is a rewarding language.’]

>>> textwrap.wrap(s,50)

[’Python is a rewarding language. Python is a’,

’rewarding language. Python is a rewarding’,

’language. Python is a rewarding language. Python’,

’is a rewarding language. Python is a rewarding’,

’language. Python is a rewarding language. Python’,

’is a rewarding language. Python is a rewarding’,

’language. Python is a rewarding language.’]

253

21.3 Formatting Numbers

Formatting numbers when converting to a string allows for automatic generation of tables and well for-

matted screen output. Numbers are formatted using the format function, which is used in conjunction

with a format specifier. For example, consider these examples which format π.

>>> pi

3.141592653589793

>>> ’{:12.5f}’.format(pi)

’ 3.14159’

>>> ’{:12.5g}’.format(pi)

’ 3.1416’

>>> ’{:12.5e}’.format(pi)

’ 3.14159e+00’

These all provide alternative formats and the difference is determined by the letter in the format string.

The generic form of a format string is {n: f a s w c .p t } or {n: f a s w c m t }. To understand the the various

choices, consider the output produced by the basic output string ’{0:}’

>>> ’{0:}’.format(pi)

’3.14159265359’

• n is a number 0,1,. . . indicating which value to take from the format function

>>> ’{0:}, {1:} and {2:} are all related to pi’.format(pi,pi+1,2*pi)

’3.14159265359, 4.14159265359 and 6.28318530718 are all related to pi’

>>> ’{2:}, {0:} and {1:} reorder the output.’.format(pi,pi+1,2*pi)

’6.28318530718, 3.14159265359 and 4.14159265359 reorder the output.

• f a are fill and alignment characters, typically a 2 character string. Fill may be any character except

}, although space is the most common choice. Alignment can < (left) ,> (right), ^ (center) or = (pad

to the right of the sign). Simple left 0-fills can omit the alignment character so that f a = 0.

>>> ’{0:0<20}’.format(pi) # Left, 0 padding, precion 20

’3.141592653590000000’

>>> ’{0:0>20}’.format(pi) # Right, 0 padding, precion 20

’00000003.14159265359’

>>> ’{0:0^20}’.format(pi) # Center, 0 padding, precion 20

’0003.141592653590000’

>>> ’{0: >20}’.format(pi) # Right, space padding, precion 20

’ 3.14159265359’

>>> ’{0:$^20}’.format(pi) # Center, dollar sign padding, precion 20

’$$$3.14159265359$$$$’

254

• s indicates whether a sign should be included. + indicates always include sign, - indicates only in-

clude if needed, and a blank space indicates to use a blank space for positive numbers, and a− sign

for negative numbers – this format is useful for producing aligned tables.

>>> ’{0:+}’.format(pi)

’+3.14159265359’

>>> ’{0:+}’.format(-1.0 * pi)

’-3.14159265359’

>>> ’{0:-}’.format(pi)

’3.14159265359’

>>> ’{0: }’.format(pi)

’ 3.14159265359’

>>> ’{0: }’.format(-1.0 * pi)

’-3.14159265359’

• m is the minimum total size of the formatted string

>>> ’{0:10}’.format(pi)

’3.14159265359’

>>> ’{0:20}’.format(pi)

’ 3.14159265359’

>>> ’{0:30}’.format(pi)

’ 3.14159265359’

• c may be , or omitted. , produces numbers with 1000s separated using a ,. In order to use c it is

necessary to include the . before the precision.

>>> ’{0:.10}’.format(1000000 * pi)

’3141592.654’

>>> ’{0:,.10}’.format(1000000 * pi)

’3,141,592.654’

• p is the precision. The interpretation of precision depends on t . In order to use p , it is necessary to

include a . (dot). If not included, p will be interpreted as m .

>>> ’{0:.1}’.format(pi)

’3e+00’

>>> ’{0:.2}’.format(pi)

’3.1’

255

>>> ’{0:.5}’.format(pi)

’3.1416’

• t is the type. Options include:

Type Description

e, E Exponent notation, e produces e+ and E produces E+ notation

f, F Display number using a fixed number of digits

g, G General format, which uses f for smaller numbers, and e for larger. G is equivalent to

switching between F and E. g is the default format if no presentation format is given

n Similar to g, except that it uses locale specific information.

% Multiplies numbers by 100, and inserts a % sign

>>> ’{0:.5e}’.format(pi)

’3.14159e+00’

>>> ’{0:.5g}’.format(pi)

’3.1416’

>>> ’{0:.5f}’.format(pi)

’3.14159’

>>> ’{0:.5%}’.format(pi)

’314.15927%’

>>> ’{0:.5e}’.format(100000 * pi)

’3.14159e+05’

>>> ’{0:.5g}’.format(100000 * pi)

’3.1416e+05’

>>> ’{0:.5f}’.format(100000 * pi)

’314159.26536’

Combining all of these features in a single format string produces complexly presented data.

>>> ’{0: > 20.4f}, {1: > 20.4f}’.format(pi,-pi)

’ 3.1416, -3.1416’

>>> ’{0: >+20,.2f}, {1: >+20,.2f}’.format(100000 * pi,-100000 * pi)

’ +314,159.27, -314,159.27’

In the first example, reading from left to right after the colon, the format string consists of:

1. Space fill (the blank space after the colon)

2. Right align (>)

3. Use no sign for positive numbers,− sign for negative numbers (the blank space after >)

256

4. Minimum 20 digits

5. Precision of 4 fixed digits

The second is virtually identical to the first, except that it includes a , to show the 1000s separator and a +

to force the sign to be shown.

21.3.1 Formatting Strings

format outputs formatted strings using a similar syntax to number formatting, although some options

such as precision, sign, comma and type are not relevant.

>>> s = ’Python’

>>> ’{0:}’.format(s)

’Python’

>>> ’{0: >20}’.format(s)

’ Python’

>>> ’{0:!>20}’.format(s)

’!!!!!!!!!!!!!!Python’

>>> ’The formatted string is: {0:!<20}’.format(s)

’The formatted string is: Python!!!!!!!!!!!!!!’

21.3.2 Formatting Multiple Objects

format also formats multiple objects in the same string output. There are three methods to do this:

• No position arguments, in which case the objects are matched to format strings in order

• Numeric positional arguments, in which case the first object is mapped to ’{0:}’, the second to

’{1:}’, and so on.

• Named arguments such as ’{price:}’ and volume ’{volume:}’, which match keyword arguments

inside format.

>>> price = 100.32

>>> volume = 132000

>>> ’The price yesterday was {:} with volume {:}’.format(price,volume)

’The price yesterday was 100.32 with volume 132000’

>>> ’The price yesterday was {0:} and the volume was {1:}’.format(price,volume)

’The price yesterday was 100.32 with volume 132000’

>>> ’The price yesterday was {1:} and the volume was {0:}’.format(volume,price)

’The price yesterday was 100.32 with volume 132000’

>>> ’The price yesterday was {price:} and the volume was {volume:}’.format(price=price,volume=volume)

’The price yesterday was 100.32 with volume 132000’

257

21.3.3 Old style format strings

Some Python code still uses an older style format string. Old style format strings have %(ma p) f l m .p t ,

where:

• (ma p) is a mapping string containing a name, for example (price)

• f l is a flag which may be one or more of:

– 0: Zero pad

– (blank space)

– - Left adjust output

– + Include sign character

• m , p and t are identical to those of the new format strings.

In general, the old format strings should only be used when required by other code (e.g. matplotlib). Below

are some examples of their use in strings.

>>> price = 100.32

>>> volume = 132000

>>> ’The price yesterday was %0.2f with volume %d’ % (price, volume)

’The price yesterday was 100.32 with volume 132000’

>>> ’The price yesterday was %(price)0.2f with volume %(volume)d’ \

... % {’price’: price, ’volume’: volume}

’The price yesterday was 100.32 with volume 132000’

>>> ’The price yesterday was %+0.3f and the volume was %010d’ % (price, volume)

’The price yesterday was +100.320 and the volume was 0000132000’

21.4 Regular Expressions

Regular expressions are powerful tools for matching patterns in strings. While reasonable coverage of

regular expressions is beyond the scope of these notes – there are 500 page books dedicated to constructing

regular expressions – they are sufficiently useful to warrant an introduction. There are many online regular

expression generators which can assist in finding the pattern to use, and so they are accessible to even

casual users working with unformatted text.

Using regular expression requires the re module. The most useful functions for regular expression

matching are findall, finditer and sub. findall and finditer work in similar manners, except that

findall returns a list while finditer returns an iterable. finditer is preferred if a large number of matches

is possible. Both search through a string and find all non-overlapping matches of a regular expression.

>>> import re

>>> s = ’Find all numbers in this string: 32.43, 1234.98, and 123.8.’

>>> re.findall(’[\s][0-9]+\.\d*’,s)

[’ 32.43’, ’ 1234.98’, ’ 123.8’]

258

>>> matches = re.finditer(’[\s][0-9]+\.\d*’,s)

>>> for m in matches:

... print(s[m.span()[0]:m.span()[1]])

32.43

1234.98

123.8

finditer returns MatchObjects which contain the method span. span returns a 2 element tuple which

contains the start and end position of the match.

sub replaces all matched text with another text string (or a function which takes a MatchObject).

>>> s = ’Find all numbers in this string: 32.43, 1234.98, and 123.8.’

>>> re.sub(’[\s][0-9]+\.\d*’,’ NUMBER’,s)

’Find all numbers in this string: NUMBER, NUMBER, and NUMBER.’

>>> def reverse(m):

... """Reverse the string in the MatchObject group"""

... s = m.group()

... s = s.rstrip()

... return ’ ’ + s[::-1]

>>> re.sub(’[\s][0-9]+\.\d*’,reverse,s)

’Find all numbers in this string: 34.23, 89.4321, and 8.321.’

21.4.1 Compiling Regular Expressions

When repeatedly using a regular expression, for example running it on all lines in a file, it is better to

compile the regular expression, and then to use the resulting RegexObject.

>>> import re

>>> s = ’Find all numbers in this string: 32.43, 1234.98, and 123.8.’

>>> numbers = re.compile(’[\s][0-9]+\.\d*’)

>>> numbers.findall(s)

[’ 32.43’, ’ 1234.98’, ’ 123.8’]

Parsing the regular expression text is relatively expensive, and compiling the expression avoids this cost.

21.5 Safe Conversion of Strings

When reading data into Python using a mixed format, blindly converting text to integers or floats is dan-

gerous. For example, float(’a’) returns a ValueError since Python doesn’t know how to convert ’a’ to

a string. The simplest method to safely convert potentially non-numeric data is to use a try . . . except

block.

from __future__ import print_function

from __future__ import division

S = [’1234’,’1234.567’,’a’,’1234.a34’,’1.0’,’a123’]

for s in S:

try:

259

If integer, use int

int(s)

print(s, ’is an integer.’)

except:

try:

If not integer, may be float

float(s)

print(s, ’is a float.’)

except:

print(’Unable to convert’, s)

260

Chapter 22

File System Operations

Manipulating files and directories is surprising useful when undertaking complex projects. The most im-

portant file system commands are located in the modules os and shutil. This chapter assumes that

import os

import shutil

have been included.

22.1 Changing the Working Directory

The working directory is where files can be created and accessed without any path information. os.getcwd()

can be used to determine the current working directory, and os.chdir(path) can be used to change the

working directory, where path is a directory, such as /temp or c:\\temp.1 Alternatively, path can can be .. to

more up the directory tree.

pwd = os.getcwd()

os.chdir(’c:\\temp’)

os.chdir(r’c:\temp’) # Raw string, no need to escape \

os.chdir(’c:/temp’) # Identical

os.chdir(’..’) # Walk up the directory tree

os.getcwd() # Now in ’c:\\’

22.2 Creating and Deleting Directories

Directories can be created using os.mkdir(dirname), although it must be the case that the higher level di-

rectories exist (e.g. to create /home/username/Python/temp, it /home/username/Python already exists). os.makedirs(dirname)

works similar to os.mkdir(dirname), except that is will create any higher level directories needed to create

the target directory.

Empty directories can be deleted using os.rmdir(dirname) – if the directory is not empty, an error

occurs. shutil.rmtree(dirname) works similarly to os.rmdir(dirname), except that it will delete the di-

rectory, and any files or other directories contained in the directory.

1On Windows, directories use the backslash, which is used to escape characters in Python, and so an escaped backslash –
\\ – is needed when writing Windows’ paths. Alternatively, the forward slash can be substituted, so that c:\\temp and c:/temp are
equivalent.

261

os.mkdir(’c:\\temp\\test’)

os.makedirs(’c:/temp/test/level2/level3’) # mkdir will fail

os.rmdir(’c:\\temp\\test\\level2\\level3’)

shutil.rmtree(’c:\\temp\\test’) # rmdir fails, since not empty

22.3 Listing the Contents of a Directory

The contents of a directory can be retrieved in a list usingos.listdir(dirname), or simplyos.listdir(’.’)

to list the current working directory. The list returned contains all files and directories. os.path.isdir(

name) can be used to determine whether a value in the list is a directory, and os.path.isfile(name)

can be used to determine if it is a file. os.path contains other useful functions for working with directory

listings and file attributes.

os.chdir(’c:\\temp’)

files = os.listdir(’.’)

for f in files:

if os.path.isdir(f):

print(f, ’ is a directory.’)

elif os.path.isfile(f):

print(f, ’ is a file.’)

else:

print(f, ’ is a something else.’)

A more sophisticated listing which accepts wildcards and is similar to dir (Windows) and ls (Linux)

can be constructed using the glob module.

import glob

files = glob.glob(’c:\\temp*.txt’)

for file in files:

print(file)

22.4 Copying, Moving and Deleting Files

File contents can be copied using shutil.copy(src ,dest), shutil.copy2(src ,dest)or shutil.copyfile(

src , dest). These functions are all similar, and the differences are:

• shutil.copy will accept either a filename or a directory as dest. If a directory is given, the a file is

created in the directory with the same name as the original file

• shutil.copyfile requires a filename for dest.

• shutil.copy2 is identical to shutil.copy except that metadata, such as last access times, is also

copied.

Finally, shutil.copytree(src , dest) will copy an entire directory tree, starting from the directory src to

the directory dest, which must not exist. shutil.move(src,dest) is similar to shutil.copytree, except that

it moves a file or directory tree to a new location. If preserving file metadata (such as permissions or file

262

streams) is important, it is better use system commands (copy or move on Windows, cp or mv on Linux)

as an external program.

os.chdir(’c:\\temp\\python’)

Make an empty file

f = file(’file.ext’,’w’)

f.close()

Copies file.ext to ’c:\temp\’

shutil.copy(’file.ext’,’c:\\temp\\’)

Copies file.ext to ’c:\temp\\python\file2.ext’

shutil.copy(’file.ext’,’file2.ext’)

Copies file.ext to ’c:\\temp\\file3.ext’, plus metadata

shutil.copy2(’file.ext’,’file3.ext’)

shutil.copytree(’c:\\temp\\python\\’,’c:\\temp\\newdir\\’)

shutil.move(’c:\\temp\\newdir\\’,’c:\\temp\\newdir2\\’)

22.5 Executing Other Programs

Occasionally it is necessary to call other programs, for example to decompress a file compressed in an

unusual format or to call system copy commands to preserve metadata and file ownership. Bothos.system

and subprocess.call (which requires import subprocess) can be used to execute commands as if they

were executed directly in the shell.

import subprocess

Copy using xcopy

os.system(’xcopy /S /I c:\\temp c:\\temp4’)

subprocess.call(’xcopy /S /I c:\\temp c:\\temp5’,shell=True)

Extract using 7-zip

subprocess.call(’"C:\\Program Files\\7-Zip\\7z.exe" e -y c:\\temp\\zip.7z’)

22.6 Creating and Opening Archives

Creating and extracting files from archives often allows for further automation in data processing. Python

has native support for zip, tar, gzip and bz2 file formats using shutil.make_archive(archivename , for-

mat, root) where archivename is the name of the archive to create, without the extension, format is one

of the supported formats (e..g ’zip’ for a zip archive or ’gztar’, for a gzipped tar file) and root is the root

directory which can be ’.’ for the current working directory.

Creates files.zip

shutil.make_archive(’files’,’zip’,’c:\\temp\\folder_to_archive’)

Creates files.tar.gz

shutil.make_archive(’files’,’gztar’,’c:\\temp\\folder_to_archive’)

Creating a standard gzip from an existing file is slightly more complicated, and requires using the gzip

module.2

2A gzip can only contain 1 file, and is usually used with a tar file to compress a directory or set of files.

263

import gzip

Create file.csv.gz from file.csv

csvin = file(’file.csv’,’rb’)

gz = gzip.GzipFile(’file.csv.gz’,’wb’)

gz.writelines(csvin.read())

gz.close()

csvin.close()

Zip files can be extracted using the module zipfile, gzip files can be extracted using gzip, and gzipped

tar files can be extracted using tarfile.

import zipfile

import gzip

import tarfile

Extract zip

zip = zipfile.ZipFile(’files.zip’)

zip.extractall(’c:\\temp\\zip\\’)

zip.close()

Extract gzip tar ’r:gz’ indicates read gzipped

gztar = tarfile.open(’file.tar.gz’, ’r:gz’)

gztar.extractall(’c:\\temp\\gztar\\’)

gztar.close()

Extract csv from gzipped csv

gz = gzip.GzipFile(’file.csv.gz’,’rb’)

csvout = file(’file.csv’,’wb’)

csvout.writelines(gz.read())

csvout.close()

gz.close()

22.7 Reading and Writing Files

Occasionally it may be necessary to directly read or write a file, for example to output a formatted LATEX

table. Python contains low level file access tools which can be used to to generate files with any structure.

Writing text files begins by using file to create a new file or to open an existing file. Files can be opened in

different modes: ’r’ for reading, ’w’ for writing, and ’a’ for appending (’w’ will overwrite an existing file). An

additional modifier ’b’ can be be used if the file is binary (not text), so that ’rb’, ’wb’ and ’ab’ allow reading,

writing and appending binary files.

Reading text files is usually implemented using readline() to read a single line, readlines(n) to reads

approximately n bytes or readlines() to read all lines in a file. readlineand readlines(n)are usually used

inside a while loop which terminates if the value returned is an empty string (’’, readline) or an empty

list ([], readlines) . Note that both ’’ and [] are false, and so can be directly used in a while statement.

Read all lines using readlines()

f = file(’file.csv’,’r’)

lines = f.readlines()

264

for line in lines:

print(line)

f.close()

Using blocking via readline()

f = file(’file.csv’,’r’)

line = f.readline()

while line:

print(line)

line = f.readline()

f.close()

Using larger blocks via readlines(n)

f = file(’file.csv’,’r’)

lines = f.readlines(2)

while lines:

for line in lines:

print(line)

lines = f.readline(2)

f.close()

Writing text files is similar, and begins by using file to create a file and then fwrite to output infor-

mation. fwrite is conceptually similar to using print, except that the output will be written to a file rather

than printed on screen. The next example show how to create a LATEX table from an array.

import numpy as np

import scipy.stats as stats

x = np.random.randn(100,4)

mu = np.mean(x,0)

sig = np.std(x,0)

sk = stats.skew(x,0)

ku = stats.kurtosis(x,0)

summaryStats = np.vstack((mu,sig,sk,ku))

rowHeadings = [’Var 1’,’Var 2’,’Var 3’,’Var 4’]

colHeadings = [’Mean’,’Std Dev’,’Skewness’,’Kurtosis’]

Build table, then print

latex = []

latex.append(’\\begin{tabular}{r|rrrr}’)

line = ’ ’

for i in xrange(len(colHeadings)):

line += ’ & ’ + rowHeadings[i]

line += ’ \\ \hline’

latex.append(line)

265

for i in xrange(size(summaryStats,0)):

line = rowHeadings[i]

for j in xrange(size(summaryStats,1)):

line += ’ & ’ + str(summaryStats[i,j])

latex.append(line)

latex.append(’\\end{tabular}’)

Output using write()

f = file(’latex_table.tex’,’w’)

for line in latex:

f.write(line + ’\n’)

f.close()

22.8 Exercises

1. Create a new directory, chapter22.

2. Change into this directory.

3. Create a new file names tobedeleted.py a text editor in this new directory (It can be empty).

4. Create a zip file tobedeleted.zip containing tobedeleted.py.

5. Get and print the directory listing.

6. Delete the newly created file, and then delete this directory.

266

Chapter 23

Performance and Code Optimization

We should forget about small efficiencies, say about 97% of the time: premature optimiza-

tion is the root of all evil.

Donald Knuth

23.1 Getting Started

Occasionally the performance of a direct implementation of a statistical algorithm will not execute quickly

enough be applied to interesting data sets. When this occurs, there are a number of alternatives ranging

from improvements possible using only NumPy and Python to using native code through a Python mod-

ule.

Note that before any code optimization, it is essential that a clean, working implementation is avail-

able. This allows for both measuring performance improvements and to ensure that optimizations have

not introduced any bugs. The famous quote of Donald Knuth should also be heeded, and in practice code

optimization is only needed for a very small amount of code – code that is frequently executed.

23.2 Timing Code

Timing code is an important step in measuring performance. IPython contains the magic keywords%timeit

and %timewhich can be used to measure the execution time of a block of code. %time simply runs the code

and reports the time needed. %timeit is smarter in that it will vary the number of iterations to increase

the accuracy of the timing. Both are used with the same syntax, %timeit code to time.1

>>> x = randn(1000,1000)

>>> %timeit inv(dot(x.T,x))

1 loops, best of 3: 387 ms per loop

>>> %time inv(dot(x.T,x))

Wall time: 0.52 s

>>> x = randn(100,100)

1All timings were performed on an Intel i3 550 using Anaconda 1.7.0.

267

>>> %timeit inv(dot(x.T,x))

1000 loops, best of 3: 797 us per loop

23.3 Vectorize to Avoid Unnecessary Loops

Vectorization is the key to writing high performance code in Python. Code that is vectorized run insides

NumPy and so executes as quickly as possible (with some small technical caveats, see NumExpr). Consider

the difference between manually multiplying two matrices and using dot.

def pydot(a, b):

M,N = shape(a)

P,Q = shape(b)

c = zeros((M,Q))

for i in xrange(M):

for j in xrange(Q):

for k in xrange(N):

c[i,j] = c[i,j] + a[i,k] * b[k,j]

return c

Timing the difference shows that NumPy is about 10000x faster than looping Python.

>>> a = randn(100,100)

>>> b = randn(100,100)

>>> %timeit pydot(a,b)

1 loops, best of 3: 1.02 s per loop

>>> %timeit dot(a,b)

10000 loops, best of 3: 95.2 us per loop

>>> 1.02/0.0000952

10714.285

A less absurd example is to consider computing a weighted moving average across m consecutive values

of a vector.

def naive_weighted_avg(x, w):

T = x.shape[0]

m = len(w)

m12 = int(ceil(m/2))

y = zeros(T)

for i in xrange(len(x)-m+1):

y[i+m12] = dot(x[i:i+m].T,w)

return y

>>> w = array(r_[1:11,9:0:-1],dtype=float64)

>>> w = w/sum(w)

>>> x = randn(10000)

>>> %timeit naive_weighted_avg(x,w)

10 loops, best of 3: 22.1 ms per loop

268

http://code.google.com/p/numexpr/

An alternative method which completely avoids loops can be constructed by carefully constructing an

array containing the data. This array allows dot to be used with the weights.

def clever_weighted_avg(x,w):

T = x.shape[0]

m = len(w)

wc = copy(w)

wc.shape = m,1

T = x.size

xc = copy(x)

xc.shape=T,1

y = vstack((xc,zeros((m,1))))

y = tile(y,(m,1))

y = reshape(y[:len(y)-m],(m,T+m-1))

y = y.T

y = y[m-1:T,:]

return dot(y,flipud(wc))

>>> %timeit clever_weighted_avg(x,w)

100 loops, best of 3: 1.59 ms per loop

The loop-free method which uses copying and slicing is about 12 times faster than the simple looping

specification.

23.4 Alter the loop dimensions

In many applications, it may be natural to loop over the long dimension in a time series. This is especially

common if the mathematical formula underlying the program has a sum from t = 1 to T . In some cases,

it is possible to replace a loop over time, which is assumed to be the larger dimension, with an alternative

loop across another iterable. For example, in the moving average, it is possible to loop over the weights

rather than the data, and if the moving windows length is much smaller than the length of the data, the

code should run much faster.

def sideways_weighted_avg(x, w):

T = x.shape[0]

m = len(w)

y = zeros(T)

m12 = int(ceil(m/2))

for i in xrange(m):

y[m12:T-m+m12] = x[i:T+i-m] * w[i]

return y

>>> %timeit sideways_weighted_avg(x,w)

1000 loops, best of 3: 498 us per loop

In this example, the “sideways” loop is much faster than fully vectorized version since it avoids allocating

a large amount of memory.

269

23.5 Utilize Broadcasting

NumPy uses broadcasting for virtually all primitive mathematical operations (and for some more com-

plicated functions). Broadcasting avoids unnecessary matrix replication and memory allocation, and so

improves performance.

>>> x = randn(1000,1)

>>> y = randn(1,1000)

>>> %timeit x*y

100 loops, best of 3: 8.77 ms per loop

>>> %timeit dot(x,ones((1,1000))) * dot(ones((1000,1)),y)

10 loops, best of 3: 36.7 ms per loop

Broadcasting is about 4 times as fast as manually expanding the arrays.

23.6 Use In-place Assignment

In-place assignment uses the save variable and avoids unnecessary memory allocation. The in-place op-

erators use a syntax similar to x += 0.0 or x *= 1.0 instead of x = x + 0.0.

>>> x = zeros(1000000)

>>> %timeit global x; x += 0.0

1000 loops, best of 3: 1.89 ms per loop

>>> %timeit global x; x = x + 0.0

100 loops, best of 3: 6.89 ms per loop

The gains to in-place allocation are larger as the dimension of x increases.

23.7 Avoid Allocating Memory

Memory allocation is relatively expensive, especially if it occurs inside a for loop. It is often better to pre-

allocate storage space for computed values, and also to reuse existing space. Similarly, prefer slices and

views to operations which create copies of arrays.

23.8 Inline Frequent Function Calls

Function calls are fast but not completely free. Simple functions, especially inside loops, should be in-

lined to avoid the cost of calling functions.

23.9 Consider Data Locality in Arrays

Arrays are stored using row major format, and so data is stored across a row first, and then down columns

second. This means that in an m by n array, element i , j is stored next to elements i , j + 1 and i , j − 1

(except when j is the first (previous is i − 1, n) or last element in a row (next is i + 1, 1)). Spatial location

matters for performance, and it is faster to access data which is stored physically adjacent. The simplest

method to understand array storage is to use:

270

>>> x = arange(16.0)

>>> x.shape = 4,4

>>> x

array([[0., 1., 2., 3.],

[4., 5., 6., 7.],

[8., 9., 10., 11.],

[12., 13., 14., 15.]])

23.10 Profile Long Running Functions

Profiling provides detailed information about the number of times a line is executed as well as the exe-

cution time spent on each line. The default Python profiling tools are not adequate to address all perfor-

mance measurement issues in NumPy code, and so a third party library known as line_profiler is needed.

line_profiler is not currently available in Anaconda and so it must be installed before use. On Linux, this

module can be installed using

source ANACONDA/bin/activate econometrics

pip install line_profiler

where ANACONDA is the full path to the Anaconda installation (e.g. ~/anaconda). These two lines as-

sume that the Anaconda environment is being used. If not using anaconda, simply activate the virtualenv-

created virtual environment and then run the pip command above.

Installation on Windows/Anaconda is somewhat more complicated since line_profiler uses compiled

code. pip cannot be used without first setting up a compiler environment, which is a challenging task.

These alternative instructions make use of binary installer made available by Christoph Gohlke.

1. Download line_profiler-1.0b3.win-amd64-py2.7.exe from Christoph Gohlke’s website. Note that there

may be a newer version available on the site.

2. Copy register_python.py from Section 1.A to

ANACONDA\envs\econometrics

where ANACONDA is the full path to the Anaconda installation (e.g. c:\Anaconda). This file is also

available for download with the solutions to these notes.

3. Open an elevated command prompt using Run as Administrator.

4. Activate the environment by running

ANACONDA\Scripts\activate.bat econometrics

5. Run the register_python file using

cd ANACONDA\envs\econometrics

python register_python.py

6. Run the line_profiler installer.

271

http://www.lfd.uci.edu/~gohlke/pythonlibs/

7. [OPTIONAL] If the default Python should not be the same as the environment used in the notes (and

it probably should not), repeat steps 3 – 5 using the default Python. For example, if using a standard

Python installation in C:\Python27, first copy register_python.py to C:\Python27 and then run

cd c:\Python27

python register_python.py

Alternatively, if using Anaconda as the default Python, copy register_python.py to ANACONDA and

then run

cd ANACONDA

python register_python.py

If using a non-Anaconda Python install on windows, the instructions are identical to those in Chapter 1 –

run register_python.py and the line_profiler installer. If required, the virtual environment can be unregis-

tered following the instructions in step 7.

IPython Magic Keyword for Line Profiling

The simplest method to profile function is to use IPython. This requires a small amount of setup to define

a new magic word, %lprun.

>>> import IPython

>>> ip = IPython.get_ipython()

>>> import line_profiler

>>> ip.define_magic(’lprun’, line_profiler.magic_lprun)

Note that the final two of these fours lines can also be incorporated into startup.py (see Chapter 1) so that

the magic word %lprun is available in all IPython sessions.

To demonstrate the use of line_profiler, the three moving average functions where combined into a sin-

gle python file moving_avgs.py. line_profiler is used with the syntax %lprun -f function command where

function is the function to profile and command is a command which will cause the function to run. com-

mand can be either a simple call to the function or a call to some other code that will run the function.

>>> from moving_avgs import naive_weighted_avg

>>> w = array(r_[1:11,9:0:-1],dtype=float64)

>>> w = w/sum(w)

>>> x = randn(100000)

>>> %lprun -f naive_weighted_avg naive_weighted_avg(x,w)

Timer unit: 3.94742e-07 s

File: moving_avgs.py

Function: naive_weighted_avg at line 16

Total time: 1.04589 s

Line # Hits Time Per Hit % Time Line Contents

==

16 def naive_weighted_avg(x, w):

17 1 27 27.0 0.0 T = x.shape[0]

272

18 1 13 13.0 0.0 m = len(w)

19 1 120 120.0 0.0 m12 = int(ceil(m/2))

20 1 755 755.0 0.0 y = zeros(T)

21 99983 505649 5.1 19.1 for i in xrange(len(x)-m+1):

22 99982 2142994 21.4 80.9 y[i+m12] = dot(x[i:i+m].T,w)

23

24 1 6 6.0 0.0 return y

The first attempt at a weighted average, naive_weighted_average, spent all of the time in the loop and

most of this on the dot product.

>>> from moving_avgs import clever_weighted_avg

>>> %lprun -f clever_weighted_avg clever_weighted_avg(x,w)

Timer unit: 3.94742e-07 s

File: moving_avgs.py

Function: clever_weighted_avg at line 27

Total time: 0.0302076 s

Line # Hits Time Per Hit % Time Line Contents

==

27 def clever_weighted_avg(x,w):

28 1 33 33.0 0.0 T = x.shape[0]

29 1 11 11.0 0.0 m = len(w)

30 1 98 98.0 0.1 wc = copy(w)

31 1 33 33.0 0.0 wc.shape = m,1

32 1 9 9.0 0.0 T = x.size

33 1 738 738.0 1.0 xc = copy(x)

34 1 42 42.0 0.1 xc.shape=T,1

35 1 1605 1605.0 2.1 y = vstack((xc,zeros((m,1))))

36 1 25286 25286.0 33.0 y = tile(y,(m,1))

37

38 1 98 98.0 0.1 y = reshape(y[:len(y)-m],(m,T+m-1))

39 1 12 12.0 0.0 y = y.T

40 1 38 38.0 0.0 y = y[m-1:T,:]

41

42 1 48522 48522.0 63.4 return dot(y,flipud(wc))

The second attempt, clever_weighted_avg, spends 1/3 of the time in the tile tile command and the re-

mainder in the dot.

>>> from moving_avgs import sideways_weighted_avg

>>> %lprun -f sideways_weighted_avg sideways_weighted_avg(x,w)

Timer unit: 3.94742e-07 s

File: moving_avgs.py

Function: sideways_weighted_avg at line 45

Total time: 0.00962302 s

Line # Hits Time Per Hit % Time Line Contents

==

45 def sideways_weighted_avg(x, w):

273

46 1 25 25.0 0.1 T = x.shape[0]

47 1 10 10.0 0.0 m = len(w)

48 1 417 417.0 1.7 y = zeros(T)

49 1 182 182.0 0.7 m12 = int(ceil(m/2))

50 20 230 11.5 0.9 for i in xrange(m):

51 19 23508 1237.3 96.4 y[m12:T-m+m12] = x[i:T+i-m] * w[i]

52

53 1 6 6.0 0.0 return y

The final version spends most of its time in the dot product and the only other line with meaningful time

is the call to zeros. Note the actual time was .0096 vs 1.06 for the naive version and .030 for the loop-

free version. Comparing the naive and the sideways version really highlights the cost of repeated calls to

simple functions inside loops dot as well as the loop overhead.

Directly Using the Line Profiler

Directly using line_profiler requires adding the decorator @profile to a function. Consider profiling the

three weighted average functions.

from __future__ import print_function, division

from numpy import ceil, zeros, dot, copy, vstack, flipud, reshape, tile, array, float64, r_

from numpy.random import randn

Useful block but not necessary

import __builtin__

try:

__builtin__.profile

except AttributeError:

No line profiler, provide a pass-through version

def profile(func): return func

__builtin__.profile = profile

Useful block but not necessary

@profile

def naive_weighted_avg(x, w):

T = x.shape[0]

m = len(w)

m12 = int(ceil(m/2))

y = zeros(T)

for i in xrange(len(x)-m+1):

y[i+m12] = dot(x[i:i+m].T,w)

return y

@profile

def clever_weighted_avg(x,w):

T = x.shape[0]

m = len(w)

wc = copy(w)

274

wc.shape = m,1

T = x.size

xc = copy(x)

xc.shape=T,1

y = vstack((xc,zeros((m,1))))

y = tile(y,(m,1))

y = reshape(y[:len(y)-m],(m,T+m-1))

y = y.T

y = y[m-1:T,:]

return dot(y,flipud(wc))

@profile

def sideways_weighted_avg(x, w):

T = x.shape[0]

m = len(w)

y = zeros(T)

m12 = int(ceil(m/2))

y = zeros(x.shape)

for i in xrange(m):

y[m12:T-m+m12] = x[i:T+i-m] * w[i]

return y

w = array(r_[1:11,9:0:-1],dtype=float64)

w = w/sum(w)

x = randn(100000)

naive_weighted_avg(x,w)

clever_weighted_avg(x,w)

sideways_weighted_avg(x,w)

The decorator @profile specifies which functions should be profiled by line_profiler, and should only be

used on functions where profiling is needed. The final lines in this file call the functions, which is necessary

for the profiling.

To profile the on Windows code (saved in moving_avgs_direct.py), run the following commands from a

command prompt (not inside IPython)

ANACONDA\Scripts\activate.bat econometrics

cd PATHTOFILE

python ANACONDA\envs\econometrics\Scripts\kernprof.py -l moving_avgs_direct.py

python -m line_profiler moving_avgs_direct.py.lprof > moving_avgs_direct.prof.txt

where PATHTOFILE is the location of moving_avgs_direct.py. The first command activates the environ-

ment. The second changes to the directory where moving_avgs_direct.py is located. The Third actually

executes the file with profiling, and the final produces a report in moving_avgs_direct.prof.txt, which can

then be viewed in any text editor.2

2The Windows command is more complex than the Linux command to ensure that the correct Python interpreter and envi-
ronment is used to execute kernprof.py.

275

On Linux or OSX, run

source ANACONDA\bin\activate econometrics

cd PATHTOFILE

kernprof -l moving_avgs.py

python -m line_profiler moving_avgs.py.lprof > moving_avgs.prof.txt

The file moving_avg.prof.txt will contain a line-by-line listing of the three function which includes the num-

ber to times the line was hit as well as the time spent on each line.

Modification of Code

In the direct method, the file moving_avgs_direct.py has a strange block reproduced below.

Useful block but not necessary

import __builtin__

try:

__builtin__.profile

except AttributeError:

No line profiler, provide a pass-through version

def profile(func): return func

__builtin__.profile = profile

Useful block but not necessary

I like to use this block since the decorator @profile is only defined when running in a profile session.

Attempting the run a file without this block in a standard python session will produce an AttributeError

since profile is not defined. This block allows the code to be run both with and without profiling by first

checking if profile is defined, and if not, providing a trivial definition that does nothing.

23.11 Numba

If pure Python/NumPy is slow due to the presence of loops, Numba may be useful for transforming stan-

dard Python to a faster form of code that can run in a Low Level Virtual Machine (LLVM). Numba is partic-

ularly attractive since it usually only requires adding a decorator immediately before the def function():

line. Consider a generic recursion from a GARCH(P,Q) model that computes the conditional variance given

parameters, data and a backcast value. In pure Python/NumPy this function is

def garch_recursion(parameters, data, sigma2, p, q, backcast):

T = size(data,0)

for i in xrange(T):

sigma2[i] = parameters[0]

for j in xrange(p):

if (i-j)<0:

sigma2[i] = parameters[1+j] * backcast

else:

sigma2[i] = parameters[1+j] * (data[i-j]*data[i-j])

for j in xrange(q):

if (i-j)<0:

sigma2[i] = parameters[1+p+j] * backcast

else:

276

sigma2[i] = parameters[1+p+j] * sigma2[i-j]

return sigma2

This example is fairly straight forward and only involves the (slow) recursive calculation of the conditional

variance, not the other portions of the log-likelihood (which can be vectorized using NumPy). The pure

Python version can be tested using timeit.

>>> parameters = array([.1,.1,.8])

>>> data = randn(10000)

>>> sigma2 = zeros(shape(data))

>>> p,q = 1,1

>>> backcast = 1.0

>>> %timeit garch_recursion(parameters, data, sigma2, p, q, backcast)

10 loops, best of 3: 21.7 ms per loop

Using Numba starts with from numba import autojit, and then specifying a function with the decorator

@autojit.

@autojit

def garch_recursion_numba_auto(parameters, data, sigma2, p, q, backcast):

T = size(data,0)

for i in xrange(T):

sigma2[i] = parameters[0]

for j in xrange(p):

if (i-j)<0:

sigma2[i] = parameters[1+j] * backcast

else:

sigma2[i] = parameters[1+j] * (data[i-j]*data[i-j])

for j in xrange(q):

if (i-j)<0:

sigma2[i] = parameters[1+p+j] * backcast

else:

sigma2[i] = parameters[1+p+j] * sigma2[i-j]

return sigma2

The Numba version can be tested by changing the function name.

>>> %timeit garch_recursion_numba_auto(parameters, data, sigma2, p, q, backcast)

10000 loops, best of 3: 66.5 us per loop

>>> ’The speed-up is {0:.1f} times’.format(0.0217/0.0000665 - 1.0)

’The speed-up is 325.3 times’

Two lines of code – an import and a decorator – produce code that runs over 300 times faster. Alterna-

tively, autojit can be used as a function to produce a just-in-time compiled function. This version is an

alternative to use autojit but is otherwise identical.

>>> garch_recursion_numba_auto_command = autojit(garch_recursion)

In some cases, it may be desirable to give more information to Numba. This can be done using the

functionjit. The key input tojit is the description of the inputs and outputs. In the code below, double[:]

277

means 1-dimensional float64 (float in Python, which corresponds to double precision in C), double indi-

cates a scalar float and int32 indicates a 32-bit integer. The string tells Numba to expect a 1-dimensional

float, and that the inputs, in-order, are 3 1-dimensional floats followed by 2 32-bit integers and finally a

scalar float.

>>> from numba import jit

>>> garch_recursion_numba_jit = jit(’double[:](double[:],double[:],double[:],int32,int32,double)’)(garch_recursion)

Running the timing code, there is a small gain over the autojit version. The gain is possible since the autojit

version allows virtually any compatible input while the jit versions will fail if the input types are correct.

>>> %timeit garch_recursion_numba_jit(parameters, data, sigma2, p, q, backcast)

10000 loops, best of 3: 64.6 us per loop

>>> ’The speed-up is {0:.1f} times’.format(0.0217/0.0000646 - 1.0)

’The speed-up is 334.9 times’

The pure Python dot product can also be easily converted to Numba using only the @autojit decorator.

@autojit

def pydot_autojit(a, b):

M,N = shape(a)

P,Q = shape(b)

c = zeros((M,Q))

for i in xrange(M):

for j in xrange(Q):

for k in xrange(N):

c[i,j] = c[i,j] + a[i,k] * b[k,j]

return c

Timing both the autojit and the jit versions produces large gains, although the performance of the two

just-in-time versions is similar. The input declaration in jit uses the notation double[:,::1] which tells

Numba to expect a 2-dimensional array using row-major ordering, which is the default in NumPy.

>>> %timeit -r 10 pydot_autojit(a,b) # -r 10 uses 10 instead of 3

1000 loops, best of 10: 1.47 ms per loop

>>> 1.02/.00147 - 1

692.87755

>>> pydot_jit = pydot_jit=jit(’double[:,::1](double[:,::1],double[:,::1])’)(pydot)

>>> %timeit -r 10 pydot_jit(a,b)

1000 loops, best of 10: 1.42 ms per loop

23.12 Cython

Cython is a powerful, but somewhat complex, solution for situations where pure NumPy or Numba cannot

achieve performance targets. Unless you are familiar with C, Cython should be considered a last resort.

Cython translates Python code into C code, which can then be compiled into a Python extension. Cython

code has three distinct advantages over Numba to just-in-time compilation of Python code:

278

• Cython modules are statically compiled and so using a Cython module does not incur a “warm-up”

penalty due to just-in-time compilation.

• A Python extension produced by Cython can be distributed to other users and does not require

Cython to be installed. In contrast, Numba must be installed and performance gains will typically

vary across Numba or LLVM versions.

• Numba is a relatively new, rapidly evolving project – this may produce breaks in otherwise working

code.

Using Cython on Linux is relatively painless, and only requires that the system compiler is installed in

addition to Cython. To use Cython in Python x64, it is necessary to have the x64 version of Cython installed

along with both the Windows 7 SDK and the .NET 3.5 SDK – it must be this SDK and not a newer SDK –

which ships with the Microsoft Optimizing Compiler version 15 (the same compiler used to build Python

2.7.5).

The main idea behind Cython is to write standard Python and then to add some special syntax and

hints about the type of data used. This first example will use the same GARCH(P,Q) code as in the Numba

example. Applying Cython to an existing Python function requires a number of steps (for standard nu-

meric code):

• Save the file with the extension pyx – for Python Extension.

• Use cimport, which is a special version of import for Cython, to import both cython and numpy as np.

• Declare types for every variable:

– Scalars have standard C-types, and in almost all cases should be double (same as float64 in

NumPy, and float in Python), int (signed integer) uint (unsigned integer) or size_t (system

unsigned integer type). size_t would typically only be used to counter variables in loops.

– NumPy arrays np.ndarray[type ,ndim= numdims] where type is a Cython NumPy type, and

should almost always be np.float64_t for numeric data, and numdims is the number of di-

mensions of the NumPy array, likely to be 1 or 2.

• Declare all arrays as not None.

• Ensure that all array access uses only single item access and not more complex slicing. For example

is x is a 2-dimensional array, x[i,j] must be used and not x[i,:] or x[:,j].

The “Cythonized” version of the GARCH(P,QP recursion is presented below. All arrays are declared using

np.ndarray[np.float64_t, ndim=1] and so the inputs must all have 1 dimension (and 1 dimension only).

The inputs p and q are declared to be integers, and backcast is declared to be a double. The three local

variables T, i and j are all declared to be ints. Note that is crucial that the variables used as iterators are

declared as int (or other integer type, such as uintor size_t). The remainder of the function is unchanged.

import numpy as np

cimport numpy as np

cimport cython

@cython.boundscheck(False)

279

@cython.wraparound(False)

def garch_recursion(np.ndarray[np.float64_t, ndim=1] parameters not None,

np.ndarray[np.float64_t, ndim=1] data not None,

np.ndarray[np.float64_t, ndim=1] sigma2 not None,

int p,

int q,

double backcast):

cdef int T = np.size(data,0)

cdef int i, j

for i in xrange(T):

sigma2[i] = parameters[0]

for j in xrange(p):

if (i-j)<0:

sigma2[i] = parameters[1+j] * backcast

else:

sigma2[i] = parameters[1+j] * (data[i-j]*data[i-j])

for j in xrange(q):

if (i-j)<0:

sigma2[i] = parameters[1+p+j] * backcast

else:

sigma2[i] = parameters[1+p+j] * sigma2[i-j]

return sigma2

Two additional decorators were included in the Cython version of the function, @cython.boundscheck(False)

and @cython.wraparound(False). The first disables bounds checking which speeds up the final code, but

is dangerous if the data used in the loop has fewer elements than expected. The second rules out the use

of negative indices, which is simple to verify and enforce.

The next step is to code up a setup.py file which is used to build the actual extension. The code is lo-

cated in a file named garch_ext.pyx, which will be the name of the extension. The setup code is standard,

and is unlikely to require altering (aside from the extension and file name).

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

import numpy

setup(

cmdclass = {’build_ext’: build_ext},

ext_modules = [Extension("garch_ext", ["garch_ext.pyx"])],

include_dirs = [numpy.get_include()]

)

The final step is to build the extension by running python setup.py build_ext --inplace from the ter-

minal. This will produce garch_ext.pyd which contains the compiled code.

>>> parameters = array([.1,.1,.8])

>>> data = randn(10000)

>>> sigma2 = zeros(shape(data))

280

>>> p,q = 1,1

>>> backcast = 1.0

>>> %timeit garch_recursion(parameters, data, sigma2, p, q, backcast)

10 loops, best of 3: 21.7 ms per loop

>>> import garch_ext

>>> %timeit garch_ext.garch_recursion(parameters, data, sigma2, p, q, backcast)

10000 loops, best of 3: 111 us per loop

>>> ’The speed-up is {0:.1f} times’.format(0.0217/0.000111 - 1.00)

’The speed-up is 194.5 times’

The Cythonized version is about 200 times faster than the standard Python version, and only required

about 3 minutes to write (after the main Python function has been written). However, it is slower than the

Numba version of the same function.

The function pydot was similarly Cythonized. This Cython program demonstrates how arrays should

be allocated within the function. Note that the Cython type for an array is np.float64_t which corre-

sponds to the usual NumPy data type of np.float64 (other _t types are available for different NumPy data

types). Again, it only required a couple of minutes to Cythonize the original Python function.

import numpy as np

cimport numpy as np

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

def pydot(np.ndarray[np.float64_t, ndim=2] a not None,

np.ndarray[np.float64_t, ndim=2] b not None):

cdef int M, N, P, Q

M,N = np.shape(a)

P,Q = np.shape(b)

assert N==P

cdef np.ndarray[np.float64_t, ndim=2] c = np.zeros((M,N), dtype=np.float64)

for i in xrange(M):

for j in xrange(Q):

for k in xrange(N):

c[i,j] = c[i,j] + a[i,k] * b[k,j]

return c

The Cythonized function is about 350 times faster than straight Python, although it is still much slower

than the native NumPy routine dot.

>>> a = randn(100,100)

>>> b = randn(100,100)

>>> %timeit pydot(a,b)

3 loops, best of 3: 1.02 s per loop

>>> import pydot as p

>>> %timeit -r 10 p.pydot(a,b)

100 loops, best of 10: 2.75 ms per loop

281

>>> 1.02/.00275 - 1.0

369.909090

>>> %timeit -r 10 dot(a,b)

10000 loops, best of 3: 160 us per loop

>>> .00275/0.0000956

28.76569

The final example will produce a Cython version of the weighted average. Since the original Python

code used slicing, this is removed and replaced with a second loop.

def super_slow_weighted_avg(x, w):

T = x.shape[0]

m = len(w)

m12 = int(ceil(m/2))

y = zeros(T)

for i in xrange(len(x)-m+1):

for j in xrange(m):

y[i+m12] += x[i+j] * w[j]

return y

This makes writing the Cython version simple.

import numpy as np

cimport numpy as np

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

def cython_weighted_avg(np.ndarray[np.float64_t, ndim=1] x,

np.ndarray[np.float64_t, ndim=1] w):

cdef int T, m, m12, i, j

T = x.shape[0]

m = len(w)

m12 = int(np.ceil(float(m)/2))

cdef np.ndarray[np.float64_t, ndim=1] y = np.zeros(T, dtype=np.float64)

for i in xrange(T-m+1):

for j in xrange(m):

y[i+m12] += x[i+j] * w[j]

return y

The Cython version can be compiled using a setup function in the same way that the GARCH recursion

was compiled.

>>> w = array(r_[1:11,9:0:-1],dtype=float64)

>>> w = w/sum(w)

>>> x = randn(10000)

>>> %timeit super_slow_weighted_avg(x,w)

1 loops, best of 3: 1.31 s per loop

282

>>> import cython_weighted_avg as c

>>> %timeit c.cython_weighted_avg(x,w)

1000 loops, best of 3: 567 us per loop

The gains are unsurprisingly large (around 300×) – however, the Cython code is no faster than the pure

NumPy sideways version. This demonstrates that Cython is not a magic bullet and that good vectorized

code, even with a small amount of looping, can be very fast.

23.13 Exercises

1. Write a Python function which will accept a p +q +1 vector of parameters, a T vector of data, and p

and q (integers, AR and MA order, respectively) and recursively computes the ARMA error beginning

with observation p + 1. If an MA index is negative it should be backcast to 0.

2. Use line_profiler to measure the performance of the ARMA written in exercise 1.

3. Use autojit and jit to accelerate the ARMA function written in the exercise 1. Compare the speed

to the pure Python implementation.

4. [Only for the brave]Convert the ARMA function to Cython, compile it, and compare the performance

against both the pure Python and the Numba versions.

283

284

Chapter 24

Parallel

24.1 map and related functions

map is a built-in function which is used to apply a function to a generic iterable. It is used as map(function

, iterable), and returns a list containing the results of applying the function to each item of iterable. Note

that the list returned can be either a simple list if the function returns a single item, or a list of tuples if the

function returns more than 1 value.

def powers(x):

return x**2, x**3, x**4

This function can be called on any iterable, for example a list.

>>> y = [1.0, 2.0, 3.0, 4.0]

>>> map(powers, y)

[(1.0, 1.0, 1.0), (4.0, 8.0, 16.0), (9.0, 27.0, 81.0), (16.0, 64.0, 256.0)]

The output is a list of tuples where each tuple contains the result of calling the function on a single input.

Note that the same result could be achieved using a list comprehension. In general usage, list compre-

hensions are preferable to using map.

>>> [powers(i) for i in y]

[(1.0, 1.0, 1.0), (4.0, 8.0, 16.0), (9.0, 27.0, 81.0), (16.0, 64.0, 256.0)]

map can be used with more than 1 iterable, in which case it iterates along the longest iterable. If one of

the iterable is shorter than the other(s), then it is extended with None. It is usually best practice to ensure

that all iterables have the same length before using map.

def powers(x,y):

if x is None or y is None:

return None

else:

return x**2, x*y, y**2

>>> x = [10.0, 20.0, 30.0]

>>> y = [1.0, 2.0, 3.0, 4.0]

>>> map(powers, x, y)

[(100.0, 10.0, 1.0), (400.0, 40.0, 4.0), (900.0, 90.0, 9.0), None]

285

A related function is zip. While zip does not apply a function to data, it can be used to combine two

or more lists into a single list of tuples. It is similar to calling map except that it will stop at the end of the

shortest iterable, rather than extending using None.

>>> x = [10.0, 20.0, 30.0]

>>> y = [1.0, 2.0, 3.0, 4.0]

>>> zip(x, y)

[(10.0, 1.0), (20.0, 2.0), (30.0, 3.0)]

24.2 Multiprocess module

The real advantage of map over list comprehensions is that it can be combined with the multiprocessmod-

ule to run code on more than 1 (local) processor. multiprocess module does not work correctly in IPython,

and so it is necessary to use stand-alone Python programs. multiprocess includes a map function which is

similar to that in the standard Python distribution except that it executes using a Pool rather than on a sin-

gle processor. The gains to using a Pool may be large, and should be close to the number of pool processes

if completely independent (which should be less than or equal to the number of physical processors on a

system).

This example uses multiprocess to compute eigenvalues for some random matrices and is illustrative

of a Monte Carlo-like setup. The program has the standard set of imports including the multiprocess

module.

from __future__ import print_function

import multiprocessing as mp

import numpy as np

import matplotlib.pyplot as plt

Next, a simple function is defined to compute eigenvalues. While map requires both a function and an

iterable, the function can be any function located in any module and so does not need to reside in the

same file as the main code.

def compute_eig(arg):

n = arg[0]

state = arg[1]

print(arg[2])

np.random.set_state(state)

x = np.random.standard_normal((n))

m = int(np.round(np.sqrt(n)))

x.shape=m,m

w = np.linalg.eigvalsh(np.dot(x.T,x)/m)

return w

Using multiprocess requires a __name__==’main’ block in the function. The main block does three things:

1. Compute states to use in the simulation. This is done so that the state can be given to the function

executed in parallel.

2. Initialize the pool using mp.Pool(processes=2)

3. Call map from the multiprocess module

286

4. Plot the results.

if __name__ == ’__main__’:

states = []

np.random.seed()

for i in xrange(1000):

n = 1000000

states.append((n,np.random.get_state(),i))

temp = np.random.standard_normal((n))

Non parallel map

res = map(compute_eig,states)

Parallem map

po = mp.Pool(processes=2)

res = po.map(compute_eig,states)

print(len(res))

po.close()

ax = plt.hist(maxEig)

ax = ax[2]

fig = ax[0].get_figure()

fig.savefig(’multiprocess.pdf’)

24.3 IPython Parallel

IPython contains a sophisticated parallel framework which allows for interactive parallel execution both

locally and across a network (e.g. a supercomputer or using a cloud provider such as Amazon Web Ser-

vices). IPython’s parallelization framework provides both mechanisms similar to map in the previous ex-

ample as well as more sophisticated schedulers that perform load balancing, which is useful is some pro-

cessing may complete faster. Coverage of IPython’s parallelization framework is beyond the score of these

notes, although users who are interested in large scale problems in Python should be aware of this feature.

287

288

Chapter 25

Examples

These examples are all actual econometric problems chosen to demonstrate the use of Python in an end-

to-end manner, from importing data to presenting estimates. A reasonable familiarity with the underlying

econometric models and methods is assumed and this chapter focuses on translating the mathematics to

Python.

25.1 Estimating the Parameters of a GARCH Model

This example will highlight the steps needed to estimate the parameters of a GJR-GARCH(1,1,1) model

with a constant mean. The volatility dynamics in a GJR-GARCH model are given by

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

o∑
j=1

γ jε
2
t− j I[εt− j<0] +

q∑
k=1

βkσ
2
t−k .

Returns are assumed to be conditionally normal, rt |Ft−1 ∼ N
(
µ,σ2

t

)
, εt = rt − µ and parameters are

estimated by maximum likelihood. To estimate the parameters, it is necessary to:

1. Produce some starting values

2. Estimate the parameters using (quasi-) maximum likelihood

3. Compute standard errors using a “sandwich” covariance estimator (also known as the Bollerslev &

Wooldridge (1992) covariance estimator)

The first task is to write the log-likelihood which can be used in an optimizer. The log-likelihood function

will compute the volatility recursion and the log-likelihood. It will also, optionally, return the T by 1 vector

of individual log-likelihoods which are useful when approximating the scores.

The first step is to import the required modules. I prefer to use the import form from module import

func1, func2 for commonly used functions. This both saves typing and increases code readability. I use

import module as shortname for functions which are used less. This is a personal choice, and any combi-

nation is acceptable, although from module import * should be avoided.

from __future__ import print_function, division

import numpy as np

import matplotlib.pyplot as plt

289

from numpy import size, log, pi, sum, diff, array, zeros, diag, dot, mat, asarray, sqrt,

copy

from numpy.linalg import inv

from pandas import read_csv

from scipy.optimize import fmin_slsqp

The conditional log-likelihood of a normal random variable is

ln f
(

rt |µ,σ2
t

)
= −1

2

(
ln 2π + lnσ2

t +
(rt − µ)2

σ2
t

)
,

which is negated in the code since the optimizers all minimize.

def gjr_garch_likelihood(parameters, data, sigma2, out=None):

’’’ Returns negative log-likelihood for GJR-GARCH(1,1,1) model.’’’

mu = parameters[0]

omega = parameters[1]

alpha = parameters[2]

gamma = parameters[3]

beta = parameters[4]

T = size(data,0)

eps = data - mu

Data and sigma2 are T by 1 vectors

for t in xrange(1,T):

sigma2[t] = (omega + alpha * eps[t-1]**2

+ gamma * eps[t-1]**2 * (eps[t-1]<0) + beta * sigma2[t-1])

logliks = 0.5*(log(2*pi) + log(sigma2) + eps**2/sigma2)

loglik = sum(logliks)

if out is None:

return loglik

else:

return loglik, logliks, copy(sigma2)

The keyword argument outhas a default value of None, and is used to determine whether to return 1 output

or 3. This is common practice since the optimizer requires a single output – the log-likelihood function

value, but it is also useful to be able to output other useful quantities, such as
{
σ2

t

}
.

The optimization is constrained so that α + γ/2 + β ≤ 1, and the constraint is provided in a separate

function.

def gjr_constraint(parameters, data, sigma2, out=None):

’’’ Constraint that alpha+gamma/2+beta<=1’’’

alpha = parameters[2]

gamma = parameters[3]

beta = parameters[4]

return array([1-alpha-gamma/2-beta])

290

Note that the constraint function takes the same inputs as the negative of the log-likelihood function, even

though only parameters is required to compute the constraint.

It is necessary to discuss one other function before proceeding with the main block of code. The

asymptotic variance is estimated using the “sandwich” form which is commonly expressed as

J −1IJ −1

whereJ is the expected Hessian andI is the covariance of the scores. Both are numerically approximated,

and the strategy for computing the Hessian is to use the definition that

Ji j ≈
f
(
θ + ei hi + e j h j

)
− f (θ + ei hi)− f

(
θ + e j h j

)
+ f (θ)

hi h j

where hi is a scalar “step size” and ei is a vector of 0s except for element i , which is 1. A 2-sided version of

this approximation, which takes both forward and backward steps and then averages, is below. For more

on numerical derivatives, see Flannery et al. (1992).

def hessian_2sided(fun, theta, args):

f = fun(theta, *args)

h = 1e-5*np.abs(theta)

thetah = theta + h

h = thetah - theta

K = size(theta,0)

h = np.diag(h)

fp = zeros(K)

fm = zeros(K)

for i in xrange(K):

fp[i] = fun(theta+h[i], *args)

fm[i] = fun(theta-h[i], *args)

fpp = zeros((K,K))

fmm = zeros((K,K))

for i in xrange(K):

for j in xrange(i,K):

fpp[i,j] = fun(theta + h[i] + h[j], *args)

fpp[j,i] = fpp[i,j]

fmm[i,j] = fun(theta - h[i] - h[j], *args)

fmm[j,i] = fmm[i,j]

hh = (diag(h))

hh = hh.reshape((K,1))

hh = dot(hh,hh.T)

H = zeros((K,K))

for i in xrange(K):

for j in xrange(i,K):

H[i,j] = (fpp[i,j] - fp[i] - fp[j] + f

+ f - fm[i] - fm[j] + fmm[i,j])/hh[i,j]/2

291

H[j,i] = H[i,j]

return H

Finally, the code that does the actual work can be written. The first block imports the data, flips it

using a slicing operator, and computes 100 times returns. Scaling data can be useful to improve optimizer

performance, and ideally estimated parameters should have similar magnitudes (i.e. ω ≈ .01 and α ≈
.05).

Import data

FTSEdata = read_csv(’FTSE_1984_2012.csv’, parse_dates=[0])

Flip upside down

FTSEdata = FTSEdata[::-1]

Compute returns

FTSEprice = FTSEdata[’Adj Close’]

FTSEreturn = 100*diff(log(FTSEprice).values)

Good starting values are important. These are my guesses based on experience fitting these types of mod-

els models. An alternative is to attempt a crude grid search and use the best (smallest) log-likelihood value

from the grid search.

Starting values

startingVals = array([FTSEreturn.mean(),

FTSEreturn.var() * .01,

.03, .09, .90])

Bounds are used in estimation to ensure that all parameters in the conditional variance are≥ 0 and to set

sensible upper bounds on the mean andω. The vector sigma2 is then initialized, and the arguments are

placed in a tuple.

Estimate parameters

finfo = np.finfo(np.float64)

bounds = [(-10*FTSEreturn.mean(), 10*FTSEreturn.mean()),

(finfo.eps, 2*FTSEreturn.var()),

(0.0,1.0), (0.0,1.0), (0.0,1.0)]

T = size(FTSEreturn,0)

sigma2 = np.repeat(FTSEreturn.var(),T)

args = (FTSEreturn, sigma2)

estimates = fmin_slsqp(gjr_garch_likelihood, startingVals, \

f_ieqcons=gjr_constraint, bounds = bounds, \

args = args)

The optimized log-likelihood and the time series of variances are computed by calling the objective using

the keyword argument out=True.

loglik, logliks, sigma2final = gjr_garch_likelihood(estimates, \

FTSEreturn, sigma2, out=True)

Next, the numerical scores and the covariance of the scores are computed. These exploit the definition of

a derivative, so that for a scalar function,

∂ f (θ)
∂ θi

≈ f (θ + ei hi)− f (θ)
hi

.

292

The covariance is computed as the outer product of the scores since the scores should have mean 0 when

evaluated at the solution to the optimization problem.

step = 1e-5 * estimates

scores = np.zeros((T,5))

for i in xrange(5):

h = step[i]

delta = np.zeros(5)

delta[i] = h

loglik, logliksplus, sigma2 = gjr_garch_likelihood(estimates + delta, \

FTSEreturn, sigma2, out=True)

loglik, logliksminus, sigma2 = gjr_garch_likelihood(estimates - delta, \

FTSEreturn, sigma2, out=True)

scores[:,i] = (logliksplus - logliksminus)/(2*h)

I = np.dot(scores.T,scores)/T

The next block calls hessian_2sided to estimate the Hessian, and then computes the asymptotic covari-

ance.

J = hessian_2sided(gjr_garch_likelihood, estimates, args)

J = J/T

Jinv = mat(inv(J))

vcv = Jinv*mat(I)*Jinv/T

vcv = asarray(vcv)

The penultimate step is to pretty print the results and to produce a plot of the conditional variances.

output = np.vstack((estimates,sqrt(diag(vcv)),estimates/sqrt(diag(vcv)))).T

print(’Parameter Estimate Std. Err. T-stat’)

param = [’mu’,’omega’,’alpha’,’gamma’,’beta’]

for i in xrange(len(param)):

print(’{0:<11} {1:>0.6f} {2:0.6f} {3: 0.5f}’.format(param[i],output[i,0],output[i,1],output[i,2]))

This final block produces a plot of the annualized conditional standard deviations.

Produce a plot

dates = FTSEdata.Date[1:]

fig = plt.figure()

ax = fig.add_subplot(111)

ax.plot(dates,np.sqrt(252*sigma2))

fig.autofmt_xdate()

ax.set_ylabel(’Volatility’)

ax.set_title(’Annualized FTSE Volatility (GJR GARCH(1,1,1))’)

plt.show()

25.2 Estimating the Risk Premia using Fama-MacBeth Regressions

This example highlights how to implement a Fama-MacBeth 2-stage regression to estimate factor risk

premia, make inference on the risk premia, and test whether a linear factor model can explain a cross-

293

section of portfolio returns. This example closely follows Cochrane (2001) (See also Jagannathan et al.

(2010)). As in the previous example, the first segment contains the imports.

from __future__ import print_function, division

from numpy import mat, cov, mean, hstack, multiply,sqrt,diag, genfromtxt, \

squeeze, ones, array, vstack, kron, zeros, eye, savez_compressed

from numpy.linalg import lstsq, inv

from scipy.stats import chi2

from pandas import read_csv

Next, the data are imported. I formatted the data downloaded from Ken French’s website into an easy-

to-import CSV which can be read by pandas.read_csv. The data is split using named columns for the

small sets of variables and ix for the portfolios. The code uses pure NumPy arrays, and so values is used

to retrieve the array from the DataFrame. The dimensions are determined using shape. Finally the risk

free rate is forced to have 2 dimensions so that it will be broadcastable with the portfolio returns in the

construction of the excess returns to the Size and Value-weighted portfolios. mat is used to return matrix

views of all of the arrays. This code is linear algebra-heavy and so matrices are easier to use than arrays.

data = read_csv(’FamaFrench.csv’)

Split using both named colums and ix for larger blocks

dates = data[’date’].values

factors = data[[’VWMe’, ’SMB’, ’HML’]].values

riskfree = data[’RF’].values

portfolios = data.ix[:, 5:].values

Use mat for easier linear algebra

factors = mat(factors)

riskfree = mat(riskfree)

portfolios = mat(portfolios)

Shape information

T,K = factors.shape

T,N = portfolios.shape

Reshape rf and compute excess returns

riskfree.shape = T,1

excessReturns = portfolios - riskfree

The next block does 2 things:

1. Compute the time-series βs. This is done be regressing the full array of excess returns on the factors

(augmented with a constant) using lstsq.

2. Compute the risk premia using a cross-sectional regression of average excess returns on the esti-

mates βs. This is a standard regression where the step 1 β estimates are used as regressors, and the

dependent variable is the average excess return.

Time series regressions

X = hstack((ones((T, 1)), factors))

out = lstsq(X, excessReturns)

alpha = out[0][0]

294

beta = out[0][1:]

avgExcessReturns = mean(excessReturns, 0)

Cross-section regression

out = lstsq(beta.T, avgExcessReturns.T)

riskPremia = out[0]

The asymptotic variance requires computing the covariance of the demeaned returns and the weighted

pricing errors. The problem is formulated using 2-step GMM where the moment conditions are

g t (θ) =



ε1t

ε1t ft

ε2t

ε2t ft
...

εN t

εN t ft

βut


where εi t = r e

i t − αi − β ′i ft , βi is a K by 1 vector of factor loadings, ft is a K by 1 set of factors, β =
[β1 β2 . . .βN] is a K by N matrix of all factor loadings, ut = r e

t −β ′λ are the N by 1 vector of pricing errors

andλ is a K by 1 vector of risk premia. The collection of parameters is thenθ =
[
α1 β

′
1 α2 β

′
2 . . . αN β

′
N λ
′]′.

To make inference in this problem, the derivative of the moments with respect to the parameters, ∂ g t (θ) /∂ θ ′

is needed. With some work, the estimator of this matrix can be seen to be

G = E

[
∂ g t (θ)
∂ θ ′

]
=

[
−In ⊗ ΣX 0

G21 −ββ ′

]
.

where X t =
[
1 f ′t

]′
and ΣX = E

[
X t X ′t

]
. G21 is a matrix with the structure

G21 =
[
G21,1 G21,2 . . . G21,N

]
where

G21,i =
[

0K ,1 diag (E [ui]− βi � λ)
]

and where E [ui] is the expected pricing error. In estimation, all expectations are replaced with their sam-

ple analogues.

Moment conditions

X = hstack((ones((T, 1)), factors))

p = vstack((alpha, beta))

epsilon = excessReturns - X * p

moments1 = kron(epsilon, ones((1, K + 1)))

moments1 = multiply(moments1, kron(ones((1, N)), X))

u = excessReturns - riskPremia.T * beta

moments2 = u * beta.T

Score covariance

S = mat(cov(hstack((moments1, moments2)).T))

Jacobian

295

G = mat(zeros((N * K + N + K, N * K + N + K)))

SigmaX = X.T * X / T

G[:N * K + N, :N * K + N] = kron(eye(N), SigmaX)

G[N * K + N:, N * K + N:] = -beta * beta.T

for i in xrange(N):

temp = zeros((K, K + 1))

values = mean(u[:, i]) - multiply(beta[:, i], riskPremia)

temp[:, 1:] = diag(values.A1)

G[N * K + N:, i * (K + 1):(i + 1) * (K + 1)] = temp

vcv = inv(G.T) * S * inv(G) / T

The J -test examines whether the average pricing errors, α̂, are zero. The J statistic has an asymptotic

χ2
N distribution, and the model is badly rejected.

vcvAlpha = vcv[0:N * K + N:4, 0:N * K + N:4]

J = alpha * inv(vcvAlpha) * alpha.T

J = J[0, 0]

Jpval = 1 - chi2(25).cdf(J)

The final block using formatted output to present all of the results in a readable manner.

vcvRiskPremia = vcv[N * K + N:, N * K + N:]

annualizedRP = 12 * riskPremia

arp = list(squeeze(annualizedRP.A))

arpSE = list(sqrt(12 * diag(vcvRiskPremia)))

print(’ Annualized Risk Premia’)

print(’ Market SMB HML’)

print(’--------------------------------------’)

print(’Premia {0:0.4f} {1:0.4f} {2:0.4f}’.format(arp[0], arp[1], arp[2]))

print(’Std. Err. {0:0.4f} {1:0.4f} {2:0.4f}’.format(arpSE[0], arpSE[1], arpSE[2]))

print(’\n\n’)

print(’J-test: {:0.4f}’.format(J))

print(’P-value: {:0.4f}’.format(Jpval))

i = 0

betaSE = []

for j in xrange(5):

for k in xrange(5):

a = alpha[0, i]

b = beta[:, i].A1

variances = diag(vcv[(K + 1) * i:(K + 1) * (i + 1), (K + 1) * i:(K + 1) * (i + 1)])

betaSE.append(sqrt(variances))

s = sqrt(variances)

c = hstack((a, b))

t = c / s

print(’Size: {:}, Value:{:} Alpha Beta(VWM) Beta(SMB) Beta(HML)’.format(j + 1, k + 1))

print(’Coefficients: {:>10,.4f} {:>10,.4f} {:>10,.4f} {:>10,.4f}’.format(a, b[0], b[1], b[2]))

print(’Std Err. {:>10,.4f} {:>10,.4f} {:>10,.4f} {:>10,.4f}’.format(s[0], s[1], s[2], s[3]))

print(’T-stat {:>10,.4f} {:>10,.4f} {:>10,.4f} {:>10,.4f}’.format(t[0], t[1], t[2], t[3]))

print(’’)

296

i += 1

The final block converts the standard errors of β to be an array and saves the results.

betaSE = array(betaSE)

savez_compressed(’Fama-MacBeth_results’, alpha=alpha, \

beta=beta, betaSE=betaSE, arpSE=arpSE, arp=arp, J=J, Jpval=Jpval)

25.3 Estimating the Risk Premia using GMM

The final numeric example estimates examines the same problem, only using GMM rather than 2-stage

regression. The first block imports relevant modules and functions. GMM requires non-linear optimiza-

tion, and fmin_bfgs will be used.

from __future__ import print_function, division

from numpy import hstack, ones, array, mat, tile, dot, reshape, squeeze, eye, asmatrix

from numpy.linalg import lstsq, inv

from pandas import read_csv

from scipy.linalg import kron

from scipy.optimize import fmin_bfgs

import numpy as np

Before defining the problem, the next code block defines a callback function that can be called after

each iteration of the minimizer. This function will be used to display information about the progress of

the optimizer: the current function value, the iteration and the number of function calls. Because the

callback only gets 1 input, the current value of the parameters used by the optimizer, it is necessary to use

global variables to pass information between functions. Three variables have been declared: iteration,

lastValue and functionCount. iteration is updated only by the callback function since it should re-

port the number of completed iterations of the optimizer, and the callback is called once per iteration.

lastValue is updated each time the main GMM objective function is called, and functionCount is incre-

mented by 1 each time the main GMM objective is called. The variables are all initialized using global

inside the callback so that their values can be updated.

iteration = 0

lastValue = 0

functionCount = 0

def iter_print(params):

global iteration, lastValue, functionCount

iteration += 1

print(’Func value: {0:}, Iteration: {1:}, Function Count: {2:}’.format(lastValue, iteration, functionCount))

The GMM objective takes the parameters, portfolio returns, factor returns and the weighting matrix

and computes the moments, average moments and the objective value. The moments used can be de-

scribed as (
r 2

i t − βi ft
)

ft ∀i = 1, . . . N

and

ri t − βiλ ∀i = 1, . . . N .

297

def gmm_objective(params, pRets, fRets, Winv, out=False):

global lastValue, functionCount

T,N = pRets.shape

T,K = fRets.shape

beta = squeeze(array(params[:(N*K)]))

lam = squeeze(array(params[(N*K):]))

beta = reshape(beta,(N,K))

lam = reshape(lam,(K,1))

betalam = dot(beta,lam)

expectedRet = dot(fRets,beta.T)

e = pRets - expectedRet

instr = tile(fRets,N)

moments1 = kron(e,ones((1,K)))

moments1 = moments1 * instr

moments2 = pRets - betalam.T

moments = hstack((moments1,moments2))

avgMoment = moments.mean(axis=0)

J = T * mat(avgMoment)*mat(Winv)*mat(avgMoment).T

J = J[0,0]

lastValue = J

functionCount += 1

if not out:

return J

else:

return J, moments

The final function needed is the Jacobian of the moment conditions. Mathematically it is simply to

express the Jacobian using⊗(Kronecker product). This code is so literal that it is simple to reverse engineer

the mathematical formulas used to implement this estimator.

Ĝ =

[
IN ⊗ ΣF 0

IN ⊗−λ −β

]

def gmm_G(params, pRets, fRets):

T,N = pRets.shape

T,K = fRets.shape

beta = squeeze(array(params[:(N*K)]))

lam = squeeze(array(params[(N*K):]))

beta = reshape(beta,(N,K))

lam = reshape(lam,(K,1))

G = np.zeros((N*K+K,N*K+N))

ffp = dot(fRets.T,fRets)/T

G[:(N*K),:(N*K)]=kron(eye(N),ffp)

G[:(N*K),(N*K):] = kron(eye(N),-lam)

G[(N*K):,(N*K):] = -beta.T

return G

298

The data import step is virtually identical to that in the previous example. Note that only every other

portfolio is used to speed up the GMM optimization.

data = read_csv(’FamaFrench.csv’)

Split using both named colums and ix for larger blocks

dates = data[’date’].values

factors = data[[’VWMe’,’SMB’,’HML’]].values

riskfree = data[’RF’].values

portfolios = data.ix[:,5:].values

T,N = portfolios.shape

portfolios = portfolios[:,np.arange(0,N,2)]

T,N = portfolios.shape

excessRet = portfolios - np.reshape(riskfree,(T,1))

K = np.size(factors,1)

Starting values are important in any optimization problem. The GMM problem is closely related to

Fama-MacBeth regression, and so it is sensible to use the output from a FMB regression.

betas = []

augFactors = hstack((ones((T,1)),factors))

for i in xrange(N):

out = lstsq(augFactors,excessRet[:,i])

betas.append(out[0][1:])

avgReturn = excessRet.mean(axis=0)

avgReturn.shape = N,1

betas = array(betas)

out = lstsq(betas,avgReturn)

riskPremia = out[0]

The GMM objective can be minimized using an identity matrix as covariance of the moment condi-

tions along with the starting values computed using a Fama-MacBeth regression. The keyword argument

callback is used to pass the callback function to the optimizer.

riskPremia.shape = 3

startingVals = np.concatenate((betas.flatten(),riskPremia))

Winv = np.eye(N*(K+1))

args = (excessRet, factors, Winv)

iteration = 0

functionCount = 0

step1opt = fmin_bfgs(gmm_objective, startingVals, args=args, callback=iter_print)

Once the initial estimates have been computed, these can be used to estimate the covariance of the

moment conditions, which is then used to estimate the optimal weighting matrix. The keyword argu-

ment out is used to return the moments in addition to the objective function value. Note that the vari-

ables iteration and lastValue which are used in the callback are both reset to 0 so that the count will be

accurate.

out = gmm_objective(step1opt, excessRet, factors, Winv, out=True)

299

S = np.cov(out[1].T)

Winv2 = inv(S)

args = (excessRet, factors, Winv2)

iteration = 0

functionCount = 0

step2opt = fmin_bfgs(gmm_objective, step1opt, args=args, callback=iter_print)

The final block computes estimates the asymptotic covariance of the parameters using the usual effi-

cient GMM covariance estimator, assuming that the moments are a martingale.

out = gmm_objective(step2opt, excessRet, factors, Winv2, out=True)

G = gmm_G(step2opt, excessRet, factors)

S = mat(np.cov(out[1].T))

vcv = inv(G*inv(S)*G.T)/T

25.4 Outputting LATEX

Automatically outputting results to LATEX or another format can eliminate export errors and avoid tedious

work. This example show how two of the tables in the previous Fama-MacBeth example can be exported

to a complete LATEX document, and how, if desired, the document can be compiled to a PDF. The first code

block contains the imports needed and defines a flag which determines whether the output LATEX should

be compiled.

imports

from __future__ import print_function

import numpy as np

import subprocess

Flag to compile output tables

compileLatex = True

The next code block loads the npz file created using the output from the Fama-MacBeth example. The

loaded data is in a dictionary, and so iterating over the keys and using exec restores the variables with the

same name in the main program.

Load variables

f = np.load(’Fama-MacBeth_results.npz’)

data = f.items()

Restore the data

for key in f.keys():

exec(key + " = f[’" + key + "’]")

f.close()

The document will be stored in a list. The first few lines contain the required header for a LATEX document,

including some packages used to improve table display and to select a custom font. All strings are raw r’’

so that \ does not have to be escaped (i.e. r’\’ rather than ’\\’ in normal strings).

List to hold table

latex = []

Initializd LaTeX document

300

latex.append(r’\documentclass[a4paper]{article}’)

latex.append(r’\usepackage{amsmath}’)

latex.append(r’\usepackage{booktabs}’)

latex.append(r’\usepackage[adobe-utopia]{mathdesign}’)

latex.append(r’\usepackage[T1]{fontenc}’)

latex.append(r’\begin{document}’)

Table 1 will be stored in its own list, and then extend will be used to add it to the main list. Building

this table is simple string manipulation and use of format.

Table 1

table1 = []

table1.append(r’\begin{center}’)

table1.append(r’\begin{tabular}{lrrr} \toprule’)

Header

colNames = [r’VWMe’,’SMB’,’HML’]

header = ’’

for cName in colNames:

header += ’ & ’ + cName

header += r’\\ \cmidrule{2-4}’

table1.append(header)

Main row

row = ’’

for a,se in zip(arp,arpSE):

row += r’ & $\underset{{({0:0.3f})}}{{{1:0.3f}}}$’.format(se,a)

table1.append(row)

Blank row

row = r’\\’

table1.append(row)

J-stat row

row = r’J-stat: $\underset{{({0:0.3f})}}{{{1:0.1f}}}$ \\’.format(float(Jpval),float(J))

table1.append(row)

table1.append(r’\bottomrule \end{tabular}’)

table1.append(r’\end{center}’)

Extend latex with table 1

latex.extend(table1)

latex.append(r’\newpage’)

Table 2 is a bit more complex, and uses loops to iterate over the rows of the arrays containing the βs and

their standard errors.

Format information for table 2

sizes = [’S’,’2’,’3’,’4’,’B’]

values = [’L’,’2’,’3’,’4’,’H’]

Table 2 has the same header as table 1, copy with a slice

table2 = table1[:3]

m = 0

for i in xrange(len(sizes)):

for j in xrange(len(values)):

row = ’Size: {:}, Value: {:} ’.format(sizes[i],values[j])

b = beta[:,m]

301

s = betaSE[m,1:]

for k in xrange(len(b)):

row += r’ & $\underset{{({0:0.3f})}}{{{1: .3f}}}$’.format(s[k],b[k])

row += r’\\ ’

table2.append(row)

m += 1

if i<(len(sizes)-1):

table2.append(r’\cmidrule{2-4}’)

table2.append(r’\bottomrule \end{tabular}’)

table2.append(r’\end{center}’)

Extend with table 2

latex.extend(table2)

The penultimate block finished the document, and uses write to write the lines to the LATEX file. write

does not automatically insert the newline character, and so \n is added to each line.

Finish document

latex.append(r’\end{document}’)

Write to table

fid = file(’latex.tex’,’w’)

for line in latex:

fid.write(line + ’\n’)

fid.close()

Finally, if the flag is set, subprocess is used to compile the LATEX. This assumes that pdflatex is on the

system path.

Compile if needed

if compileLatex:

exitStatus = subprocess.call(r’pdflatex latex.tex’, shell=True)

302

Chapter 26

Other Interesting Python Packages

To be completed

26.1 statsmodels

statsmodels provides a large range of cross-sectional models as well as some time-series models. statsmod-

els uses a model descriptive language (provided via the Python package patsy) to formulate the model

when working with pandas DataFrames. Models supported include linear regression, generalized linear

models, limited dependent variable models, ARMA and VAR models.

26.2 pytz and babel

ptyz and babel provide extended support for time zones and formatting information.

26.3 rpy2

rpy2 provides an interface for calling R 3.0.x in Python, as well as facilities for easily moving data between

the two platforms.

26.4 PyTables and h5py

PyTables and h5py both provide access to HDF5 files, a flexible data storage format optimized for numeric

data.

303

304

Chapter 27

Quick Reference

27.1 Built-ins

import

import is used to import modules for use in a program.

from

from is used to import selected functions from a module in a program.

def

def is used to denote the beginning of a function.

return

return is used return a value from a function.

xrange

xrange is an iterator commonly used in for loops.

tuple

A tuple is an immutable collection of other types, and is initialized using parentheses, e.g. (a,) for a single

element tuple or (a,b) for a 2-element tuple.

list

A list is a mutable collection of other types, and is initialized using square brackets, e.g. [a] or [a,b].

dict

dict initialized a dictionary, which is a list of named values where the names are unique.

305

set, frozenset

set initializes a set which is a unique, mutable collection. frozenset is an immutable counterpart.

for

for being a for loop, and should have the structure for var in iterable: .

while

while begins a while loop, and should have the structure while logical :

break

break terminates a loop prematurely.

continue

continue continues a loop without processing any code below the continue statement.

try

try begin a block which can handle code which may not succeed. It must be followed by an except state-

ment.

except

except catches errors generated in a try statement.

if

if begins an if . . . elif . . . else, and should have the structure if logical :

elif

elif stands for else if, and can be used after an if statement to refine the expression. It should have the

structure elif logical :

else

else finalizes an if block and executes if no previous path was taken.

print

print outputs information to the console. If used with from __future__ import print_function, print

behaves like a function.

file

file opens a file for low-level file reading and writing.

306

27.1.1 file Methods

File methods operate on a file object, which is initialized usingfile. For example, f = file(’text.txt’,’r’)

opens the file text.txt for reading, and close is used as f.close().

close

close closes an open file handle, and flushes any unwritten data to disk.

flush

flush flushes any unwritten data to disk without closing the file.

read

read reads data from an open file.

readline

readline reads a single line from an open file.

readlines

readlines reads one or more lines from an open file.

write

write writes a single line to a file without appending the new line character.

writelines

writelines writes the contents of an iterable (e.g. a list) to a file without appending the new line character

to each line.

27.1.2 String (str) Methods

String methods operate on strings. For example, strip can be used on a string x = ’abc ’ as x.strip(),

or can be directly used as ’ abc ’.strip().

split

split splits a string at every occurrence of another string, left to right.

rsplit

rsplit splits a string at every occurrence of another string, right to left.

join

join combines an iterable of strings using a given string to combine.

307

strip

strip removes leading and trailing whitespace from a string.

lstrip

lstrip removes leading whitespace from a string.

rstrip

rstrip removes trailing whitespace from a string.

find

find returns the index of the first occurrence of a substring. -1 is returned if not found.

rfind

rfind returns the index of the first occurrence of a substring, scanning from the right. -1 is returned if not

found.

index

index behaves like find, but raises an error when not found.

count

count counts the number of occurrences of a substring.

upper

upper converts a string to upper case.

lower

lower coverts a string to lower case.

ljust

ljust right pads a string with whitespace or a specified character up to a given width.

rjust

rjust left pads a string with whitespace or a specified character up to a given width.

center

center left and right pads a string with whitespace or a specified character up to a given width.

308

replace

replace returns a copy of a string with all occurrences of a substring replaced with an alternative substring.

format

format formats and inserts formattable objects (e.g. numbers) into a string.

27.1.3 Operating System (os)

os.system

system executes (external) system commands.

os.getcwd

getcwd returns the current working directory.

os.chdir

chdir changes the current working directory.

os.mkdir

mkdir creates a new directory, but requires all higher level directories to exist.

os.makedirs

makedirs creates a directory at any level, and creates higher level directories if needed.

os.rmdir

rmdir removes an empty directory.

os.listdir

listdir returns the contents of a directory. See glob.glob for a more useful form.

os.path.isfile

path.isfile determines whether a string corresponds to a file.

os.path.isdir

path.isdir determines whether a string corresponds to a directory.

309

27.1.4 Shell Utilities (shutil)

shutil.copy

copy copies a files using either a file name to use for the copy or a directory to use as a destination, in which

case the current file name is used.

shutil.copyfile

copyfile copies a file using a file name.

shutil.copy2

copy2 is identical to copy only that (some) file meta-data is also copied.

shutil.copytree

copytree copies an entire directory tree to a destination that must not exist.

shutil.move

move moves a directory tree to a destination which must not exist.

shutil.make_archive

make_archive creates zip, gztar and bztar archives.

shutil.rmtree

rmtree recursively removes a directory tree.

27.1.5 Regular Expressions (re)

re.findall

findall returns all occurrences of a regular expression in a string as a list.

re.split

split splits a string on occurrences of a regular expression.

re.sub

sub substitutes a string of each occurrence of a regular expression.

re.finditer

finditer works similarly to findall, only returning an iterable object rather than a list.

310

re.compile

compile compiles a regular expression for repeated use.

27.1.6 Dates and Times (datetime)

datetime.datetime

datetime initializes a date-time object.

datetime.date

date initializes a date object.

datetime.time

time initializes a time object.

datetime.timedelta

timedelta represents the difference between two datetimes.

datetime.datetime.replace

replace replaces fields in a date-time object. replace is a method of a date-time, date or time object.

datetime.datetime.combine

combine combines a date object and a time object and returns a date-time object. combine is a method of

a date-time, date or time object.

27.1.7 Other

These function all are contained in other modules, as listed to the left of the dot.

glob.glob

glob.glob returns a directory listing allowing for wildcards.

subprocess.call

subprocess.call can be used to run external commands.

textwrap.wrap

textwrap.wrap wraps a long block of text at a fixed width.

311

27.2 NumPy (numpy)

The functions listed in this section are all provided by NumPy. When a function is listed using only the

function name, this function appears in the NumPy module, and so can be accessed as numpy.function,

assuming that NumPy was imported using import numpy. When a function name contains a dot, for ex-

ample linalg.eig, then the function eig is in the linalg module of numpy, and so the function is accessed

as numpy.linalg.eig.

27.2.1 Core NumPy Types

dtype

dtype is used for constructing data types for use in arrays.

array

array is the primary method for constructing arrays from iterables (e.g. list or matrix). Variables created

using array have type numpy.ndarray.

matrix

matrix constructs a matrix from an iterable (e.g. list or array) that directly supports matrix mathemat-

ics. Variables created using matrix have type numpy.matrixlib.defmatrix.matrix, which is a subclass of

numpy.ndarray. Since matrix is a subclass of numpy.ndarray, it inherits the methods of numpy.ndarray.

27.2.2 ndarray

ndarray is the core array data type provided by NumPy. Botharray (numpy.ndarray) andmatrix (numpy.matrixlib.defmatrix.matrix)

offer a large number of attributes and methods. Attributes are accessed directly from an array, e.g. x.dtype,

and methods are calls to functions which operate on an array, e.g. x.sum().

Attributes

T

T returns the transpose of an array.

dtype

dtype returns the data type of an array.

flat

flat returns a 1-dimensional iterator for an array.

imag

imag returns the imaginary portion of an array.

312

real

real returns the real portion of an array.

size

size returns the total number of elements of an array.

ndim

ndim returns the number of dimensions of an array.

shape

shape returns the shape of an array as a tuple with ndim elements. shape can also be used to set the shape

using a tuple, e.g. x.shape=(10,5) as long as the number of elements does not change.

Methods

all

all returns True if all elements evaluate to True (i.e. not False, None or 0). axis can be used to compute

along a particular axis.

any

any returns True if any element evaluates to True. axis can be used to compute along a particular axis.

argmax

argmax returns the index of the maximum of an array. axis can be used to compute along a particular axis.

argmin

argmin returns the index of the minimum of an array. axis can be used to compute along a particular axis.

argsort

argsort returns the indices needed to sort an array. axis can be used to compute along a particular axis.

astype

astype allows an array to be viewed as another type (e.g. matrix or recarray) and copies the underlying.

conj, conjugate

conj and conjugate both return the complex-conjugate element-by-element.

copy

copy returns a copy of an array.

313

cumprod

cumprod returns the cumulative product of an array. axis can be used to compute along a particular axis.

cumsum

cumsum return the cumulative sum of an array. axis can be used to compute along a particular axis.

dot

dot computes the dot-product (standard matrix multiplication) or an array with another array.

flatten

flatten returns a copy of an array flattened into a 1-dimensional array.

max

max returns the maximum value of an array. axis can be used to compute along a particular axis.

mean

mean returns the average of an array. axis can be used to compute along a particular axis.

min

min returns the minimum of an array. axis can be used to compute along a particular axis.

nonzero

nonzero returns the indices of the non-zero elements of an array.

prod

prod computes the produce of all elements of an array. axis can be used to compute along a particular

axis.

ravel

ravel returns a flattened view of an array without copying data.

repeat

repeat returns an array repeated, element-by-element.

reshape

reshape returns returns an array with a different shape. The number of elements must not change.

314

resize

resize changes the size shape of an array in-place. If the new size is larger then new entries are 0 filled. If

the new size is smaller, then the elements selected are ordered according by their order in ravel.

round

round returns an array with each element rounded to a provided number of decimals.

sort

sort sorts an array (in-place). axis can be used to compute along a particular axis.

squeeze

squeeze returns an array with any singleton dimensions removed.

std

std returns the standard deviation of an array. axis can be used to compute along a particular axis.

sum

sum returns the sum of an array. axis can be used to compute along a particular axis.

tolist

tolist returns a list of an array. If the array has more than 1 dimension, the list will be nested.

trace

trace returns the sum of the diagonal elements.

transpose

transpose returns a view of the array transposed. x.transpose() is the same as x.T.

var

var returns the variance of an array. axis can be used to compute along a particular axis.

view

view returns a view of an array without copying data.

315

Methods and Attributes as functions

Many of the ndarray methods can be called as functions and behave identically, aside from taking the

array as the first input. For example, sum(x, 1) is identical to x.sum(1), and x.dot(y) is identical to

dot(x,y). The following list of functions are identical to their method: all, any, argmax, argmin, argsort,

conj, cumprod, cumsum, diagonal, dot, imag, real, mean, std, var, prod, ravel, repeat, squeeze, reshape, std,

var, trace, ndim, and squeeze.

Functions with different behavior

round

around is the function name for round. around is preferred as a function name since round is also the name

of a built-in function which does not operate on arrays.

resize

Using resize as a function returns the resized array. Using resize as a method performs the resizing in-

place.

sort

Using sort as a function returns the sorted array. Using sort as a method performs the sorting in-place.

size

Using size as a function can take an additional argument axis specifying the axis to use. When used

without an argument size(x) is identical to x.size.

shape

Using shape as a function only returns the shape of an array. The attribute use of shape also allows the

shape to be directly set, e.g. x.shape=3,3.

max

amax is the function name for the method max. amax is preferred as a function name since max is also the

name of a built-in function which does not operate on arrays.

min

amin is the function name for the method min. amin is preferred as a function name since min is also the

name of a built-in function which does not operate on arrays.

27.2.3 matrix

matrix is a derived class of ndarray and so inherits its attributes and methods. Members of the matrix

class have additional attributes.

316

Attributes

I

I returns the inverse of the matrix. This command is equivalent to inv(x) for an invertible matrix x.

A

A returns a view of the matrix as a 2-dimensional array.

A1

A1 returns a view of the matrix as a flattened array.

H

H returns the Hermetian (conjugate-transpose) of a matrix. For real matrices, x.H and x.T are identical.

Attributes

27.2.4 Array Construction and Manipulation

linspace

linspace creates an n-element linearly spaced vector between a lower and upper bound.

logspace

logspace creates a logarithmically spaced (base-10) vector between a lower and upper (log-10) bound.

arange

arange creates an equally spaced vector between a lower and upper bound using a fixed step size.

ones

ones creates an array of 1s.

zeros

zeros creates an array of 0s.

empty

empty creates an array without initializing the values.

eye

eye creates an identity array.

317

identity

identify creates an identity array.

meshgrid

meshgrid creates 2-dimensional arrays from 2 1-dimensional arrays which contain all combinations of the

original arrays.

tile

tile block repeats an array.

broadcast_arrays

broadcast_arrays produces the broadcasted version of 2 broadcastable arrays.

vstack

vstack vertically stacks 2 or more size compatible arrays.

hstack

hstack horizontally stacks 2 or more size compatible arrays.

vsplit

vsplit splits an array into 2 or more arrays vertically.

hsplit

hsplit splits an array into 2 or more arrays horizontally.

split

split splits an array into 2 or more arrays along an arbitrary axis.

concatenate

concetenate combines 2 or more arrays along an arbitrary axis.

delete

delete deletes elements from an array. axis can be used to delete along a particular axis.

flipud

flipud flips an array top-to-bottom.

318

fliplr

fliplrud flips an array left-to-right.

diag

diag returns the diagonal from a 2-dimensional matrix, or returns a diagonal 2-dimensional matrix when

used with a 1-dimensional input.

triu

triu returns the upper triangular array from an array.

tril

tril returns the lower triangular array from an array.

27.2.5 Array Functions

kron

kron returns the Kronecker product of 2 arrays.

trace

trace returns the sum of the diagonal elements of an array.

diff

diff returns the 1st difference of an array. An optional second input allows for higher order differencing.

axis can be used to compute the difference along a particular axis.

27.2.6 Input/Output

loadtxt

loadtxt loads a rectangular array from a text file. No missing values are allowed. Automatically decom-

presses gzipped or bzipped text files.

genfromtxt

genfromtxt loads text from a data file and can accept missing values.

load

load loads a npy or npz file.

save

save saves a single array a NumPy data file (npy).

319

savez

savez saves an array or set of arrays to a NumPy data file (npz).

savez_compressed

savez_compressed saves an array or set of arrays to a NumPy data file (npz) using compression.

savetxt

savetxt saves a single array to a text file.

27.2.7 nan Functions

nansum

nansum returns the sum of an array, ignoring NaN values. axis can be used to compute along a particular

axis.

nanmax

nanmax returns the maximum of an array, ignoring NaN values. axis can be used to compute along a

particular axis.

nanargmax

nanargmax returns the index of the maximum of an array, ignoring NaN values. axis can be used to com-

pute along a particular axis.

nanmin

nanmin returns the minimum of an array, ignoring NaN values. axis can be used to compute along a par-

ticular axis.

nanargmin

nanargmin returns the index of the minimum of an array, ignoring NaN values. axis can be used to com-

pute along a particular axis.

27.2.8 Set Functions

unique

unique returns the set of unique elements of an array.

in1d

in1d returns a Boolean array indicating which elements of one array are in another.

320

intersect1d

intersect1d returns the set of elements of one array which are in another.

union1d

union1d returns the set of elements which are in either of 2 arrays, or both.

setdiff1d

setdiff1d returns the set of elements on one array which are not in another.

setxor1d

setxor1d returns the set of elements which are in either or 2 arrays, but not both.

27.2.9 Logical and Indexing Functions

logical_and

logical_and compute the value of applying and to the elements of two broadcastable arrays.

logical_or

logical_or compute the value of applying or to the elements of two broadcastable arrays.

logical_xor

logical_xor compute the value of applying xor to the elements of two broadcastable arrays.

logical_not

logical_not compute the value of applying not to the elements of an array.

allclose

allclose returns True if all elements of two arrays differ by less than some tolerance.

array_equal

array_equal returns True if two arrays have the same shape and elements.

array_equiv

array_equiv returns True if two arrays are equivalent int eh sense that one array can be broadcast to be-

come the other.

find

find returns the indices of an array where a logical statement is true. The indices returned correspond to

the flattened array.

321

argwhere

argwhere returns the indices from an array where a logical condition is True.

extract

extract returns the elements from an array where a logical condition is True.

isnan

isnan returns a Boolean array indicating whether the elements of the input are nan .

isinf

isinf returns a Boolean array indicating whether the elements of the input are inf .

isfinite

isfinite returns a Boolean array indicating whether the elements of the input are not inf and not nan.

isposinf

isposinf returns a Boolean array indicating whether the elements of the input are inf.

isneginf

isneginf returns a Boolean array indicating whether the elements of the input are -inf

isreal

isreal returns a Boolean array indicating whether the elements of the input are either real or have 0j

complex component.

iscomplex

iscomplex returns a Boolean array indicating whether the elements of the input are either have non-zero

complex component.

is_string_like

is_string_like returns True if the input is a string or similar to a string.

isscalar

isscalr returns True if the input is not an array or matrix.

is_numlike

is_numlike returns True if the input is numeric.

322

isvector

isvector returns True if the input has at most 1 dimension which is not unity.

27.2.10 Numerics

nan

nan represents Not a Number.

inf

inf represents infinity.

finfo

finfo can be used along with a data type to return machine specific information about numerical limits

and precision.

27.2.11 Mathematics

log

log returns the natural logarithm of the elements of an array.

log10

log10 returns the bast-10 logarithm of the elements of an array.

sqrt

sqrt returns the square root of the elements of an array.

exp

exp returns the exponential of the elements of an array.

absolute

absolute returns the absolute value of the elements of an array.

sign

sign returns the sign of the elements of an array.

27.2.12 Rounding

floor

floor rounds to next smallest integer.

323

ceil

ceil round to next largest integer

27.2.13 Views

asmatrix

asmatrix returns a view of an array as a matrix.

mat

mat is identical to asmatrix.

asarray

asarray returns a view of a matrix as an ndarray.

27.2.14 rec

rec.array

rec.array construct record arrays.

27.2.15 linalg

linalg.matrix_power

matrix_power raises a square array to an integer power.

linalg.cholesky

cholesky computes the Cholesky factor of a positive definite array.

linalg.qr

qr computes the QR factorization of an array.

linalg.svd

svd computes the singular value decomposition of an array.

linalg.eig

eig computes the eigenvalues and eigenvectors of an array.

linalg.eigh

eigh computes the eigenvalues and eigenvectors of a Hermitian (symmetric) array.

324

linalg.cond

cond computes the conditioning number of an array.

linalg.det

det computes the determinant of an array.

linalg.slogdet

slogdet computes the log determinant and the sign of the determinant of an array.

linalg.solve

solve solves a just-identified set of linear equations.

linalg.lstsq

lstsq finds the least squares solutions of an over-identified set of equations.

linalg.inv

inv computes the inverse of a square array.

27.2.16 random

random.rand

rand returns standard uniform pseudo-random numbers. Uses n inputs to produce an n-dimensional

array.

random.randn

randn returns standard normal pseudo-random numbers. Uses n inputs to produce an n-dimensional

array.

random.randint

randing returns uniform integers on a specified range, exclusive of end point. Uses an n-element tuple to

produce an n-dimensional array.

random.random_integers

random_integers returns uniform integers on a specified range, inclusive of end point. Uses an n-element

tuple to produce an n-dimensional array.

random.random_sample

random_sample returns standard Uniform pseudo-random numbers. Uses an n-element tuple to produce

an n-dimensional array.

325

random.random

random returns standard Uniform pseudo-random numbers. Uses an n-element tuple to produce an n-

dimensional array.

random.standard_normal

standard_normal returns standard normal pseudo-random numbers. Uses an n-element tuple to produce

an n-dimensional array.

random.sample

sample returns standard Uniform pseudo-random numbers. Uses an n-element tuple to produce an n-

dimensional array.

random.shuffle

shuffle shuffles the elements of an array in-place.

random.permutation

permutation returns a random permutation of an array.

random.RandomState

RandomState is a container for the core random generator. RandomState is used to initialize and control

additional random number generators.

random.seed

seed seeds the core random number generator.

random.get_state

get_state gets the state of the core random number generator.

random.set_state

set_state sets the state of the core random number generator.

Random Number Generators

Random number generators are available for distribution in the following list: beta , binomial, chisquare,

exponential, f, gamma, geometric, laplace, logistic, lognormal, multinomial, multivariate_normal, negative_binomial,

normal, poisson, uniform.

326

27.3 SciPy

27.3.1 Statistics (stats)

27.3.1.1 Continuous Random Variables

Normal (norm), Beta (beta), Cauchy (cauchy),χ2 (chi2), Exponential (expon), Exponential Power (exponpow),

F (f), Gamma (gamma), Laplace/Double Exponential (laplace), Log-Normal (lognorm), Student’s t (t)

stats.dist.rvs

rvs generates pseudo-random variables.

stats.dist.pdf

pdf returns the value of the PDF at a point in the support.

stats.dist.logpdf

logpdf returns the log of the PDF value at a point in the support.

stats.dist.cdf

cdf returns the value of the CDF at a point in the support.

stats.dist.ppf

ppf returns the value of the random variable from a point in (0,1). PPF is the same as the inverse CDF.

stats.dist.fit

fit estimates parameters by MLE.

stats.dist.median

median returns the median of random variables which follow the distribution.

stats.dist.mean

mean returns the mean of random variables which follow the distribution.

stats.dist.moment

moment returns non-central moments of random variables which follow the distribution.

stats.dist.var

var returns the variance of random variables which follow the distribution.

327

stats.dist.std

std returns the standard deviation of random variables which follow the distribution.

27.3.1.2 Statistical Functions

stats.mode

mode returns the empirical mode of an array.

stats.moment

moment computes non-central moments of an array.

stats.skew

skew computes the skewness of an array.

stats.kurtosis

kurtosis computes the excess kurtosis of an array.

stats.pearsonr

pearsonr computes the correlation of an array.

stats.spearmanr

spearmanr computes the rank correlation of an array.

stats.kendalltau

kendalltau computed Kendall’s τ, which is similar to a correlation, from an array.

stats.normaltest

normaltest computes a Jarque-Bera like test for normality.

stats.kstest

kstest computes a Kolmogorov-Smirnov test for a specific distribution.

stats.ks_2samp

ks_2samp computes a Kolmogorov-Smirnov test from directly from two samples.

stats.shapiro

shapire computes the Shapiro-Wilks test of normality.

328

27.3.2 Optimization (optimize)

27.3.2.1 Unconstrained Function Minimization

optimize.fmin_bfgs

fmin_bfgs minimizes functions using the BFGS algorithm.

optimize.fmin_cg

fmin_cg minimizes functions using a Conjugate Gradient algorithm.

optimize.fmin_ncg

fmin_ncg minimizes functions using a Newton-Conjugate Gradient algorithm.

27.3.2.2 Derivative Free Unconstrained Function Minimization

optimize.fmin

fmin minimizes a function using a simplex algorithm.

optimize.fmin_powell

fmin_powell minimizes a function using Powell’s algorithm.

27.3.2.3 Constrained Function Minimization

optimize.fmin_slsqp

fmin_slsqp minimizes a function subject to inequality, equality and bounds constraints.

optimize.fmin_tnc

fmin_tnc minimizes a function subject to bounds constraints.

optimize.fmin_l_bfgs_s

fmin_l_bfgs_s minimizes a function subject to bounds constraints.

optimize.fmin_colyba

fmin_colyba minimizes a function subject to inequality and equality constraints.

27.3.2.4 Scalar Function Minimization

optimize.fmin_bound

fmin_bound minimizes a function in a bounded region.

329

optimize.golden

golden uses a golden section search to minimize a scalar function.

optimize.brent

brent uses Brent’s method to minimize a scalar function.

27.3.2.5 Nonlinear Least Squares

optimize.lstsq

lstsq performs non-linear least squares minimization of a function which returns a 1-dimensional array

of errors.

27.3.3 Input/Output (io)

io.loadmat

loadmat loads a MATLAB data file.

io.savemat

savemat saves an array or set of arrays to a MATLAB data file.

27.4 Matplotlib

27.4.1 2D plotting

plot

plot plots a 2-dimensional line or set of lines.

pie

pie produces a pie chart.

hist

hist computes and plots a histogram.

scatter

scatter produces a scatter plot.

bar

bar produces a vertical bar chart.

330

barh

barh produces a horizontal bar chart.

contour

contour produces a 2-dimensional contour representation of 3-dimensional data.

27.4.2 3D plotting

plot

plot using the optional keyword argument zs produces 3-dimensional plots.

plot_wireframe

plot_wireframe plots a 3-dimensional wire-frame surface.

plot_surface

plot_surface plots a 3-dimensional solid surface.

27.4.3 Utility Commands

figure

figure opens a new figure or changes the current figure to an existing figure.

add_axes

add_axes adds a single axes to a figure.

add_subplot

add_subplot adds a subplot to a figure.

show

show updates a figure and pauses the running of a non-interactive program until the figure is closed.

draw

draw updates a figure.

close

close closes figures. close(’all’) closes all figures.

legend

legend adds a legend to a plot or chart using the information in label keyword arguments.

331

title

title adds a title to a plot or chart.

savefig

savefig exports figures to common file formats including PDF, EPS, PNG and SVG.

27.4.4 Input/Output

csv2rec

csv2rec reads data in a CSV file and returns a NumPy record array. Columns are automatically types based

on the first few rows of the input array, and importing dates is supported.

27.5 Pandas

The format DataFrame.method is used to indicate that method is called directly on a DataFrame (e.g.

x.method()).

27.5.1 Data Structures

Series

Series constructs the 1-dimensional array-like (or column-like) structure underlying a DataFrame.

TimeSeries

TimeSeries is a sub-class of Series where the index is a set of datetimes.

DataFrame

DataFrame constructs the primary 2-dimensional array-like (or table-like) structure in pandas.

27.5.2 Series/DataFrame Methods

drop

drop drops rows or columns using a list of labels.

dropna

dropna drops rows containing null-values.

drop_duplicates

drop_duplicates drops rows that contain duplicate values.

332

values

values returns the NumPy array underlying the DataFrame.

index

values returns an Index object containing the index labels.

fillna

fillna allows null-values to be filled with another value.

T, transpose

T transposes a DataFrame and is used as a property (i.e. df.T). transpose is identical except that it is used

as a method (i.e. df.transpose())

sort

sort sorts a DataFrame using either index or column labels or values in one or more columns.

sort_index

sort_index is identical to sort except for the keyword argument names.

pivot

pivot reshapes a DataFrame

stack

stack creates a single Series representation of a DataFrame.

unstack

unstack converts a single Series representation to a Series.

concat

concat concatenates two DataFrames into a single DataFrame. concat is a function which operated on

DataFrames and is not a method.

append

append concatenates a DataFrame to the existing DataFrame.

reindex

reindex changes the index and/or column labels.

333

reindex_like

reindex_like reindexes a DataFrame using the index of another DataFrame.

reindex_axis

reindex_axis reindexes one axis of a DataFrame.

merge

merge performs a SQL-like join of two DataFrames using index values to construct the union.

join

join performs a SQL-like join of two DataFrames using values in columns to construct the union.

update

update updates the values of cells in one DataFrame using index labels.

groupby

groupby produces a DataFrameGroupBy object that can be used to compute grouped statistics or plots.

apply

apply applies a function column- or row-wise to a DataFrame.

applymap

applymap applies a function element-by-element to a DataFrame.

pivot_table

pivot_table produces an Excel-like grouping of a DataFrame using one or more columns to group.

count

count returns the number of non-null values for each variable in a DataFrame.

describe

describe produces summary statistics about the variables in a DataFrame.

value_counts

value_counts performs histogramming on a DataFrame.

334

27.5.3 Graphics

DataFrame.plot

plot produces a plot of data in a DataFrame. A keyword argument kind can be used to produce line plots

(default), bar (’bar’), horizontal bar (’barh’) or kernel density plots (’kde’ or ’density’).

DataFrame.hist

hist produces a histogram plot.

DataFrame.boxplot

boxplot produces a boxplot of the data in a DataFrame.

DataFrame.scatter_plot

scatter_plot produces a scatter plot of two series.

DataFrame.scatter_matrix

scatter_matrix produces a matrix of bivariate scatter plots with histograms or kernel density estimates

along the diagonal.

DataFrame.lag_plot

lag_plot produces a scatter plot of a time series against its lag.

27.5.4 Input/Output

read_excel

read_excel reads both Excel 97/2003 and 2007/10/13 files and requires both the filename and the sheet

name.

read_csv

read_csv reads csv and other delimited files.

read_stata

read_stata reads STATA data files.

read_table

read_table reads general delimited files.

read_hdf

read_hdf reads data from HDF5 files (usually created using DataFrame.to_hdf)

335

read_html

read_html reads html tables.

read_json

read_html reads data from JavaScript Object Notation.

DataFrame.to_excel

to_excel writes data to an Excel file.

DataFrame.to_csv

to_csv writes data to a CSV file.

DataFrame.to_string

to_string writes data to a string variable or buffer (file or StringIO).

DataFrame.to_latex

to_latex writes data to a LATEX file.

DataFrame.to_stata

to_stata writes data to a STATA data file.

DataFrame.to_hdf

to_hdf writes data to a HDF5 data file.

DataFrame.to_html

to_hdf writes data to a HTML data table.

DataFrame.to_json

to_hdf writes data to a JSON string.

27.6 IPython

?*partial*, ?module.*partial*

?*partial* list any known objects – variables, functions or modules – which match the wild card expression

partial where partial can be any string.

336

function?, magic?

?function, ?magic, ?module, function?, magic? and module? all pretty print the docstring for a function,

magic word or module.

function??, magic??

??function, ??magic, ??module, function??, magic?? and module?? all pretty print the entire function,

magic word or module, including both the docstring and the code inside the function.

!command

!command is used to run a system command as if executed in the terminal. For example, !copy file.py backup.py

will copy file.by to backup.py. An output can be used to capture the command window text printed by the

command to a local variable. For example, dirListing = !dir *.py will capture the contents to running

a directory listing for all py files. This can then be parsed or used for error checking.

%bookmark

%bookmark allows bookmarks to be created to directories. Manage IPython’s bookmark system. For exam-

ple, the current directory can be bookmarked using %bookmark currentDir, and can be returned to using

%cd currentDir (assuming the current directory doesn’t contain a directory named currentDir).

%cd

%cd changes the current working directory. In Windows, \, \\ or / can be used as directory separators. In

Linux, / should be used to separate directories. %cd support tab completion, so that only a few letters are

needed before hitting the tab key to complete the directory name.

%clear, %cls

%clear and %cls both clear the terminal window (but do not remove any variables, functions or modules).

%edit

%edit opens the editor for py files, and is usually used %edit filename.py.

%hist

%hist lists command history. %hist -g searchterm can be used to search for a specific term or wildcard

expression.

%lsmagic

%lsmagic lists all defined magic functions.

%magic

%magic prints detailed information about all magic functions.

337

%pdb

%pdb controls the use of the Python debugger.

%pdef

%pdef prints only the definition header (the line beginning with def) for functions.

%precision

%precision sets the display precision. For example %precision 3 will show 3 decimal places.

%prun

%prun runs a statement in the profiler, and returns timing and function call information. Use %run -p

filename.py to profile a standalone file.

%psearch

%psearch searches for variables, functions and loaded modules using wildcards.

%pwd

%pwd shows the current working directory.

%pycat, %more, %less

%pycat, %more and %less all show the contents of a file in the IPython window.

%pylab

%pylab initializes pylab if not initialized from the command line.

%quickref

%quickref shows a reference sheet for magic commands.

%reset

%reset resets the session by removing all variables, functions and imports defined by the user.

%reset_selective

%reset_selective re resets all names which match the regular expression re.

%run

%run filename.py executes a file containing Python code in the IPython environment.

338

%time

%time code provides the time needed to run the code once. %timeit is often more useful.

%timeit

%timeit code times a segment of code, and is useful for finding bottlenecks and improving algorithms. If

code is very fast, multiple runs are used to improve timing accuracy.

>>> %timeit x=randn(100,100);dot(x.T,x)

1000 loops, best of 3: 758 us per loop

%who

%who lists all variables in memory.

%who_ls

%who_ls returns a sorted list containing the names of all variables in memory.

%whos

%whos provides a detailed list of all variables in memory.

%xdel

%xdel variable deletes the variable from memory.

339

340

Bibliography

Bollerslev, T. & Wooldridge, J. M. (1992), ‘Quasi-maximum likelihood estimation and inference in dynamic

models with time-varying covariances’, Econometric Reviews 11(2), 143–172.

Cochrane, J. H. (2001), Asset Pricing, Princeton University Press, Princeton, N. J.

Flannery, B., Press, W., Teukolsky, S. & c, W. (1992), Numerical recipes in C, Press Syndicate of the University

of Cambridge, New York.

Jagannathan, R., Skoulakis, G. & Wang, Z. (2010), The analysis of the cross section of security returns, in

Y. Aït-Sahalia & L. P. Hansen, eds, ‘Handbook of financial econometrics’, Vol. 2, Elsevier B.V., pp. 73–134.

341

Index

(, 63

), 63

+, 249

+, 59

-, 59

/, 59

<, 109

<=, 109

==, 109

>, 109

>=, 109

%time, 267

%timeit, 267

*, 59

*, 250

**, 59

abs, 72

absolute, 72

all, 111

and, 110

any, 111

arange, 67

argmax, 75

argmin, 75

argsort, 75

around, 70

array, 43

Arrays, 43–45

Broadcasting, 60–61

Complex Values, 73

conj, 73

conjugate, 73

imag, 73

real, 73

Extreme Values, 75–76

argmax, 75

argmin, 75

max, 75

maximum, 76

min, 75

minimum, 76

Inputting, 46–48

Manipulation, 82–88

broadcast, 85

concatenate, 86

delete, 87

diag, 88

dsplit, 86

flat, 84

flatten, 84

fliplr, 87

flipud, 87

hsplit, 86

hstack, 86

ndim, 83

ravel, 84

reshape, 82

shape, 82

size, 83

squeeze, 87

tile, 83

tril, 88

triu, 88

vsplit, 86

vstack, 86

Mathematics, 61–63, 71–72

absolute, 72

abs, 72

cumprod, 71

cumsum, 71

diff, 71

exp, 72

log, 72

342

log10, 72

prod, 71

sign, 72

sqrt, 72

square, 72

sum, 71

NaN Functions, 76–77

nanargmax, 77

nanargmin, 77

nanmax, 77

nanmin, 77

nansum, 76

Set Functions, 73–74

in1d, 73

intersect1d, 74

setdiff1d, 74

setxor1d, 74

union1d, 74

unique, 73

Slicing, 48–54

Sorting, 74–75

argsort, 75

sort, 74, 75

Special

empty, 79

eye, 80

identity, 80

ones, 79

zeros, 79

Views

asarray, 82

asmatrix, 81

view, 81

as, 55

asarray, 82

asmatrix, 81

beta, 221

binomial, 221

break, 133, 134

brent, 247

broadcast, 85

broadcast_arrays, 85

Broadcasting, 270

c_, 68

ceil, 70

center, 252

chisquare, 221

cholesky, 90

close, 102

concatenate, 86

cond, 89

conj, 73

conjugate, 73

continue, 133, 135

corrcoef, 226

count, 252

cov, 227

cumprod, 71

cumsum, 71

Cython, 278–283

date, 139

Dates and Times, 139–142

date, 139

datetime, 139

datetime64, 140

Mathematics, 139

time, 139

timedelta, 139

timedelta64, 140

datetime, 139

datetime64, 140

def, 201

del, 34

delete, 87

det, 90

diag, 88

Dictionary comprehensions, 137

diff, 71

docstring, 205

dsplit, 86

dtype, 44

eig, 90

eigh, 91

elif, 129

else, 129

empty, 79

343

empty_like, 80

enumerate, 133

equal, 109

except, 135

exp, 72

exponential, 221

Exporting Data

CSV, 103

Delimited, 103

MATLAB, 102

savez, 102

savez_compressed, 102

eye, 80

f, 221

file, 101

find, 251

finfo, 105

flat, 84

flatten, 84

fliplr, 87

flipud, 87

float, 102

float, 259

floor, 70

Flow Control

elif, 129

else, 129

except, 135

if, 129

try, 135

fmin, 241

fmin_1_bfgs_b, 245

fmin_bfgs, 238

fmin_cg, 240

fmin_cobyla, 245

fmin_ncg, 240

fmin_powell, 242

fmin_slsqp, 242

fmin_tnc, 245

fminbound, 247

for, 130

from, 55

Functions, 77

Custom, 201–214

Default Values, 203

docstring, 205

Keyword Arguments, 203

Variable Inputs, 204

Variable Scope, 208

Custom Modules, 210

def, 201

PYTHONPATH, 213

gamma, 221

Generating Arrays, 67–70

arange, 67

c_, 68

ix_, 69

linspace, 67

logspace, 67

meshgrid, 67

mgrid, 69

ogrid, 70

r_, 68

get_state, 223, 224

golden, 247

greater, 109

greater_equal, 109

histogram, 227

histogram2d, 227

hsplit, 86

hstack, 86

identity, 80

if, 129

imag, 73

import, 55

Importing Data, 95–102

CSV, 95

Excel, 96, 98, 99

loadtxt, 97

MATLAB, 100

pandas, 95

STATA, 96

in1d, 73

index, 252

inf, 105

344

int, 102

int, 259

intersect1d, 74

inv, 91

ix_, 69

join, 249, 251

kendalltau, 233

kron, 91

ks_2samp, 234

kstest, 234

kurtosis, 232

laplace, 221

leastsq, 247

less, 109

less_equal, 109

Linear Algebra

cholesky, 90

cond, 89

det, 90

eig, 90

eigh, 91

eigvals, 90

inv, 91

kron, 91

lstsq, 90

matrix_power, 89

matrix_rank, 91

slogdet, 89

solve, 89

svd, 89

trace, 91

linregress, 233

linspace, 67

List comprehensions, 135

ljust, 252

loadtxt, 97

log, 72

log10, 72

Logical

<, 109

<=, 109

==, 109

>, 109

>=, 109

all, 111

and, 110

any, 111

equal, 109

greater, 109

greater_equal, 109

less, 109

less_equal, 109

logical_and, 110

logical_not, 110

logical_or, 110

logical_xor, 110

not, 110

not_equal, 109

or, 110

logical_and, 110

logical_not, 110

logical_or, 110

logical_xor, 110

lognormal, 221

logspace, 67

Looping, 130–135

break, 133, 134

continue, 133, 135

for, 130

while, 133
Looping

Whitespace, 129

lower, 252

lstrip, 251

lstsq, 90

mat, 81

Mathematics

+, 59

-, 59

/, 59

*, 59

**, 59

Array, 61

Arrays

), 63

345

Matrix, 61–63

Operator Precedence, 63

Matrix, 45

Inputting, 47

Mathematics, 61–63

matrix, 45

matrix_power, 89

matrix_rank, 91

max, 75

maximum, 76

mean, 225

median, 226

meshgrid, 67

Methods, 77

mgrid, 69

min, 75

minimum, 76

mode, 231

moment, 231

multinomial, 222

multivariate_normal, 222

nan, 105

nanargmax, 77

nanargmin, 77

nanmax, 77

nanmin, 77

nansum, 76

ndaray

mean, 225

std, 226

var, 226

ndarray

argmax, 75

argmin, 75

argsort, 75

conj, 73

cumprod, 71

cumsum, 71

flat, 84

flatten, 84

imag, 73

max, 75

min, 75

ndim, 83

prod, 71

ravel, 84

real, 73

reshape, 82

round, 70

shape, 82

size, 83

sort, 75

squeeze, 87

sum, 71

T, 63

transpose, 63

view, 81

ndim, 83

negative_binomial, 222

normal, 222

normaltest, 234

not, 110

not_equal, 109

Numba, 276–278

autojit, 276

jit, 276

Numerics

eps, 105

Limits, 105

Precision, 105

NumPy

datetime64, 140

timedelta64, 140

numpy

array, 43

dtype, 44

matrix, 45

ndarray, 43

ogrid, 70

ones, 79

ones_like, 79

Optimization

Constrained, 242–246

fmin_1_bfgs_b, 245

fmin_cobyla, 245

fmin_slsqp, 242

346

fmin_tnc, 245

Least Squares, 247–248

leastsq, 247

Scalar, 246–247

brent, 247

fminbound, 247

golden, 247

Unconstrained, 237–242

fmin, 241

fmin_bfgs, 238

fmin_cg, 240

fmin_ncg, 240

fmin_powell, 242

or, 110

pandas, 167

Data

Exporting, 190

Importing, 190

Reading, 190

Writing, 190

Data Exporting, 190

to_csv, 192

to_excel, 192

to_hdf, 192

to_json, 192

Data Importing, 190

DataFrame, 173–186

append, 181

apply, 184

applymap, 185

boxplot, 194

columns, 175, 177, 178

concat, 181

count, 186

describe, 186

drop, 179

drop_duplicates, 179

dropna, 179

fillna, 179

groupby, 183

head, 175

hist, 194

index, 179

Initialization, 173

join, 182

lag_plot, 194

merge, 182

pivot, 181

pivot_table, 185

plot, 193

reindex, 181

reindex_axis, 181

reindex_like, 181

rows, 176, 177

scatter_matrix, 194

scatter_plot, 194

sort, 180

sort_index, 180

stack, 181

T, 180

transpose, 180

unstack, 181

update, 183

value_counts, 186

values, 179

DataFrame, 173

describe, 186

Examples, 194

Graphics, 193

boxplot, 194

hist, 194

lag_plot, 194

plot, 193

scatter_matrix, 194

scatter_plot, 194

Plotting, 193

read_csv, 95

read_excel, 96

read_stata, 96

Series, 167–173

append, 172

describe, 171

drop, 171

dropna, 171

fillna, 172

head, 171

Initialization, 167

347

isnull, 171

ix, 171

Math, 169

notnull, 171

nunique, 171

replace, 172

tail, 171

update, 173

Series, 167

TimeSeries, 187

date_range, 188

Initialization, 187

pct_change, 190

read_csv, 191

read_excel, 190

read_hdf, 192

read_table, 192

resample, 189

rows, 187

pearsonr, 232

Performance and Optimization, 267–283

Broadcasting, 270

Cython, 278–283

Loop Order, 269

Memory Management, 270

Numba, 276

Numba)(, 278

Timing, 267

Vectorization, 268

permutation, 220

poisson, 222

prod, 71

Python

2 vs. 3, 23–26

as, 55

Built-in Data Types, 28–40

bool, 30

Boolean Values, 30

complex, 28

Complex Numbers, 28

dict, 37

Dictionaries, 37

float, 28

Floating Point Numbers, 28

frozenset, 37

int, 29

Integers, 29

list, 32

Lists, 32

long, 29

Range Iteration, 36

Real Numbers, 28

set, 37

Sets, 37

str, 30

Strings, 30

tuple, 35

Tuples, 35

xrange, 36

Coding Conventions, 213

from, 55

Functions

Calling, 56–57

import, 55

Importing Modules, 55

Memory Management, 38, 53–55, 124, 270

Performance, 23–24

Setup, 3–9

Anaconda, 4

Continuum Analytics, 4

Linux, 5, 7

OSX, 5

Windows, 4, 6

Slicing, 31, 32, 48–54

Variable Names, 27–28

Variable Scope, 208

Variants, 24

r_, 68

rand, 219

randint, 220

randn, 219

Random Numbers, 219–224

beta, 221

binomial, 221

chisquare, 221

exponential, 221

f, 221

348

gamma, 221

get_state, 224

laplace, 221

lognormal, 221

multinomial, 222

multivariate_normal, 222

negative_binomial, 222

normal, 222

permutation, 220

poisson, 222

rand, 219

randint, 220

randn, 219

random_integers, 220

random_sample, 219

RandomState, 223

seed, 224

set_state, 224

shuffle, 220

Simulation, 222–225

standard_normal, 219

standard_t, 222

uniform, 222

random_integers, 220

random_sample, 219

RandomState, 223

ravel, 84

readline, 101

real, 73

Regular Expressions, 258

compile, 259

findall, 258

finditer, 258

sub, 258

replace, 102

replace, 253

reshape, 82

rfind, 251

rindex, 252

rjust, 252

round, 70

Rounding, 70–71

around, 70

ceil, 70

floor, 70

round, 70

rsplit, 250

rstrip, 251

savetxt, 103

SciPy, 228–235

stats

beta, 230

cauchy, 230

cdf, 228

chi2, 230

Continuous Random Variables, 228

expon, 230

f, 230

fit, 229

gamma, 230

kendalltau, 233

ks_2samp, 234

kstest, 234

kurtosis, 232

laplace, 230

linregress, 233

lognorm, 230

logpdf, 228

mean, 229

median, 229

mode, 231

moment, 229, 231

norm, 230

normaltest, 234

pdf, 228

pearsonr, 232

ppf, 229

rvs, 228

shapiro, 235

skew, 231

spearmanr, 232

std, 229

t, 230

var, 229

seed, 224

Set comprehensions, 137

set_state, 223, 224

349

setdiff1d, 74

setxor1d, 74

shape, 82

shapiro, 235

shuffle, 220

sign, 72

Simulation, 222–225

get_state, 223

seed, 224

set_state, 223

size, 83

skew, 231

slogdet, 89

solve, 89

sort, 74, 75

spearmanr, 232

split, 102

split, 250

sqrt, 72

square, 72

squeeze, 87

standard_normal, 219

standard_t, 222

Statistics, 225–227

corrcoef, 226

cov, 227

histogram, 227

histogram2d, 227

mean, 225

median, 226

std, 226

var, 226

std, 226

Strings, 249–260

+, 249

*, 250

Building, 249

center, 252

Conversion, 259

count, 252

find, 251

format, 254–257

Formatting, 254–258

Formatting (Legacy), 258

Functions, 250–253

index, 252

join, 249, 251

ljust, 252

lower, 252

lstrip, 251

Regular Expressions, 258–259

replace, 253

rfind, 251

rindex, 252

rjust, 252

rsplit, 250

rstrip, 251

split, 250

strip, 251

upper, 252

wrap, 253

strip, 251

Structured Data, 163–166

Mixed Arrays, 163

Named Arrays, 163

Record Arrays, 166

sum, 71

svd, 89

T, 63

tile, 83

time, 139

timedelta64, 140

Timing Code, 267

trace, 91

transpose, 63

tril, 88

triu, 88

try, 135

Tuple comprehensions, 137

uniform, 222

union1d, 74

unique, 73

upper, 252

var, 226

Vectorization, 268

view, 81

350

vsplit, 86

vstack, 86

while, 133

wrap, 253

zeros, 79

zeros_like, 79

351

	Introduction
	Background
	Conventions
	Important Components of the Python Scientific Stack
	Setup
	Using Python
	Exercises
	register_python.py

	Python 2.7 vs. 3 (and the rest)
	Python 2.7 vs. 3
	Intel Math Kernel Library and AMD Core Math Library
	Other Variants
	Relevant Differences between Python 2.7 and 3

	Built-in Data Types
	Variable Names
	Core Native Data Types
	Python and Memory Management
	Exercises

	Arrays and Matrices
	Array
	Matrix
	1-dimensional Arrays
	2-dimensional Arrays
	Multidimensional Arrays
	Concatenation
	Accessing Elements of an Array
	Slicing and Memory Management
	import and Modules
	Calling Functions
	Exercises

	Basic Math
	Operators
	Broadcasting
	Array and Matrix Addition (+) and Subtraction (-)
	Array Multiplication (*)
	Matrix Multiplication (*)
	Array and Matrix Division (/)
	Array Exponentiation (**)
	Matrix Exponentiation (**)
	Parentheses
	Transpose
	Operator Precedence
	Exercises

	Basic Functions and Numerical Indexing
	Generating Arrays and Matrices
	Rounding
	Mathematics
	Complex Values
	Set Functions
	Sorting and Extreme Values
	Nan Functions
	Functions and Methods/Properties
	Exercises

	Special Arrays
	Exercises

	Array and Matrix Functions
	Views
	Shape Information and Transformation
	Linear Algebra Functions
	Exercises

	Importing and Exporting Data
	Importing Data using pandas
	Importing Data without pandas
	Saving or Exporting Data using pandas
	Saving or Exporting Data without pandas
	Exercises

	Inf, NaN and Numeric Limits
	inf and NaN
	Floating point precision
	Exercises

	Logical Operators and Find
	>, >=, <, <=, ==, !=
	and, or, not and xor
	Multiple tests
	is*
	Exercises

	Advanced Selection and Assignment
	Numerical Indexing
	Logical Indexing
	Performance Considerations and Memory Management
	Assignment with Broadcasting
	Exercises

	Flow Control, Loops and Exception Handling
	Whitespace and Flow Control
	if … elif … else
	for
	while
	try … except
	List Comprehensions
	Tuple, Dictionary and Set Comprehensions
	Exercises

	Dates and Times
	Creating Dates and Times
	Dates Mathematics
	Numpy datetime64

	Graphics
	2D Plotting
	Advanced 2D Plotting
	3D Plotting
	General Plotting Functions
	Exporting Plots
	Exercises

	Structured Arrays
	Mixed Arrays with Column Names
	Record Arrays

	pandas
	Data Structures
	Statistical Function
	Time-series Data
	Importing and Exporting Data
	Graphics
	Examples

	Custom Function and Modules
	Functions
	Variable Scope
	Example: Least Squares with Newey-West Covariance
	Anonymous Functions
	Modules
	Packages
	PYTHONPATH
	Python Coding Conventions
	Exercises
	Listing of econometrics.py

	Probability and Statistics Functions
	Simulating Random Variables
	Simulation and Random Number Generation
	Statistics Functions
	Continuous Random Variables
	Select Statistics Functions
	Select Statistical Tests
	Exercises

	Optimization
	Unconstrained Optimization
	Derivative-free Optimization
	Constrained Optimization
	Scalar Function Minimization
	Nonlinear Least Squares
	Exercises

	String Manipulation
	String Building
	String Functions
	Formatting Numbers
	Regular Expressions
	Safe Conversion of Strings

	File System Operations
	Changing the Working Directory
	Creating and Deleting Directories
	Listing the Contents of a Directory
	Copying, Moving and Deleting Files
	Executing Other Programs
	Creating and Opening Archives
	Reading and Writing Files
	Exercises

	Performance and Code Optimization
	Getting Started
	Timing Code
	Vectorize to Avoid Unnecessary Loops
	Alter the loop dimensions
	Utilize Broadcasting
	Use In-place Assignment
	Avoid Allocating Memory
	Inline Frequent Function Calls
	Consider Data Locality in Arrays
	Profile Long Running Functions
	Numba
	Cython
	Exercises

	Parallel
	map and related functions
	Multiprocess module
	IPython Parallel

	Examples
	Estimating the Parameters of a GARCH Model
	Estimating the Risk Premia using Fama-MacBeth Regressions
	Estimating the Risk Premia using GMM
	Outputting LaTeX

	Other Interesting Python Packages
	statsmodels
	pytz and babel
	rpy2
	PyTables and h5py

	Quick Reference
	Built-ins
	NumPy (numpy)
	SciPy
	Matplotlib
	Pandas
	IPython

