Vulkan Tutorial

Alexander Overvoorde

May 2017

Contents

Introduction
About
Tutorial structure

Overview
Origin of Vulkan L
What it takes to draw a triangle
Step 1 - Instance and physical device selection
Step 2 - Logical device and queue families
Step 3 - Window surface and swap chain
Step 4 - Image views and framebuffers
Step 5 - Render passeso
Step 6 - Graphics pipeline oo
Step 7 - Command pools and command buffers
Step 8 -Main loop
Summary e
APT concepts e
Coding conventions
Validation layers L
Windows e e
Vulkan SDK
GLFW . .
GLM . . .
Setting up Visual Studio L.
Linux

Base code
General structure

Resource management
Integrating GLEW Lo

Instance
Creating an instance
Checking for extension support

Validation layers
What are validation layers?
Using validation layers L L oL
Message callback L oo
Configuration Lo

Physical devices and queue families
Selecting a physical device oL
Base device suitability checks L.
Queue families

Logical device and queues
Introduction
Specifying the queues to be created L.
Specifying used device features L.
Creating the logical device
Retrieving queue handles oL

Window surface
Window surface creation L oL
Querying for presentation support L.
Creating the presentation queue

Swap chain
Checking for swap chain support
Querying details of swap chain support.
Choosing the right settings for the swap chain.
Surface format
Presentation modeo
Swap extento
Creating the swap chain
Retrieving the swap chain images

Image views
Graphics pipeline basics

Shader modules
Vertex shader
Fragment shader L L L.

39
39
41

42
42
43
45
49

49
49
50
52

54
54
95
55
56
o7

57
58
99
60

61
61
63
65
65
66
67
68
71

72

74

Per-vertex colors Lo o
Compiling the shaders
Loading a shadero
Creating shader modules
Shader stage creation L o

Fixed functions
Vertex inputo
Input assembly
Viewports and scissors
Rasterizer
Multisampling
Depth and stencil testing oo oL
Color blending
Dynamic state
Pipeline layouto o
Conclusion L

Render passes
Setup e e
Attachment description oL
Subpasses and attachment references
Render pass L

Graphics pipeline construction
Framebuffers

Command buffers
Command pools
Command buffer allocation
Starting command buffer recording
Starting a render passo
Basic drawing commands
Finishingup.

Rendering and presentation
Setup . . . e
Synchronization L o
Semaphores
Acquiring an image from the swap chain
Submitting the command buffer
Subpass dependencies oo
Presentation.o
Conclusion

Swap chain recreation

87
87
88
89
90
91
92
92
94
94
95

95
95
96
97
98

99

101

103
103
104
106
106
107
108

108
108
109
109
110
111
112
113
115

116

Introduction oL
Recreating the swap chaino oL
Window resizingo
Suboptimal or out-of-date swap chain
Introductiono
Vertex shader L
Vertex data o
Binding descriptionso oo
Attribute descriptions
Pipeline vertex input L
Introduction
Buffer creation
Memory requirements e e e
Memory allocation L L
Filling the vertex buffer
Binding the vertex buffer
Introduction
Transfer queue
Abstracting buffer creation oL
Using a staging buffer 0000000
Conclusion e

Index buffer
Introduction
Index buffer creation
Using an index buffer,

Descriptor layout and buffer
Introductiono
Vertex shader
Descriptor set layout oo
Uniform buffer o
Updating uniform data Lo

Descriptor pools and sets
Introduction
Descriptor pool
Descriptor set
Using a descriptor set L o
Multiple descriptor sets L e

Images
Introduction
Image library
Loading an image Lo
Staging image L

135
135
136
138

140
140
141
142
144
145

Texture image e 160

Layout transitionso oL 162
Copying images e 165
Preparing the texture image L. 166
Transition barrier masks L o oo 166
Texture image view L 168
Samplers 170
Introduction 174
Updating the descriptors L. 174
Texture coordinates L Lo 176
Shaders e 177
Introduction 181
3D geometry 182
Depth image and view L Lo 185
Render pass 189
Framebuffer 190
Clear values e 191
Depth and stencil state L. 191
Handling window resize 193

Loading models 193
Introduction 193
Library e 193
Samplemesh 194
Loading vertices and indices oL 195
Vertex deduplication L oo o 199
Conclusion e 201

Introduction

About

This tutorial will teach you the basics of using the Vulkan graphics and compute
API. Vulkan is a new API by the Khronos group (known for OpenGL) that
provides a much better abstraction of modern graphics cards. This new interface
allows you to better describe what your application intends to do, which can
lead to better performance and less surprising driver behavior compared to
existing APIs like OpenGL and Direct3D. The ideas behind Vulkan are similar
to those of Direct3D 12 and Metal, but Vulkan has the advantage of being fully
cross-platform and allows you to develop for Windows, Linux and Android at
the same time.

However, the price you pay for these benefits is that you have to work with a
significantly more verbose API. Every detail related to the graphics API needs

https://www.khronos.org/vulkan/
https://www.khronos.org/
https://en.wikipedia.org/wiki/OpenGL
https://en.wikipedia.org/wiki/Direct3D
https://en.wikipedia.org/wiki/Direct3D#Direct3D_12
https://en.wikipedia.org/wiki/Metal_(API)

to be set up from scratch by your application, including initial frame buffer
creation and memory management for objects like buffers and texture images.
The graphics driver will do a lot less hand holding, which means that you will
have to do more work in your application to ensure correct behavior.

The takeaway message here is that Vulkan is not for everyone. It is targeted at
programmers who are enthusiastic about high performance computer graphics,
and are willing to put some work in. If you are more interested in game
development, rather than computer graphics, then you may wish to stick to
OpenGL or Direct3D, which will not be deprecated in favor of Vulkan anytime
soon. Another alternative is to use an engine like Unreal Engine or Unity, which
will be able to use Vulkan while exposing a much higher level API to you.

With that out of the way, let’s cover some prerequisites for following this tutorial:

e A graphics card and driver compatible with Vulkan (NVIDIA, AMD, Intel)
o Experience with C++ (familiarity with RAII, initializer lists)

o A compiler compatible with C++11 (Visual Studio 2013+, GCC 4.8+)

e Some existing experience with 3D computer graphics

This tutorial will not assume knowledge of OpenGL or Direct3D concepts, but it
does require you to know the basics of 3D computer graphics. It will not explain
the math behind perspective projection, for example. See this online book for a
great introduction of computer graphics concepts.

You can use C instead of C++ if you want, but you will have to use a different
linear algebra library and you will be on your own in terms of code structuring.
We will use C++ features like classes and RAII to organize logic and resource
lifetimes.

Tutorial structure

We'll start with an overview of how Vulkan works and the work we’ll have to do
to get the first triangle on the screen. The purpose of all the smaller steps will
make more sense after you've understood their basic role in the whole picture.
Next, we’ll set up the development environment with the Vulkan SDK, the
GLM library for linear algebra operations and GLFW for window creation. The
tutorial will cover how to set these up on Windows with Visual Studio, and on
Ubuntu Linux with GCC.

After that we’ll implement all of the basic components of a Vulkan program that
are necessary to render your first triangle. Each chapter will follow roughly the
following structure:

e Introduce a new concept and its purpose
e Use all of the relevant API calls to integrate it into your program
e Abstract parts of it into helper functions

https://en.wikipedia.org/wiki/Unreal_Engine#Unreal_Engine_4
https://en.wikipedia.org/wiki/Unity_(game_engine)
https://developer.nvidia.com/vulkan-driver
http://www.amd.com/en-us/innovations/software-technologies/technologies-gaming/vulkan
https://software.intel.com/en-us/blogs/2016/03/14/new-intel-vulkan-beta-1540204404-graphics-driver-for-windows-78110-1540
https://www.docdroid.net/UKocmTz/arcsynthesis.pdf.html
https://lunarg.com/vulkan-sdk/
http://glm.g-truc.net/
http://www.glfw.org/

Although each chapter is written as a follow-up on the previous one, it is also
possible to read the chapters as standalone articles introducing a certain Vulkan
feature. That means that the site is also useful as a reference. All of the Vulkan
functions and types are linked to the specification, so you can click them to
learn more. Vulkan is a very new API, so there may be some shortcomings in
the specification itself. You are encouraged to submit feedback to this Khronos
repository.

As mentioned before, the Vulkan API has a rather verbose API with many
parameters to give you maximum control over the graphics hardware. This
causes basic operations like creating a texture to take a lot of steps that have to
be repeated every time. Therefore we’ll be creating our own collection of helper
functions throughout the tutorial.

Every chapter will also conclude with a link to the full code listing up to that
point. You can refer to it if you have any doubts about the structure of the code,
or if you're dealing with a bug and want to compare. All of the code files have
been tested on graphics cards from multiple vendors to verify correctness. Each
chapter also has a comment section at the end where you can ask any questions
that are relevant to the specific subject matter. Please specify your platform,
driver version, source code, expected behavior and actual behavior to help us
help you.

This tutorial is intended to be a community effort. Vulkan is still a very new
API and best practices have not really been established yet. If you have any
type of feedback on the tutorial and site itself, then please don’t hesitate to
submit an issue or pull request to the GitHub repository.

After you've gone through the ritual of drawing your very first Vulkan pow-
ered triangle onscreen, we’ll start expanding the program to include linear
transformations, textures and 3D models.

If you’ve played with graphics APIs before, then you’ll know that there can be a
lot of steps until the first geometry shows up on the screen. There are many of
these initial steps in Vulkan, but you’ll see that each of the individual steps is
easy to understand and does not feel redundant. It’s also important to keep in
mind that once you have that boring looking triangle, drawing fully textured 3D
models does not take that much extra work, and each step beyond that point is
much more rewarding.

Ready to dive into the future of high performance graphics APIs? Let’s go!

Overview

This chapter will start off with an introduction of Vulkan and the problems it
addresses. After that we’re going to look at the ingredients that are required for
the first triangle. This will give you a big picture to place each of the subsequent

https://github.com/KhronosGroup/Vulkan-Docs
https://github.com/KhronosGroup/Vulkan-Docs
https://github.com/Overv/VulkanTutorial

chapters in. We will conclude by covering the structure of the Vulkan API and
the general usage patterns.

Origin of Vulkan

Just like the previous graphics APIs, Vulkan is designed as a cross-platform
abstraction over GPUs. The problem with most of these APIs is that the era in
which they were designed featured graphics hardware that was mostly limited to
configurable fixed functionality. Programmers had to provide the vertex data
in a standard format and were at the mercy of the GPU manufacturers with
regards to lighting and shading options.

As graphics card architectures matured, they started offering more and more
programmable functionality. All this new functionality had to be integrated with
the existing APIs somehow. This resulted in less than ideal abstractions and a lot
of guesswork on the graphics driver side to map the programmer’s intent to the
modern graphics architectures. That’s why there are so many driver updates for
improving the performance in games, sometimes by significant margins. Because
of the complexity of these drivers, application developers also need to deal with
inconsistencies between vendors, like the syntax that is accepted for shaders.
Aside from these new features, the past decade also saw an influx of mobile
devices with powerful graphics hardware. These mobile GPUs have different
architectures based on their energy and space requirements. One such example is
tiled rendering, which would benefit from improved performance by offering the
programmer more control over this functionality. Another limitation originating
from the age of these APIs is limited multi-threading support, which can result
in a bottleneck on the CPU side.

Vulkan solves these problems by being designed from scratch for modern graphics
architectures. It reduces driver overhead by allowing programmers to clearly
specify their intent using a more verbose API, and allows multiple threads to
create and submit commands in parallel. It reduces inconsistencies in shader
compilation by switching to a standardized byte code format with a single
compiler. Lastly, it acknowledges the general purpose processing capabilities of
modern graphics cards by unifying the graphics and compute functionality into
a single API.

What it takes to draw a triangle

We’ll now look at an overview of all the steps it takes to render a triangle in
a well-behaved Vulkan program. All of the concepts introduced here will be
elaborated on in the next chapters. This is just to give you a big picture to
relate all of the individual components to.

https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Tiled_rendering

Step 1 - Instance and physical device selection

A Vulkan application starts by setting up the Vulkan API through a VkInstance.
An instance is created by describing your application and any API extensions you
will be using. After creating the instance, you can query for Vulkan supported
hardware and select one or more VkPhysicalDevices to use for operations. You
can query for properties like VRAM size and device capabilities to select desired
devices, for example to prefer using dedicated graphics cards.

Step 2 - Logical device and queue families

After selecting the right hardware device to use, you need to create a VkDevice
(logical device), where you describe more specifically which VkPhysicalDevice-
Features you will be using, like multi viewport rendering and 64 bit floats. You
also need to specify which queue families you would like to use. Most operations
performed with Vulkan, like draw commands and memory operations, are asyn-
chronously executed by submitting them to a VkQueue. Queues are allocated
from queue families, where each queue family supports a specific set of operations
in its queues. For example, there could be separate queue families for graphics,
compute and memory transfer operations. The availability of queue families
could also be used as a distinguishing factor in physical device selection. It is
possible for a device with Vulkan support to not offer any graphics functionality,
however all graphics cards with Vulkan support today will generally support all
queue operations that we're interested in.

Step 3 - Window surface and swap chain

Unless you’re only interested in offscreen rendering, you will need to create a
window to present rendered images to. Windows can be created with the native
platform APIs or libraries like GLFW and SDL. We will be using GLFW in this
tutorial, but more about that in the next chapter.

We need two more components to actually render to a window: a window surface
(VkSurfaceKHR) and a swap chain (VkSwapChainKHR). Note the KHR postfix,
which means that these objects are part of a Vulkan extension. The Vulkan
APT itself is completely platform agnostic, which is why we need to use the
standardized WSI (Window System Interface) extension to interact with the
window manager. The surface is a cross-platform abstraction over windows to
render to and is generally instantiated by providing a reference to the native
window handle, for example HWND on Windows. Luckily, the GLFW library has
a built-in function to deal with the platform specific details of this.

The swap chain is a collection of render targets. Its basic purpose is to ensure
that the image that we’re currently rendering to is different from the one that
is currently on the screen. This is important to make sure that only complete

http://www.glfw.org/
https://www.libsdl.org/

images are shown. Every time we want to draw a frame we have to ask the swap
chain to provide us with an image to render to. When we’ve finished drawing
a frame, the image is returned to the swap chain for it to be presented to the
screen at some point. The number of render targets and conditions for presenting
finished images to the screen depends on the present mode. Common present
modes are double buffering (vsync) and triple buffering. We’ll look into these in
the swap chain creation chapter.

Step 4 - Image views and framebuffers

To draw to an image acquired from the swap chain, we have to wrap it into a
VkImageView and VkFramebuffer. An image view references a specific part of an
image to be used, and a framebuffer references image views that are to be used
for color, depth and stencil targets. Because there could be many different images
in the swap chain, we’ll preemptively create an image view and framebuffer for
each of them and select the right one at draw time.

Step 5 - Render passes

Render passes in Vulkan describe the type of images that are used during
rendering operations, how they will be used, and how their contents should be
treated. In our initial triangle rendering application, we’ll tell Vulkan that we
will use a single image as color target and that we want it to be cleared to a solid
color right before the drawing operation. Whereas a render pass only describes
the type of images, a VkFramebuffer actually binds specific images to these slots.

Step 6 - Graphics pipeline

The graphics pipeline in Vulkan is set up by creating a VkPipeline object. It
describes the configurable state of the graphics card, like the viewport size and
depth buffer operation and the programmable state using VkShaderModule
objects. The VkShaderModule objects are created from shader byte code. The
driver also needs to know which render targets will be used in the pipeline, which
we specify by referencing the render pass.

One of the most distinctive features of Vulkan compared to existing APIs, is that
almost all configuration of the graphics pipeline needs to be in advance. That
means that if you want to switch to a different shader or slightly change your
vertex layout, then you need to entirely recreate the graphics pipeline. That
means that you will have to create many VkPipeline objects in advance for all the
different combinations you need for your rendering operations. Only some basic
configuration, like viewport size and clear color, can be changed dynamically.
All of the state also needs to be described explicitly, there is no default color
blend state, for example.

10

The good news is that because you're doing the equivalent of ahead-of-time
compilation versus just-in-time compilation, there are more optimization oppor-
tunities for the driver and runtime performance is more predictable, because
large state changes like switching to a different graphics pipeline are made very
explicit.

Step 7 - Command pools and command buffers

As mentioned earlier, many of the operations in Vulkan that we want to execute,
like drawing operations, need to be submitted to a queue. These operations first
need to be recorded into a VkCommandBuffer before they can be submitted.
These command buffers are allocated from a VkCommandPool that is associated
with a specific queue family. To draw a simple triangle, we need to record a
command buffer with the following operations:

e Begin the render pass

e Bind the graphics pipeline
e Draw 3 vertices

e End the render pass

Because the image in the framebuffer depends on which specific image the swap
chain will give us, we need to record a command buffer for each possible image
and select the right one at draw time. The alternative would be to record the
command buffer again every frame, which is not as efficient.

Step 8 - Main loop

Now that the drawing commands have been wrapped into a command buffer,
the main loop is quite straightforward. We first acquire an image from the
swap chain with vkAcquireNextImageKHR. We can then select the appropriate
command buffer for that image and execute it with vkQueueSubmit. Finally,
we return the image to the swap chain for presentation to the screen with
vkQueuePresent KHR.

Operations that are submitted to queues are executed asynchronously. Therefore
we have to use synchronization objects like semaphores to ensure a correct
order of execution. Execution of the draw command buffer must be set up
to wait on image acquisition to finish, otherwise it may occur that we start
rendering to an image that is still being read for presentation on the screen. The
vkQueuePresentKHR call in turn needs to wait for rendering to be finished, for
which we’ll use a second semaphore that is signaled after rendering completes.

11

Summary

This whirlwind tour should give you a basic understanding of the work ahead
for drawing the first triangle. A real-world program contains more steps, like
allocating vertex buffers, creating uniform buffers and uploading texture images
that will be covered in subsequent chapters, but we’ll start simple because Vulkan
has enough of a steep learning curve as it is. Note that we’ll cheat a bit by
initially embedding the vertex coordinates in the vertex shader instead of using a
vertex buffer. That’s because managing vertex buffers requires some familiarity
with command buffers first.

So in short, to draw the first triangle we need to:

o Create a VkInstance

e Select a supported graphics card (VkPhysicalDevice)

e Create a VkDevice and VkQueue for drawing and presentation

¢ Create a window, window surface and swap chain

o Wrap the swap chain images into VkImageView

o Create a render pass that specifies the render targets and usage

e Create framebuffers for the render pass

e Set up the graphics pipeline

e Allocate and record a command buffer with the draw commands for every
possible swap chain image

e Draw frames by acquiring images, submitting the right draw command
buffer and returning the images back to the swap chain

It’s a lot of steps, but the purpose of each individual step will be made very
simple and clear in the upcoming chapters. If you're confused about the relation
of a single step compared to the whole program, you should refer back to this
chapter.

API concepts

This chapter will conclude with a short overview of how the Vulkan APT is
structured at a lower level.

Coding conventions

All of the Vulkan functions, enumerations and structs are defined in the vulkan.h
header, which is included in the Vulkan SDK developed by LunarG. We'll look
into installing this SDK in the next chapter.

Functions have a lower case vk prefix, types like enumerations and structs have
a Vk prefix and enumeration values have a VK_ prefix. The API heavily uses
structs to provide parameters to functions. For example, object creation generally
follows this pattern:

12

https://lunarg.com/vulkan-sdk/

VkXXXCreateInfo createInfo = {};

createInfo.sType VK_STRUCTURE_TYPE_XXX_CREATE_INFO;
createInfo.pNext = nullptr;

createInfo.foo = ...;

createInfo.bar = ...;

VkXXX object;

if (vkCreateXXX(&createInfo, nullptr, &object) != VK_SUCCESS) {
std::cerr << "failed to create object" << std::endl;
return false;

}

Many structures in Vulkan require you to explicitly specify the type of structure
in the sType member. The pNext member can point to an extension structure
and will always be nullptr in this tutorial. Functions that create or destroy
an object will have a VkAllocationCallbacks parameter that allows you to use
a custom allocator for driver memory, which will also be left nullptr in this
tutorial.

Almost all functions return a VkResult that is either VK_SUCCESS or an error
code. The specification describes which error codes each function can return and
what they mean.

Validation layers

As mentioned earlier, Vulkan is designed for high performance and low driver
overhead. Therefore it will include very limited error checking and debugging
capabilities by default. The driver will often crash instead of returning an error
code if you do something wrong, or worse, it will appear to work on your graphics
card and completely fail on others.

Vulkan allows you to enable extensive checks through a feature known as valida-
tion layers. Validation layers are pieces of code that can be inserted between the
API and the graphics driver to do things like running extra checks on function
parameters and tracking memory management problems. The nice thing is that
you can enable them during development and then completely disable them
when releasing your application for zero overhead. Anyone can write their own
validation layers, but the Vulkan SDK by LunarG provides a standard set of
validation layers that we’ll be using in this tutorial. You also need to register a
callback function to receive debug messages from the layers.

Because Vulkan is so explicit about every operation and the validation layers
are so extensive, it can actually be a lot easier to find out why your screen is
black compared to OpenGL and Direct3D!

There’s only one more step before we’ll start writing code and that’s setting up
the development environment. # Development environment

13

In this chapter we’ll set up your environment for developing Vulkan applications
and install some useful libraries. All of the tools we’ll use, with the exception of
the compiler, are compatible with both Windows and Linux, but the steps for
installing them differ a bit, which is why they’re described separately here.

Windows

If you’re developing for Windows, then I will assume that you are using Visual
Studio 2013 or 2015 to compile your code. The steps are the same for both
versions, but the Vulkan SDK currently only includes debug symbols that are
compatible with Visual Studio 2013. That isn’t really a problem in practice, but
it’s something that you may wish to take into account.

Vulkan SDK

The most important component you'll need for developing Vulkan applications
is the SDK. It includes the headers, standard validation layers, debugging tools
and a loader for the Vulkan functions. The loader looks up the functions in the
driver at runtime, similarly to GLEW for OpenGL - if you’re familiar with that.

The SDK can be downloaded from the LunarG website using the buttons at the
bottom of the page. You don’t have to create an account, but it will give you
access to some additional documentation that may be useful to you.

aikan.

TOLOLS FOR

-

DOWNLOAD

ANDROID

Figure 1:

Proceed through the installation and pay attention to the install location of
the SDK. The first thing we’ll do is verify that your graphics card and driver
properly support Vulkan. Go to the directory where you installed the SDK, open
the Bin32 directory and run the cube.exe demo. You should see the following:

If you receive an error message then ensure that your drivers are up-to-date,
include the Vulkan runtime and that your graphics card is supported. See the
introduction chapter for links to drivers from the major vendors.

14

https://vulkan.lunarg.com/

B cube — O >

Figure 2:

15

There are two other programs in this directory that will be useful for development.
The vkjson_info.exe program generates a JSON file with a detailed description
of the capabilities of your hardware when using Vulkan. If you are wondering
what support is like for extensions and other optional features among the graphics
cards of your end users, then you can use this website to view the results of a
wide range of GPUs.

The glslangValidator.exe program will be used to compile shaders from the
human-readable GLSL to bytecode. We’ll cover this in depth in the shader
modules chapter. The Bin32 directory also contains the binaries of the Vulkan
loader and the validation layers, while the Lib32 directory contains the libraries.

The Doc directory contains useful information about the Vulkan SDK and an
offline version of the entire Vulkan specification. Lastly, there’s the Include
directory that contains the Vulkan headers. Feel free to explore the other files,
but we won’t need them for this tutorial.

GLFW

As mentioned before, Vulkan by itself is a platform agnostic API and does
not include tools for creating a window to display the rendered results. To
benefit from the cross-platform advantages of Vulkan and to avoid the horrors
of Win32, we’ll use the GLFW library to create a window, which supports both
Windows and Linux. There are other libraries available for this purpose, like
SDL, but the advantage of GLFW is that it also abstracts away some of the
other platform-specific things in Vulkan besides just window creation.

You can find the latest release of GLF'W on the official website. In this tutorial
we’ll be using the 32-bit binaries, but you can of course also choose to build in
64 bit mode. In that case make sure to link with the Vulkan SDK binaries in the
Bin directory. After downloading it, extract the archive to a convenient location.
I’ve chosen to create a Libraries directory in the Visual Studio directory under
documents.

GLM

Unlike DirectX 12, Vulkan does not include a library for linear algebra operations,
so we’ll have to download one. GLM is a nice library that is designed for use
with graphics APIs and is also commonly used with OpenGL.

GLM is a header-only library, so just download the latest version and store it
in a convenient location. You should have a directory structure similar to the
following now:

16

http://vulkan.gpuinfo.org/
https://en.wikipedia.org/wiki/OpenGL_Shading_Language
http://www.glfw.org/
https://www.libsdl.org/
http://www.glfw.org/download.html
http://glm.g-truc.net/
https://github.com/g-truc/glm/releases

'

Visual Studic 2015
ArchitectureExplorer
Backup Files
Code Snippets
Libraries

glfw-3.2.bin.WIN32
docs
include
lib-ringw
lib-mingw-wed
lib-vc2010
lib-wc2012
lib-vc2013
lib-wc2015

Figure 3:

17

L

L

Libraries

glfw-3.2.bin.WIN32
docs
include
lib-mingw
lib-mingw-wid
lib-wec2010
lib-we2012
lib-wec2013
lib-wec2015

glm
crmake
doc
glm
test

util

Figure 4:

18

Setting up Visual Studio

Now that you've installed all of the dependencies we can set up a basic Visual
Studio project for Vulkan and write a little bit of code to make sure that
everything works.

Start Visual Studio and create a new C++ Win32 project.

Mew Project ? X
b Recent MET Framework 4.5.2 - Sertby: Default S Search Installed Ter O =

4 |nstalled
a Wil ole Application Visual C++

4 Templates A project for creati pplication,

4 Visual ET'J MFC Application application, DLL, tic library
Flc]

L roject Visual C++

CLR
General h Empty Project Visual C++

O I Makefile Project Visual C++

b Online

Name:

Location: \d ‘decumentsivisual studio 2015\Projects

Solution name:

Figure 5:

Click Next, select Console application as application type and make sure that
Empty project is checked.

Press Finish to create the project and add a C++ source file. You should
already know how to do that, but the steps are included here for completeness.

Now add the following code to the file. Don’t worry about trying to understand
it right now; we’re just making sure that you can compile and run Vulkan
applications. We'll start from scratch in the next chapter.

#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#define GLM_FORCE_RADIANS

#define GLM_FORCE_DEPTH_ZERQ TO_ONE
#include <glm/vec4.hpp>

#include <glm/mat4x4.hpp>

#include <iostream>

19

Win32 Application Wizard - VulkanTest ? *

g Application Settings

Overview Application type: Add comman header files for:
") Windows application

Application Settings
Console application

() Static library

Additional options:
Empty project

vr
[] security Development Lifecyde (SDL)
checks

Figure 6:

 ltem.., Ctrl+Shift+A
Ctrl+Shift+X isting ltem... Shift+Alt+A
Scope to This T New Filter

Mew Sclution Explorer View

Cut Ctrl+X

Copy Ctrl+C

Delete
Rename

Properties

Figure 7:

20

Add New Item - VulkanTest ? X
4 Installed Sort by: Default

4 Visual C++ - __— - = . G
C++ File (.cpp) Visual C++ = Visual C++

containing C++ source code

|_|j Header File (.h) WVisual C++

Graphics

b Online

Name: main‘(pp‘

Location: c\Usersy me VulkanTest -
o |

Figure 8:

int main() {
glfwInit();

glfwWindowHint (GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow* window = glfwCreateWindow(800, 600, "Vulkan window", nullptr, nullptr);

uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);

std::cout << extensionCount << " extensions supported" << std::endl;
glm: :mat4 matrix;
glm: :vec4 vec;
auto test = matrix * vec;
while(!glfwWindowShouldClose (window)) {
glfwPollEvents();
}
glfwDestroyWindow (window) ;

glfwTerminate () ;

return 0O;

21

Let’s now configure the project to get rid of the errors. Open the project
properties dialog and ensure that A1l Configurations is selected, because
most of the settings apply to both Debug and Release mode.

Project Build Debug Teamm Tools Test

T Retarget solution
*s Add Class..

* - .
B+ Class Wizard... Ctrl+5Shift+X

Add Mew ltem... Ctrl+Shift+A
Add Existing ltem... Shift+Alt+A
Exclude From Project

Show All Files

Rescan Seolution

Add Connected Service...

Set as StartUp Project

Manage MuGet Packages...

VulkanTest Properties...

Figure 9:
VulkanTest Property Pages ? *
Configuration: | Active(Debug) ~ | Platform: | Active(Win32) ~ Configuration Manager...
Active(Debug)
4 Configuratii Debug ional Include Directories
General |Release icnal #using Directories
IEET All Configurations g Information Format Program Database for Edit And Continue (/Z1)
Figure 10:

Go to C++ -> General -> Additional Include Directories and press
<Edit...> in the dropdown box.

Add the header directories for Vulkan, GLFW and GLM:
Next, open the editor for library directories:
And add the locations of the object files for Vulkan and GLFW:

Go to Linker -> Input and press <Edit...>inthe Additional Dependencies
dropdown box.

Enter the names of the Vulkan and GLFW object files:

22

VulkanTest Property Pages

4 Configuration Properties
General
Debugging
VC++ Directories
a4 C/C++
General

Al inn =

7 x

Configuration: | All Configurations ~ | Platform: |ActiveMil\32]

~ Configuration Manager...
| | |

Additional Include Directories

Additional #using Directories
Debug Information Format

di

TTITETENT UpTOTS:
Cemmen Language RunTime Suppert
Consume Windows Runtime Extension

Suppress Startup Banner Yes (/nelogo)

Figure 11:

Additional Include Directories

Chlsersy,
Ci\Uzers',

<

“DocumentsiVisual Studio 2015\ Libraries\glm

\Documents\Visual Studie 2015\Libraries\ glfw-3.2.bin.WIN32\include
CAWVulkan5DKA 017,00 nelude

Figure 12:

VulkanTest Property Pages

Configuration: | All Cenfi

? X

w | Platform: | Active(Win32)

V| | Configuration Manager...

Additional Library Directories

4 Configuration Properties Output File $(OutDir)$(TargetMame)${TargetExt)
General Show Progress Mot Set
Debugging Version
VC++ Directories Enable Incremental Linking «different options:
bCICer Suppress Startup Banner Yes (fNOLOGO)
4 Linker Ignore Import Library Ne
EEE Register Output Mo
b3 Per-user Redirection No
Debugging Link Library Dependencies
System Use Library Dependency Inputs T
Optimization

R

Figure 13:

ChlUsers\, \Documents\Visual Studio 201 3\Libraries\glfw-3.2.1.bin. WIN32\lib-vc2015

C:\VulkanSDKN1.0.42.14Lib32

Figure 14:

23

Configuration: | All Configurations ~ | Platform: | Active(Win32) ~ Configuration Manager...

4 Cenfiguration Properties byuuid.lib;odbc32.lib;odbeep32.lib; %e(AdditionalDependencies) «
General Ignore All Default Libraries
Debugging Ignore Specific Default Libraries
VC++ Directories Meodule Definition File
b GG Add Module to Assembly
4 Linker

Embed Managed Resource File

General Force Symbol References

:\:F::Tfﬁr\t File Delay Loaded Dlls
Figure 15:
Additional Dependencies 2 »
vulkan-1.lib
glfw3.lib|
Figure 16:

You can now close the project properties dialog. If you did everything right then
you should no longer see any more errors being highlighted in the code.

Press F5 to compile and run the project and you should see a command prompt
and a window pop up like this:

3 extensions supported

A Vulkan window

Figure 17:
The number of extensions should be non-zero. Congratulations, you're all set
for playing with Vulkan!

To avoid having to repeat this work all over again every time, you can create
a template from it. Select File -> Export Template.... Select Project
template and fill in a nice name and description for the template.

Press Finish and you should now have a handy template in the New Project
dialog! Use it to create a Hello Triangle project as preparation for the next
chapter.

You are now all set for the real adventure.

24

Export Template Wizard ?

o3

Template name:

Select Template Options

|‘u’u|kan Application

Template description:

|A basic Vulkan application.

lcon Image:

| | Browse...

Preview Image:

| | Browse...

Output location:

|C:\Users\ ‘Documents\Visual Studio 2015\My Exported Templates\Vulkan Application.zip

Automatically import the template into Visual Studic

[] Display an explorer window on the output files folder

< Previous MNext = Cancel

Figure 18:

25

Mew Project 7 x

cent .NET Framework 4.5. y: Default

4 |nstalled . -
el e Type: Visual C++
4 Templates A basic Vulkan application.

Visual C++
Visual C++

Visual C++

Vulkan Application
ens

b Other Langua
Other Project T

Samples

* Online

Name: Hello Triangle]
Location:
Solutio

Solution name:

Figure 19:

26

Linux

These instructions will be aimed at Ubuntu users, but you may be able to follow
along by compiling the LunarG SDK yourself and changing the apt commands
to the package manager commands that are appropriate for you. You should
already have a version of GCC installed that supports modern C++ (4.8 or
later). You also need both CMake and make.

Vulkan SDK

The most important component you’ll need for developing Vulkan applications
is the SDK. It includes the headers, standard validation layers, debugging tools
and a loader for the Vulkan functions. The loader looks up the functions in the
driver at runtime, similarly to GLEW for OpenGL - if you're familiar with that.

The SDK can be downloaded from the LunarG website using the buttons at the
bottom of the page. You don’t have to create an account, but it will give you
access to some additional documentation that may be useful to you.

Yakan.

TOLLS FOR

L]

DOWNLOAD

ANDROID

Figure 20:

Open a terminal in the directory where you’ve downloaded the .run script, make
it executable and run it:

chmod +x vulkansdk-linux-x86_64-xxx.run
./vulkansdk-1linux-x86_64-xxx.run

It will extract all of the files in the SDK to a VulkanSDK subdirectory in the
working directory. Move the VulkanSDK directory to a convenient place and take
note of its path. Open a terminal in the root directory of the SDK, which will
contain files like build_examples. sh.

The samples in the SDK and one of the libraries that you will later use for
your program depend on the XCB library. This is a C library that is used to
interface with the X Window System. It can be installed in Ubuntu from the

27

https://vulkan.lunarg.com/

libxcbl-dev package. You also need the generic X development files that come
with the xorg-dev package.

sudo apt install libxcbl-dev xorg-dev
You can now build the Vulkan examples in the SDK by running;:
./build_examples.sh

If compilation was successful, then you should now have a . /examples/build/cube
executable. Run it from the examples/build directory with ./cube and ensure
that you see the following pop up in a window:

Figure 21:
If you receive an error message then ensure that your drivers are up-to-date,

include the Vulkan runtime and that your graphics card is supported. See the
introduction chapter for links to drivers from the major vendors.

28

GLFW

As mentioned before, Vulkan by itself is a platform agnostic API and does
not include tools for creation a window to display the rendered results. To
benefit from the cross-platform advantages of Vulkan and to avoid the horrors
of X11, we’ll use the GLFW library to create a window, which supports both
Windows and Linux. There are other libraries available for this purpose, like
SDL, but the advantage of GLFW is that it also abstracts away some of the
other platform-specific things in Vulkan besides just window creation.

We’ll be installing GLFW from source instead of using a package, because the
Vulkan support requires a recent version. You can find the sources on the official
website. Extract the source code to a convenient directory and open a terminal
in the directory with files like CMakeLists.txt.

Run the following commands to generate a makefile and compile GLFW:

cmake .
make

You may see a warning stating Could NOT find Vulkan, but you can safely
ignore this message. If compilation was successful, then you can install GLFW
into the system libraries by running:

sudo make install

GLM

Unlike DirectX 12, Vulkan does not include a library for linear algebra operations,
so we’ll have to download one. GLM is a nice library that is designed for use
with graphics APIs and is also commonly used with OpenGL.

It is a header-only library that can be installed from the 1ibglm-dev package:

sudo apt install libglm-dev

Setting up a makefile project

Now that you have installed all of the dependencies, we can set up a basic
makefile project for Vulkan and write a little bit of code to make sure that
everything works.

Create a new directory at a convenient location with a name like VulkanTest.
Create a source file called main. cpp and insert the following code. Don’t worry
about trying to understand it right now; we’re just making sure that you can
compile and run Vulkan applications. We’ll start from scratch in the next
chapter.

29

http://www.glfw.org/
https://www.libsdl.org/
http://www.glfw.org/
http://www.glfw.org/
http://glm.g-truc.net/

#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

#define GLM_FORCE_RADIANS

#define GLM_FORCE_DEPTH_ZERQ TO_ONE
#include <glm/vec4.hpp>

#include <glm/mat4x4.hpp>

#include <iostream>

int main() {
glfwInit(Q);

glfwWindowHint (GLFW_CLIENT_API, GLFW_NO_API);
GLFWwindow* window = glfwCreateWindow(800, 600, "Vulkan window", nullptr, nullptr);

uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);

std::cout << extensionCount << " extensions supported" << std::endl;

glm: :mat4 matrix;
glm: :vecd vec;
auto test = matrix * vec;

while(!glfwWindowShouldClose (window)) {
glfwPollEvents();
}

glfwDestroyWindow (window) ;
glfwTerminate() ;
return O;

3

Next, we’ll write a makefile to compile and run this basic Vulkan code. Create a
new empty file called Makefile. I will assume that you already have some basic
experience with makefiles, like how variables and rules work. If not, you can get
up to speed very quickly with this tutorial.

We'll first define a couple of variables to simplify the remainder of the file. Define
a VULKAN_SDK_PATH variable that refers to the location of the x86_64 directory
in the LunarG SDK, for example:

VULKAN_SDK_PATH = /home/user/VulkanSDK/x.x.x.x/x86_64

Next, define a CFLAGS variable that will specify the basic compiler flags:

30

http://mrbook.org/blog/tutorials/make/

CFLAGS = -std=c++11 -I$(VULKAN_SDK_PATH)/include

We're going to use modern C++ (-std=c++11 or std=c++14), and we need to
be able to locate vulkan.h in the LunarG SDK.

Similarly, define the linker flags in a LDFLAGS variable:

LDFLAGS = -L$(VULKAN_SDK_PATH)/1ib “pkg-config --static --1libs glfw3"~ -1lvulkan

The first flag specifies that we want to be able to find libraries like 1ibvulkan.so
in the LunarG SDK’s x86_64/1ib directory. The second component invokes
pkg-config to automatically retrieve all of the linker flags necessary to build
an application with GLFW. Finally, ~1vulkan links with the Vulkan function
loader that comes with the LunarG SDK.

Specifying the rule to compile VulkanTest is straightforward now. Make sure
to use tabs for indentation instead of spaces.

VulkanTest: main.cpp
g++ $(CFLAGS) -o VulkanTest main.cpp $(LDFLAGS)

Verify that this rule works by saving the makefile and running make in the
directory with main.cpp and Makefile. This should result in a VulkanTest
executable.

We’ll now define two more rules, test and clean, where the former will run the
executable and the latter will remove a built executable:

.PHONY: test clean

test: VulkanTest
./VulkanTest

clean:
rm -f VulkanTest

You will find that make clean works perfectly fine, but make test will most
likely fail with the following error message:

./VulkanTest: error while loading shared libraries: libvulkan.so.l:

That’s because 1ibvulkan.so is not installed as system library. To alleviate this
problem, explicitly specify the library loading path using the LD_LIBRARY_PATH
environment variable:

test: VulkanTest
LD_LIBRARY_PATH=$(VULKAN_SDK_PATH)/1ib ./VulkanTest

The program should now run successfully, and display the number of Vulkan
extensions. The application should exit with the success return code (0) when
you close the empty window. However, there is one more variable that you need
to set. We will start using validation layers in Vulkan and you need to tell the
Vulkan library where to load these from using the VK_LAYER_PATH variable:

31

cannot open shared obje

test: VulkanTest
LD_LIBRARY_PATH=$ (VULKAN_SDK_PATH)/lib VK_LAYER_PATH=$ (VULKAN_SDK_PATH) /etc/explicit_la

You should now have a complete makefile that resembles the following:

VULKAN_SDK_PATH = /home/user/VulkanSDK/x.x.x.x/x86_64

CFLAGS = -std=c++11 -I$(VULKAN_SDK_PATH)/include
LDFLAGS = -L$(VULKAN_SDK_PATH)/1ib ~pkg-config --static --libs glfw3" -lvulkan

VulkanTest: main.cpp
g++ $(CFLAGS) -o VulkanTest main.cpp $(LDFLAGS)

.PHONY: test clean

test: VulkanTest
LD_LIBRARY_PATH=$ (VULKAN_SDK_PATH)/lib VK_LAYER_PATH=$ (VULKAN_SDK_PATH) /etc/explicit_la;

clean:
rm -f VulkanTest

You can now use this directory as a template for your Vulkan projects. Make a
copy, rename it to something like HelloTriangle and remove all of the code in
main.cpp.

Before we move on, let’s explore the Vulkan SDK a bit more. There
are two programs in it that will be very useful for development. The
x86_64/bin/vkjson_info program generates a JSON file with a detailed
description of the capabilities of your hardware when using Vulkan. If you are
wondering what support is like for extensions and other optional features among
the graphics cards of your end users, then you can use this website to view the
results of a wide range of GPUs. This program needs to be run with the same
LD_LIBRARY_PATH variable as your own programs:

LD_LIBRARY_PATH=../lib ./vkjson_info

The x86_64/bin/glslangValidator program will be used to compile shaders
from the human-readable GLSL to bytecode. We’ll cover this in depth in the
shader modules chapter. It does not depend on the Vulkan library.

The Doc directory contains useful information about the Vulkan SDK and an
offline version of the entire Vulkan specification. Feel free to explore the other
files, but we won’t need them for this tutorial.

You are now all set for the real adventure.

32

http://vulkan.gpuinfo.org/
https://en.wikipedia.org/wiki/OpenGL_Shading_Language

Base code

General structure

In the previous chapter you've created a Vulkan project with all of the proper
configuration and tested it with the sample code. In this chapter we're starting
from scratch with the following code:

#include <vulkan/vulkan.h>

#include <iostream>
#include <stdexcept>
#include <functional>

class HelloTriangleApplication {
public:
void run() {
initVulkan();
mainLoop();

private:
void initVulkan() {

}

void mainLoop() {

}
};

int main() {
HelloTriangleApplication app;

try {
app.run();

} catch (const std::runtime_error& e) {
std::cerr << e.what() << std::endl;
return EXIT_FAILURE;

return EXIT_SUCCESS;
}

We first include the Vulkan header from the LunarG SDK, which provides the
functions, structures and enumerations. The stdexcept and iostream headers

33

are included for reporting and propagating errors. The functional headers will
be used for a lambda functions in the resource management section.

The program itself is wrapped into a class where we’ll store the Vulkan objects
as private class members and add functions to initiate each of them, which will
be called from the initVulkan function. Once everything has been prepared,
we enter the main loop to start rendering frames. We’ll fill in the mainLoop
function to include a loop that iterates until the window is closed in a moment.

If any kind of fatal error occurs during execution then we’ll throw a
std: :runtime_error exception with a descriptive message, which will propa-
gate back to the main function and be printed to the command prompt. One
example of an error that we will deal with soon is finding out that a certain
required extension is not supported.

Roughly every chapter that follows after this one will add one new function
that will be called from initVulkan and one or more new Vulkan objects to the
private class members.

Resource management

You may have noticed that there’s no cleanup function anywhere to be seen and
that is intentional. Every Vulkan object needs to be destroyed with a function
call when it’s no longer needed, just like each chunk of memory allocated with
malloc requires a call to free. Doing that manually is a lot of work and is very
error-prone, but we can completely avoid that by taking advantage of the C++
RAII principle. To do that, we’re going to create a class that wraps Vulkan
objects and automatically cleans them up when it goes out of scope, for example
because the application was closed.

First consider the interface we want from this VDeleter wrapper class. Let’s
say we want to store a VkInstance object that should be destroyed with
vkDestroyInstance at some point. Then we would add the following class
member:

VDeleter<VkInstance> instance{vkDestroyInstancel};

The template argument specifies the type of Vulkan object we want to wrap and
the constructor argument specifies the function to use to clean up the object
when it goes out of scope.

To assign an object to the wrapper, we would simply want to pass its pointer to
the creation function as if it was a normal VkInstance variable:

vkCreatelInstance(&instanceCreateInfo, nullptr, &instance);

Unfortunately, taking the address of the handle in the wrapper doesn’t necessarily
mean that we want to overwrite its existing value. A common pattern is to
simply use &instance as short-hand for an array of instances with 1 item. If we

34

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

intend to write a new handle, then the wrapper should clean up any previous
object to not leak memory. Therefore it would be better to have the & operator
return a constant pointer and have an explicit function to state that we wish to
replace the handle. The replace function calls clean up for any existing handle
and then gives you a non-const pointer to overwrite the handle:

vkCreateInstance(&instanceCreateInfo, nullptr, instance.replace());

Just like that we can now use the instance variable wherever a VkInstance
would normally be accepted. We no longer have to worry about cleaning up
anymore, because that will automatically happen once the instance variable
becomes unreachable! That’s pretty easy, right?

The implementation of such a wrapper class is fairly straightforward. It just
requires a bit of lambda magic to shorten the syntax for specifying the cleanup
functions.

template <typename T>
class VDeleter {
public:
VDeleter() : VDeleter([](T, VkAllocationCallbacks*) {}) {}

VDeleter(std: :function<void (T, VkAllocationCallbacks*)> deletef) {
this->deleter = [=](T obj) { deletef(obj, nullptr); };
}

VDeleter(const VDeleter<VkInstance>& instance, std::function<void(VkInstance, T, VkAllo«
this->deleter = [&instance, deletef] (T obj) { deletef(instance, obj, nullptr); };
¥

VDeleter (const VDeleter<VkDevice>& device, std::function<void(VkDevice, T, VkAllocation!
this->deleter = [&device, deletef] (T obj) { deletef(device, obj, nullptr); };
}

~VDeleter() {
cleanupQ);

3

const T* operator &() const {
return &object;

}

T* replace() {
cleanupQ);
return &object;

}

operator T() const {

35

return object;

}

void operator=(T rhs) {
if (rhs != object) {
cleanupQ);
object = rhs;

template<typename V>
bool operator==(V rhs) {
return object == T(rhs);

3

private:
T object{VK_NULL_HANDLE};
std: :function<void(T)> deleter;

void cleanup() {
if (object !'= VK_NULL_HANDLE) {
deleter(object);
}
object = VK_NULL_HANDLE;

};

The three non-default constructors allow you to specify all three types of deletion
functions used in Vulkan:

o vkDestroyXXX(object, callbacks): Only the object itself needs to be
passed to the cleanup function, so we can simply construct a VDeleter
with just the function as argument.

e vkDestroyXXX(instance, object, callbacks): A VkInstance also
needs to be passed to the cleanup function, so we use the VDeleter
constructor that takes the VkInstance reference and cleanup function as
parameters.

o vkDestroyXXX(device, object, callbacks): Similar to the previous
case, but a VkDevice must be passed instead of a VkInstance.

The callbacks parameter is optional and we always pass nullptr to it, as you
can see in the VDeleter definition.

All of the constructors initialize the object handle with the equivalent of nullptr
in Vulkan: VK_NULL_HANDLE. Any extra arguments that are needed for the
deleter functions must also be passed, usually the parent object. It overloads the
address-of, assignment, comparison and casting operators to make the wrapper
as transparent as possible. When the wrapped object goes out of scope, the

36

destructor is invoked, which in turn calls the cleanup function we specified.

The address-of operator returns a constant pointer to make sure that the object
within the wrapper is not unexpectedly changed. If you want to replace the
handle within the wrapper through a pointer, then you should use the replace()
function instead. It will invoke the cleanup function for the existing handle so
that you can safely overwrite it afterwards.

There is also a default constructor with a dummy deleter function that can be
used to initialize it later, which will be useful for lists of deleters.

I’ve added the class code between the headers and the HelloTriangleApplication
class definition. You can also choose to put it in a separate header file. We’ll use
it for the first time in the next chapter where we’ll create the very first Vulkan
object!

Integrating GLFW

Vulkan works perfectly fine without a creating a window if you want to use it
off-screen rendering, but it’s a lot more exciting to actually show something!
First replace the #include <vulkan/vulkan.h> line with

#define GLFW_INCLUDE_VULKAN
#include <GLFW/glfw3.h>

That way GLFW will include its own definitions and automatically load the
Vulkan header with it. Add a initWindow function and add a call to it from the
run function before the other calls. We’'ll use that function to initialize GLFW
and create a window.

void run() {

initWindow() ;
initVulkan(Q);
mainLoop();

}

private:

void initWindow() {

3

The very first call in initWindow should be glfwInit (), which initializes the
GLFW library. Because GLFW was originally designed to create an OpenGL
context, we need to tell it to not create an OpenGL context with a subsequent
call:

glfwWindowHint (GLFW_CLIENT_API, GLFW_NO_API);

37

Because handling resized windows takes special care that we’ll look into later,
disable it for now with another window hint call:

glfwWindowHint (GLFW_RESIZABLE, GLFW_FALSE);

All that’s left now is creating the actual window. Add a GLFWwindow* window;
private class member to store a reference to it and initialize the window with:

window = glfwCreateWindow(800, 600, "Vulkan", nullptr, nullptr);

The first three parameters specify the width, height and title of the window.
The fourth parameter allows you to optionally specify a monitor to open the
window on and the last parameter is only relevant to OpenGL.

It’s a good idea to use constants instead of hardcoded width and height numbers
because we’ll be referring to these values a couple of times in the future. I've
added the following lines above the HelloTriangleApplication class definition:

const int WIDTH = 800;
const int HEIGHT = 600;

and replaced the window creation call with
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
You should now have a initWindow function that looks like this:
void initWindow() {
glfwInit();

glfwWindowHint (GLFW_CLIENT_API, GLFW_NO_API);
glfwWindowHint (GLFW_RESIZABLE, GLFW_FALSE);

window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);
}

To keep the application running until either an error occurs or the window is
closed, we need to add an event loop to the mainLoop function as follows:

void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
}

glfwDestroyWindow (window) ;

glfwTerminate() ;
}

This code should be fairly self-explanatory. It loops and checks for events like
pressing the X button until the window has been closed by the user. This is
also the loop where we’ll later call a function to render a single frame. Once the

38

window is closed, we need to clean up resources by destroying it and GLFW]
itself.

When you run the program now you should see a window titled Vulkan show up
until the application is terminated by closing the window. Now that we have
the skeleton for the Vulkan application, let’s create the first Vulkan object!

C++ code

Instance

Creating an instance

The very first thing you need to do is initialize the Vulkan library by creating an
instance. The instance is the connection between your application and the Vulkan
library and creating it involves specifying some details about your application to
the driver.

Start by adding a createInstance function and add a call to it in the
initVulkan function.

void initVulkan() {
createInstance();

}

Additionally add a class member to hold the handle to the instance, like we saw
in the resource management section of the previous chapter.

private:
VDeleter<VkInstance> instance {vkDestroyInstancel;

The vkDestroyInstance function, as you might imagine, will clean up the
instance that we’ll create in a moment. The second parameter is optional and
allows you to specify callbacks for a custom allocator. You’ll see that most of the
creation and destroy functions have such a callback parameter and we’ll always
pass a nullptr as argument, as seen in the VDeleter definition.

Now, to create an instance we’ll first have to fill in a struct with some information
about our application. This data is technically optional, but it may provide
some useful information to the driver to optimize for our specific application,
for example because it uses a well-known graphics engine with certain special
behavior. This struct is called VkApplicationInfo:

VkApplicationInfo appInfo = {};

appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Hello Triangle";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";

39

https://vulkan-tutorial.com/code/base_code.cpp

appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;

As mentioned before, many structs in Vulkan require you to explicitly specify
the type in the sType member. This is also one of the many structs with a
pNext member that can point to extension information in the future. We're
using default initialization here to leave it as nullptr.

A lot of information in Vulkan is passed through structs instead of function pa-
rameters and we’ll have to fill in one more struct to provide sufficient information
for creating an instance. This next struct is not optional and tells the Vulkan
driver which global extensions and validation layers we want to use. Global here
means that they apply to the entire program and not a specific device, which
will become clear in the next few chapters.

VkInstanceCreateInfo createInfo = {};
createlnfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;

The first two parameters are straightforward. The next two layers specify the
desired global extensions. As mentioned in the overview chapter, Vulkan is a
platform agnostic API, which means that you need an extension to interface
with the window system. GLFW has a handy built-in function that returns the
extension(s) it needs to do that which we can pass to the struct:

unsigned int glfwExtensionCount = 0;

const char** glfwExtensions;

glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount) ;
createInfo.enabledExtensionCount = glfwExtensionCount;
createInfo.ppEnabledExtensionNames = glfwExtensions;

The last two members of the struct determine the global validation layers to
enable. We'll talk about these more in-depth in the next chapter, so just leave
these empty for now.

createlnfo.enabledLayerCount = 0;

We’ve now specified everything Vulkan needs to create an instance and we can
finally issue the vkCreateInstance call:

VkResult result = vkCreateInstance(&createInfo, nullptr, instance.replace());

As you’ll see, the general pattern that object creation function parameters in
Vulkan follow is:

¢ Pointer to struct with creation info
o Pointer to custom allocator callbacks, always nullptr in this tutorial
o Pointer to the variable that stores the handle to the new object

40

If everything went well then the handle to the instance was stored in the wrapped
VkInstance class member. Nearly all Vulkan functions return a value of type
VkResult that is either VK_SUCCESS or an error code. To check if the instance
was created successfully, simply add a check for the success value:

if (vkCreatelInstance(&createInfo, nullptr, instance.replace()) != VK_SUCCESS) {
throw std::runtime_error('"failed to create instance!");

3

Now run the program to make sure that the instance is created successfully.

Checking for extension support

If you look at the vkCreateInstance documentation then you’ll see that one of
the possible error codes is VK_ERROR_EXTENSION_NOT_PRESENT. We could simply
specify the extensions we require and terminate if that error code comes back.
That makes sense for essential extensions like the window system interface, but
what if we want to check for optional functionality?

To retrieve a list of supported extensions before creating an instance,
there’s the vkEnumerateInstanceExtensionProperties function. It takes a
pointer to a variable that stores the number of extensions and an array of
VkExtensionProperties to store details of the extensions. It also takes an
optional first parameter that allows us to filter extensions by a specific validation
layer, which we’ll ignore for now.

To allocate an array to hold the extension details we first need to know how
many there are. You can request just the number of extensions by leaving the
latter parameter empty:

uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);

Now allocate an array to hold the extension details (include <vector>):

std: :vector<VkExtensionProperties> extensions(extensionCount) ;

Finally we can query the extension details:

vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data());

Each VkExtensionProperties struct contains the name and version of an ex-
tension. We can list them with a simple for loop (\t is a tab for indentation):

std::cout << "available extensions:" << std::endl;

for (const auto& extension : extensions) {
std::cout << "\t" << extension.extensionName << std::endl;

}

41

You can add this code to the createInstance function if you’d like to
provide some details about the Vulkan support. As a challenge, try
to create a function that checks if all of the extensions returned by
glfwGetRequiredInstanceExtensions are included in the supported exten-
sions list.

Before continuing with the more complex steps after instance creation, it’s time
to evaluate our debugging options by checking out validation layers.

C++ code

Validation layers

What are validation layers?

The Vulkan API is designed around the idea of minimal driver overhead and one
of the manifestations of that goal is that there is very limited error checking in
the API by default. Even mistakes as simple as setting enumerations to incorrect
values or passing null pointers to required parameters are generally not explicitly
handled and will simply result in crashes or undefined behavior. Because Vulkan
requires you to be very explicit about everything you're doing, it’s easy to make
many small mistakes like using a new GPU feature and forgetting to request it
at logical device creation time.

However, that doesn’t mean that these checks can’t be added to the API. Vulkan
introduces an elegant system for this known as wvalidation layers. Validation
layers are optional components that hook into Vulkan function calls to apply
additional operations. Common operations in validation layers are:

o Checking the values of parameters against the specification to detect misuse
o Tracking creation and destruction of objects to find resource leaks

o Checking thread safety by tracking the threads that calls originate from
e Logging every call and its parameters to the standard output

¢ Tracing Vulkan calls for profiling and replaying

Here’s an example of what the implementation of a function in a diagnostics
validation layer could look like:

VkResult vkCreateInstance(
const VkInstanceCreateInfo* pCreatelnfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* instance) {

if (pCreateInfo == nullptr || instance == nullptr) {

log("Null pointer passed to required parameter!");
return VK_ERROR_INITIALIZATION_FAILED;

42

https://vulkan-tutorial.com/code/instance_creation.cpp

return real_vkCreatelInstance(pCreateInfo, pAllocator, instance);

3

These validation layers can be freely stacked to include all the debugging func-
tionality that you’re interested in. You can simply enable validation layers for
debug builds and completely disable them for release builds, which gives you the
best of both worlds!

Vulkan does not come with any validation layers built-in, but the LunarG Vulkan
SDK provides a nice set of layers that check for common errors. They’re also
completely open source, so you can check which kind of mistakes they check
for and contribute. Using the validation layers is the best way to avoid your
application breaking on different drivers by accidentally relying on undefined
behavior.

Validation layers can only be used if they have been installed onto the system.
For example, the LunarG validation layers are only available on PCs with the
Vulkan SDK installed.

There were formerly two different types of validation layers in Vulkan. Instance
and device specific layers. The idea was that instance layers would only check
calls related to global Vulkan objects like instances and device specific layers only
calls related to a specific GPU. Device specific layers have now been deprecated,
which means that instance validation layers apply to all Vulkan calls. The
specification document still recommends that you enable validation layers at
device level as well for compatibility, which is required by some implementations.
We’ll simply specify the same layers as the instance at logical device level, which
we’ll see later on.

Using validation layers

In this section we’ll see how to enable the standard diagnostics layers provided by
the Vulkan SDK. Just like extensions, validation layers need to be enabled by spec-
ifying their name. Instead of having to explicitly specify all of the useful layers,
the SDK allows you to request the VK_LAYER_LUNARG_standard_validation
layer that implicitly enables a whole range of useful diagnostics layers.

Let’s first add two configuration variables to the program to specify the layers
to enable and whether to enable them or not. I've chosen to base that value
on whether the program is being compiled in debug mode or not. The NDEBUG
macro is part of the C++ standard and means “not debug”.

const int WIDTH = 800;
const int HEIGHT = 600;

const std::vector<const char*> validationLayers = {
"VK_LAYER_LUNARG_standard_validation"

43

https://github.com/LunarG/VulkanTools/tree/master/layers

};

#ifdef NDEBUG

const bool enableValidationlLayers = false;
#else

const bool enableValidationLayers = true;
#endif

We'll add a new function checkValidationLayerSupport that checks if all of
the requested layers are available. First list all of the available extensions using
the vkEnumerateInstancelayerProperties function. Its usage is identical to
that of vkEnumerateInstanceExtensionProperties which was discussed in
the instance creation chapter.

bool checkValidationLayerSupport() {
uint32_t layerCount;
vkEnumerateInstancelayerProperties(&layerCount, nullptr);

std: :vector<VkLayerProperties> availableLayers(layerCount) ;
vkEnumerateInstancelayerProperties(&layerCount, availablelLayers.data());

return false;

}

Next, check if all of the layers in validationLayers exist in the
availableLayers list. You may need to include <cstring> for strcmp.

for (const char* layerName : validationLayers) {
bool layerFound = false;

for (const auto& layerProperties : availablelayers) {

if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;

¥

3

if ('layerFound) {
return false;

}

return true;
We can now use this function in createInstance:

void createInstance() {
if (enableValidationLayers && !checkValidationLayerSupport()) {
throw std::runtime_error("validation layers requested, but not available!");

44

}

Now run the program in debug mode and ensure that the error does not occur.
If it does, then make sure you have properly installed the Vulkan SDK. If none
or very few layers are being reported, then you may be dealing with this issue
(requires a LunarG account to view). See that page for help with fixing it.

Finally, modify the VkInstanceCreateInfo struct instantiation to include the
validation layer names if they are enabled:

if (enableValidationLayers) {
createInfo.enabledLayerCount = validationLayers.size();
createInfo.ppEnabledLayerNames = validationlayers.data();
} else {
createInfo.enabledlLayerCount = O;

3

If the check was successful then vkCreateInstance should not ever return a
VK_ERROR_LAYER_NOT_PRESENT error, but you should run the program to make
sure.

Message callback

Unfortunately just enabling the layers doesn’t help much, because they currently
have no way to relay the debug messages back to our program. To receive those
messages we have to set up a callback, which requires the VK_EXT_debug_report
extension.

We'll first create a getRequiredExtensions function that will return the re-
quired list of extensions based on whether validation layers are enabled or
not:

std: :vector<const char*> getRequiredExtensions() {
std: :vector<const char*> extensions;

unsigned int glfwExtensionCount = O;
const charxx glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);

for (unsigned int i = 0; i < glfwExtensionCount; i++) {
extensions.push_back(glfwExtensions[i]) ;

3

if (enableValidationLayers) {
extensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_ NAME);

45

https://vulkan.lunarg.com/app/issues/578e8c8d5698c020d71580fc

return extensions;

}

The extensions specified by GLFW are always required, but the de-
bug report extension is conditionally added. Note that I've used the
VK_EXT_DEBUG_REPORT_EXTENSION_NAME macro here which is equal to the
literal string “VK__EXT_debug_report”. Using this macro lets you avoid typos.

We can now use this function in createInstance:

auto extensions = getRequiredExtensions();
createInfo.enabledExtensionCount = extensions.size();
createInfo.ppEnabledExtensionNames = extensions.data();

Run the program to make sure you don’t receive a VK_ERROR_EXTENSION_NOT_PRESENT
error. We don’t really need to check for the existence of this extension, because
it should be implied by the availability of the validation layers.

Now let’s see what a callback function looks like. Add a new static member
function called debugCallback with the PFN_vkDebugReportCallbackEXT pro-
totype. The VKAPI_ATTR and VKAPI_CALL ensure that the function has the right
signature for Vulkan to call it.

static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objType,
uint64_t obj,
size_t location,
int32_t code,
const char* layerPrefix,
const char* msg,
void* userData) {

std::cerr << "validation layer: " << msg << std::endl;

return VK_FALSE;
}

The first parameter specifies the type of message, which can be a combination of
any of the following bit flags:

 VK_DEBUG_REPORT_ INFORMATION BIT_EXT
 VK_DEBUG_REPORT WARNING BIT_EXT
 VK_DEBUG_REPORT_ PERFORMANCE_WARNING BIT_EXT
 VK_DEBUG_REPORT_ERROR_BIT_EXT
 VK_DEBUG_REPORT_DEBUG_BIT_EXT

The objType parameter specifies the type of object that is the subject of the

46

message. For example if obj is a VkPhysicalDevice then objType would be
VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT. This works because internally all
Vulkan handles are typedef’d as uint64_t.

The msg parameter contains the pointer to the message itself. Finally, there’s a
userData parameter to pass your own data to the callback.

All that remains now is telling Vulkan about the callback function. Perhaps
somewhat surprisingly, even the debug callback in Vulkan is managed with a
handle that needs to be explicitly created and destroyed. Add a class member
for this handle right under instance:

VkDebugReportCallbackEXT callback;

Now add a function setupDebugCallback to be called from initVulkan right
after createInstance:

void initVulkan() {
createInstance();
setupDebugCallback() ;
}

void setupDebugCallback() {
if ('enableValidationLayers) return;

}
We'll need to fill in a structure with details about the callback:

VkDebugReportCallbackCreateInfoEXT createInfo = {};

createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CALLBACK_CREATE_INFO_EXT;
createInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
createInfo.pfnCallback = debugCallback;

The flags field allows you to filter which types of messages you would like to
receive. The pfnCallback field specifies the pointer to the callback function.
You can optionally pass a pointer to the pUserData field which will be passed
along to the callback function via the userData parameter. You could use this
to pass a pointer to the HelloTriangleApplication class, for example.

This struct should be passed to the vkCreateDebugReportCallbackEXT function
to create the VkDebugReportCallbackEXT object. Unfortunately, because this
function is an extension function, it is not automatically loaded. We have to
look up its address ourselves using vkGetInstanceProcAddr. We're going to
create our own proxy function that handles this in the background. I've added
it right above the VDeleter definition.

VkResult CreateDebugReportCallbackEXT(VkInstance instance, const VkDebugReportCallbackCreat
auto func = (PFN_vkCreateDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkCre:
if (func != nullptr) {

return func(instance, pCreateInfo, pAllocator, pCallback);

47

} else {
return VK_ERROR_EXTENSION NOT_PRESENT;
}
}

The vkGetInstanceProcAddr function will return nullptr if the function
couldn’t be loaded. We can now call this function to create the extension object
if it’s available:

if (CreateDebugReportCallbackEXT(instance, &createInfo, nullptr, &callback) != VK_SUCCESS) -
throw std::runtime_error("failed to set up debug callback!");

}

Let’s see if it works... Run the program and close the window once you’re fed
up with staring at the blank window. You’ll see that the following message is
printed to the command prompt:

B ChUsersh, \documents\visual studio 2015\Projects\Hello Triangle\DebugiHello Triangle.exe

validation layer: Debug Report callbacks not removed before De

Figure 22:

Oops, it has already spotted a bug in our program! The VkDebugReportCallbackEXT
object needs to be cleaned up with a call to vkDestroyDebugReportCallbackEXT.
Change the callback variable to use our deleter wrapper. Similarly to
vkCreateDebugReportCallbackEXT the function needs to be explicitly loaded.
Create another proxy function right below CreateDebugReportCallbackEXT:

void DestroyDebugReportCallbackEXT(VkInstance instance, VkDebugReportCallbackEXT callback,
auto func = (PFN_vkDestroyDebugReportCallbackEXT) vkGetInstanceProcAddr(instance, "vkDe:
if (func != nullptr) {
func(instance, callback, pAllocator);
b
X

Make sure that this function is either a static class function or a function outside
the class. We can then specify it as cleanup function:

VDeleter<VkDebugReportCallbackEXT> callback{instance, DestroyDebugReportCallbackEXT};

Make sure to change the line that creates the debug report callback to use the
replace() method of the wrapper:

if (CreateDebugReportCallbackEXT(instance, &createInfo, nullptr, callback.replace()) != VK_{

When you run the program again you’ll see that the error message has disappeared.
If you want to see which call triggered a message, you can add a breakpoint to
the message callback and look at the stack trace.

48

Configuration

There are a lot more settings for the behavior of validation layers than just the
flags specified in the VkDebugReportCallbackCreateInfoEXT struct. Browse
to the Vulkan SDK and go to the Config directory. There you will find a
vk_layer_settings.txt file that explains how to configure the layers.

To configure the layer settings for your own application, copy the file to the
Debug and Release directories of your project and follow the instructions to set
the desired behavior. However, for the remainder of this tutorial I'll assume that
you're using the default settings.

Throughout this tutorial I'll be making a couple of intentional mistakes to show
you how helpful the validation layers are with catching them and to teach you
how important it is to know exactly what you're doing with Vulkan. Now it’s
time to look at Vulkan devices in the system.

C++ code

Physical devices and queue families

Selecting a physical device

After initializing the Vulkan library through a VkInstance we need to look for
and select a graphics card in the system that supports the features we need. In
fact we can select any number of graphics cards and use them simultaneously,
but in this tutorial we’ll stick to the first graphics card that suits our needs.

We'll add a function pickPhysicalDevice and add a call to it in the initVulkan
function.

void initVulkan() {
createInstance();
setupDebugCallback() ;
pickPhysicalDevice();

3

void pickPhysicalDevice() {

}

The graphics card that we’ll end up selecting will be stored in a VkPhysicalDevice
handle that is added as a new class member. This object will be implicitly
destroyed when the VkInstance is destroyed, so we don’t need to add a delete
wrapper.

VkPhysicalDevice physicalDevice = VK_NULL_HANDLE;

49

https://vulkan-tutorial.com/code/validation_layers.cpp

Listing the graphics cards is very similar to listing extensions and starts with
querying just the number.

uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);

If there are 0 devices with Vulkan support then there is no point going further.

if (deviceCount == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
X

Otherwise we can now allocate an array to hold all of the VkPhysicalDevice
handles.

std: :vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());

Now we need to evaluate each of them and check if they are suitable for the
operations we want to perform, because not all graphics cards are created equal.
For that we’ll introduce a new function:

bool isDeviceSuitable(VkPhysicalDevice device) {
return true;

}

And we’ll check if any of the physical devices meet the requirements that we’ll
add to that function.

for (const auto& device : devices) {
if (isDeviceSuitable(device)) {
physicalDevice = device;
break;

}

if (physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("failed to find a suitable GPU!");

3

The next section will introduce the first requirements that we’ll check for in the
isDeviceSuitable function. As we’ll start using more Vulkan features in the
later chapters we will also extend this function to include more checks.

Base device suitability checks
To evaluate the suitability of a device we can start by querying for some details.

Basic device properties like the name, type and supported Vulkan version can
be queried using vkGetPhysicalDeviceProperties.

50

VkPhysicalDeviceProperties deviceProperties;
vkGetPhysicalDeviceProperties(device, &deviceProperties);

The support for optional features like texture compression, 64 bit floats and
multi viewport rendering (useful for VR) can be queried using vkGetPhysicalDe-
viceFeatures:

VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceFeatures (device, &deviceFeatures);

There are more details that can be queried from devices that we’ll discuss later
concerning device memory and queue families (see the next section).

As an example, let’s say we consider our application only usable for dedicated
graphics cards that support geometry shaders. Then the isDeviceSuitable
function would look like this:

bool isDeviceSuitable(VkPhysicalDevice device) {
VkPhysicalDeviceProperties deviceProperties;
VkPhysicalDeviceFeatures deviceFeatures;
vkGetPhysicalDeviceProperties(device, &deviceProperties);
vkGetPhysicalDeviceFeatures (device, &deviceFeatures);

return deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU &&
deviceFeatures.geometryShader;

3

Instead of just checking if a device is suitable or not and going with the first
one, you could also give each device a score and pick the highest one. That way
you could favor a dedicated graphics card by giving it a higher score, but fall
back to an integrated GPU if that’s the only available one. You could implement
something like that as follows:

#include <map>

void pickPhysicalDevice() {
// Use an ordered map to automatically sort candidates by increasing score
std::multimap<int, VkPhysicalDevice> candidates;
for (const auto& device : devices) {
int score = rateDeviceSuitability(device);
candidates.insert(std: :make_pair(score, device));

}

// Check if the best candtidate is sutitable at all

ol

if (candidates.rbegin()->first > 0) {
physicalDevice = candidates.rbegin()->second;
} else {
throw std::runtime_error("failed to find a suitable GPU!");

}

int rateDeviceSuitability(VkPhysicalDevice device) {

int score = 0;

// Discrete GPUs have a stignificant performance advantage
if (deviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) {
score += 1000;

}

// Mazimum possible size of textures affects graphics quality
score += deviceProperties.limits.maxImageDimension2D;

// Application can't function without geometry shaders
if (!deviceFeatures.geometryShader) {
return O;

3

return score;

}

You don’t need to implement all that for this tutorial, but it’s to give you an
idea of how you could design your device selection process. Of course you can
also just display the names of the choices and allow the user to select.

Because we'’re just starting out, Vulkan support is the only thing we need and
therefore we’ll settle for just any GPU:

bool isDeviceSuitable(VkPhysicalDevice device) {
return true;

}

In the next section we’ll discuss the first real required feature to check for.

Queue families

It has been briefly touched upon before that almost every operation in Vulkan,
anything from drawing to uploading textures, requires commands to be submitted
to a queue. There are different types of queues that originate from different
queue families and each family of queues allows only a subset of commands. For

92

example, there could be a queue family that only allows processing of compute
commands or one that only allows memory transfer related commands.

We need to check which queue families are supported by the device and which
one of these supports the commands that we want to use. For that purpose we’ll
add a new function findQueueFamilies that looks for all the queue families we
need. Right now we’ll only look for a queue that supports graphics commands,
but we may extend this function to look for more at a later point in time.

This function will return the indices of the queue families that satisfy certain
desired properties. The best way to do that is using a structure, where an index
of -1 will denote “not found”:

struct QueueFamilyIndices {
int graphicsFamily = -1;

bool isComplete() {
return graphicsFamily >= O;
b
I

We can now begin implementing findQueueFamilies:

QueueFamilyIndices findQueueFamilies(VkPhysicalDevice device) {
QueueFamilyIndices indices;

return indices;

}

The process of retrieving the list of queue families is exactly what you expect
and uses vkGetPhysicalDeviceQueueFamilyProperties:

uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);

std: :vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount) ;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());

The VkQueueFamilyProperties struct contains some details about the queue
family, including the type of operations that are supported and the number of
queues that can be created based on that family. We need to find at least one
queue family that supports VK_QUEUE_GRAPHICS_BIT.

int 1 = 0;
for (const auto& queueFamily : queueFamilies) {
if (queueFamily.queueCount > O && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;

3

93

if (indices.isComplete()) {
break;

}

i++;
}

Now that we have this fancy queue family lookup function, we can use it as a
check in the isDeviceSuitable function to ensure that the device can process
the commands we want to use:

bool isDeviceSuitable(VkPhysicalDevice device) {
QueueFamilyIndices indices = findQueueFamilies(device);

return indices.isComplete();

}

Great, that’s all we need for now to find the right physical device! The next step
is to create a logical device to interface with it.

C++ code

Logical device and queues

Introduction

After selecting a physical device to use we need to set up a logical device to
interface with it. The logical device creation process is similar to the instance
creation process and describes the features we want to use. We also need to
specify which queues to create now that we’ve queried which queue families are
available. You can even create multiple logical devices from the same physical
device if you have varying requirements.

Start by adding a new class member to store the logical device handle in. Make
sure to place the declaration below the VkInstance member, because it needs
to be cleaned up before the instance is cleaned up. See C++ destruction order.
Logical devices are cleaned up with the vkDestroyDevice function.

VDeleter<VkDevice> device{vkDestroyDevice};
Next, add a createLogicalDevice function that is called from initVulkan.

void initVulkan() {
createInstance();
setupDebugCallback() ;
pickPhysicalDevice();
createLogicalDevice();

o4

https://vulkan-tutorial.com/code/physical_device_selection.cpp
https://msdn.microsoft.com/en-us/library/6t4fe76c.aspx

}

void createlLogicalDevice() {

}

Specifying the queues to be created

The creation of a logical device involves specifying a bunch of details in structs
again, of which the first one will be VkDeviceQueueCreateInfo. This structure
describes the number of queues we want for a single queue family. Right now
we’re only interested in a queue with graphics capabilities.

QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = indices.graphicsFamily;
queueCreateInfo.queueCount = 1;

The currently available drivers will only allow you to create a low number of
queues for each family queue and you don’t really need more than one. That’s
because you can create all of the command buffers on multiple threads and then
submit them all at once on the main thread with a single low-overhead call.

Vulkan lets you assign priorities to queues to influence the scheduling of command
buffer execution using floating point numbers between 0.0 and 1.0. This is
required even if there is only a single queue:

float queuePriority = 1.0f;
queueCreateInfo.pQueuePriorities = &queuePriority;

Specifying used device features

The next information to specify is the set of device features that we’ll
be using. These are the features that we queried support for with
vkGetPhysicalDeviceFeatures in the previous chapter, like geometry
shaders. Right now we don’t need anything special, so we can simply define it
and leave everything to VK_FALSE. We’ll come back to this structure once we’re
about to start doing more interesting things with Vulkan.

VkPhysicalDeviceFeatures deviceFeatures = {};

99

Creating the logical device

With the previous two structures in place, we can start filling in the main
VkDeviceCreateInfo structure.

VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;

First add pointers to the queue creation info and device features structs:

createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.queueCreateInfoCount = 1;

createInfo.pEnabledFeatures = &deviceFeatures;

The remainder of the information bears a resemblance to the VkInstanceCreateInfo
struct and requires you to specify extensions and validation layers. The difference
is that these are device specific this time.

An example of a device specific extension is VK_KHR_swapchain, which allows
you to present rendered images from that device to windows. It is possible that
there are Vulkan devices in the system that lack this ability, for example because
they only support compute operations. We will come back to this extension in
the swap chain chapter.

As mentioned in the validation layers chapter, we will enable the same validation
layers for devices as we did for the instance. We won’t need any device specific
extensions for now.

createInfo.enabledExtensionCount 0;
if (enableValidationLayers) {
createInfo.enabledLayerCount = validationLayers.size();
createInfo.ppEnabledLayerNames = validationlayers.data();
} else {
createInfo.enabledlLayerCount = O;

3

That’s it, we’re now ready to instantiate the logical device with a call to the
appropriately named vkCreateDevice function.

if (vkCreateDevice(physicalDevice, &createInfo, nullptr, device.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");

3

The parameters are the physical device to interface with, the queue and usage
info we just specified, the optional allocation callbacks pointer and a pointer to
a variable to store the logical device handle in. Similarly to the instance creation
function, this call can return errors based on enabling non-existent extensions or
specifying the desired usage of unsupported features.

96

Retrieving queue handles

The queues are automatically created along with the logical device, but we don’t
have a handle to interface with them yet. First add a class member to store a
handle to the graphics queue:

VkQueue graphicsQueue;

Device queues are implicitly cleaned up when the device is destroyed, so we
don’t need to wrap it in a deleter object.

We can use the vkGetDeviceQueue function to retrieve queue handles for each
queue family. The parameters are the logical device, queue family, queue index
and a pointer to the variable to store the queue handle in. Because we’re only
creating a single queue from this family, we’ll simply use index O.

vkGetDeviceQueue(device, indices.graphicsFamily, O, &graphicsQueue);

With the logical device and queue handles we can now actually start using the
graphics card to do things! In the next few chapters we’ll set up the resources
to present results to the window system.

C++ code

Window surface

Since Vulkan is a platform agnostic API, it can not interface directly with
the window system on its own. To establish the connection between Vulkan
and the window system to present results to the screen, we need to use the
WSI (Window System Integration) extensions. In this chapter we’ll discuss the
first one, which is VK_KHR_surface. It exposes a VkSurfaceKHR object that
represents an abstract type of surface to present rendered images to. The surface
in our program will be backed by the window that we’ve already opened with
GLFW.

The VK_KHR_surface extension is an instance level extension and we’ve
actually already enabled it, because it’s included in the list returned by
glfwGetRequiredInstanceExtensions. The list also includes some other WSI
extensions that we’ll use in the next couple of chapters.

The window surface needs to be created right after the instance creation, because
it can actually influence the physical device selection. The reason we postponed
this is because window surfaces are part of the larger topic of render targets and
presentation for which the explanation would have cluttered the basic setup. It
should also be noted that window surfaces are an entirely optional component
in Vulkan, if you just need off-screen rendering. Vulkan allows you to do that
without hacks like creating an invisible window (necessary for OpenGL).

o7

https://vulkan-tutorial.com/code/logical_device.cpp

Window surface creation

Start by adding a surface class member right below the debug callback. Surfaces
are destroyed using the vkDestroySurfaceKHR call.

VDeleter<VkSurfaceKHR> surface{instance, vkDestroySurfaceKHR};

Although the VkSurfaceKHR object and its usage is platform agnostic, its creation
isn’t because it depends on window system details. For example, it needs the HWND
and HMODULE handles on Windows. Therefore there is a platform-specific addition
to the extension, which on Windows is called VK_KHR_win32_surface and is also
automatically included in the list from glfwGetRequiredInstanceExtensions.

I will demonstrate how this platform specific extension can be used to create a
surface on Windows, but we won’t actually use it in this tutorial. It doesn’t make
any sense to use a library like GLFW and then proceed to use platform-specific
code anyway. GLFW actually has glfwCreateWindowSurface that handles the
platform differences for us. Still, it’s good to see what it does behind the scenes
before we start relying on it.

Because a window surface is a Vulkan object, it comes with a VkWin32SurfaceCreateInfoKHR
struct that needs to be filled in. It has two important parameters: hwnd and
hinstance. These are the handles to the window and the process.

VkWin32SurfaceCreateInfoKHR createlnfo;

createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
createInfo.hwnd = glfwGetWin32Window(window) ;

createInfo.hinstance = GetModuleHandle(nullptr);

The glfwGetWin32Window function is used to get the raw HWND from the GLFW
window object. The GetModuleHandle call returns the HINSTANCE handle of the
current process.

After that the surface can be created with vkCreateWin32SurfaceKHR, which
needs to be explicitly loaded again. Other than that the call is trivial and
includes a parameter for the instance, surface creation details, custom allocators
and the variable for the surface handle to be stored in.

auto CreateWin32SurfaceKHR = (PFN_vkCreateWin32SurfaceKHR) vkGetInstanceProcAddr (instance, '

if (!'CreateWin32SurfaceKHR || CreateWin32SurfaceKHR(instance, &createIlnfo,
nullptr, surface.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create window surface!");

3

The process is similar for other platforms like Linux, where vkCreateXcbSurfaceKHR
takes an XCB connection and window as creation details with X11.

The glfwCreateWindowSurface function performs exactly this operation with
a different implementation for each platform. We’ll now integrate it into our

98

program. Add a function createSurface to be called from initVulkan right
after instance creation and setupDebugCallback.

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice() ;

}
void createSurface() {

3

The GLFW call takes simple parameters instead of a struct which makes the
implementation of the function very straightforward:

void createSurface() {
if (glfwCreateWindowSurface(instance, window, nullptr, surface.replace()) != VK_SUCCESS.
throw std::runtime_error("failed to create window surface!");
}
}

The parameters are the VkInstance, GLFW window pointer, custom allocators
and pointer to VkSurfaceKHR variable. It simply passes through the VkResult
from the relevant platform call.

Querying for presentation support

Although the Vulkan implementation may support window system integration,
that does not mean that every device in the system supports it. Therefore we
need to extend isDeviceSuitable to ensure that a device can present images
to the surface we created. Since the presentation is a queue-specific feature, the
problem is actually about finding a queue family that supports presenting to the
surface we created.

It’s actually possible that the queue families supporting drawing commands and
the ones supporting presentation do not overlap. Therefore we have to take
into account that there could be a distinct presentation queue by modifying the
QueueFamilyIndices structure:

struct QueueFamilyIndices {
int graphicsFamily = -1;
int presentFamily = -1;

bool isComplete() {
return graphicsFamily >= 0 &% presentFamily >= O;

99

};

Next, we’ll modify the findQueueFamilies function to look for a queue family
that has the capability of presenting to our window surface. The function to
check for that is vkGetPhysicalDeviceSurfaceSupportKHR, which takes the
physical device, queue family index and surface as parameters. Add a call to it
in the same loop as the VK_QUEUE_GRAPHICS_BIT:

VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface, &presentSupport);

Then simply check the value of the boolean and store the presentation family
queue index:

if (queueFamily.queueCount > O && presentSupport) {
indices.presentFamily = i;

}

Note that it’s very likely that these end up being the same queue family after all,
but throughout the program we will treat them as if they were separate queues
for a uniform approach. Nevertheless, you could add logic to explicitly prefer a
physical device that supports drawing and presentation in the same queue for
improved performance.

Creating the presentation queue

The one thing that remains is modifying the logical device creation procedure to
create the presentation queue and retrieve the VkQueue handle. Add a member
variable for the handle:

VkQueue presentQueue;

Next, we need to have multiple VkDeviceQueueCreateInfo structs to create a
queue from both families. An elegant way to do that is to create a set of all
unique queue families that are necessary for the required queues:

#include <set>

QueueFamilyIndices indices = findQueueFamilies(physicalDevice);

std: :vector<VkDeviceQueueCreateInfo> queueCreatelnfos;
std: :set<int> uniqueQueueFamilies = {indices.graphicsFamily, indices.presentFamily};

float queuePriority = 1.0f;

for (int queueFamily : uniqueQueueFamilies) {
VkDeviceQueueCreateInfo queueCreateInfo = {};

60

queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = queueFamily;
queueCreateInfo.queueCount = 1;

queueCreateInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateInfo) ;

}
And modify VkDeviceCreateInfo to point to the vector:

createInfo.pQueueCreateInfos = queueCreateInfos.data();
createInfo.queueCreateInfoCount = (uint32_t) queueCreateInfos.size();

If the queue families are the same, then we only need to pass its index once.
Finally, add a call to retrieve the queue handle:

vkGetDeviceQueue(device, indices.presentFamily, O, &presentQueue);

In case the queue families are the same, the two handles will most likely have
the same value now. In the next chapter we’re going to look at swap chains and
how they give us the ability to present images to the surface.

C++ code

Swap chain

In this chapter we will look at the infrastructure that gives you images to render
to that can be presented to the screen afterwards. This infrastructure is known
as the swap chain and must be created explicitly in Vulkan. The swap chain
is essentially a queue of images that are waiting to be presented to the screen.
Our application will acquire such an image to draw to it, and then return it to
the queue. How exactly the queue works and the conditions for presenting an
image from the queue depend on how the swap chain is set up, but the general
purpose of the swap chain is to synchronize the presentation of images with the
refresh rate of the screen.

Checking for swap chain support

Not all graphics cards are capable of presenting images directly to a screen for
various reasons, for example because they are designed for servers and don’t have
any display outputs. Secondly, since image presentation is heavily tied into the
window system and the surfaces associated with windows, it is not actually part
of the Vulkan core. You have to enable the VK_KHR_swapchain device extension
after querying for its support.

For that purpose we’ll first extend the isDeviceSuitable function to check if
this extension is supported. We’ve previously seen how to list the extensions
that are supported by a VkPhysicalDevice, so doing that should be fairly

61

https://vulkan-tutorial.com/code/window_surface.cpp

straightforward. Note that the Vulkan header file provides a nice macro
VK_KHR_SWAPCHAIN_EXTENSION_NAME that is defined as VK_KHR_swapchain.
The advantage of using this macro is that the compiler will catch misspellings.

First declare a list of required device extensions, similar to the list of validation
layers to enable.

const std::vector<const char*> deviceExtensions = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME
};

Next, create a new function checkDeviceExtensionSupport that is called from
isDeviceSuitable as an additional check:

bool isDeviceSuitable(VkPhysicalDevice device) {
QueueFamilyIndices indices = findQueueFamilies(device);

bool extensionsSupported = checkDeviceExtensionSupport(device);

return indices.isComplete() && extensionsSupported;

3

bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
return true;

}

Modify the body of the function to enumerate the extensions and check if all of
the required extensions are amongst them.

bool checkDeviceExtensionSupport(VkPhysicalDevice device) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);

std: :vector<VkExtensionProperties> availableExtensions(extensionCount) ;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, availableExtensic

std: :set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end

for (const auto& extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName) ;

}

return requiredExtensions.empty() ;

3

I’ve chosen to use a set of strings here to represent the unconfirmed required
extensions. That way we can easily tick them off while enumerating the se-
quence of available extensions. Of course you can also use a nested loop like in
checkValidationLayerSupport. The performance difference is irrelevant. Now

62

run the code and verify that your graphics card is indeed capable of creating
a swap chain. It should be noted that the availability of a presentation queue,
as we checked in the previous chapter, implies that the swap chain extension
must be supported. However, it’s still good to be explicit about things, and the
extension does have to be explicitly enabled.

Enabling the extension just requires a small change to the logical device creation
structure:

createInfo.enabledExtensionCount = deviceExtensions.size();
createInfo.ppEnabledExtensionNames = deviceExtensions.data();

Querying details of swap chain support

Just checking if a swap chain is available is not sufficient, because it may not
actually be compatible with our window surface. Creating a swap chain also
involves a lot more settings than instance and device creation, so we need to
query for some more details before we’re able to proceed.

There are basically three kinds of properties we need to check:

« Basic surface capabilities (min/max number of images in swap chain,
min/max width and height of images)

o Surface formats (pixel format, color space)

o Available presentation modes

Similar to findQueueFamilies, we’ll use a struct to pass these details around
once they’ve been queried. The three aforementioned types of properties come
in the form of the following structs and lists of structs:

struct SwapChainSupportDetails {
VkSurfaceCapabilitiesKHR capabilities;
std: :vector<VkSurfaceFormatKHR> formats;
std: :vector<VkPresentModeKHR> presentModes;
};

We’ll now create a new function querySwapChainSupport that will populate
this struct.

SwapChainSupportDetails querySwapChainSupport(VkPhysicalDevice device) {
SwapChainSupportDetails details;

return details;

}

This section covers how to query the structs that include this information. The
meaning of these structs and exactly which data they contain is discussed in the
next section.

63

Let’s start with the basic surface capabilities. These properties are simple to
query and are returned into a single VkSurfaceCapabilitiesKHR struct.

vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface, &details.capabilities);

This function takes the specified VkPhysicalDevice and VkSurfaceKHR window
surface into account when determining the supported capabilities. All of the
support querying functions have these two as first parameters because they are
the core components of the swap chain.

The next step is about querying the supported surface formats. Because this is
a list of structs, it follows the familiar ritual of 2 function calls:

uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, nullptr);

if (formatCount != 0) {
details.formats.resize(formatCount) ;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface, &formatCount, details.formats.dat:

3

Make sure that the vector is resized to hold all the available formats. And finally,
querying the supported presentation modes works exactly the same way with
vkGetPhysicalDeviceSurfacePresentModesKHR:

uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR (device, surface, &presentModeCount, nullptr);

if (presentModeCount != 0) {
details.presentModes.resize(presentModeCount) ;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface, &presentModeCount, details.p:

3

All of the details are in the struct now, so let’s extend isDeviceSuitable once
more to utilize this function to verify that swap chain support is adequate. Swap
chain support is sufficient for this tutorial if there is at least one supported image
format and one supported presentation mode given the window surface we have.

bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes
b

It is important that we only try to query for swap chain support after verifying
that the extension is available. The last line of the function changes to:

return indices.isComplete() && extensionsSupported && swapChainAdequate;

64

Choosing the right settings for the swap chain

If the swapChainAdequate conditions were met then the support is definitely
sufficient, but there may still be many different modes of varying optimality.
We’ll now write a couple of functions to find the right settings for the best
possible swap chain. There are three types of settings to determine:

o Surface format (color depth)
o Presentation mode (conditions for “swapping” images to the screen)
e Swap extent (resolution of images in swap chain)

For each of these settings we’ll have an ideal value in mind that we’ll go with if
it’s available and otherwise we’ll create some logic to find the next best thing.

Surface format

The function for this setting starts out like this. We’ll later pass the formats
member of the SwapChainSupportDetails struct as argument.

VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availablel

}

Each VkSurfaceFormatKHR entry contains format and colorSpace member.
The format member specifies the color channels and types. For example,
VK_FORMAT_B8G8R8A8_UNORM means that we store the B, G, R and alpha chan-
nels in that order with an 8 bit unsigned integer for a total of 32 bits per pixel.
The colorSpace member indicates if the SRGB color space is supported or
not using the VK_COLOR_SPACE_SRGB_NONLINEAR_KHR flag. Note that this flag
used to be called VK_COLORSPACE_SRGB_NONLINEAR_KHR in old versions of the
specification.

For the color space we’ll use SRGB if it is available, because it results in more
accurate perceived colors. Working directly with SRGB colors is a little bit
challenging, so we’ll use standard RGB for the color format, of which one of the
most common ones is VK_FORMAT_B8GS8R8A8_UNORM.

The best case scenario is that the surface has no preferred format, which Vulkan
indicates by only returning one VkSurfaceFormatKHR entry which has its format
member set to VK_FORMAT_UNDEFINED.

if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) {
return {VK_FORMAT_B8GS8RS8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR};
}

If we’re not free to choose any format, then we’ll go through the list and see if
the preferred combination is available:

65

http://stackoverflow.com/questions/12524623/
http://stackoverflow.com/questions/12524623/

for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8GSR8AS_UNORM && availableFormat.colorSpace ==
return availableFormat;
}
}

If that also fails then we could start ranking the available formats based on how
“good” they are, but in most cases it’s okay to just settle with the first format
that is specified.

VkSurfaceFormatKHR chooseSwapSurfaceFormat(const std::vector<VkSurfaceFormatKHR>& availablel
if (availableFormats.size() == 1 && availableFormats[0].format == VK_FORMAT_UNDEFINED) -
return {VK_FORMAT_B8GSR8A8_UNORM, VK_COLOR_SPACE_SRGB_NONLINEAR_KHR};
X

for (const auto& availableFormat : availableFormats) {
if (availableFormat.format == VK_FORMAT_B8G8R8A8_UNORM && availableFormat.colorSpace
return availableFormat;
}
}

return availableFormats[0];

Presentation mode

The presentation mode is arguably the most important setting for the swap
chain, because it represents the actual conditions for showing images to the
screen. There are four possible modes available in Vulkan:

e VK_PRESENT_MODE_IMMEDIATE_KHR: Images submitted by your application
are transferred to the screen right away, which may result in tearing.

e VK_PRESENT_MODE_FIFO_KHR: The swap chain is a queue where the display
takes an image from the front of the queue on a vertical blank and the
program inserts rendered images at the back of the queue. If the queue is
full then the program has to wait. This is most similar to vertical sync as
found in modern games.

o VK_PRESENT_MODE_FIFO_RELAXED KHR: This mode only differs from the
first one if the application is late and the queue was empty at the last
vertical blank. Instead of waiting for the next vertical blank, the image is
transferred right away when it finally arrives. This may result in visible
tearing.

e VK_PRESENT_MODE_MAILBOX_KHR: This is another variation of the first
mode. Instead of blocking the application when the queue is full, the
images that are already queued are simply replaced with the newer ones.
This mode can be used to implement triple buffering, which allows you to

66

avoid tearing with significantly less latency issues than standard vertical
sync that uses double buffering.

Only the VK_PRESENT_MODE_FIFO_KHR mode is guaranteed to be available, so
we’ll again have to write a function that looks for the best mode that is available:

VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentl
return VK_PRESENT_MODE_FIFO_KHR;
X

I personally think that triple buffering is a very nice trade-off. It allows us to
avoid tearing while still maintaining a fairly low latency by rendering new images
that are as up-to-date as possible right until the vertical blank. So, let’s look
through the list to see if it’s available:

VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentl
for (const auto& availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;

}

return VK_PRESENT MODE_FIFO_KHR;
}
Unfortunately some drivers currently don’t properly support VK_PRESENT_MODE_FIFO_KHR,
so we should prefer VK_PRESENT MODE_IMMEDIATE_KHR if VK_PRESENT MODE_MAILBOX_KHR
is not available:

VkPresentModeKHR chooseSwapPresentMode(const std::vector<VkPresentModeKHR> availablePresentl
VkPresentModeKHR bestMode = VK_PRESENT_MODE_FIFO_KHR;

for (const auto& availablePresentMode : availablePresentModes) {
if (availablePresentMode == VK_PRESENT_MODE_MAILBOX_KHR) {
return availablePresentMode;
} else if (availablePresentMode == VK_PRESENT_MODE_IMMEDIATE_KHR) {

bestMode = availablePresentMode;

3

return bestMode;

Swap extent

That leaves only one major property, for which we’ll add one last function:

67

VkExtent2D chooseSwapExtent (const VkSurfaceCapabilitiesKHR& capabilities) {

3

The swap extent is the resolution of the swap chain images and it’s almost
always exactly equal to the resolution of the window that we’re drawing to. The
range of the possible resolutions is defined in the VkSurfaceCapabilitiesKHR
structure. Vulkan tells us to match the resolution of the window by setting
the width and height in the currentExtent member. However, some window
managers do allow us to differ here and this is indicated by setting the width and
height in currentExtent to a special value: the maximum value of uint32_t.
In that case we’ll pick the resolution that best matches the window within the
minImageExtent and maxImageExtent bounds.

VkExtent2D chooseSwapExtent(const VkSurfaceCapabilitiesKHR& capabilities) {

if (capabilities.currentExtent.width != std::numeric_limits<uint32_t>::max()) {
return capabilities.currentExtent;
} else {

VkExtent2D actualExtent = {WIDTH, HEIGHT};

actualExtent.width = std::max(capabilities.minImageExtent.width, std::min(capabilit:
actualExtent.height = std::max(capabilities.minImageExtent.height, std::min(capabil:

return actualExtent;

3

The max and min functions are used here to clamp the value of WIDTH and HEIGHT
between the allowed minimum and maximum extents that are supported by the
implementation. Make sure to include the <algorithm> header to use them.

Creating the swap chain

Now that we have all of these helper functions assisting us with the choices we
have to make at runtime, we finally have all the information that is needed to
create a working swap chain.

Create a createSwapChain function that starts out with the results of these
calls and make sure to call it from initVulkan after logical device creation.

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLlogicalDevice();
createSwapChain() ;

68

}

void createSwapChain() {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport (physicalDevice);

VkSurfaceFormatKHR surfaceFormat = chooseSwapSurfaceFormat (swapChainSupport.formats);
VkPresentModeKHR presentMode = chooseSwapPresentMode (swapChainSupport.presentModes) ;
VkExtent2D extent = chooseSwapExtent (swapChainSupport.capabilities);

X

There is actually one more small things that need to be decided upon, but it’s so
simple that it’s not really worth creating separate functions for them. The first
one is the number of images in the swap chain, essentially the queue length. The
implementation specifies the minimum amount of images to function properly
and we’ll try to have one more than that to properly implement triple buffering.

uint32_t imageCount = swapChainSupport.capabilities.minImageCount + 1;
if (swapChainSupport.capabilities.maxImageCount > 0 && imageCount > swapChainSupport.capabi:
imageCount = swapChainSupport.capabilities.maxImageCount;

3

A value of 0 for maxImageCount means that there is no limit besides memory
requirements, which is why we need to check for that.

As is tradition with Vulkan objects, creating the swap chain object requires
filling in a large structure. It starts out very familiarly:

VkSwapchainCreateInfoKHR createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
createInfo.surface = surface;

After specifying which surface the swap chain should be tied to, the details of
the swap chain images are specified:

createInfo.minImageCount = imageCount;
createInfo.imageFormat = surfaceFormat.format;
createInfo.imageColorSpace = surfaceFormat.colorSpace;
createInfo.imageExtent = extent;

createInfo.imageArraylLayers = 1;

createInfo.imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;

The imageArraylayers specifies the amount of layers each image consists of.
This is always 1 unless you are developing a stereoscopic 3D application. The
imageUsage bit field specifies what kind of operations we’ll use the images in
the swap chain for. In this tutorial we’re going to render directly to them, which
means that they’re used as color attachment. It is also possible that you’ll render
images to a separate image first to perform operations like post-processing. In
that case you may use a value like VK_IMAGE_USAGE_TRANSFER_DST_BIT instead
and use a memory operation to transfer the rendered image to a swap chain
image.

69

QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
uint32_t queueFamilyIndices[] = {(uint32_t) indices.graphicsFamily, (uint32_t) indices.pres

if (indices.graphicsFamily != indices.presentFamily) {
createInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
createInfo.queueFamilyIndexCount = 2;
createInfo.pQueueFamilyIndices = queueFamilyIndices;

} else {
createInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0; // Optional
createInfo.pQueueFamilyIndices = nullptr; // Optional

X

Next, we need to specify how to handle swap chain images that will be used
across multiple queue families. That will be the case in our application if the
graphics queue family is different from the presentation queue. We’ll be drawing
on the images in the swap chain from the graphics queue and then submitting
them on the presentation queue. There are two ways to handle images that are
accessed from multiple queues:

e VK_SHARING_MODE_EXCLUSIVE: An image is owned by one queue family
at a time and ownership must be explicitly transfered before using it in
another queue family. This option offers the best performance.

e VK_SHARING_MODE_CONCURRENT: Images can be used across multiple queue
families without explicit ownership transfers.

If the queue families differ, then we’ll be using the concurrent mode in this
tutorial to avoid having to do the ownership chapters, because these involve some
concepts that are better explained at a later time. Concurrent mode requires
you to specify in advance between which queue families ownership will be shared
using the queueFamilyIndexCount and pQueueFamilyIndices parameters. If
the graphics queue family and presentation queue family are the same, which will
be the case on most hardware, then we should stick to exclusive mode, because
concurrent mode requires you to specify at least two distinct queue families.

createInfo.preTransform = swapChainSupport.capabilities.currentTransform;

We can specify that a certain transform should be applied to images in the
swap chain if it is supported (supportedTransforms in capabilities), like a
90 degree clockwise rotation or horizontal flip. To specify that you do not want
any transformation, simply specify the current transformation.

createInfo.compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;

The compositeAlpha field specifies if the alpha channel should be used for
blending with other windows in the window system. You’ll almost always want to
simply ignore the alpha channel, hence VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR.

createInfo.presentMode = presentMode;
createInfo.clipped = VK_TRUE;

70

The presentMode member speaks for itself. If the clipped member is set to
VK_TRUE then that means that we don’t care about the color of pixels that are
obscured, for example because another window is in front of them. Unless you
really need to be able to read these pixels back and get predictable results, you’ll
get the best performance by enabling clipping.

createInfo.oldSwapchain = VK_NULL_HANDLE;

That leaves one last field, 01dSwapChain. With Vulkan it’s possible that in your
swap chain becomes invalid or unoptimized while your application is running, for
example because the window was resized. In that case the swap chain actually
needs to be recreated from scratch and a reference to the old one must be
specified in this field. This is a complex topic that we’ll learn more about in a
future chapter. For now we’ll assume that we’ll only ever create one swap chain.

Now add a class member to store the VkSwapchainKHR object with a proper
deleter. Make sure to add it after device so that it gets cleaned up before the
logical device is.

VDeleter<VkSwapchainKHR> swapChain{device, vkDestroySwapchainKHR};
Now creating the swap chain is as simple as calling vkCreateSwapchainKHR:

if (vkCreateSwapchainKHR(device, &createInfo, nullptr, swapChain.replace()) != VK_SUCCESS) -
throw std::runtime_error("failed to create swap chain!");

}

The parameters are the logical device, swap chain creation info, optional custom
allocators and a pointer to the variable to store the handle in. No surprises there.
Now run the application to ensure that the swap chain is created successfully!

Try removing the createInfo.imageExtent = extent; line with validation
layers enabled. You’ll see that one of the validation layers immediately catches
the mistake and a helpful message is printed:

icalDeviceSurfaceCapabilitiesk

Figure 23:

Retrieving the swap chain images

The swap chain has been created now, so all that remains is retrieving the
handles of the VkImages in it. We’ll reference these during rendering operations
in later chapters. Add a class member to store the handles:

std: :vector<VkImage> swapChainImages;

71

The images were created by the implementation for the swap chain and they will
be automatically cleaned up once the swap chain has been destroyed, therefore
we don’t need a deleter here.

I'm adding the code to retrieve the handles to the end of the createSwapChain
function, right after the vkCreateSwapchainKHR call. Retrieving them is
very similar to the other times where we retrieved an array of objects from
Vulkan. First query the number of images in the swap chain with a call to
vkGetSwapchainImagesKHR, then resize the container and finally call it again
to retrieve the handles.

vkGetSwapchainImagesKHR (device, swapChain, &imageCount, nullptr);
swapChainImages.resize (imageCount) ;
vkGetSwapchainImagesKHR (device, swapChain, &imageCount, swapChainImages.data());

Note that when we created the swap chain, we passed the number of desired
images to a field called minImageCount. The implementation is allowed to create
more images, which is why we need to explicitly query the amount again.

One last thing, store the format and extent we’ve chosen for the swap chain
images in member variables. We’ll need them in future chapters.

VDeleter<VkSwapchainKHR> swapChain{device, vkDestroySwapchainKHR};
std: :vector<VkImage> swapChainImages;

VkFormat swapChainImageFormat;

VkExtent2D swapChainExtent;

swapChainImageFormat = surfaceFormat.format;
swapChainExtent = extent;

We now have a set of images that can be drawn onto and can be presented to
the window. The next two chapters will cover how we can set up the images as
render targets and then we start looking into the actual drawing commands!

C++ code

Image views

To use any VkImage, including those in the swap chain, in the render pipeline
we have to create a VkImageView object. An image view is quite literally a view
into an image. It describes how to access the image and which part of the image
to access, for example if it should be treated as a 2D texture depth texture
without any mipmapping levels.

In this chapter we’ll write a createImageViews function that creates a basic
image view for every image in the swap chain so that we can use them as color

72

https://vulkan-tutorial.com/code/swap_chain_creation.cpp

targets later on.

First add a class member to store the image views in. Unlike the VkImages, the
VkImageView objects are created by us so we need to clean them up ourselves
later.

std::vector<VDeleter<VkImageView>> swapChainImageViews;
Create the createImageViews function and call it right after swap chain creation.

void initVulkan() {

createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice() ;
createSwapChain() ;
createImageViews();

}
void createImageViews() {

}

The first thing we need to do is resize the list to fit all of the image views we’ll be
creating. This is also the place where we’ll actually define the deleter function.

void createImageViews() {
swapChainImageViews.resize (swapChainImages.size(), VDeleter<VkImageView>{device, vkDest:

}

The resize function initializes all of the list items with the right deleter. Next,
set up the loop that iterates over all of the swap chain images.

for (uint32_t i = 0; i < swapChainImages.size(); i++) {

3

The parameters for image view creation are specified in a VkImageViewCreateInfo
structure. The first few parameters are straightforward.

VkImageViewCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
createInfo.image = swapChainImages[i];

The viewType and format fields specify how the image data should be interpreted.
The viewType parameter allows you to treat images as 1D textures, 2D textures,
3D textures and cube maps.

createInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
createlnfo.format = swapChainImageFormat;

73

The components field allows you to swizzle the color channels around. For
example, you can map all of the channels to the red channel for a monochrome
texture. You can also map constant values of 0 and 1 to a channel. In our case
we’ll stick to the default mapping.

createInfo.components.
createInfo.components.
createInfo.components.
createInfo.components.a

VK_COMPONENT_SWIZZLE_IDENTITY;
VK_COMPONENT_SWIZZLE_IDENTITY;
= VK_COMPONENT_SWIZZLE_IDENTITY;
VK_COMPONENT_SWIZZLE_IDENTITY;

o' 0y K
I

The subresourceRange field describes what the image’s purpose is and which
part of the image should be accessed. Our images will be used as color targets
without any mipmapping levels or multiple layers.

createInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
createInfo.subresourceRange.baseMipLevel = O;
createInfo.subresourceRange.levelCount = 1;
createInfo.subresourceRange.baseArraylayer = 0;
createInfo.subresourceRange.layerCount = 1;

If you were working on a stereographic 3D application, then you would create a
swap chain with multiple layers. You could then create multiple image views
for each image representing the views for the left and right eyes by accessing
different layers.

Creating the image view is now a matter of calling vkCreateImageView:

if (vkCreateImageView(device, &createInfo, nullptr, swapChainImageViews[i].replace()) != VK
throw std::runtime_error("failed to create image views!");

}

That’s it, now run the program to verify that the image views are created
properly and destroyed properly. Checking the latter requires enabling the
validation layers, or putting a print statement in the deleter function.

An image view is sufficient to start using an image as a texture, but it’s not
quite ready to be used as a render target just yet. That requires one more step
of indirection, known as a framebuffer. But first we’ll have to set up the graphics
pipeline.

C++ code

Graphics pipeline basics

Over the course of the next few chapters we’ll be setting up a graphics pipeline
that is configured to draw our first triangle. The graphics pipeline is the sequence
of operations that take the vertices and textures of your meshes all the way to
the pixels in the render targets. A simplified overview is displayed below:

74

https://vulkan-tutorial.com/code/image_views.cpp

Wertewindex buffer

l

Input assembler

l

Vertex shader

l

Tessellation

l

Geometry shader

l

Rasterization

l

Fragment shader

i

Caolor blending

l

Framebuffer

=

= et
(=]

A

L]
Lad

&

£ 13
i

1
1
L1

Figure 24:

The input assembler collects the raw vertex data from the buffers you specify
and may also use an index buffer to repeat certain elements without having to
duplicate the vertex data itself.

The vertex shader is run for every vertex and generally applies transformations to
turn vertex positions from model space to screen space. It also passes per-vertex
data down the pipeline.

The tessellation shaders allow you to subdivide geometry based on certain rules
to increase the mesh quality. This is often used to make surfaces like brick walls
and staircases look less flat when they are nearby.

The geometry shader is run on every primitive (triangle, line, point) and can
discard it or output more primitives than came in. This is similar to the
tessellation shader, but much more flexible. However, it is not used much in
today’s applications because the performance is not that good on most graphics
cards except for Intel’s integrated GPUs.

The rasterization stage discretizes the primitives into fragments. These are the
pixel elements that they fill on the framebuffer. Any fragments that fall outside
the screen are discarded and the attributes outputted by the vertex shader are
interpolated across the fragments, as shown in the figure. Usually the fragments
that are behind other primitive fragments are also discarded here because of
depth testing.

The fragment shader is invoked for every fragment that survives and determines
which framebuffer(s) the fragments are written to and with which color and
depth values. It can do this using the interpolated data from the vertex shader,
which can include things like texture coordinates and normals for lighting.

The color blending stage applies operations to mix different fragments that map
to the same pixel in the framebuffer. Fragments can simply overwrite each other,
add up or be mixed based upon transparency.

Stages with a green color are known as fized-function stages. These stages
allow you to tweak their operations using parameters, but the way they work is
predefined.

Stages with an orange color on the other hand are programmable, which means
that you can upload your own code to the graphics card to apply exactly the
operations you want. This allows you to use fragment shaders, for example, to
implement anything from texturing and lighting to ray tracers. These programs
run on many GPU cores simultaneously to process many objects, like vertices
and fragments in parallel.

If you’ve used older APIs like OpenGL and Direct3D before, then you’ll be used
to being able to change any pipeline settings at will with calls like glBlendFunc
and OMSetBlendState. The graphics pipeline in Vulkan is almost completely
immutable, so you must recreate the pipeline from scratch if you want to
change shaders, bind different framebuffers or change the blend function. The

76

disadvantage is that you’ll have to create a number of pipelines that represent
all of the different combinations of states you want to use in your rendering
operations. However, because all of the operations you'll be doing in the pipeline
are known in advance, the driver can optimize for it much better.

Some of the programmable stages are optional based on what you intend to do.
For example, the tessellation and geometry stages can be disabled if you are just
drawing simple geometry. If you are only interested in depth values then you can
disable the fragment shader stage, which is useful for shadow map generation.

In the next chapter we’ll first create the two programmable stages required to
put a triangle onto the screen: the vertex shader and fragment shader. The
fixed-function configuration like blending mode, viewport, rasterization will be
set up in the chapter after that. The final part of setting up the graphics pipeline
in Vulkan involves the specification of input and output framebuffers.

Create a createGraphicsPipeline function that is called right after
createImageViews in initVulkan. We'll work on this function throughout the
following chapters.

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice() ;
createSwapChain() ;
createImageViews();
createGraphicsPipeline();

void createGraphicsPipeline() {

}
C++ code

Shader modules

Unlike earlier APIs, shader code in Vulkan has to be specified in a bytecode
format as opposed to human-readable syntax like GLSL and HLSL. This bytecode
format is called SPIR-V and is designed to be used with both Vulkan and OpenCL
(both Khronos APIs). It is a format that can be used to write graphics and
compute shaders, but we will focus on shaders used in Vulkan’s graphics pipelines

7

https://en.wikipedia.org/wiki/Shadow_mapping
https://vulkan-tutorial.com/code/graphics_pipeline.cpp
https://en.wikipedia.org/wiki/OpenGL_Shading_Language
https://en.wikipedia.org/wiki/High-Level_Shading_Language
https://www.khronos.org/spir

in this tutorial.

The advantage of using a bytecode format is that the compilers written by GPU
vendors to turn shader code into native code are significantly less complex. The
past has shown that with human-readable syntax like GLSL, some GPU vendors
were rather flexible with their interpretation of the standard. If you happen to
write non-trivial shaders with a GPU from one of these vendors, then you’d risk
other vendor’s drivers rejecting your code due to syntax errors, or worse, your
shader running differently because of compiler bugs. With a straightforward
bytecode format like SPIR-V that will hopefully be avoided.

However, that does not mean that we need to write this bytecode by hand.
Khronos has released their own vendor-independent compiler that compiles
GLSL to SPIR-V. This compiler is designed to verify that your shader code is
fully standards compliant and produces one SPIR-V binary that you can ship
with your program. You can also include this compiler as a library to produce
SPIR-V at runtime, but we won’t be doing that in this tutorial. The compiler
is already included with the LunarG SDK as glslangValidator.exe, so you
don’t need to download anything extra.

GLSL is a shading language with a C-style syntax. Programs written in it have
a main function that is invoked for every object. Instead of using parameters for
input and a return value as output, GLSL uses global variables to handle input
and output. The language includes many features to aid in graphics programming,
like built-in vector and matrix primitives. Functions for operations like cross
products, matrix-vector products and reflections around a vector are included.
The vector type is called vec with a number indicating the amount of elements.
For example, a 3D position would be stored in a vec3. It is possible to access
single components through members like .x, but it’s also possible to create a new
vector from multiple components at the same time. For example, the expression
vec3(1.0, 2.0, 3.0).xy would result in vec2. The constructors of vectors
can also take combinations of vector objects and scalar values. For example, a
vec3 can be constructed with vec3(vec2(1.0, 2.0), 3.0).

As the previous chapter mentioned, we need to write a vertex shader and a
fragment shader to get a triangle on the screen. The next two sections will cover
the GLSL code of each of those and after that I'll show you how to produce two
SPIR-V binaries and load them into the program.

Vertex shader

The vertex shader processes each incoming vertex. It takes its attributes, like
world position, color, normal and texture coordinates as input. The output is
the final position in clip coordinates and the attributes that need to be passed
on to the fragment shader, like color and texture coordinates. These values will
then be interpolated over the fragments by the rasterizer to produce a smooth
gradient.

8

Clip coordinates are homogeneous coordinates that map the framebuffer to a [-1,
1] by [-1, 1] coordinate system that looks like the following:

Framebuffer coordinates Clip coordinates
(0, 0) (1920, 0) (-1, -1) (1, -1)
{960, 540) (0,0)
(0, 1080) (1920, 1080) (-1, 1) (1, 1)
Figure 25:

You should already be familiar with these if you have dabbed in computer
graphics before. If you have used OpenGL before, then you’ll notice that the
sign of the Y coordinates is now flipped. The Z coordinate now uses the same
range as it does in Direct3D, from 0 to 1.

For our first triangle we won’t be applying any transformations, we’ll just specify
the positions of the three vertices directly in clip coordinates to create the
following shape:

Figure 26:

Normally these coordinates would be stored in a vertex buffer, but creating a
vertex buffer in Vulkan and filling it with data is not trivial. Therefore I've

79

https://en.wikipedia.org/wiki/Homogeneous_coordinates

decided to postpone that until after we’ve had the satisfaction of seeing a triangle
pop up on the screen. We're going to do something a little unorthodox in the
meanwhile: include the coordinates directly inside the vertex shader. The code
looks like this:

#version 450
#extension GL_ARB_separate_shader_objects : enable

out gl_PerVertex {
vec4 gl_Position;

};

vec2 positions[3] = vec2[](
vec2(0.0, -0.5),
vec2(0.5, 0.5),
vec2(-0.5, 0.5)

);

void main() {
gl_Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
}

The main function is invoked for every vertex. The built-in gl_VertexIndex
variable contains the index of the current vertex. This is usually an index into
the vertex buffer, but in our case it will be an index into a hardcoded array of
vertex data. The position of each vertex is accessed from the constant array
in the shader and combined with dummy z and w components to produce a
position in clip coordinates. The built-in variable gl_Position functions as
the output. The GL_ARB_separate_shader_objects extension is required for
Vulkan shaders to work.

Fragment shader

The triangle that is formed by the positions from the vertex shader fills an area
on the screen with fragments. The fragment shader is invoked on these fragments
to produce a color and depth for the framebuffer (or framebuffers). A simple
fragment shader that outputs the color red for the entire triangle looks like this:

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) out vec4 outColor;
void main() {

outColor = vec4(1.0, 0.0, 0.0, 1.0);
}

80

The main function is called for every fragment just like the vertex shader main
function is called for every vertex. Colors in GLSL are 4-component vectors with
the R, G, B and alpha channels within the [0, 1] range. Unlike gl_Position in
the vertex shader, there is no built-in variable to output a color for the current
fragment. You have to specify your own output variable for each framebuffer
where the layout (location = 0) modifier specifies the index of the framebuffer.
The color red is written to this outColor variable that is linked to the first (and
only) framebuffer at index 0.

Per-vertex colors

Making the entire triangle red is not very interesting, wouldn’t something like
the following look a lot nicer?

Figure 27:

We have to make a couple of changes to both shaders to accomplish this. First
off, we need to specify a distinct color for each of the three vertices. The vertex
shader should now include an array with colors just like it does for positions:

vec3 colors[3] = vec3[](
vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),
vec3(0.0, 0.0, 1.0)
);

Now we just need to pass these per-vertex colors to the fragment shader so it
can output their interpolated values to the framebuffer. Add an output for color
to the vertex shader and write to it in the main function:

layout(location = 0) out vec3 fragColor;

81

void main() {
gl _Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
fragColor = colors[gl_VertexIndex];

}

Next, we need to add a matching input in the fragment shader:

layout(location = 0) in vec3 fragColor;

void main() {
outColor = vec4(fragColor, 1.0);
}

The input variable does not necessarily have to use the same name, they will
be linked together using the indexes specified by the location directives. The
main function has been modified to output the color along with an alpha value.
As shown in the image above, the values for fragColor will be automatically
interpolated for the fragments between the three vertices, resulting in a smooth
gradient.

Compiling the shaders

Create a directory called shaders in the root directory of your project and store
the vertex shader in a file called shader.vert and the fragment shader in a
file called shader.frag in that directory. GLSL shaders don’t have an official
extension, but these two are commonly used to distinguish them.

The contents of shader.vert should be:

#version 450
#extension GL_ARB_separate_shader_objects : enable

out gl_PerVertex {
vec4 gl _Position;

s
layout(location = 0) out vec3 fragColor;

vec2 positions[3] = vec2[](
vec2(0.0, -0.5),
vec2(0.5, 0.5),
vec2(-0.5, 0.5)

)3

vec3 colors[3] = vec3[](

vec3(1.0, 0.0, 0.0),
vec3(0.0, 1.0, 0.0),

82

vec3(0.0, 0.0, 1.0)
)

void main() {
gl _Position = vec4(positions[gl_VertexIndex], 0.0, 1.0);
fragColor = colors[gl_VertexIndex];

}
And the contents of shader.frag should be:

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) in vec3 fragColor;

layout(location = 0) out vec4 outColor;

void main() {
outColor = vec4(fragColor, 1.0);
}

We'’re now going to compile these into SPIR-V bytecode using the
glslangValidator program.

Windows
Create a compile.bat file with the following contents:

C:/VulkanSDK/1.0.17.0/Bin32/glslangValidator.exe -V shader.vert
C:/VulkanSDK/1.0.17.0/Bin32/glslangValidator.exe -V shader.frag
pause

Replace the path to glslangValidator.exe with the path to where you installed
the Vulkan SDK. Double click the file to run it.

Linux
Create a compile.sh file with the following contents:

/home/user/VulkanSDK/x.x.x.x/x86_64/bin/glslangValidator -V shader.vert
/home/user/VulkanSDK/x.x.x.x/x86_64/bin/glslangValidator -V shader.frag

Replace the path to glslangValidator with the path to where you installed
the Vulkan SDK. Make the script executable with chmod +x compile.sh and
run it.

End of platform-specific instructions

These two commands invoke the compiler with the -V flag, which tells it to
compile the GLSL source files to SPIR-V bytecode. When you run the compile
script, you'll see that two SPIR-V binaries are created: vert.spv and frag.spv.
The names are automatically derived from the type of shader, but you can

83

rename them to anything you like. You may get a warning about some missing
features when compiling your shaders, but you can safely ignore that.

If your shader contains a syntax error then the compiler will tell you the line
number and problem, as you would expect. Try leaving out a semicolon for
example and run the compile script again. Also try running the compiler without
any arguments to see what kinds of flags it supports. It can, for example, also
output the bytecode into a human-readable format so you can see exactly what
your shader is doing and any optimizations that have been applied at this stage.

Loading a shader

Now that we have a way of producing SPIR-V shaders, it’s time to load them
into our program to plug them into the graphics pipeline at some point. We’ll
first write a simple helper function to load the binary data from the files.

#include <fstream>

static std::vector<char> readFile(const std::string& filename) {
std::ifstream file(filename, std::ios::ate | std::ios::binary);

if (!file.is_open()) {
throw std::runtime_error("failed to open file!");
}
¥

The readFile function will read all of the bytes from the specified file and return
them in a byte array managed by std::vector. We start by opening the file
with two flags:

e ate: Start reading at the end of the file
e binary: Read the file as binary file (avoid text transformations)

The advantage of starting to read at the end of the file is that we can use the
read position to determine the size of the file and allocate a buffer:

size_t fileSize = (size_t) file.tellg(Q);
std: :vector<char> buffer(fileSize);

After that, we can seek back to the beginning of the file and read all of the bytes
at once:

file.seekg(0);
file.read(buffer.data(), fileSize);

And finally close the file and return the bytes:

84

file.close();

return buffer;

We'll now call this function from createGraphicsPipeline to load the bytecode
of the two shaders:

void createGraphicsPipeline() {
auto vertShaderCode = readFile('"shaders/vert.spv");
auto fragShaderCode = readFile('"shaders/frag.spv");
}

Make sure that the shaders are loaded correctly by printing the size of the buffers
and checking if they match the actual file size in bytes.

Creating shader modules

Before we can pass the code to the pipeline, we have to wrap it in a
VkShaderModule object. Let’s create a helper function createShaderModule to
do that.

void createShaderModule(const std::vector<char>& code, VDeleter<VkShaderModule>& shaderModu:

}

The function will take a buffer with the bytecode as parameter and create a
VkShaderModule from it. Instead of returning this handle directly, it’s written
to the variable specified for the second parameter, which makes it easier to wrap
it in a deleter variable when calling createShaderModule.

Creating a shader module is simple, we only need to specify a pointer to the
buffer with the bytecode and the length of it. This information is specified in
a VkShaderModuleCreateInfo structure. The one catch is that the size of the
bytecode is specified in bytes, but the bytecode pointer is a uint32_t pointer
rather than a char pointer. Therefore we need to temporarily copy the bytecode
to a container that has the right alignment for uint32_t:

VkShaderModuleCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
createInfo.codeSize = code.size();

std::vector<uint32_t> codeAligned(code.size() / sizeof (uint32_t) + 1);
memcpy (codeAligned.data(), code.data(), code.size());
createInfo.pCode = codeAligned.data();

The VkShaderModule can then be created with a call to vkCreateShaderModule:

if (vkCreateShaderModule(device, &createInfo, nullptr, shaderModule.replace()) != VK_SUCCESS
throw std::runtime_error("failed to create shader module!");

85

}

The parameters are the same as those in previous object creation functions:
the logical device, pointer to create info structure, optional pointer to custom
allocators and handle output variable. The buffer with the code can be freed
immediately after creating the shader module.

The shader module objects are only required during the pipeline creation process,
so instead of declaring them as class members, we’ll make them local variables
in the createGraphicsPipeline function:

VDeleter<VkShaderModule> vertShaderModule{device, vkDestroyShaderModule};
VDeleter<VkShaderModule> fragShaderModule{device, vkDestroyShaderModule};

They will be automatically cleaned up when the graphics pipeline has been created
and createGraphicsPipeline returns. Now just call the helper function we
created and we’re done:

createShaderModule (vertShaderCode, vertShaderModule);
createShaderModule (fragShaderCode, fragShaderModule) ;

Shader stage creation

The VkShaderModule object is just a dumb wrapper around the bytecode buffer.
The shaders aren’t linked to each other yet and they haven’t even been given a
purpose yet. Assigning a shader module to either the vertex or fragment shader
stage in the pipeline happens through a VkPipelineShaderStageCreatelInfo
structure, which is part of the actual pipeline creation process.

We'll start by filling in the structure for the vertex shader, again in the
createGraphicsPipeline function.

VkPipelineShaderStageCreateInfo vertShaderStageInfo = {};
vertShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vertShaderStagelInfo.stage = VK_SHADER_STAGE_VERTEX_BIT;

The first step, besides the obligatory sType member, is telling Vulkan in which
pipeline stage the shader is going to be used. There is an enum value for each of
the programmable stages described in the previous chapter.

vertShaderStageInfo.module = vertShaderModule;
vertShaderStageInfo.pName = "main';

The next two members specify the shader module containing the code, and the
function to invoke. That means that it’s possible to combine multiple fragment
shaders into a single shader module and use different entry points to differentiate
between their behaviors. In this case we’ll stick to the standard main, however.

There is one more (optional) member, pSpecializationInfo, which we won’t
be using here, but is worth discussing. It allows you to specify values for

86

shader constants. You can use a single shader module where its behavior can be
configured at pipeline creation by specifying different values for the constants
used in it. This is more efficient than configuring the shader using variables
at render time, because the compiler can do optimizations like eliminating if
statements that depend on these values. If you don’t have any constants like
that, then you can set the member to nullptr, which our struct initialization
does automatically.

Modifying the structure to suit the fragment shader is easy:

VkPipelineShaderStageCreateInfo fragShaderStageInfo = {};
fragShaderStageInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
fragShaderStageInfo.stage = VK_SHADER_STAGE_FRAGMENT_BIT;
fragShaderStageInfo.module = fragShaderModule;

fragShaderStageInfo.pName = "main";

Finish by defining an array that contains these two structs, which we’ll later use
to reference them in the actual pipeline creation step.

VkPipelineShaderStageCreateInfo shaderStages[] = {vertShaderStageInfo, fragShaderStagelInfo}

That’s all there is to describing the programmable stages of the pipeline. In the
next chapter we’ll look at the fixed-function stages.

C++ code / Vertex shader / Fragment shader

Fixed functions

The older graphics APIs provided default state for most of the stages of the
graphics pipeline. In Vulkan you have to be explicit about everything, from
viewport size to color blending function. In this chapter we’ll fill in all of the
structures to configure these fixed-function operations.

Vertex input

The VkPipelineVertexInputStateCreateInfo structure describes the format
of the vertex data that will be passed to the vertex shader. It describes this in
roughly two ways:

o Bindings: spacing between data and whether the data is per-vertex or
per-instance (see instancing)

o Attribute descriptions: type of the attributes passed to the vertex shader,
which binding to load them from and at which offset

Because we're hard coding the vertex data directly in the vertex shader, we’ll fill
in this structure to specify that there is no vertex data to load for now. We’ll
get back to it in the vertex buffer chapter.

87

https://vulkan-tutorial.com/code/shader_modules.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag
https://en.wikipedia.org/wiki/Geometry_instancing

VkPipelineVertexInputStateCreateInfo vertexInputInfo = {};

vertexInputInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;

vertexInputInfo.vertexBindingDescriptionCount = 0;
vertexInputInfo.pVertexBindingDescriptions = nullptr; // Optional
vertexInputInfo.vertexAttributeDescriptionCount = 0;
vertexInputInfo.pVertexAttributeDescriptions = nullptr; // Optional

The pVertexBindingDescriptions and pVertexAttributeDescriptions
members point to an array of structs that describe the aforementioned details
for loading vertex data. Add this structure to the createGraphicsPipeline
function right after the shaderStages array.

Input assembly

The VkPipelineInputAssemblyStateCreatelInfo struct describes two things:
what kind of geometry will be drawn from the vertices and if primitive restart
should be enabled. The former is specified in the topology member and can
have values like:

e VK_PRIMITIVE_TOPOLOGY_POINT_LIST: points from vertices

e VK_PRIMITIVE_TOPOLOGY_LINE_LIST: line from every 2 vertices without
reuse

e VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: every second vertex is used as start
vertex for the next line

e VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: triangle from every 3 vertices
without reuse

e VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: every third vertex is used as
first vertex for the next triangle

Normally, the vertices are loaded from the vertex buffer by index in sequential
order, but with an element buffer you can specify the indices to use yourself.
This allows you to perform optimizations like reusing vertices. If you set the
primitiveRestartEnable member to VK_TRUE, then it’s possible to break up
lines and triangles in the _STRIP topology modes by using a special index of
OxFFFF or OXFFFFFFFF.

We intend to draw triangles throughout this tutorial, so we’ll stick to the following
data for the structure:

VkPipelineInputAssemblyStateCreateInfo inputAssembly = {};

inputAssembly.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;

inputAssembly.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
inputAssembly.primitiveRestartEnable = VK_FALSE;

88

Viewports and scissors

A viewport basically describes the region of the framebuffer that the output will
be rendered to. This will almost always be (0, 0) to (width, height) and in
this tutorial that will also be the case.

VkViewport viewport = {};

viewport.x = 0.0f;

viewport.y = 0.0f;

viewport.width = (float) swapChainExtent.width;
viewport.height = (float) swapChainExtent.height;
viewport.minDepth = 0.0f;

viewport.maxDepth = 1.0f;

Remember that the size of the swap chain and its images may differ from the
WIDTH and HEIGHT of the window. The swap chain images will be used as
framebuffers later on, so we should stick to their size.

The minDepth and maxDepth values specify the range of depth values to use
for the framebuffer. These values must be within the [0.0f, 1.0f] range, but
minDepth may be higher than maxDepth. If you aren’t doing anything special,
then you should stick to the standard values of 0.0f and 1.0f.

While viewports define the transformation from the image to the framebuffer,
scissor rectangles define in which regions pixels will actually be stored. Any
pixels outside the scissor rectangles will be discarded by the rasterizer. They
function like a filter rather than a transformation. The difference is illustrated
below. Note that the left scissor rectangle is just one of the many possibilities
that would result in that image, as long as it’s larger than the viewport.

— =

Viewport Scissor Viewport Scissor
rectangle rectangle

Figure 28:

89

In this tutorial we simply want to draw to the entire framebuffer, so we’ll specify
a scissor rectangle that covers it entirely:

VkRect2D scissor = {};
scissor.offset = {0, 0};
scissor.extent = swapChainExtent;

Now this viewport and scissor rectangle need to be combined into a viewport
state using the VkPipelineViewportStateCreateInfo struct. It is possible to
use multiple viewports and scissor rectangles on some graphics cards, so its
members reference an array of them. Using multiple requires enabling a GPU
feature (see logical device creation).

VkPipelineViewportStateCreateInfo viewportState = {7};

viewportState.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
viewportState.viewportCount = 1;

viewportState.pViewports = &viewport;

viewportState.scissorCount = 1;

viewportState.pScissors = &scissor;

Rasterizer

The rasterizer takes the geometry that is shaped by the vertices from the
vertex shader and turns it into fragments to be colored by the fragment
shader. It also performs depth testing, face culling and the scissor test,
and it can be configured to output fragments that fill entire polygons
or just the edges (wireframe rendering). All this is configured using the
VkPipelineRasterizationStateCreateInfo structure.

VkPipelineRasterizationStateCreateInfo rasterizer = {};
rasterizer.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rasterizer.depthClampEnable = VK_FALSE;

If depthClampEnable is set to VK_TRUE, then fragments that are beyond the
near and far planes are clamped to them as opposed to discarding them. This is

useful in some special cases like shadow maps. Using this requires enabling a
GPU feature.

rasterizer.rasterizerDiscardEnable = VK_FALSE;

If rasterizerDiscardEnable is set to VK_TRUE, then geometry never passes
through the rasterizer stage. This basically disables any output to the frame-
buffer.

rasterizer.polygonMode = VK_POLYGON_MODE_FILL;

The polygonMode determines how fragments are generated for geometry. The
following modes are available:

e VK_POLYGON_MODE_FILL: fill the area of the polygon with fragments

90

https://en.wikipedia.org/wiki/Z-buffering
https://en.wikipedia.org/wiki/Back-face_culling

e VK_POLYGON_MODE_LINE: polygon edges are drawn as lines
e VK_POLYGON_MODE_POINT: polygon vertices are drawn as points

Using any mode other than fill requires enabling a GPU feature.
rasterizer.lineWidth = 1.0f;

The lineWidth member is straightforward, it describes the thickness of lines
in terms of number of fragments. The maximum line width that is supported
depends on the hardware and any line thicker than 1.0f requires you to enable
the wideLines GPU feature.

rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_CLOCKWISE;

The cullMode variable determines the type of face culling to use. You can
disable culling, cull the front faces, cull the back faces or both. The frontFace
variable specifies the vertex order for faces to be considered front-facing and can
be clockwise or counterclockwise.

rasterizer.depthBiasEnable = VK_FALSE;
rasterizer.depthBiasConstantFactor = 0.0f; // OUptional
rasterizer.depthBiasClamp = 0.0f; // Optional
rasterizer.depthBiasSlopeFactor = 0.0f; // Optional

The rasterizer can alter the depth values by adding a constant value or biasing
them based on a fragment’s slope. This is sometimes used for shadow mapping,
but we won’t be using it. Just set depthBiasEnable to VK_FALSE.

Multisampling

The VkPipelineMultisampleStateCreateInfo struct configures multisampling,
which is one of the ways to perform anti-aliasing. It works by combining the
fragment shader results of multiple polygons that rasterize to the same pixel.
This mainly occurs along edges, which is also where the most noticeable aliasing
artifacts occur. Because it doesn’t need to run the fragment shader multiple
times if only one polygon maps to a pixel, it is significantly less expensive
than simply rendering to a higher resolution and then downscaling. Enabling it
requires enabling a GPU feature.

VkPipelineMultisampleStateCreateInfo multisampling = {};

multisampling.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
multisampling.sampleShadingEnable = VK_FALSE;
multisampling.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
multisampling.minSampleShading = 1.0f; // OUptional

multisampling.pSampleMask = nullptr; /// Optional
multisampling.alphaToCoverageEnable = VK_FALSE; // OUptional
multisampling.alphaToOneEnable = VK_FALSE; // Optional

91

https://en.wikipedia.org/wiki/Multisample_anti-aliasing

In this tutorial we’ll not be using multisampling, but feel free to experiment
with it. See the specification for the meaning of each parameter.

Depth and stencil testing

If you are using a depth and/or stencil buffer, then you also need to configure
the depth and stencil tests using VkPipelineDepthStencilStateCreateInfo.
We don’t have one right now, so we can simply pass a nullptr instead of a
pointer to such a struct. We’ll get back to it in the depth buffering chapter.

Color blending

After a fragment shader has returned a color, it needs to be combined with the
color that is already in the framebuffer. This transformation is known as color
blending and there are two ways to do it:

e Mix the old and new value to produce a final color
e Combine the old and new value using a bitwise operation

There are two types of structs to configure color blending. The first struct,
VkPipelineColorBlendAttachmentState contains the configuration per at-
tached framebuffer and the second struct, VkPipelineColorBlendStateCreateInfo
contains the global color blending settings. In our case we only have one
framebuffer:

VkPipelineColorBlendAttachmentState colorBlendAttachment = {};
colorBlendAttachment.colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT |
colorBlendAttachment.blendEnable = VK_FALSE;

colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ZERO; // Uptional
colorBlendAttachment.colorBlendOp = VK_BLEND_OP_ADD; // Optional
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE; // Optional
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO; // Optional
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD; // Optional

This per-framebuffer struct allows you to configure the first way of color blending.
The operations that will be performed are best demonstrated using the following
pseudocode:

if (blendEnable) {
finalColor.rgb = (srcColorBlendFactor * newColor.rgb) <colorBlendOp> (dstColorBlendFactc
finalColor.a = (srcAlphaBlendFactor * newColor.a) <alphaBlendOp> (dstAlphaBlendFactor *
} else {
finalColor = newColor;

}

92

finalColor = finalColor & colorWriteMask;

If blendEnable is set to VK_FALSE, then the new color from the fragment
shader is passed through unmodified. Otherwise, the two mixing operations
are performed to compute a new color. The resulting color is AND’d with the
colorWriteMask to determine which channels are actually passed through.

The most common way to use color blending is to implement alpha blending,
where we want the new color to be blended with the old color based on its
opacity. The finalColor should then be computed as follows:

finalColor.rgb = newAlpha * newColor + (1 - newAlpha) * oldColor;
finalColor.a = newAlpha.a;

This can be accomplished with the following parameters:

colorBlendAttachment.blendEnable = VK_TRUE;

colorBlendAttachment.srcColorBlendFactor = VK_BLEND_FACTOR_SRC_ALPHA;
colorBlendAttachment.dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA;

colorBlendAttachment.colorBlendOp = VK_BLEND_QOP_ADD;
colorBlendAttachment.srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE;
colorBlendAttachment.dstAlphaBlendFactor = VK_BLEND_FACTOR_ZERO;
colorBlendAttachment.alphaBlendOp = VK_BLEND_OP_ADD;

You can find all of the possible operations in the VkBlendFactor and VkBlendOp
enumerations in the specification.

The second structure references the array of structures for all of the framebuffers
and allows you to set blend constants that you can use as blend factors in the
aforementioned calculations.

VkPipelineColorBlendStateCreateInfo colorBlending = {};

colorBlending.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;

colorBlending.logicOpEnable = VK_FALSE;
colorBlending.logicOp = VK_LOGIC_OP_COPY; // Uptional
colorBlending.attachmentCount = 1;
colorBlending.pAttachments = &colorBlendAttachment;
colorBlending.blendConstants[0] = 0.0f; // Optional
colorBlending.blendConstants[1] = 0.0f; // Optional
colorBlending.blendConstants[2] 0.0f; // Optional
colorBlending.blendConstants[3] = 0.0f; // Optional

If you want to use the second method of blending (bitwise combination), then
you should set logicOpEnable to VK_TRUE. The bitwise operation can then be
specified in the logicOp field. Note that this will automatically disable the
first method, as if you had set blendEnable to VK_FALSE for every attached
framebuffer! The colorWriteMask will also be used in this mode to determine
which channels in the framebuffer will actually be affected. It is also possible to

93

disable both modes, as we've done here, in which case the fragment colors will
be written to the framebuffer unmodified.

Dynamic state

A limited amount of the state that we’ve specified in the previous structs can
actually be changed without recreating the pipeline. Examples are the size of
the viewport, line width and blend constants. If you want to do that, then you’ll
have to fill in a VkPipelineDynamicStateCreateInfo structure like this:

VkDynamicState dynamicStates[] = {
VK_DYNAMIC_STATE_VIEWPORT,
VK_DYNAMIC_STATE_LINE_WIDTH

s

VkPipelineDynamicStateCreateInfo dynamicState = {};

dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.dynamicStateCount = 2;

dynamicState.pDynamicStates = dynamicStates;

This will cause the configuration of these values to be ignored and you will be
required to specify the data at drawing time. We’ll get back to this in a future
chapter. This struct can be substituted by a nullptr later on if you don’t have
any dynamic state.

Pipeline layout

You can use uniform values in shaders, which are globals similar to dynamic
state variables that can be changed at drawing time to alter the behavior of your
shaders without having to recreate them. They are commonly used to pass the
transformation matrix to the vertex shader, or to create texture samplers in the
fragment shader.

These uniform values need to be specified during pipeline creation by creating a
VkPipelineLayout object. Even though we won’t be using them until a future
chapter, we are still required to create an empty pipeline layout.

Create a class member to hold this object, because we’ll refer to it from other
functions at a later point in time:

VDeleter<VkPipelineLayout> pipelineLayout{device, vkDestroyPipelineLayout};
And then create the object in the createGraphicsPipeline function:

VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
pipelinelayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelinelayoutInfo.setLayoutCount = 0; // Optional

94

pipelinelayoutInfo.pSetlLayouts = nullptr; // Optional
pipelinelLayoutInfo.pushConstantRangeCount = 0; // OUptional
pipelineLayoutInfo.pPushConstantRanges = 0; // OUptional

if (vkCreatePipelineLayout(device, &pipelinelLayoutInfo, nullptr,
pipelinelLayout.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create pipeline layout!");

3

The structure also specifies push constants, which are another way of passing
dynamic values to shaders that we’ll get into later.

Conclusion

That’s it for all of the fixed-function state! It’s a lot of work to set all of this up
from scratch, but the advantage is that we’re now nearly fully aware of everything
that is going on in the graphics pipeline! This reduces the chance of running
into unexpected behavior because the default state of certain components is not
what you expect.

There is however one more object to create before we can finally create the
graphics pipeline and that is a render pass.

C++ code / Vertex shader / Fragment shader

Render passes

Setup

Before we can finish creating the pipeline, we need to tell Vulkan about the
framebuffer attachments that will be used while rendering. We need to specify
how many color and depth buffers there will be, how many samples to use
for each of them and how their contents should be handled throughout the
rendering operations. All of this information is wrapped in a render pass object,
for which we’ll create a new createRenderPass function. Call this function
from initVulkan before createGraphicsPipeline.

void initVulkan() {

createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain() ;
createImageViews();

95

https://vulkan-tutorial.com/code/fixed_functions.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

createRenderPass();
createGraphicsPipeline();

void createRenderPass() {

3

Attachment description

In our case we’ll have just a single color buffer attachment represented by one of
the images from the swap chain.

void createRenderPass() {
VkAttachmentDescription colorAttachment = {};
colorAttachment.format = swapChainImageFormat;
colorAttachment.samples = VK_SAMPLE_COUNT_1_BIT;
}

The format of the color attachment should match the one of the swap chain
images and we’re not doing anything with multisampling, so we stick to 1 sample.

colorAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
colorAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;

The 1loadOp and storeOp determine what to do with the data in the attachment
before rendering and after rendering. We have the following choices for 1oadOp:

e VK_ATTACHMENT_LOAD_OP_LOAD: Preserve the existing contents of the at-
tachment

e VK_ATTACHMENT_LOAD_OP_CLEAR: Clear the values to a constant at the
start

e VK_ATTACHMENT_LOAD_OP_DONT_CARE: Existing contents are undefined; we
don’t care about them

In our case we’re going to use the clear operation to clear the framebuffer to black
before drawing a new frame. There are only two possibilities for the store0Op:

e VK_ATTACHMENT_STORE_OP_STORE: Rendered contents will be stored in
memory and can be read later

e VK_ATTACHMENT_STORE_OP_DONT_CARE: Contents of the framebuffer will
be undefined after the rendering operation

We're interested in seeing the rendered triangle on the screen, so we're going
with the store operation here.

96

colorAttachment.stencillLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
colorAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;

The loadOp and storeOp apply to color and depth data, and stencilloadOp /
stencilStoreOp apply to stencil data. Our application won’t do anything with
the stencil buffer, so the results of loading and storing are irrelevant.

colorAttachment.initiallLayout = VK_IMAGE_LAYOUT_UNDEFINED;
colorAttachment.finallLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;

Textures and framebuffers in Vulkan are represented by VkImage objects with
a certain pixel format, however the layout of the pixels in memory can change
based on what you’re trying to do with an image.

Some of the most common layouts are:

e VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: Images used as color at-
tachment

e VK_IMAGE_LAYQUT_PRESENT_SRC_KHR: Images to be presented in the swap
chain

e VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: Images to be used as destina-
tion for a memory copy operation

We’ll discuss this topic in more depth in the texturing chapter, but what’s
important to know right now is that images need to be transitioned to specific
layouts that are suitable for the operation that they’re going to be involved in
next.

The initialLayout specifies which layout the image will have before the render
pass begins. The finallLayout specifies the layout to automatically transi-
tion to when the render pass finishes. Using VK_IMAGE_LAYOUT_UNDEFINED for
initialLayout means that we don’t care what previous layout the image was
in. The caveat of this special value is that the contents of the image are not
guaranteed to be preserved, but that doesn’t matter since we’re going to clear it
anyway. We want the image to be ready for presentation using the swap chain
after rendering, which is why we use VK_IMAGE_LAYOUT_PRESENT_SRC_KHR as
finalLayout.

Subpasses and attachment references

A single render pass can consist of multiple subpasses. Subpasses are subsequent
rendering operations that depend on the contents of framebuffers in previous
passes, for example a sequence of post-processing effects that are applied one
after another. If you group these rendering operations into one render pass, then
Vulkan is able to reorder the operations and conserve memory bandwidth for
possibly better performance. For our very first triangle, however, we’ll stick to a
single subpass.

97

Every subpass references one or more of the attachments that we’ve described
using the structure in the previous sections. These references are themselves
VkAttachmentReference structs that look like this:

VkAttachmentReference colorAttachmentRef = {};
colorAttachmentRef.attachment = 0;
colorAttachmentRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;

The attachment parameter specifies which attachment to reference by its
index in the attachment descriptions array. Owur array consists of a single
VkAttachmentDescription, so its index is 0. The layout specifies which layout
we would like the attachment to have during a subpass that uses this reference.
Vulkan will automatically transition the attachment to this layout when the
subpass is started. We intend to use the attachment to function as a color buffer
and the VK_IMAGE_LAYOUT_COLOR_ATTACHMENT _OPTIMAL layout will give us the
best performance, as its name implies.

The subpass is described using a VkSubpassDescription structure:

VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;

Vulkan may also support compute subpasses in the future, so we have to be
explicit about this being a graphics subpass. Next, we specify the reference to
the color attachment:

subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &colorAttachmentRef;

The index of the attachment in this array is directly referenced from the fragment
shader with the layout(location = 0) out vec4 outColor directive!

The following other types of attachments can be referenced by a subpass:

e pInputAttachments: Attachments that are read from a shader

e pResolveAttachments: Attachments used for multisampling color attach-
ments

e pDepthStencilAttachment: Attachments for depth and stencil data

e pPreserveAttachments: Attachments that are not used by this subpass,
but for which the data must be preserved

Render pass

Now that the attachment and a basic subpass referencing it have been described,
we can create the render pass itself. Create a new class member variable to hold
the VkRenderPass object right above the pipelineLayout variable:

VDeleter<VkRenderPass> renderPass{device, kaestroyRenderPass};

98

The render pass object can then be created by filling in the VkRenderPassCreateInfo
structure with an array of attachments and subpasses. The VkAttachmentReference
objects reference attachments using the indices of this array.

VkRenderPassCreateInfo renderPassInfo = {};

renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = 1;

renderPassInfo.pAttachments = &colorAttachment;
renderPassInfo.subpassCount = 1;

renderPassInfo.pSubpasses = &subpass;

if (vkCreateRenderPass(device, &renderPassInfo, nullptr, renderPass.replace()) != VK_SUCCESS
throw std::runtime_error("failed to create render pass!");

3

That was a lot of work, but in the next chapter it all comes together to finally
create the graphics pipeline object!

C++ code / Vertex shader / Fragment shader

Graphics pipeline construction

We can now combine all of the structures and objects from the previous chapters
to create the graphics pipeline! Here’s the types of objects we have now, as a
quick recap:

e Shader stages: the shader modules that define the functionality of the
programmable stages of the graphics pipeline

o Fixed-function state: all of the structures that define the fixed-function
stages of the pipeline, like input assembly, rasterizer, viewport and color
blending

e Pipeline layout: the uniform and push values referenced by the shader that
can be updated at draw time

e Render pass: the attachments referenced by the pipeline stages and their
usage

All of these combined fully define the functionality of the graphics pipeline, so
we can now begin filling in the VkGraphicsPipelineCreateInfo structure at
the end of the createGraphicsPipeline function.

VkGraphicsPipelineCreateInfo pipelinelInfo = {};

pipelinelInfo.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipelinelnfo.stageCount = 2;

pipelineInfo.pStages = shaderStages;

We start by referencing the array of VkPipelineShaderStageCreateInfo
structs.

99

https://vulkan-tutorial.com/code/render_passes.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

pipelineInfo.pVertexInputState = &vertexInputInfo;
pipelinelInfo.pInputAssemblyState = &inputAssembly;
pipelinelnfo.pViewportState = &viewportState;
pipelineInfo.pRasterizationState = &rasterizer;
pipelineInfo.pMultisampleState = &multisampling;
pipelinelInfo.pDepthStencilState = nullptr; // Optional
pipelineInfo.pColorBlendState = &colorBlending;
pipelinelInfo.pDynamicState = nullptr; // Optional

Then we reference all of the structures describing the fixed-function stage.
pipelineInfo.layout = pipelinelayout;

After that comes the pipeline layout, which is a Vulkan handle rather than a
struct pointer.

pipelineInfo.renderPass = renderPass;
pipelinelInfo.subpass = O;

And finally we have the reference to the render pass and the index of the sub
pass where this graphics pipeline will be used.

pipelinelInfo.basePipelineHandle = VK_NULL_HANDLE; // Optional
pipelinelnfo.basePipelineIndex = -1; // Optional

There are actually two more parameters: basePipelineHandle and
basePipelineIndex. Vulkan allows you to create a new graphics pipeline by
deriving from an existing pipeline. The idea of pipeline derivatives is that it is
less expensive to set up pipelines when they have much functionality in common
with an existing pipeline and switching between pipelines from the same parent
can also be done quicker. You can either specify the handle of an existing
pipeline with basePipelineHandle or reference another pipeline that is about
to be created by index with basePipelineIndex. Right now there is only a
single pipeline, so we’ll simply specify a null handle and an invalid index. These
values are only used if the VK_PIPELINE_CREATE_DERIVATIVE_BIT flag is also
specified in the flags field of VkGraphicsPipelineCreateInfo.

Now prepare for the final step by creating a class member to hold the VkPipeline
object:

VDeleter<VkPipeline> graphicsPipeline{device, vkDestroyPipeline};
And finally create the graphics pipeline:

if (vkCreateGraphicsPipelines(device, VK_NULL_HANDLE, 1, &pipelinelnfo, nullptr, graphicsPij
throw std::runtime_error("failed to create graphics pipeline!");

}

The vkCreateGraphicsPipelines function actually has more parameters than
the usual object creation functions in Vulkan. It is designed to take multi-
ple VkGraphicsPipelineCreateInfo objects and create multiple VkPipeline
objects in a single call.

100

The second parameter, for which we’ve passed the VK_NULL_HANDLE argument,
references an optional VkPipelineCache object. A pipeline cache can be used
to store and reuse data relevant to pipeline creation across multiple calls to
vkCreateGraphicsPipelines and even across program executions if the cache
is stored to a file. This makes it possible to significantly speed up pipeline
creation at a later time. We’ll get into this in the pipeline cache chapter.

Now run your program to confirm that all this hard work has resulted in
a successful pipeline creation! We are already getting quite close to seeing
something pop up on the screen. In the next couple of chapters we’ll set up
the actual framebuffers from the swap chain images and prepare the drawing
commands.

C++ code / Vertex shader / Fragment shader

Framebuffers

We’ve talked a lot about framebuffers in the past few chapters and we’ve set up
the render pass to expect a single framebuffer with the same format as the swap
chain images, but we haven’t actually created any yet.

The attachments specified during render pass creation are bound by wrapping
them into a VkFramebuffer object. A framebuffer object references all of the
VkImageView objects that represent the attachments. In our case that will be
only a single one: the color attachment. However, the image that we have to use
as attachment depends on which image the swap chain returns when we retrieve
one for presentation. That means that we have to create a framebuffer for all of
the images in the swap chain and use the one that corresponds to the retrieved
image at drawing time.

To that end, create another std: :vector class member to hold the framebuffers:
std::vector<VDeleter<VkFramebuffer>> swapChainFramebuffers;

We'll create the objects for this array in a new function createFramebuffers
that is called from initVulkan right after creating the graphics pipeline:

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice() ;
createLogicalDevice() ;
createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();

101

https://vulkan-tutorial.com/code/graphics_pipeline_complete.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

createFramebuffers();

void createFramebuffers() {

3

Start by resizing the container to hold all of the framebuffers:

void createFramebuffers() {

swapChainFramebuffers.resize(swapChainImageViews.size(), VDeleter<VkFramebuffer>{device

}
We’ll then iterate through the image views and create framebuffers from them:

for (size_t i = 0; i < swapChainImageViews.size(); i++) {
VkImageView attachments[] = {
swapChainImageViews [i]

};

VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = renderPass;
framebufferInfo.attachmentCount = 1;

framebufferInfo.pAttachments = attachments;

framebufferInfo.width = swapChainExtent.width;
framebufferInfo.height = swapChainExtent.height;
framebufferInfo.layers = 1;

if (vkCreateFramebuffer(device, &framebufferInfo, nullptr, swapChainFramebuffers[i].rep:

throw std::runtime_error("failed to create framebuffer!");
}
}

As you can see, creation of framebuffers is quite straightforward. We first need
to specify with which renderPass the framebuffer needs to be compatible. You
can only use a framebuffer with the render passes that it is compatible with,
which roughly means that they use the same number and type of attachments.

The attachmentCount and pAttachments parameters specify the VkImageView
objects that should be bound to the respective attachment descriptions in the
render pass pAttachment array.

The width and height parameters are self-explanatory and layers refers to the
number of layers in image arrays. Our swap chain images are single images, so
the number of layers is 1.

We’ve now reached the milestone where we have all of the objects that are

102

required for rendering. In the next chapter we’re going to write the first actual
drawing commands.

C++ code / Vertex shader / Fragment shader

Command buffers

Commands in Vulkan, like drawing operations and memory transfers, are not
executed directly using function calls. You have to record all of the operations
you want to perform in command buffer objects. The advantage of this is that
all of the hard work of setting up the drawing commands can be done in advance
and in multiple threads. After that, you just have to tell Vulkan to execute the
commands in the main loop.

Command pools

We have to create a command pool before we can create command buffers.
Command pools manage the memory that is used to store the buffers and
command buffers are allocated from them. Add a new class member to store a
VkCommandPool:

VDeleter<VkCommandPool> commandPool{device, vkDestroyCommandPool};

Then create a new function createCommandPool and call it from initVulkan
after the framebuffers were created.

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandPool () ;

void createCommandPool() {

}

103

https://vulkan-tutorial.com/code/framebuffers.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

Command pool creation only takes two parameters:

QueueFamilyIndices queueFamilyIndices = findQueueFamilies(physicalDevice);

VkCommandPoolCreateInfo poolInfo = {};

poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
poollInfo.flags = 0; // OUptional

Command buffers are executed by submitting them on one of the device queues,
like the graphics and presentation queues we retrieved. Each command pool
can only allocate command buffers that are submitted on a single type of queue.
We’re going to record commands for drawing, which is why we’ve chosen the
graphics queue family.

There are two possible flags for command pools:

e VK_COMMAND_POOL_CREATE_TRANSIENT_BIT: Hint that command buffers
are rerecorded with new commands very often (may change memory allo-
cation behavior)

« VK_COMMAND_ POOL_CREATE_RESET COMMAND BUFFER_BIT: Allow command
buffers to be rerecorded individually, without this flag they all have to be
reset together

We will only record the command buffers at the beginning of the program and
then execute them many times in the main loop, so we’re not going to use either
of these flags.

if (vkCreateCommandPool(device, &poollInfo, nullptr, commandPool.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create command pool!");

}

Finish creating the command pool using the vkCreateCommandPool function. It
doesn’t have any special parameters.

Command buffer allocation

We can now start allocating command buffers and recording drawing commands
in them. Because one of the drawing commands involves binding the right
VkFramebuffer, we’ll actually have to record a command buffer for every image
in the swap chain once again. To that end, create a list of VkCommandBuffer
objects as class member. Command buffers will be automatically freed when
their command pool is destroyed, so we don’t need a VDeleter.

std: :vector<VkCommandBuffer> commandBuffers;

We’ll now start working on a createCommandBuffers function that allocates
and records the commands for each swap chain image.

104

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandPool () ;
createCommandBuffers() ;

void createCommandBuffers() {
commandBuffers.resize(swapChainFramebuffers.size());

}

Cleaning up command buffers involves a slightly different function than other
objects. The vkFreeCommandBuffers function takes the command pool and an
array of command buffers as parameters.

Command buffers are allocated with the vkAllocateCommandBuffers function,
which takes a VkCommandBufferAllocateInfo struct as parameter that specifies
the command pool and number of buffers to allocate:

VkCommandBufferAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.commandPool = commandPool;

allocInfo.level = VK_COMMAND_ BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = (uint32_t) commandBuffers.size();

if (vkAllocateCommandBuffers(device, &allocInfo, commandBuffers.data()) !'= VK_SUCCESS)
throw std::runtime_error("failed to allocate command buffers!");

}

The level parameter specifies if the allocated command buffers are primary or
secondary command buffers.

e VK_COMMAND_BUFFER_LEVEL_PRIMARY: Can be submitted to a queue for
execution, but cannot be called from other command buffers.

e VK_COMMAND_BUFFER_LEVEL_SECONDARY: Cannot be submitted directly,
but can be called from primary command buffers.

We won’t make use of the secondary command buffer functionality here, but
you can imagine that it’s helpful to reuse common operations from primary

105

command buffers.

Starting command buffer recording

We begin recording a command buffer by calling vkBeginCommandBuffer with
a small VkCommandBufferBeginInfo structure as argument that specifies some
details about the usage of this specific command buffer.

for (size_t i = 0; i < commandBuffers.size(); i++) {
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS USE_BIT;
beginInfo.pInheritanceInfo = nullptr; // Optional

vkBeginCommandBuffer (commandBuffers[i], &beginInfo);

3

The flags parameter specifies how we’re going to use the command buffer. The
following values are available:

e VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT: The command buffer
will be rerecorded right after executing it once.

o VK_COMMAND BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT: This is a sec-
ondary command buffer that will be entirely within a single render pass.

e VK_COMMAND_BUFFER_USAGE_SIMULTANEQUS_USE_BIT: The command
buffer can be resubmitted while it is also already pending execution.

We have used the last flag because we may already be scheduling the drawing
commands for the next frame while the last frame is not finished yet. The
pInheritanceInfo parameter is only relevant for secondary command buffers.
It specifies which state to inherit from the calling primary command buffers.

If the command buffer was already recorded once, then a call to
vkBeginCommandBuffer will implicitly reset it. It’s not possible to ap-
pend commands to a buffer at a later time.

Starting a render pass

Drawing starts by beginning the render pass with vkCmdBeginRenderPass. The
render pass is configured using some parameters in a VkRenderPassBeginInfo
struct.

VkRenderPassBeginInfo renderPassInfo = {};

renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
renderPassInfo.renderPass = renderPass;
renderPassInfo.framebuffer = swapChainFramebuffers[i];

106

The first parameters are the render pass itself and the attachments to bind.
We created a framebuffer for each swap chain image that specifies it as color
attachment.

renderPassInfo.renderArea.offset = {0, 0};
renderPassInfo.renderArea.extent = swapChainExtent;

The next two parameters define the size of the render area. The render area
defines where shader loads and stores will take place. The pixels outside this
region will have undefined values. It should match the size of the attachments
for best performance.

VkClearValue clearColor = {0.0f, 0.0f, 0.0f, 1.0f};
renderPassInfo.clearValueCount = 1;
renderPassInfo.pClearValues = &clearColor;

The last two parameters define the clear values to use for VK_ATTACHMENT _LOAD_OP_CLEAR,
which we used as load operation for the color attachment. I've defined the clear
color to simply be black with 100% opacity.

vkCmdBeginRenderPass (commandBuffers[i], &renderPassInfo, VK_SUBPASS_CONTENTS_INLINE);

The render pass can now begin. All of the functions that record commands can
be recognized by their vkCmd prefix. They all return void, so there will be no
error handling until we’ve finished recording.

The first parameter for every command is always the command buffer to record
the command to. The second parameter specifies the details of the render pass
we’ve just provided. The final parameter controls how the drawing commands
within the render pass will be provided. It can have one of two values:

e VK_SUBPASS_CONTENTS_INLINE: The render pass commands will be em-
bedded in the primary command buffer itself and no secondary command
buffers will be executed.

e VK_SUBPASS_CONTENTS_SECONDARY_COMMAND_BUFFERS: The render pass
commands will be executed from secondary command buffers.

We will not be using secondary command buffers, so we’ll go with the first option.

Basic drawing commands

We can now bind the graphics pipeline:
vkCmdBindPipeline (commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

The second parameter specifies if the pipeline object is a graphics or compute
pipeline. We’ve now told Vulkan which operations to execute in the graphics
pipeline and which attachment to use in the fragment shader, so all that remains
is telling it to draw the triangle:

vkCmdDraw (commandBuffers([i]l, 3, 1, 0, 0);

107

The actual vkCmdDraw function is a bit anticlimactic, but it’s so simple because
of all the information we specified in advance. It has the following parameters,
aside from the command buffer:

e vertexCount: Even though we don’t have a vertex buffer, we technically
still have 3 vertices to draw.

o instanceCount: Used for instanced rendering, use 1 if you're not doing
that.

o firstVertex: Used as an offset into the vertex buffer, defines the lowest
value of gl_VertexIndex.

e firstInstance: Used as an offset for instanced rendering, defines the
lowest value of gl_InstanceIndex.

Finishing up

The render pass can now be ended:
vkCmdEndRenderPass (commandBuffers([i]) ;
And we’ve finished recording the command buffer:

if (vkEndCommandBuffer (commandBuffers[i]) '= VK_SUCCESS) {
throw std::runtime_error("failed to record command buffer!");

}

In the next chapter we’ll write the code for the main loop, which will acquire an
image from the swap chain, execute the right command buffer and return the
finished image to the swap chain.

C++ code / Vertex shader / Fragment shader

Rendering and presentation

Setup

This is the chapter where everything is going to come together. We’re going to
write the drawFrame function that will be called from the main loop to put the
triangle on the screen. Create the function and call it from mainLoop:

void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
drawFrame() ;

}

glfwDestroyWindow (window) ;

108

https://vulkan-tutorial.com/code/command_buffers.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

void drawFrame() {

}

Synchronization

The drawFrame function will perform the following operations:

e Acquire an image from the swap chain

e Execute the command buffer with that image as attachment in the frame-
buffer

e Return the image to the swap chain for presentation

Each of these events is set in motion using a single function call, but they are
executed asynchronously. The function calls will return before the operations are
actually finished and the order of execution is also undefined. That is unfortunate,
because each of the operations depends on the previous one finishing.

There are two ways of synchronizing swap chain events: fences and semaphores.
They’re both objects that can be used for coordinating operations by having one
operation signal and another operation wait for a fence or semaphore to go from
the unsignaled to signaled state.

The difference is that the state of fences can be accessed from your program
using calls like vkWaitForFences and semaphores cannot be. Fences are mainly
designed to synchronize your application itself with rendering operation, whereas
semaphores are used to synchronize operations within or across command queues.
We want to synchronize the queue operations of draw commands and presentation,
which makes semaphores the best fit.

Semaphores

We’ll need one semaphore to signal that an image has been acquired and is
ready for rendering, and another one to signal that rendering has finished and
presentation can happen. Create two class members to store these semaphore
objects:

VDeleter<VkSemaphore> imageAvailableSemaphore{device, vkDestroySemaphore};
VDeleter<VkSemaphore> renderFinishedSemaphore{device, vkDestroySemaphore};

To create the semaphores, we’ll add the last create function for this part of the
tutorial: createSemaphores:

109

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandPool () ;
createCommandBuffers() ;
createSemaphores() ;

void createSemaphores() {

}

Creating semaphores requires filling in the VkSemaphoreCreateInfo, but in the
current version of the API it doesn’t actually have any required fields besides
sType:

void createSemaphores() {

VkSemaphoreCreateInfo semaphoreInfo = {};

semaphorelInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
¥

Future versions of the Vulkan API or extensions may add functionality for the
flags and pNext parameters like it does for the other structures. Creating the
semaphores follows the familiar pattern with vkCreateSemaphore:

if (vkCreateSemaphore(device, &semaphoreInfo, nullptr, imageAvailableSemaphore.replace()) !-
vkCreateSemaphore (device, &semaphoreInfo, nullptr, renderFinishedSemaphore.replace()) !-

throw std::runtime_error("failed to create semaphores!");

Acquiring an image from the swap chain
As mentioned before, the first thing we need to do in the drawFrame function

is acquiring an image from the swap chain. Recall that the swap chain is an
extension feature, so we must use a function with the vk*KHR naming convention:

110

void drawFrame() {
uint32_t imagelIndex;
vkAcquireNextImageKHR (device, swapChain, std::numeric_limits<uint64_t>::max(), imageAva:

}

The first two parameters of vkAcquireNextImageKHR are the logical device and
the swap chain from which we wish to acquire an image. The third parameter
specifies a timeout in nanoseconds for an image to become available. Using the
maximum value of a 64 bit unsigned integer disables the timeout.

The next two parameters specify synchronization objects that are to be signaled
when the presentation engine is finished using the image. That’s the point in
time where we can start drawing to it. It is possible to specify a semaphore, fence
or both. We’re going to use our imageAvailableSemaphore for that purpose
here.

The last parameter specifies a variable to output the index of the swap chain
image that has become available. The index refers to the VkImage in our
swapChainImages array. We're going to use that index to pick the right command
buffer.

Submitting the command buffer

Queue submission and synchronization is configured through parameters in the
VkSubmitInfo structure.

VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;

VkSemaphore waitSemaphores[] = {imageAvailableSemaphore};

VkPipelineStageFlags waitStages[] = {VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT};
submitInfo.waitSemaphoreCount = 1;

submitInfo.pWaitSemaphores = waitSemaphores;

submitInfo.pWaitDstStageMask = waitStages;

The first three parameters specify which semaphores to wait on before execution
begins and in which stage(s) of the pipeline to wait. We want to wait with
writing colors to the image until it’s available, so we're specifying the stage of
the graphics pipeline that writes to the color attachment. That means that
theoretically the implementation can already start executing our vertex shader
and such while the image is not available yet. Each entry in the waitStages
array corresponds to the semaphore with the same index in pWaitSemaphores.

submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffers[imageIndex];

The next two parameters specify which command buffers to actually submit for
execution. As mentioned earlier, we should submit the command buffer that

111

binds the swap chain image we just acquired as color attachment.

VkSemaphore signalSemaphores[] = {renderFinishedSemaphorel};
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = signalSemaphores;

The signalSemaphoreCount and pSignalSemaphores parameters specify which
semaphores to signal once the command buffer(s) have finished execution. In
our case we're using the renderFinishedSemaphore for that purpose.

if (vkQueueSubmit(graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE) != VK_SUCCESS) {
throw std::runtime_error("failed to submit draw command buffer!");

}

We can now submit the command buffer to the graphics queue using
vkQueueSubmit. The function takes an array of VkSubmitInfo structures as
argument for efficiency when the workload is much larger. The last parameter
references an optional fence that will be signaled when the command buffers
finish execution. We're using semaphores for synchronization, so we’ll just pass
a VK_NULL_HANDLE.

Subpass dependencies

Remember that the subpasses in a render pass automatically take care of image
layout transitions. These transitions are controlled by subpass dependencies,
which specify memory and execution dependencies between subpasses. We have
only a single subpass right now, but the operations right before and right after
this subpass also count as implicit “subpasses”.

There are two built-in dependencies that take care of the transition at
the start of the render pass and at the end of the render pass, but the
former does not occur at the right time. It assumes that the transi-
tion occurs at the start of the pipeline, but we haven’t acquired the
image yet at that point! There are two ways to deal with this problem.
We could change the waitStages for the imageAvailableSemaphore to
VK_PIPELINE_STAGE_TOP_OF_PIPELINE_BIT to ensure that the render passes
don’t begin until the image is available, or we can make the render pass wait for
the VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT stage. I've decided
to go with the second option here, because it’s a good excuse to have a look at
subpass dependencies and how they work.

Subpass dependencies are specified in VkSubpassDependency structs. Go to the
createRenderPass function and add one:

VkSubpassDependency dependency = {};
dependency.srcSubpass = VK_SUBPASS_EXTERNAL;
dependency.dstSubpass = 0;

112

The first two fields specify the indices of the dependency and the dependent
subpass. The special value VK_SUBPASS_EXTERNAL refers to the implicit subpass
before or after the render pass depending on whether it is specified in srcSubpass
or dstSubpass. The index 0 refers to our subpass, which is the first and only
one. The dstSubpass must always be higher than srcSubpass to prevent cycles
in the dependency graph.

dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.srcAccessMask = 0;

The next two fields specify the operations to wait on and the stages in which
these operations occur. We need to wait for the swap chain to finish reading
from the image before we can access it. This can be accomplished by waiting on
the color attachment output stage itself.

dependency.dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
dependency.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT.

The operations that should wait on this are in the color attachment stage and
involve the reading and writing of the color attachment. These settings will
prevent the transition from happening until it’s actually necessary (and allowed):
when we want to start writing colors to it.

renderPassInfo.dependencyCount = 1;
renderPassInfo.pDependencies = &dependency;

The VkRenderPassCreateInfo struct has two fields to specify an array of de-
pendencies.

Presentation

The last step of drawing a frame is submitting the result back to the swap chain
to have it eventually show up on the screen. Presentation is configured through
a VkPresentInfoKHR structure at the end of the drawFrame function.

VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;

presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = signalSemaphores;

The first two parameters specify which semaphores to wait on before presentation
can happen, just like VkSubmitInfo.

VkSwapchainKHR swapChains[] = {swapChain};
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = swapChains;
presentInfo.pImageIndices = &imagelIndex;

113

The next two parameters specify the swap chains to present images to and the
index of the image for each swap chain. This will almost always be a single one.

presentInfo.pResults = nullptr;

There is one last optional parameter called pResults. It allows you to specify an
array of VkResult values to check for every individual swap chain if presentation
was successful. It’s not necessary if you're only using a single swap chain, because
you can simply use the return value of the present function.

vkQueuePresentKHR (presentQueue, &presentInfo);

The vkQueuePresentKHR function submits the request to present an image to
the swap chain. We'll add error handling for both vkAcquireNextImageKHR
and vkQueuePresentKHR in the next chapter, because their failure does not
necessarily mean that the program should terminate, unlike the functions we’ve
seen so far.

If you did everything correctly up to this point, then you should now see
something resembling the following when you run your program:

5 Vulkan - *

Figure 29:

Yay! Unfortunately, you’ll see that when validation layers are enabled, the
program crashes as soon as you close it. The message printed to the terminal

114

from debugCallback tells us why:

BT ChUsers), ‘documentsivisual studic 20154 Projects\Hello Triangle\DebughHello Triangle.exe

validation layer: Cannot delete semaphore 6x18 which is in use.

Figure 30:

Remember that all of the operations in drawFrame are asynchronous. That means
that when we exit the loop in mainLoop, drawing and presentation operations
may still be going on. Cleaning up resources while that is happening is a bad
idea.

To fix that problem, we should wait for the logical device to finish operations
before exiting mainLoop and destroying the window:

void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
drawFrame() ;

}
vkDeviceWaitIdle(device);

glfwDestroyWindow (window) ;
}

You can also wait for operations in a specific command queue to be finished
with vkQueueWaitIdle. These functions can be used as a very rudimentary
way to perform synchronization. You'll see that the program now exits without
problems when closing the window.

Conclusion

About 800 lines of code later, we’ve finally gotten to the stage of seeing something
pop up on the screen! Bootstrapping a Vulkan program is definitely a lot of
work, but the take-away message is that Vulkan gives you an immense amount
of control through its explicitness. I recommend you to take some time now to
reread the code and build a mental model of the purpose of all of the Vulkan
objects in the program and how they relate to each other. We’ll be building on
top of that knowledge to extend the functionality of the program from this point
on.

In the next chapter we’ll deal with one more small thing that is required for a
well-behaved Vulkan program.

115

C++ code / Vertex shader / Fragment shader

Swap chain recreation

Introduction

The application we have now successfully draws a triangle, but there are some
circumstances that it isn’t handling properly yet. It is possible for the window
surface to change such that the swap chain is no longer compatible with it. One
of the reasons that could cause this to happen is the size of the window changing.
We have to catch these events and recreate the swap chain.

Recreating the swap chain

Create a new recreateSwapChain function that calls createSwapChain and all
of the creation functions for the objects that depend on the swap chain or the
window size.

void recreateSwapChain() {
vkDeviceWaitIdle(device);

createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandBuffers() ;

}

We first call vkDeviceWaitIdle, because just like in the last chapter, we shouldn’t
touch resources that may still be in use. Obviously, the first thing we’ll have
to do is recreate the swap chain itself. The image views need to be recreated
because they are based directly on the swap chain images. The render pass
needs to be recreated because it depends on the format of the swap chain images.
Viewport and scissor rectangle size is specified during graphics pipeline creation,
so the pipeline also needs to be rebuilt. It is possible to avoid this by using
dynamic state for the viewports and scissor rectangles. Finally, the framebuffers
and command buffers also directly depend on the swap chain images.

Because of our handy VDeleter construct, most of the functions will work
fine for recreation and will automatically clean up the old objects. However,
the createSwapChain and createCommandBuffers functions still need some
adjustments.

116

https://vulkan-tutorial.com/code/hello_triangle.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

VkSwapchainKHR oldSwapChain = swapChain;
createInfo.oldSwapchain = oldSwapChain;

VkSwapchainKHR newSwapChain;
if (vkCreateSwapchainKHR(device, &createInfo, nullptr, &newSwapChain) != VK_SUCCESS) {
throw std::runtime_error("failed to create swap chain!");

}

swapChain = newSwapChain;

We need to pass the previous swap chain object in the oldSwapchain parameter
of VkSwapchainCreateInfoKHR to indicate that we intend to replace it. The
old swap chain needs to stick around until after the new swap chain has been
created, which means that we can’t directly write the new handle to swapChain.
The VDeleter would clear the old object before vkCreateSwapchainKHR has a
chance to execute. That’s why we use the temporary newSwapChain variable.

swapChain = newSwapChain;

This line will actually destroy the old swap chain and replace the handle with
the handle of the new swap chain.

The problem with createCommandBuffers is that it doesn’t free the old com-
mand buffers. There are two ways to solve this:

e Call createCommandPool as well, which will automatically free the old
command buffers
e Extend createCommandBuffers to free any previous command buffers

As there isn’t really a need to recreate the command pool itself, I've chosen to
go for the second solution in this tutorial.

if (commandBuffers.size() > 0) {
vkFreeCommandBuffers(device, commandPool, commandBuffers.size(), commandBuffers.data()).

}

commandBuffers.resize(swapChainFramebuffers.size());

The createCommandBuffers function now first checks if the commandBuffers
vector already contains previous command buffers, and if so, frees them. That’s
all it takes to recreate the swap chain!

Window resizing

Now we just need to figure out when swap chain recreation is necessary and call
our new recreateSwapChain function. One of the most common conditions is
resizing of the window. Let’s make the window resizable and catch that event.
Change the initWindow function to no longer include the GLFW_RESIZABLE line
or change its argument from GLFW_FALSE to GLFW_TRUE.

117

void initWindow() {
glfwInit();

glfwWindowHint (GLFW_CLIENT_API, GLFW_NO_API);
window = glfwCreateWindow(WIDTH, HEIGHT, "Vulkan", nullptr, nullptr);

glfwSetWindowUserPointer (window, this);
glfwSetWindowSizeCallback(window, HelloTriangleApplication::onWindowResized);

static void onWindowResized(GLFWwindow* window, int width, int height) {
if (width == || height == 0) return;

HelloTriangleApplication* app = reinterpret_cast<HelloTriangleApplication*>(glfwGetWindc
app->recreateSwapChain() ;

3

The glfwSetWindowSizeCallback function can be used to specify a callback
for the window resize event. Unfortunately it only accepts a function
pointer as argument, so we can’t directly use a member function. Luckily
GLFW allows us to store an arbitrary pointer in the window object with
glfwSetWindowUserPointer, so we can specify a static class member and get
the original class instance back with glfwGetWindowUserPointer. We can
then proceed to call recreateSwapChain, but only if the size of the window
is non-zero. This case occurs when the window is minimized and it will cause
swap chain creation to fail.

The chooseSwapExtent function should also be updated to take the current
width and height of the window into account instead of the initial WIDTH and
HEIGHT:

int width, height;
glwaetWindowSize(window, &width, &height);

VkExtent2D actualExtent = {width, height};

Suboptimal or out-of-date swap chain

It is also possible for Vulkan to tell us that the swap chain is no longer compatible
during presentation. The vkAcquireNextImageKHR and vkQueuePresentKHR
functions can return the following special values to indicate this.

e VK_ERROR_OUT_OF_DATE_KHR: The swap chain has become incompatible
with the surface and can no longer be used for rendering.

118

e VK_SUBOPTIMAL_KHR: The swap chain can still be used to successfully
present to the surface, but the surface properties are no longer matched
exactly. For example, the platform may be simply resizing the image to fit
the window now.

VkResult result = vkAcquireNextImageKHR(device, swapChain, std::numeric_limits<uint64_t>::m:

if (result == VK_ERROR_OUT_OF_DATE_KHR) {
recreateSwapChain() ;
return;

} else if (result != VK_SUCCESS && result != VK_SUBOPTIMAL_KHR) {
throw std::runtime_error("failed to acquire swap chain image!");

}

If the swap chain turns out to be out of date when attempting to acquire an image,
then it is no longer possible to present to it. Therefore we should immediately
recreate the swap chain and try again in the next drawFrame call.

You could also decide to do that if the swap chain is suboptimal, but I've chosen
to proceed anyway in that case because we've already acquired an image. Both
VK_SUCCESS and VK_SUBOPTIMAL_KHR are considered “success” return codes.

result = vkQueuePresentKHR(presentQueue, &presentInfo);

if (result == VK_ERROR_OUT_OF_DATE_KHR || result == VK_SUBOPTIMAL_KHR) {
recreateSwapChain() ;

} else if (result != VK_SUCCESS) {
throw std::runtime_error("failed to present swap chain image!");

}

The vkQueuePresentKHR function returns the same values with the same mean-
ing. In this case we will also recreate the swap chain if it is suboptimal, because
we want the best possible result. Try to run it and resize the window to see if
the framebuffer is indeed resized properly with the window.

Congratulations, you’ve now finished your very first well-behaved Vulkan pro-
gram! In the next chapter we're going to get rid of the hardcoded vertices in the
vertex shader and actually use a vertex buffer.

C++ code / Vertex shader / Fragment shader # Vertex input description

Introduction

In the next few chapters, we’re going to replace the hardcoded vertex data in
the vertex shader with a vertex buffer in memory. We’ll start with the easiest
approach of creating a CPU visible buffer and using memcpy to copy the vertex
data into it directly, and after that we’ll see how to use a staging buffer to copy
the vertex data to high performance memory.

119

https://vulkan-tutorial.com/code/swap_chain_recreation.cpp
https://vulkan-tutorial.com/code/shader_base.vert
https://vulkan-tutorial.com/code/shader_base.frag

Vertex shader

First change the vertex shader to no longer include the vertex data in the shader
code itself. The vertex shader takes input from a vertex buffer using the in
keyword.

#version 450

#extension GL_ARB_separate_shader_objects : enable

layout(location = 0) in vec2 inPosition;
layout(location 1) in vec3 inColor;

layout(location = 0) out vec3 fragColor;

out gl_PerVertex {
vec4 gl _Position;

};

void main() {
gl_Position = vec4(inPosition, 0.0, 1.0);
fragColor = inColor;

}

The inPosition and inColor variables are vertex attributes. They're properties
that are specified per-vertex in the vertex buffer, just like we manually specified
a position and color per vertex using the two arrays. Make sure to recompile
the vertex shader!

Vertex data

We’re moving the vertex data from the shader code to an array in the code of
our program. Start by including the GLM library, which provides us with linear
algebra related types like vectors and matrices. We're going to use these types
to specify the position and color vectors.

#include <glm/glm.hpp>

Create a new structure called Vertex with the two attributes that we’re going
to use in the vertex shader inside it:

struct Vertex {
glm: :vec2 pos;
glm: :vec3 color;

};

GLM conveniently provides us with C++ types that exactly match the vector
types used in the shader language.

120

const std::vector<Vertex> vertices = {
{{0.0f, -0.5f}, {1.0f, 0.0f, 0.0f}},
{{0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},
{{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
};

Now use the Vertex structure to specify an array of vertex data. We're using
exactly the same position and color values as before, but now they’re combined
into one array of vertices. This is known as interleaving vertex attributes.

Binding descriptions

The next step is to tell Vulkan how to pass this data format to the vertex shader
once it’s been uploaded into GPU memory. There are two types of structures
needed to convey this information.

The first structure is VkVertexInputBindingDescription and we’ll add a mem-
ber function to the Vertex struct to populate it with the right data.

struct Vertex {
glm: :vec2 pos;
glm: :vec3 color;

static VkVertexInputBindingDescription getBindingDescription()
VkVertexInputBindingDescription bindingDescription = {};

return bindingDescription;

};

A vertex binding describes at which rate to load data from memory throughout
the vertices. It specifies the number of bytes between data entries and whether
to move to the next data entry after each vertex or after each instance.

VkVertexInputBindingDescription bindingDescription = {};
bindingDescription.binding = 0;

bindingDescription.stride = sizeof (Vertex);
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

All of our per-vertex data is packed together in one array, so we're only going
to have one binding. The binding parameter specifies the index of the binding
in the array of bindings. The stride parameter specifies the number of bytes
from one entry to the next, and the inputRate parameter can have one of the
following values:

e VK_VERTEX_INPUT_RATE_VERTEX: Move to the next data entry after each
vertex

121

e VK_VERTEX_INPUT_RATE_INSTANCE: Move to the next data entry after each
instance

We’re not going to use instanced rendering, so we’ll stick to per-vertex data.

Attribute descriptions

The second structure that describes how to handle vertex input is
VkVertexInputAttributeDescription. We're going to add another helper
function to Vertex to fill in these structs.

#include <array>

static std::array<VkVertexInputAttributeDescription, 2> getAttributeDescriptions() {
std: :array<VkVertexInputAttributeDescription, 2> attributeDescriptions = {};

return attributeDescriptions;

}

As the function prototype indicates, there are going to be two of these structures.
An attribute description struct describes how to extract a vertex attribute from
a chunk of vertex data originating from a binding description. We have two
attributes, position and color, so we need two attribute description structs.

attributeDescriptions[0] .binding = 0;
attributeDescriptions[0].location = 0;
attributeDescriptions[0] .format = VK_FORMAT_R32G32_SFLOAT;
attributeDescriptions[0] .offset = offsetof (Vertex, pos);

The binding parameter tells Vulkan from which binding the per-vertex data
comes. The location parameter references the location directive of the input
in the vertex shader. The input in the vertex shader with location 0 is the
position, which has two 32-bit float components.

The format parameter describes the type of data for the attribute. A bit
confusingly, the formats are specified using the same enumeration as color
formats. The following shader types and formats are commonly used together:

o float: VK_FORMAT_R32_SFLOAT

e vec2: VK_FORMAT_R32G32_SFLOAT

e vec3: VK_FORMAT R32G32B32_SFLOAT

o vec4: VK_FORMAT R32G32B32A32_SFLOAT

As you can see, you should use the format where the amount of color channels
matches the number of components in the shader data type. It is allowed to
use more channels than the number of components in the shader, but they will
be silently discarded. If the number of channels is lower than the number of

122

components, then the BGA components will use default values of (0, 0, 1).
The color type (SFLOAT, UINT, SINT) and bit width should also match the type
of the shader input. See the following examples:

e ivec2: VK_FORMAT_R32G32_SINT, a 2-component vector of 32-bit signed
integers

e uvec4d: VK_FORMAT_R32G32B32A32_UINT, a 4-component vector of 32-bit
unsigned integers

e double: VK_FORMAT_R64_SFLOAT, a double-precision (64-bit) float

The format parameter implicitly defines the byte size of attribute data and the
offset parameter specifies the number of bytes since the start of the per-vertex
data to read from. The binding is loading one Vertex at a time and the position
attribute (pos) is at an offset of 0 bytes from the beginning of this struct. This
is automatically calculated using the offsetof macro.

attributeDescriptions[1] .binding = 0;
attributeDescriptions[1].location = 1;
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
attributeDescriptions[1].offset = offsetof (Vertex, color);

The color attribute is described in much the same way.

Pipeline vertex input

We now need to set up the graphics pipeline to accept vertex data in this
format by referencing the structures in createGraphicsPipeline. Find the
vertexInputInfo struct and modify it to reference the two descriptions:

auto bindingDescription = Vertex::getBindingDescription();
auto attributeDescriptions = Vertex::getAttributeDescriptions();

vertexInputInfo.vertexBindingDescriptionCount = 1;
vertexInputInfo.vertexAttributeDescriptionCount = attributeDescriptions.size();
vertexInputInfo.pVertexBindingDescriptions = &bindingDescription;
vertexInputInfo.pVertexAttributeDescriptions = attributeDescriptions.data();

The pipeline is now ready to accept vertex data in the format of the vertices
container and pass it on to our vertex shader. If you run the program now with
validation layers enabled, you’ll see that it complains that there is no vertex
buffer bound to the binding. The next step is to create a vertex buffer and move
the vertex data to it so the GPU is able to access it.

C++ code / Vertex shader / Fragment shader # Vertex buffer creation

123

https://vulkan-tutorial.com/code/vertex_input.cpp
https://vulkan-tutorial.com/code/shader_vertexbuffer.vert
https://vulkan-tutorial.com/code/shader_vertexbuffer.frag

Introduction

Buffers in Vulkan are regions of memory used for storing arbitrary data that can
be read by the graphics card. They can be used to store vertex data, which we’ll
do in this chapter, but they can also be used for many other purposes that we’ll
explore in future chapters. Unlike the Vulkan objects we’ve been dealing with
so far, buffers do not automatically allocate memory for themselves. The work
from the previous chapters has shown that the Vulkan API puts the programmer
in control of almost everything and memory management is one of those things.

Buffer creation

Create a new function createVertexBuffer and call it from initVulkan right
before createCommandBuffers.

void initVulkan() {
createInstance();
setupDebugCallback() ;
createSurface();
pickPhysicalDevice();
createLogicalDevice() ;
createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createFramebuffers();
createCommandPool () ;
createVertexBuffer();
createCommandBuffers();
createSemaphores() ;

void createVertexBuffer() {

3

Creating a buffer requires us to fill a VkBufferCreateInfo structure.

VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof(vertices[0]) * vertices.size();

The first field of the struct is size, which specifies the size of the buffer in bytes.
Calculating the byte size of the vertex data is straightforward with sizeof.

124

bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;

The second field is usage, which indicates for which purposes the data in the
buffer is going to be used. It is possible to specify multiple purposes using a
bitwise or. Our use case will be a vertex buffer, we’ll look at other types of usage
in future chapters.

bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

Just like the images in the swap chain, buffers can also be owned by a specific
queue family or be shared between multiple at the same time. The buffer will
only be used from the graphics queue, so we can stick to exclusive access.

The flags parameter is used to configure sparse buffer memory, which is not
relevant right now. We’ll leave it at the default value of 0.

We can now create the buffer with vkCreateBuffer. Define a class member to
hold the buffer handle and call it vertexBuffer.

VDeleter<VkBuffer> vertexBuffer{device, vkDestroyBuffer};

void createVertexBuffer() {
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = sizeof (vertices[0]) * vertices.size();
bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

if (vkCreateBuffer(device, &bufferInfo, nullptr, vertexBuffer.replace()) != VK_SUCCESS)
throw std::runtime_error("failed to create vertex buffer!");

3

Memory requirements

The buffer has been created, but it doesn’t actually have any memory assigned
to it yet. The first step of allocating memory for the buffer is to query its
memory requirements using the aptly named vkGetBufferMemoryRequirements
function.

VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(device, vertexBuffer, &memRequirements);

The VkMemoryRequirements struct has three fields:

e size: The size of the required amount of memory in bytes, may differ from
bufferInfo.size.

125

e alignment: The offset in bytes where the buffer begins in the allocated
region of memory, depends on bufferInfo.usage and bufferInfo.flags.

o memoryTypeBits: Bit field of the memory types that are suitable for the
buffer.

Graphics cards can offer different types of memory to allocate from. Each type
of memory varies in terms of allowed operations and performance characteristics.
We need to combine the requirements of the buffer and our own application
requirements to find the right type of memory to use. Let’s create a new function
findMemoryType for this purpose.

uint32_t findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {

3

First we need to query info about the available types of memory using
vkGetPhysicalDeviceMemoryProperties.

VkPhysicalDeviceMemoryProperties memProperties;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);

The VkPhysicalDeviceMemoryProperties structure has two arrays
memoryTypes and memoryHeaps. Memory heaps are distinct memory re-
sources like dedicated VRAM and swap space in RAM for when VRAM runs
out. The different types of memory exist within these heaps. Right now we’ll
only concern ourselves with the type of memory and not the heap it comes from,
but you can imagine that this can affect performance.

Let’s first find a memory type that is suitable for the buffer itself:

for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if (typeFilter & (1 << 1)) {
return i;
}
}

throw std::runtime_error("failed to find suitable memory type!");

The typeFilter parameter will be used to specify the bit field of memory types
that are suitable. That means that we can find the index of a suitable memory
type by simply iterating over them and checking if the corresponding bit is set
to 1.

However, we're not just interested in a memory type that is suitable for the
vertex buffer. We also need to be able to write our vertex data to that memory.
The memoryTypes array consists of VkMemoryType structs that specify the heap
and properties of each type of memory. The properties define special features of
the memory, like being able to map it so we can write to it from the CPU. This
property is indicated with VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, but we

126

also need to use the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT property. We’ll
see why when we map the memory.

We can now modify the loop to also check for the support of this property:

for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties:
return i;
}
¥

In the future we may have more than one desirable property, so we should check
if the result of the bitwise AND is not just non-zero, but equal to the desired
properties bit field. If there is a memory type suitable for the buffer that also
has all of the properties we need, then we return its index, otherwise we throw
an exception.

Memory allocation

We now have a way to determine the right memory type, so we can actually
allocate the memory by filling in the VkMemoryAllocateInfo structure.

VkMemoryAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

allocInfo.allocationSize = memRequirements.size;

allocInfo.memoryTypeIndex = findMemoryType (memRequirements.memoryTypeBits, VK_MEMORY_PROPERS

Memory allocation is now as simple as specifying the size and type, both of
which are derived from the memory requirements of the vertex buffer and the
desired property. Create a class member to store the handle to the memory and
allocate it with vkAllocateMemory.

VDeleter<VkBuffer> vertexBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> vertexBufferMemory{device, vkFreeMemory};

if (vkAllocateMemory(device, &allocInfo, nullptr, vertexBufferMemory.replace()) != VK_SUCCES
throw std::runtime_error("failed to allocate vertex buffer memory!");

3

Note that specifying the vertexBuffer and vertexBufferMemory members in
this order will cause the memory to be freed before the buffer is destroyed, but
that’s allowed as long as the buffer is no longer used.

If memory allocation was successful, then we can now associate this memory
with the buffer using vkBindBufferMemory:

vkBindBufferMemory(device, vertexBuffer, vertexBufferMemory, 0);

127

The first two parameters are self-explanatory and the third parameter is the
offset within the region of memory. Since this memory is allocated specifically
for this the vertex buffer, the offset is simply 0. If the offset is non-zero, then it
is required to be divisible by memRequirements.alignment.

Filling the vertex buffer

It is now time to copy the vertex data to the buffer. This is done by mapping
the buffer memory into CPU accessible memory with vkMapMemory.

void* data;
vkMapMemory (device, vertexBufferMemory, O, bufferInfo.size, 0, &data);

This function allows us to access a region of the specified memory resource defined
by an offset and size. The offset and size here are 0 and bufferInfo.size,
respectively. It is also possible to specify the special value VK_WHOLE_SIZE to
map all of the memory. The second to last parameter can be used to specify
flags, but there aren’t any available yet in the current API. It must be set to the
value 0. The last parameter specifies the output for the pointer to the mapped
memory.

void* data;

vkMapMemory(device, vertexBufferMemory, O, bufferInfo.size, 0, &data);
memcpy (data, vertices.data(), (size_t) bufferInfo.size);

vkUnmapMemory(device, vertexBufferMemory);

You can now simply memcpy the vertex data to the mapped memory and unmap
it again using vkUnmapMemory. Unfortunately the driver may not immediately
copy the data into the buffer memory, for example because of caching. It is also
possible that writes to the buffer are not visible in the mapped memory yet.
There are two ways to deal with that problem:

e Use a memory heap that is host coherent, indicated with VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
e Call vkFlushMappedMemoryRanges to after writing to the mapped mem-

ory, and call vkInvalidateMappedMemoryRanges before reading from the

mapped memory

We went for the first approach, which ensures that the mapped memory always
matches the contents of the allocated memory. Do keep in mind that this may
lead to slightly worse performance than explicit flushing, but we’ll see why that
doesn’t matter in the next chapter.

Binding the vertex buffer

All that remains now is binding the vertex buffer during rendering operations.
We're going to extend the createCommandBuffers function to do that.

128

https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O

vkCmdBindPipeline (commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, graphicsPipeline);

VkBuffer vertexBuffers[] = {vertexBuffer};
VkDeviceSize offsets[] = {0};
vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

vkCmdDraw (commandBuffers[i], vertices.size(), 1, 0, 0);

The vkCmdBindVertexBuffers function is used to bind vertex buffers to bindings,
like the one we set up in the previous chapter. The first two parameters, besides
the command buffer, specify the offset and number of bindings we’re going to
specify vertex buffers for. The last two parameters specify the array of vertex
buffers to bind and the byte offsets to start reading vertex data from. You should
also change the call to vkCmdDraw to pass the number of vertices in the buffer
as opposed to the hardcoded number 3.

Now run the program and you should see the familiar triangle again:

1 Vulkan — >

Figure 31:

Try changing the color of the top vertex to white by modifying the vertices
array:

const std::vector<Vertex> vertices = {

129

{{0.0f, -0.5f}, {1.0f, 1.0f, 1.0f}},

{{0.5f, 0.5f}, {0.0f, 1.0f, 0.0f}},

{{-0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}}
};

Run the program again and you should see the following;:

B Vulkan - O *

Figure 32:

In the next chapter we’ll look at a different way to copy vertex data to a vertex
buffer that results in better performance, but takes some more work.

C++ code / Vertex shader / Fragment shader # Staging buffer

Introduction

The vertex buffer we have right now works correctly, but the memory type that
allows us to access it from the CPU may not be the most optimal memory type
for the graphics card itself to read from. The most optimal memory has the
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT flag and is usually not accessible by
the CPU on dedicated graphics cards. In this chapter we're going to create two
vertex buffers. One staging buffer in CPU accessible memory to upload the data

130

https://vulkan-tutorial.com/code/vertex_buffer.cpp
https://vulkan-tutorial.com/code/shader_vertexbuffer.vert
https://vulkan-tutorial.com/code/shader_vertexbuffer.frag

from the vertex array to, and the final vertex buffer in device local memory.
We'll then use a buffer copy command to move the data from the staging buffer
to the actual vertex buffer.

Transfer queue

The buffer copy command requires a queue family that supports transfer opera-
tions, which is indicated using VK_QUEUE_TRANSFER_BIT. The good news is that
any queue family with VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT ca-
pabilities already implicitly support VK_QUEUE_TRANSFER_BIT operations. The
implementation is not required to explicitly list it in queueFlags in those cases.

If you like a challenge, then you can still try to use a different queue family
specifically for transfer operations. It will require you to make the following
modifications to your program:

e Modify QueueFamilyIndices and findQueueFamilies to explicitly
look for a queue family with the VK_QUEUE_TRANSFER bit, but not the
VK_QUEUE_GRAPHICS BIT.

e Modify createlogicalDevice to request a handle to the transfer queue

¢ Create a second command pool for command buffers that are submitted
on the transfer queue family

o Change the sharingMode of resources to be VK_SHARING_MODE_CONCURRENT
and specify both the graphics and transfer queue families

e Submit any transfer commands like vkCmdCopyBuffer (which we’ll be
using in this chapter) to the transfer queue instead of the graphics queue

It’s a bit of work, but it’ll teach you a lot about how resources are shared between
queue families.

Abstracting buffer creation

Because we're going to create multiple buffers in this chapter, it’s a good idea to
move buffer creation to a helper function. Create a new function createBuffer
and move the code in createVertexBuffer (except mapping) to it.

void createBuffer(VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags proper:
VkBufferCreateInfo bufferInfo = {};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

if (vkCreateBuffer(device, &bufferInfo, nullptr, buffer.replace()) != VK_SUCCESS) {

throw std::runtime_error("failed to create buffer!");

3

131

VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(device, buffer, &memRequirements) ;

VkMemoryAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

allocInfo.allocationSize = memRequirements.size;

allocInfo.memoryTypeIndex = findMemoryType (memRequirements.memoryTypeBits, properties);

if (vkAllocateMemory(device, &allocInfo, nullptr, bufferMemory.replace()) !'= VK_SUCCESS:
throw std::runtime_error("failed to allocate buffer memory!");

}

vkBindBufferMemory(device, buffer, bufferMemory, 0);
}

Make sure to add parameters for the buffer size, memory properties and usage
so that we can use this function to create many different types of buffers. The
last two parameters are output variables to write the handles to.

You can now remove the buffer creation and memory allocation code from
createVertexBuffer and just call createBuffer instead:

void createVertexBuffer() {
VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();
createBuffer (bufferSize, VK_BUFFER_USAGE_VERTEX_ BUFFER_BIT, VK_MEMORY_PROPERTY_HOST_VIS:

void* data;

vkMapMemory (device, vertexBufferMemory, O, bufferSize, 0, &data);
memcpy (data, vertices.data(), (size_t) bufferSize);

vkUnmapMemory (device, vertexBufferMemory) ;

}

Run your program to make sure that the vertex buffer still works properly.

Using a staging buffer

We’re now going to change createVertexBuffer to only use a host visible buffer
as temporary buffer and use a device local one as actual vertex buffer.

void createVertexBuffer() {

VkDeviceSize bufferSize = sizeof(vertices[0]) * vertices.size();

VDeleter<VkBuffer> stagingBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> stagingBufferMemory{device, vkFreeMemory};
createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISII

132

void*x data;

vkMapMemory (device, stagingBufferMemory, O, bufferSize, 0, &data);
memcpy (data, vertices.data(), (size_t) bufferSize);

vkUnmapMemory (device, stagingBufferMemory) ;

createBuffer (bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_BUFFI
}

We’re now using a new stagingBuffer with stagingBufferMemory for mapping
and copying the vertex data. In this chapter we’re going to use two new buffer
usage flags:

e VK_BUFFER_USAGE_TRANSFER_SRC_BIT: Buffer can be used as source in a
memory transfer operation.

e VK_BUFFER_USAGE_TRANSFER_DST_BIT: Buffer can be used as destination
in a memory transfer operation.

The vertexBuffer is now allocated from a memory type that is device local,
which generally means that we’re not able to use vkMapMemory. However, we
can copy data from the stagingBuffer to the vertexBuffer. We have to
indicate that we intend to do that by specifying the transfer source flag for the
stagingBuffer and the transfer destination flag for the vertexBuffer, along
with the vertex buffer usage flag.

We’re now going to write a function to copy the contents from one buffer to
another, called copyBuffer.

void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {

}

Memory transfer operations are executed using command buffers, just like
drawing commands. Therefore we must first allocate a temporary command
buffer. You may wish to create a separate command pool for these kinds of short-
lived buffers, because the implementation may be able to apply memory allocation
optimizations. You should use the VK_COMMAND_POOL_CREATE_TRANSIENT_BIT
flag during command pool generation in that case.

void copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = commandPool;
allocInfo.commandBufferCount = 1;

VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer);

}

And immediately start recording the command buffer:

133

VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;

vkBeginCommandBuffer (commandBuffer, &beginInfo);

The VK_COMMAND_BUFFER_USAGE_SIMULTANEQUS_USE_BIT flag that we used for
the drawing command buffers is not necessary here, because we're only going to
use the command buffer once and wait with returning from the function until
the copy operation has finished executing. It’s good practice to tell the driver
about our intent using VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT BIT.

VkBufferCopy copyRegion = {};

copyRegion.src0ffset = 0; // Optional

copyRegion.dstOffset = 0; // Optional

copyRegion.size = size;

vkCmdCopyBuffer (commandBuffer, srcBuffer, dstBuffer, 1, ©Region);

Contents of buffers are transferred using the vkCmdCopyBuffer command. It
takes the source and destination buffers as arguments, and an array of regions to
copy. The regions are defined in VkBufferCopy structs and consist of a source
buffer offset, destination buffer offset and size. It is not possible to specify
VK_WHOLE_SIZE here, unlike the vkMapMemory command.

vkEndCommandBuffer (commandBuffer) ;

This command buffer only contains the copy command, so we can stop recording
right after that. Now execute the command buffer to complete the transfer:

VkSubmitInfo submitInfo = {};

submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;

vkQueueSubmit (graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle (graphicsQueue) ;

Unlike the draw commands, there are no events we need to wait on this time.
We just want to execute the transfer on the buffers immediately. There are
again two possible ways to wait on this transfer to complete. We could use a
fence and wait with vkWaitForFences, or simply wait for the transfer queue
to become idle with vkQueueWaitIdle. A fence would allow you to schedule
multiple transfers simultaneously and wait for all of them complete, instead
of executing one at a time. That may give the driver more opportunities to
optimize.

vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);

Don’t forget to clean up the command buffer used for the transfer operation.

134

We can now call copyBuffer from the createVertexBuffer function to move
the vertex data to the device local buffer:

createBuffer (bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_VERTEX_ BUFFER_B:

copyBuffer(stagingBuffer, vertexBuffer, bufferSize);

Run your program to verify that you're seeing the familiar triangle again. It may
not be visible, but its vertex data is now being loaded from high performance
memory. This will matter when we're going to start rendering more complex
geometry.

Conclusion

It should be noted that in a real world application, you're not supposed to actually
call vkAllocateMemory for every individual buffer. The maximum number of
simultaneous memory allocations is limited by the maxMemoryAllocationCount
physical device limit, which may be as low as 4096 even on high end hardware
like an NVIDIA GTX 1080. The right way to allocate memory for a large number
of objects at the same time is to create a custom allocator that splits up a single
allocation among many different objects by using the offset parameters that
we’ve seen in many functions.

You will currently have to write such an allocator yourself, but the author expects
that there will be a library at some point that can be integrated into any Vulkan
program to properly handle allocations. It’s okay to use a separate allocation
for every resource for this tutorial, because we won’t come close to hitting any
of these limits for now.

C++ code / Vertex shader / Fragment shader

Index buffer

Introduction

The 3D meshes you’ll be rendering in a real world application will often share
vertices between multiple triangles. This already happens even with something
simple like drawing a rectangle:

Drawing a rectangle takes two triangles, which means that we need a vertex
buffer with 6 vertices. The problem is that the data of two vertices needs to be
duplicated resulting in 50% redundancy. It only gets worse with more complex
meshes, where vertices are reused in an average number of 3 triangles. The
solution to this problem is to use an index buffer.

135

https://vulkan-tutorial.com/code/staging_buffer.cpp
https://vulkan-tutorial.com/code/shader_vertexbuffer.vert
https://vulkan-tutorial.com/code/shader_vertexbuffer.frag

Vertex buffer only Vertex + index buffer

v vl v vl
V3
Ve
v v3 v3 V2
Indices
{0,1,2,2 3 0}
Figure 33:

An index buffer is essentially an array of pointers into the vertex buffer. It allows
you to reorder the vertex data, and reuse existing data for multiple vertices. The
illustration above demonstrates what the index buffer would look like for the
rectangle if we have a vertex buffer containing each of the four unique vertices.
The first three indices define the upper-right triangle and the last three indices

define the vertices for the bottom-left triangle.

Index buffer creation

In this chapter we’re going to modify the vertex data and add index data to draw
a rectangle like the one in the illustration. Modify the vertex data to represent

the four corners:

const std::vector<Vertex> vertices = {
{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}},
{{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}},
{{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}},
{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}}
};

The top-left corner is red, top-right is green, bottom-right is blue and the
bottom-left is white. We’ll add a new array indices to represent the contents
of the index buffer. It should match the indices in the illustration to draw the

upper-right triangle and bottom-left triangle.

const std::vector<uintl16_t> indices = {

136

0,1, 2,2, 3,0
};

It is possible to use either uint16_t or uint32_t for your index buffer depending
on the number of entries in vertices. We can stick to uint16_t for now because
we're using less than 65535 unique vertices.

Just like the vertex data, the indices need to be uploaded into a VkBuffer for
the GPU to be able to access them. Define two new class members to hold the
resources for the index buffer:

VDeleter<VkBuffer> vertexBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> vertexBufferMemory{device, vkFreeMemory};
VDeleter<VkBuffer> indexBuffer{device, vkDestroyBufferl};
VDeleter<VkDeviceMemory> indexBufferMemory{device, vkFreeMemory};

The createIndexBuffer function that we’ll add now is almost identical to
createVertexBuffer:

void initVulkan() {

createVertexBuffer();
createIndexBuffer();

}

void createIndexBuffer() {
VkDeviceSize bufferSize = sizeof(indices[0]) * indices.size();

VDeleter<VkBuffer> stagingBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> stagingBufferMemory{device, vkFreeMemory};
createBuffer (bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISII

void* data;

vkMapMemory (device, stagingBufferMemory, O, bufferSize, 0, &data);
memcpy (data, indices.data(), (size_t) bufferSize);

vkUnmapMemory (device, stagingBufferMemory);

createBuffer (bufferSize, VK_BUFFER_USAGE_TRANSFER_DST BIT | VK_BUFFER_USAGE_INDEX_ BUFFEI

copyBuffer(stagingBuffer, indexBuffer, bufferSize);
}

There are only two notable differences. The bufferSize is now equal to the
number of indices times the size of the index type, either uint16_t or uint32_t.
The usage of the indexBuffer should be VK_BUFFER_USAGE_INDEX_BUFFER_BIT
instead of VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, which makes sense. Other
than that, the process is exactly the same. We create a staging buffer to copy
the contents of indices to and then copy it to the final device local index buffer.

137

Using an index buffer

Using an index buffer for drawing involves two changes to createCommandBuffers.
We first need to bind the index buffer, just like we did for the vertex buffer.
The difference is that you can only have a single index buffer. It’s unfortunately
not possible to use different indices for each vertex attribute, so we do still have
to completely duplicate vertex data even if just one attribute varies.

vkCmdBindVertexBuffers(commandBuffers[i], 0, 1, vertexBuffers, offsets);

vkCmdBindIndexBuffer (commandBuffers[i], indexBuffer, O, VK_INDEX_TYPE_UINT16);

An index buffer is bound with vkCmdBindIndexBuffer which has the index
buffer, a byte offset into it, and the type of index data as parameters.
As mentioned before, the possible types are VK_INDEX_TYPE_UINT16 and
VK_INDEX_ TYPE_UINT32.

Just binding an index buffer doesn’t change anything yet, we also need to change
the drawing command to tell Vulkan to use the index buffer. Remove the
vkCmdDraw line and replace it with vkCmdDrawIndexed:

vkCmdDrawIndexed (commandBuffers([i], indices.size(), 1, 0, 0, 0);

A call to this function is very similar to vkCmdDraw. The first two parameters
specify the number of indices and the number of instances. We’re not using
instancing, so just specify 1 instance. The number of indices represents the
number of vertices that will be passed to the vertex buffer. The next parameter
specifies an offset into the index buffer, using a value of 1 would cause the
graphics card to start reading at the second index. The second to last parameter
specifies an offset to add to the indices in the index buffer. The final parameter
specifies an offset for instancing, which we’re not using.

Now run your program and you should see the following:

You now know how to save memory by reusing vertices with index buffers. This
will become especially important in a future chapter where we’re going to load
complex 3D models.

The previous chapter already mentioned that you should allocate multiple
resources like buffers from a single memory allocation, but in fact you should
go a step further. Driver developers recommend that you also store multiple
buffers, like the vertex and index buffer, into a single VkBuffer and use offsets in
commands like vkCmdBindVertexBuffers. The advantage is that your data is
more cache friendly in that case, because it’s closer together. It is even possible
to reuse the same chunk of memory for multiple resources if they are not used
during the same render operations, provided that their data is refreshed, of
course. This is known as aliasing and some Vulkan functions have explicit flags
to specify that you want to do this.

C++ code / Vertex shader / Fragment shader

138

https://developer.nvidia.com/vulkan-memory-management
https://vulkan-tutorial.com/code/index_buffer.cpp
https://vulkan-tutorial.com/code/shader_vertexbuffer.vert
https://vulkan-tutorial.com/code/shader_vertexbuffer.frag

5 Vulkan - O *

Figure 34:

139

Descriptor layout and buffer

Introduction

We’re now able to pass arbitrary attributes to the vertex shader for each vertex,
but what about global variables? We're going to move on to 3D graphics from this
chapter on and that requires a model-view-projection matrix. We could include
it as vertex data, but that’s a waste of memory and it would require us to update
the vertex buffer whenever the transformation changes. The transformation
could easily change every single frame.

The right way to tackle this in Vulkan is to use resource descriptors. A descriptor
is a way for shaders to freely access resources like buffers and images. We're
going to set up a buffer that contains the transformation matrices and have the
vertex shader access them through a descriptor. Usage of descriptors consists of
three parts:

e Specify a descriptor layout during pipeline creation
e Allocate a descriptor set from a descriptor pool
¢ Bind the descriptor set during rendering

The descriptor layout specifies the types of resources that are going to be accessed
by the pipeline, just like a render pass specifies the types of attachments that
will be accessed. A descriptor set specifies the actual buffer or image resources
that will be bound to the descriptors, just like a framebuffer specifies the actual
image views to bind to render pass attachments. The descriptor set is then
bound for the drawing commands just like the vertex buffers and framebuffer.

There are many types of descriptors, but in this chapter we’ll work with uniform
buffer objects (UBO). We’ll look at other types of descriptors in future chapters,
but the basic process is the same. Let’s say we have the data we want the vertex
shader to have in a C struct like this:

struct UniformBufferObject {
glm: :mat4 model;
glm: :mat4 view;
glm: :mat4 proj;

s

Then we can copy the data to a VkBuffer and access it through a uniform buffer
object descriptor from the vertex shader like this:

layout(binding = 0) uniform UniformBufferObject {
mat4 model;
mat4d view;
mat4 proj;

} ubo;

140

void main() {
gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
fragColor = inColor;

}

We're going to update the model, view and projection matrices every frame to
make the rectangle from the previous chapter spin around in 3D.

Vertex shader

Modify the vertex shader to include the uniform buffer object like it was specified
above. I will assume that you are familiar with MVP transformations. If you're
not, see the resource mentioned in the first chapter.

#version 450
#extension GL_ARB_separate_shader_objects : enable

layout(binding = 0) uniform UniformBufferObject {
mat4 model;
matéd view;
mat4 proj;

} ubo;

layout(location = 0) in vec2 inPosition;
layout(location 1) in vec3 inColor;

layout(location = 0) out vec3 fragColor;

out gl_PerVertex {
vec4 gl _Position;

};

void main() {
gl _Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
fragColor = inColor;

}

Note that the order of the uniform, in and out declarations doesn’t matter. The
binding directive is similar to the location directive for attributes. We’re going
to reference this binding in the descriptor layout. The line with gl_Position
is changed to use the transformations to compute the final position in clip
coordinates.

141

http://opengl.datenwolf.net/gltut/html/index.html

Descriptor set layout

The next step is to define the UBO on the C++ side and to tell Vulkan about
this descriptor in the vertex shader.

struct UniformBufferObject {
glm: :mat4 model;
glm: :mat4 view;
glm: :mat4 proj;

s

We can exactly match the definition in the shader using data types in GLM. The
data in the matrices is binary compatible with the way the shader expects it, so
we can later just memcpy a UniformBufferObject to a VkBuffer.

We need to provide details about every descriptor binding used in the shaders
for pipeline creation, just like we had to do for every vertex attribute and its
location index. We’ll set up a new function to define all of this information
called createDescriptorSetLayout. It should be called right before pipeline
creation, because we're going to need it there.

void initVulkan() {

createDescriptorSetLayout () ;
createGraphicsPipeline();

void createDescriptorSetLayout() {

}

Every binding needs to be described through a VkDescriptorSetLayoutBinding
struct.

void createDescriptorSetLayout() {
VkDescriptorSetLayoutBinding uboLayoutBinding = {};
uboLayoutBinding.binding = 0;
uboLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
uboLayoutBinding.descriptorCount = 1;

3

The first two fields specify the binding used in the shader and the type of
descriptor, which is a uniform buffer object. It is possible for the shader variable
to represent an array of uniform buffer objects, and descriptorCount specifies
the number of values in the array. This could be used to specify a transformation
for each of the bones in a skeleton for skeletal animation, for example. Our

142

MVP transformation is in a single uniform buffer object, so we’re using a
descriptorCount of 1.

uboLayoutBinding.stageFlags = VK_SHADER_STAGE_VERTEX_BIT;

We also need to specify in which shader stages the descriptor is going to be
referenced. The stageFlags field can be a combination of VkShaderStage
flags or the value VK_SHADER_STAGE_ALL_GRAPHICS. In our case, we’re only
referencing the descriptor from the vertex shader.

uboLayoutBinding.pImmutableSamplers = nullptr; // Optional

The pImmutableSamplers field is only relevant for image sampling related
descriptors, which we’ll look at later. You can leave this to its default value.

All of the descriptor bindings are combined into a single VkDescriptorSetLayout
object. Define a new class member above pipelineLayout:

VDeleter<VkDescriptorSetLayout> descriptorSetLayout{device, vkDestroyDescriptorSetLayout};
VDeleter<VkPipelineLayout> pipelineLayout{device, vkDestroyPipelineLayoutl};

We can then create it using vkCreateDescriptorSetLayout. This function ac-
cepts a simple VkDescriptorSetLayoutCreateInfo with the array of bindings:

VkDescriptorSetLayoutCreateInfo layoutInfo = {};

layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = 1;

layoutInfo.pBindings = &uboLayoutBinding;

if (vkCreateDescriptorSetLayout(device, &layoutInfo, nullptr, descriptorSetLayout.replace()’
throw std::runtime_error("failed to create descriptor set layout!");

}

We need to specify the descriptor set layout during pipeline creation to tell Vulkan
which descriptors the shaders will be using. Descriptor set layouts are specified
in the pipeline layout object. Modify the VkPipelineLayoutCreateInfo to
reference the layout object:

VkDescriptorSetLayout setlLayouts[] = {descriptorSetLayoutl};
VkPipelineLayoutCreateInfo pipelineLayoutInfo = {};
pipelinelayoutInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipelinelayoutInfo.setLayoutCount = 1;

pipelinelayoutInfo.pSetLayouts = setlLayouts;

You may be wondering why it’s possible to specify multiple descriptor set layouts
here, because a single one already includes all of the bindings. We’ll get back to
that in the next chapter, where we’ll look into descriptor pools and descriptor
sets.

143

Uniform buffer

In the next chapter we’ll specify the buffer that contains the UBO data for the
shader, but we need to create this buffer first. We're going to copy new data to
the uniform buffer every frame, so this time the staging buffer actually needs to
stick around.

Add new class members for uniformStagingBuffer, uniformStagingBufferMemory,
uniformBuffer, and uniformBufferMemory:

VDeleter<VkBuffer> indexBuffer{device, vkDestroyBufferl};
VDeleter<VkDeviceMemory> indexBufferMemory{device, vkFreeMemoryl;

VDeleter<VkBuffer> uniformStagingBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> uniformStagingBufferMemory{device, vkFreeMemory};
VDeleter<VkBuffer> uniformBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> uniformBufferMemory{device, vkFreeMemory};

Similarly, create a new function createUniformBuffer that is called after
createIndexBuffer and allocates the buffers:

void initVulkan() {

createVertexBuffer();
createIndexBuffer();
createUniformBuffer();

void createUniformBuffer() {
VkDeviceSize bufferSize = sizeof (UniformBufferObject);

createBuffer(bufferSize, VK_BUFFER_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISI!
createBuffer (bufferSize, VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_UNIFORM_BUFI
}

We're going to write a separate function that updates the uniform buffer
with a new transformation every frame, so there will be no vkMapMemory and
copyBuffer operations here.

void mainLoop() {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();

updateUniformBuffer();
drawFrame() ;

144

}
vkDeviceWaitIdle(device);

glfwDestroyWindow (window) ;

void updateUniformBuffer() {

}

Updating uniform data

Create a new function updateUniformBuffer and add a call to it from the main
loop. This function will generate a new transformation every frame to make the
geometry spin around. We need to include two new headers to implement this
functionality:

#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

#include <chrono>

The glm/gtc/matrix_transform.hpp header exposes functions that can be
used to generate model transformations like glm: :rotate, view transformations
like glm: :1ookAt and projection transformations like glm: :perspective. The
GLM_FORCE_RADIANS definition is necessary to make sure that functions like
glm: :rotate use radians as arguments, to avoid any possible confusion.

The chrono standard library header exposes functions to do precise timekeeping.
We'll use this to make sure that the geometry rotates 90 degrees per second
regardless of frame rate.

void updateUniformBuffer() {
static auto startTime = std::chrono::high_resolution_clock: :now();

auto currentTime = std::chrono::high_resolution_clock: :now() ;
float time = std::chrono::duration_cast<std::chrono::milliseconds>(currentTime - startT:

}

The updateUniformBuffer function will start out with some logic to calculate
the time in seconds since rendering has started with millisecond accuracy. If you
need timing to be more precise, then you can use std: :chrono: :microseconds
and divide by 1e6f, which is short for 1000000.0f.

145

We will now define the model, view and projection transformations in the uniform
buffer object. The model rotation will be a simple rotation around the Z-axis
using the time variable:

UniformBufferObject ubo = {};
ubo.model = glm::rotate(glm::mat4(), time * glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f

The glm::rotate function takes an existing transformation, rotation angle
and rotation axis as parameters. The glm: :mat4() default constructor returns
an identity matrix. Using a rotation angle of time * glm::radians(90.0f)
accomplishes the purpose of rotation 90 degrees per second.

ubo.view = glm::lookAt(glm::vec3(2.0f, 2.0f, 2.0f), glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(l

For the view transformation I’ve decided to look at the geometry from above
at a 45 degree angle. The glm: :lookAt function takes the eye position, center
position and up axis as parameters.

ubo.proj = glm::perspective(glm::radians(45.0f), swapChainExtent.width / (float) swapChainE:

I’ve chosen to use a perspective projection with a 45 degree vertical field-of-view.
The other parameters are the aspect ratio, near and far view planes. It is
important to use the current swap chain extent to calculate the aspect ratio to
take into account the new width and height of the window after a resize.

ubo.proj[1][1] *= -1;

GLM was originally designed for OpenGL, where the Y coordinate of the clip
coordinates is inverted. The easiest way to compensate for that is to flip the
sign on the scaling factor of the Y axis in the projection matrix. If you don’t do
this, then the image will be rendered upside down.

All of the transformations are defined now, so we can copy the data in the
uniform buffer object to the uniform buffer. This happens in exactly the same
way as we did for vertex buffers with a staging buffer:

voidx*x data;

vkMapMemory (device, uniformStagingBufferMemory, O, sizeof(ubo), 0, &data);
memcpy (data, &ubo, sizeof (ubo));

vkUnmapMemory (device, uniformStagingBufferMemory) ;

copyBuffer (uniformStagingBuffer, uniformBuffer, sizeof (ubo));

Using a staging buffer and final buffer this way is not the most efficient way to
pass frequently changing values to the shader. A more efficient way to pass a
small buffer of data to shaders are push constants. We may look at these in a
future chapter.

In the next chapter we’ll look at descriptor sets, which will actually bind the
VkBuffer to the uniform buffer descriptor so that the shader can access this
transformation data.

146

C++ code / Vertex shader / Fragment shader

Descriptor pools and sets

Introduction

The descriptor layout from the previous chapter describes the type of descriptors
that can be bound. In this chapter we're going to create a descriptor set, which
will actually specify a VkBuffer resource to bind to the uniform buffer descriptor.

Descriptor pool

Descriptor sets can’t be created directly, they must be allocated from a pool like
command buffers. The equivalent for descriptor sets is unsurprisingly called a
descriptor pool. We’ll write a new function createDescriptorPool to set it up.

void initVulkan() {

createUniformBuffer();
createDescriptorPool();

void createDescriptorPool() {

}

We first need to describe which descriptor types our descriptor sets are going to
contain and how many of them, using VkDescriptorPoolSize structures.

VkDescriptorPoolSize poolSize = {};
poolSize.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSize.descriptorCount = 1;

We only have a single descriptor right now with the uniform buffer type. This
pool size structure is referenced by the main VkDescriptorPoolCreateInfo:

VkDescriptorPoolCreateInfo poollInfo = {};

poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = 1;

poolInfo.pPoolSizes = &poolSize;

We also need to specify the maximum number of descriptor sets that will be
allocated:

147

https://vulkan-tutorial.com/code/descriptor_layout.cpp
https://vulkan-tutorial.com/code/shader_ubo.vert
https://vulkan-tutorial.com/code/shader_ubo.frag

poolInfo.maxSets = 1;

The structure has an optional flag similar to command pools that determines if in-

dividual descriptor sets can be freed or not: VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT.
We’re not going to touch the descriptor set after creating it, so we don’t need

this flag. You can leave flags to its default value of 0.

VDeleter<VkDescriptorPool> descriptorPool{device, vkDestroyDescriptorPool};

if (vkCreateDescriptorPool(device, &poolInfo, nullptr, descriptorPool.replace()) != VK_SUCCI
throw std::runtime_error("failed to create descriptor pool!");

3

Add a new class member to store the handle of the descriptor pool and call
vkCreateDescriptorPool to create it.

Descriptor set

We can now allocate the descriptor set itself. Add a createDescriptorSet
function for that purpose:

void initVulkan() {

createDescriptorPool();
createDescriptorSet();

void createDescriptorSet() {

}

A descriptor set allocation is described with a VkDescriptorSetAllocateInfo
struct. You need to specify the descriptor pool to allocate from, the number of
descriptor sets to allocate, and the descriptor layout to base them on:

VkDescriptorSetLayout layouts[] = {descriptorSetLayoutl};
VkDescriptorSetAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = descriptorPool;
allocInfo.descriptorSetCount = 1;

allocInfo.pSetLayouts = layouts;

148

Add a class member to hold the descriptor set handle and allocate it with
vkAllocateDescriptorSets:

VDeleter<VkDescriptorPool> descriptorPool{device, vkDestroyDescriptorPool};
VkDescriptorSet descriptorSet;

if (vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet) != VK_SUCCESS)
throw std::runtime_error("failed to allocate descriptor set!");

}

You don’t need to use a deleter for descriptor sets, because they will be
automatically freed when the descriptor pool is destroyed. The call to
vkAllocateDescriptorSets will allocate one descriptor set with one uniform
buffer descriptor.

The descriptor set has been allocated now, but the descriptors within still need to
be configured. Descriptors that refer to buffers, like our uniform buffer descriptor,
are configured with a VkDescriptorBufferInfo struct. This structure specifies
the buffer and the region within it that contains the data for the descriptor:

VkDescriptorBufferInfo bufferInfo = {};
bufferInfo.buffer = uniformBuffer;
bufferInfo.offset = 0;

bufferInfo.range = sizeof(UniformBufferDbject);

The configuration of descriptors is updated using the vkUpdateDescriptorSets
function, which takes an array of VkWriteDescriptorSet structs as parameter.

VkWriteDescriptorSet descriptorWrite = {};
descriptorWrite.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptorWrite.dstSet = descriptorSet;
descriptorWrite.dstBinding = O;

descriptorWrite.dstArrayElement = O;

The first two fields specify the descriptor set to update and the binding. We
gave our uniform buffer binding index 0. Remember that descriptors can be
arrays, so we also need to specify the first index in the array that we want to
update. We’re not using an array, so the index is simply 0.

descriptorWrite.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
descriptorWrite.descriptorCount = 1;

We need to specify the type of descriptor again. It’s possible to update multi-
ple descriptors at once in an array, starting at index dstArrayElement. The
descriptorCount field specifies how many array elements you want to update.

descriptorWrite.pBufferInfo = &bufferInfo;
descriptorWrite.pImageInfo = nullptr; // Optional
descriptorWrite.pTexelBufferView = nullptr; // Optional

149

The last field references an array with descriptorCount structs that actually
configure the descriptors. It depends on the type of descriptor which one of the
three you actually need to use. The pBufferInfo field is used for descriptors
that refer to buffer data, pImageInfo is used for descriptors that refer to image
data, and pTexelBufferView is used for descriptors that refer to buffer views.
Our descriptor is based on buffers, so we’re using pBufferInfo.

vkUpdateDescriptorSets(device, 1, &descriptorWrite, O, nullptr);

The updates are applied using vkUpdateDescriptorSets. It accepts two kinds
of arrays as parameters: an array of VkWriteDescriptorSet and an array of
VkCopyDescriptorSet. The latter can be used to copy the configuration of
descriptors, as its name implies.

Using a descriptor set

We now need to update the createCommandBuffers function to actually bind
the descriptor set to the descriptors in the shader with cmdBindDescriptorSets:

vkCmdBindDescriptorSets (commandBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelinelLayout,

Unlike vertex and index buffers, descriptor sets are not unique to graphics
pipelines. Therefore we need to specify if we want to bind descriptor sets to
the graphics or compute pipeline. The next parameter is the layout that the
descriptors are based on. The next three parameters specify the index of the
first descriptor set, the number of sets to bind, and the array of sets to bind.
We'll get back to this in a moment. The last two parameters specify an array
of offsets that are used for dynamic descriptors. We’ll look at these in a future
chapter.

If you run your program now, then you’ll notice that unfortunately nothing is
visible. The problem is that because of the Y-flip we did in the projection matrix,
the vertices are now being drawn in clockwise order instead of counter-clockwise
order. This causes backface culling to kick in and prevents any geometry from
being drawn. Go to the createGraphicsPipeline function and modify the
cullFace in VkPipelineRasterizationStateCreateInfo to correct this:

rasterizer.cullMode = VK_CULL_MODE_BACK_BIT;
rasterizer.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE;

Run your program again and you should now see the following;:

The rectangle has changed into a square because the projection matrix now
corrects for aspect ratio. The updateUniformData takes care of screen resizing,
so we don’t need to recreate the descriptor set in recreateSwapChain.

150

B Vulkan - O *

Figure 35:

151

Multiple descriptor sets

As some of the structures and function calls hinted at, it is actually possible to
bind multiple descriptor sets. You need to specify a descriptor layout for each
descriptor set when creating the pipeline layout. Shaders can then reference
specific descriptor sets like this:

layout(set = 0, binding = 0) uniform UniformBufferObject { ... }

You can use this feature to put descriptors that vary per-object and descriptors
that are shared into separate descriptor sets. In that case you avoid rebinding
most of the descriptors across draw calls which is potentially more efficient.

C++ code / Vertex shader / Fragment shader

Images

Introduction

The geometry has been colored using per-vertex colors so far, which is a rather
limited approach. In this part of the tutorial we’re going to implement texture
mapping to make the geometry look more interesting. This will also allow us to
load and draw basic 3D models in a future chapter.

Adding a texture to our application will involve the following steps:

o Create an image object backed by device memory

o Fill it with pixels from an image file

¢ Create an image sampler

¢ Add a combined image sampler descriptor to sample colors from the texture

We've already worked with image objects before, but those were automatically
created by the swap chain extension. This time we’ll have to create one by
ourselves. Creating an image and filling it with data is very similar to vertex
buffer creation. You create a VkImage, query its memory requirements, allocate
device memory, bind the memory to the image, and finally map the memory to
upload the pixel data. We’ll use a staging and final image again, to make sure
that the texture image itself ends up in fast device local memory. There is a
command to copy the contents of images similar to vkCmdCopyBuffer.

However, there is something extra that we’ll have to take care of when working
with images. Images can have different layouts that affect how the pixels are
organized in memory. Due to the way graphics hardware works, simply storing
the pixels row by row may not lead to the best performance, for example. When
performing any operation on images, you must make sure that they have the
layout that is optimal for use in that operation. We’ve actually already seen
some of these layouts when we specified the render pass:

152

https://vulkan-tutorial.com/code/descriptor_set.cpp
https://vulkan-tutorial.com/code/shader_ubo.vert
https://vulkan-tutorial.com/code/shader_ubo.frag

e VK_IMAGE_LAYOUT_PRESENT_SRC_KHR: Optimal for presentation

e VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL: Optimal as attachment
for writing colors from the fragment shader

e VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: Optimal as source in a trans-
fer operation, like vkCmdCopyImage

e VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: Optimal as destination in a
transfer operation, like vkCmdCopyImage

e VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: Optimal for sampling
from a shader

One of the most common ways to transition the layout of an image is a pipeline
barrier. Pipeline barriers are primarily used for synchronizing access to resources,
like making sure that an image was written to before it is read, but they can
also be used to transition layouts. In this chapter we’ll see how pipeline barriers
are used for this purpose. Barriers can additionally be used to transfer queue
family ownership when using VK_SHARING_MODE_EXCLUSIVE.

Image library

There are many libraries available for loading images, and you can even write
your own code to load simple formats like BMP and PPM. In this tutorial we’ll
be using the stb_image library from the stb collection. The advantage of it
is that all of the code is in a single file, so it doesn’t require any tricky build
configuration. Download stb_image.h and store it in a convenient location,
like the directory where you saved GLFW and GLM. Add the location to your
include path.

Visual Studio

Add the directory with stb_image.h in it to the Additional Include
Directories paths.

Configuration: | All Configurations ~ | Platform: | Active(Win32) ~ Configuration Manager...
4 Configuration Properties Additional Include Directories CAUsers\, \Documents\Visual Studio 2015\Libraries\stb-n

General Additienal #using Directories

Debugging Deb| Additional Include Directories 7 X

WC++ Directories Conl

4 C/C++ Con X
G |
Oenera Supl [CiyUsers\, “Documents\Visual Studio 2015\Libraries\sth-master ~
[P War| | Ch\Users\, “Documents\Visual Studio 2013\ Libraries\glm
Preprocessor Treg | C\Users\ “Documents\Visual Studio 2015\Libraries\gifw-3.2.bin.WIN32\include
Figure 36:
Makefile

Add the directory with stb_image.h to the include directories for GCC:

153

https://github.com/nothings/stb

VULKAN_SDK_PATH = /home/user/VulkanSDK/x.x.x.x/x86_64
STB_INCLUDE_PATH = /home/user/libraries/stb

CFLAGS = -std=c++11 -I$(VULKAN_SDK_PATH)/include -I$(STB_INCLUDE_PATH)

Loading an image

Include the image library like this:

#define STB_IMAGE_IMPLEMENTATION
#include <stb_image.h>

The header only defines the prototypes of the functions by default. One code
file needs to include the header with the STB_IMAGE_IMPLEMENTATION definition
to include the function bodies, otherwise we’ll get linking errors.

void initVulkan() {

createCommandPool () ;
createTextureImage() ;
createVertexBuffer();

void createTextureImage() {

}

Create a new function createTextureImage where we’ll load an image and
upload it into a Vulkan image object. We're going to use command buffers, so it
should be called after createCommandPool.

Create a new directory textures next to the shaders directory to store texture
images in. We're going to load an image called texture. jpg from that directory.
I’ve chosen to use the following CCO licensed image resized to 512 x 512 pixels,
but feel free to pick any image you want. The library supports most common
image file formats, like JPEG, PNG, BMP and GIF.

Loading an image with this library is really easy:

void createTextureImage() {
int texWidth, texHeight, texChannels;
stbi_ucx pixels = stbi_load("textures/texture.jpg", &texWidth, &texHeight, &texChannels
VkDeviceSize imageSize = texWidth * texHeight * 4;

154

https://pixabay.com/en/statue-sculpture-fig-historically-1275469/

Figure 37:

155

if (!pixels) {
throw std::runtime_error("failed to load texture image!");
3
X

The stbi_load function takes the file path and number of channels to load as
arguments. The STBI_rgb_alpha value forces the image to be loaded with an
alpha channel, even if it doesn’t have one, which is nice for consistency with
other textures in the future. The middle three parameters are outputs for the
width, height and actual number of channels in the image. The pointer that is
returned is the first element in an array of pixel values. The pixels are laid out
row by row with 4 bytes per pixel in the case of STBI_rgba_alpha for a total of
texWidth * texHeight * 4 values.

Staging image

We’re now going to create an image in host visible memory so that we can use
vkMapMemory and copy the pixels to it. Pixels within an image object are known
as texels and we’ll use that name from this point on. Add the following two
variables in the createTextureImage function:

VDeleter<VkImage> stagingImage{device, vkDestroyImagel};
VDeleter<VkDeviceMemory> stagingImageMemory{device, vkFreeMemory};

The parameters for an image are specified in a VkImageCreateInfo struct:

VkImageCreateInfo imageInfo = {};

imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = texWidth;
imageInfo.extent.height = texHeight;
imageInfo.extent.depth = 1;

imageInfo.mipLevels = 1;

imageInfo.arrayLayers 1;

The image type, specified in the imageType field, tells Vulkan with that kind
of coordinate system the texels in the image are going to be addressed. It is
possible to create 1D, 2D and 3D images. One dimensional images can be used
to store an array of data or gradient, two dimensional images are mainly used
for textures, and three dimensional images can be used to store voxel volumes,
for example. The extent field specifies the dimensions of the image, basically
how many texels there are on each axis. That’s why depth must be 1 instead of
0. Our texture will not be an array and we won’t be using mipmapping for now.

imageInfo.format = VK_FORMAT_R8G8BS8AS8_UNORM;

156

Vulkan supports many possible image formats, but it makes the most sense to
use exactly the same format for the texels as the pixels loaded with the library.

imageInfo.tiling = VK_IMAGE_TILING_LINEAR;
The tiling field can have one of two values:

e VK_IMAGE_TILING_LINEAR: Texels are laid out in row-major order like our
pixels array

e VK_IMAGE_TILING_OPTIMAL: Texels are laid out in an implementation de-
fined order for optimal access

If you want to be able to directly access texels in the memory of the image, then
you must use VK_IMAGE_TILING_LINEAR. We want to be able to directly copy
the data in pixels to the staging image memory, so we should use it. Unlike
the layout of an image, the tiling mode cannot be changed at a later time. We’re
going to use VK_IMAGE_TILING_OPTIMAL for the final image.

imageInfo.initiallLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
There are only two possible values for the initiallayout of an image:

e VK_IMAGE_LAYOUT_UNDEFINED: Not usable by the GPU and the very first
transition will discard the texels.

e VK_IMAGE_LAYOUT_PREINITIALIZED: Not usable by the GPU, but the first
transition will preserve the texels.

An initially undefined layout is suitable for images that will be used as attach-
ments, like color and depth buffers. In that case we don’t care about any initial
data, because it’ll probably be cleared by a render pass before use. If you want
to fill it with data, like a texture, then you should use the preinitialized layout.

imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;

The usage field has the same semantics as the one during buffer creation. The
staging image is going to be copied to the final texture image, so it should be
set up as a transfer source.

imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

The staging image will only be used by one queue family: the one that supports
transfer operations.

imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.flags = 0; // Optional

The samples flag is related to multisampling. This is only relevant for images
that will be used as attachments, so stick to one sample. There are some optional
flags for images that are related to sparse images. Sparse images are images
where only certain regions are actually backed by memory. If you were using
a 3D texture for a voxel terrain, for example, then you could use this to avoid
allocating memory to store large volumes of “air” values. We won’t be using it
in this tutorial, so leave it to its default value of 0.

157

if (vkCreatelImage(device, &imageInfo, nullptr, stagingImage.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create image!");

3

The image is created using vkCreateImage, which doesn’t have any particularly
noteworthy parameters. It is possible that the VK_FORMAT_R8G8B8A8_UNORM
format is not supported by the graphics hardware. You should have a list of
acceptable alternatives and go with the best one that is supported. However,
support for this particular format is so widespread that we’ll skip this step.
Using different formats would also require annoying conversions. We will get
back to this in the depth buffer chapter, where we’ll implement such a system.

VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(device, stagingImage, &memRequirements) ;

VkMemoryAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

allocInfo.allocationSize = memRequirements.size;

allocInfo.memoryTypeIndex = findMemoryType (memRequirements.memoryTypeBits, VK_MEMORY_PROPERS

if (vkAllocateMemory(device, &allocInfo, nullptr, stagingImageMemory.replace()) != VK_SUCCES
throw std::runtime_error("failed to allocate image memory!");

}

vkBindImageMemory (device, stagingImage, stagingImageMemory, 0);

Allocating memory for an image works in exactly the same way as allocat-
ing memory for a buffer. Use vkGetImageMemoryRequirements instead of
vkGetBufferMemoryRequirements, and use vkBindImageMemory instead of
vkBindBufferMemory. Remember that we need the memory to be host visible
to be able to use vkMapMemory, so you should specify that property when
looking for the right memory type.

We can now use the vkMapMemory function to (temporarily) access the memory
of the staging image directly from our application. It returns a pointer to the
first byte in the memory buffer:

void* data;
vkMapMemory (device, stagingImageMemory, O, imageSize, O, &data);

Unfortunately we can’t just copy the pixel bytes directly into the image memory
with memcpy and assume that this works correctly. The problem is that there
may be padding bytes between rows of pixels. In other words, the graphics card
may assume that one row of pixels is not texWidth * 4 bytes wide, but rather
texWidth * 4 + paddingBytes. To handle this correctly, we need to query how
bytes are arranged in our staging image using vkGetImageSubresourcelLayout:

VkImageSubresource subresource = {};
subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;

158

subresource.miplLevel = 0;
subresource.arraylLayer = O;

VkSubresourcelayout staginglmageLayout;

vkGetImageSubresourcelayout (device, stagingImage, &subresource, &stagingImageLayout);

Images contain one or more subresources, which are specific images within an
image. For example, there is one subresource for every entry in an array image.
In this case we don’t have an array image, so there is simply one subresource at
entry 0 and the base mipmapping level.

The rowPitch member of the VkSubresourceLayout struct specifies the total
number of bytes of each row of pixels in the image. If this value is equal to
texWidth * 4, then we’re lucky and we can use memcpy, because there are no
padding bytes in that case.

if (stagingImagelayout.rowPitch == texWidth * 4) {
memcpy (data, pixels, (size_t) imageSize);
} else {

3

This is usually the case when your images have a power-of-2 size (e.g. 512 or
1024). Otherwise, we’ll have to copy the pixels row-by-row using the right offset:

uint8_t* dataBytes = reinterpret_cast<uint8_t*>(data);

for (int y = 0; y < texHeight; y++) {
memcpy (
&dataBytes[y * stagingImagelLayout.rowPitch],
&pixels[y * texWidth * 4],
texWidth * 4
)3
}

Each subsequent row in the image memory is offset by rowPitch and the original
pixels are offset by texWidth * 4 without padding bytes.

If you’re done accessing the memory buffer, then you should unmap it with
vkUnmapMemory. It is not necessary to call vkUnmapMemory now if you want to
access the staging image memory again later on. The writes to the buffer will
already be visible without calling this function.

void* data;
kaapMemory(device, stagingImageMemory, O, imageSize, O, &data) ;

if (stagingImagelayout.rowPitch == texWidth * 4) {
memcpy (data, pixels, (size_t) imageSize);
} else {
uint8_t* dataBytes = reinterpret_cast<uint8_t*>(data);

159

for (int y = 0; y < texHeight; y++) {
memcpy (&dataBytes[y * stagingImagelLayout.rowPitch], &pixels[y * texWidth * 4], -
}
}

vkUnmapMemory(device, stagingImageMemory) ;
Don’t forget to clean up the original pixel array now:

stbi_image_free(pixels);

Texture image

We will now abstract image creation into a createImage function, like we did
for buffers. Create the function and move the image object creation and memory
allocation to it:

void createImage(uint32_t width, uint32_t height, VkFormat format, VkImageTiling tiling, Vk:
VkImageCreateInfo imageInfo = {};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = 1;
imageInfo.arraylayers = 1;
imageInfo.format = format;
imageInfo.tiling = tiling;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
imageInfo.usage = usage;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;

if (vkCreatelImage(device, &imageInfo, nullptr, image.replace()) !'= VK_SUCCESS) {
throw std::runtime_error("failed to create image!");

}

VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(device, image, &memRequirements);

VkMemoryAllocateInfo allocInfo = {};

allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;

allocInfo.allocationSize = memRequirements.size;

allocInfo.memoryTypeIndex = findMemoryType (memRequirements.memoryTypeBits, properties);

160

if (vkAllocateMemory(device, &allocInfo, nullptr, imageMemory.replace()) != VK_SUCCESS)
throw std::runtime_error("failed to allocate image memory!");

3

vkBindImageMemory (device, image, imageMemory, O0);

}

I’'ve made the width, height, format, tiling mode, usage, and memory properties
parameters, because these will all vary between the images we’ll be creating
throughout this tutorial.

The createTextureImage function can now be simplified to:

void createTextureImage() {
int texWidth, texHeight, texChannels;
stbi_ucx pixels = stbi_load("textures/texture.jpg", &texWidth, &texHeight, &texChannels
VkDeviceSize imageSize = texWidth * texHeight * 4;

if ('pixels) {
throw std::runtime_error("failed to load texture image!");

3

VDeleter<VkImage> stagingImage{device, vkDestroyImage};
VDeleter<VkDeviceMemory> stagingImageMemory{device, vkFreeMemoryl;
createImage(texWidth, texHeight, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_LINEAR, VK_II

VkImageSubresource subresource = {};

subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subresource.miplevel =
subresource.arraylLayer

’

0;

n o |

VkSubresourceLayout stagingImagelLayout;
vkGetImageSubresourcelayout (device, stagingImage, &subresource, &stagingImageLayout);

void* data;
vkMapMemory(device, stagingImageMemory, O, imageSize, 0, &data);

if (stagingImagelayout.rowPitch == texWidth * 4) {
memcpy (data, pixels, (size_t) imageSize);
} else {
uint8_t* dataBytes = reinterpret_cast<uint8_t*>(data);

for (int y = 0; y < texHeight; y++) {

memcpy (&dataBytes [y * stagingImageLayout.rowPitch], &pixels[y * texWidth * 4], -
}

161

vkUnmapMemory (device, stagingImageMemory);

stbi_image_free(pixels);

}

The next step is to create the actual texture image. Define two new class
members to hold the handle to the image and its memory:

VDeleter<VkCommandPool> commandPool{device, kaestroyCommandPool};
VDeleter<VkImage> textureImage{device, vkDestroyImagel};
VDeleter<VkDeviceMemory> textureImageMemory{device, vkFreeMemory};
VDeleter<VkBuffer> vertexBuffer{device, vkDestroyBuffer};

The final texture image can now be created using the same function:

createlImage (
texWidth, texHeight,
VK_FORMAT_R8G8B8A8_UNORM,
VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
texturelmage,
textureImageMemory

)

The dimensions of the image should be the same as the staging image. The
formats should also be compatible, because the command simply copies the raw
image data. Two color formats are compatible if they have the same number
of bytes per pixel. Depth/stencil formats, which we’ll see in one of the next
chapters, need to be exactly equal. The tiling mode on the other hand does not
need to be the same. The texture image will be used as the destination in the
transfer, and we want to be able to sample texels from it in the shader. The
VK_IMAGE_USAGE_SAMPLED_BIT flag is necessary to allow that. The memory of
the image should be device local for best performance, just like the vertex buffer.

Layout transitions

The function we’re going to write now involves recording and executing a
command buffer again, so now’s a good time to move that logic into a helper
function or two:

VkCommandBuffer beginSingleTimeCommands() {
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = commandPool;
allocInfo.commandBufferCount = 1;

162

VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(device, &allocInfo, &commandBuffer) ;

VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_ BUFFER_USAGE_ONE_TIME_SUBMIT_ BIT;

vkBeginCommandBuffer (commandBuffer, &beginInfo);

return commandBuffer;

}

void endSingleTimeCommands (VkCommandBuffer commandBuffer) {
vkEndCommandBuffer (commandBuffer) ;

VkSubmitInfo submitInfo = {};

submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;

vkQueueSubmit (graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle (graphicsQueue) ;

vkFreeCommandBuffers(device, commandPool, 1, &commandBuffer);

3

The code for these functions is based on the existing code in copyBuffer. You
can now simplify that function to:

void copyBuffer (VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
VkCommandBuffer commandBuffer = beginSingleTimeCommands () ;

VkBufferCopy copyRegion = {};
copyRegion.size = size;
vkCmdCopyBuffer (commandBuffer, srcBuffer, dstBuffer, 1, ©Region);

endSingleTimeCommands (commandBuffer) ;
}

If we were still using buffers, then we could now write a function to record
and execute vkCmdCopyImage to finish the job, but this command requires the
images to be in the right layout first. Create a new function to handle layout
transitions:

void transitionImageLayout(VkImage image, VkFormat format, VkImageLayout oldLayout, VkImagel
VkCommandBuffer commandBuffer = beginSingleTimeCommands () ;

endSingleTimeCommands (commandBuffer) ;

163

}

One of the most common ways to perform layout transitions is using an ‘mage
memory barrier. A pipeline barrier like that is generally used to synchronize
access to resources, like ensuring that a write to a buffer completes before
reading from it, but it can also be used to transition image layouts and transfer
queue family ownership when VK_SHARING_MODE_EXCLUSIVE is used. There is
an equivalent buffer memory barrier to do this for buffers.

VkImageMemoryBarrier barrier = {};

barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout oldLayout;

barrier.newLayout = newLayout;

The first two fields specify layout transition. It is possible to use
VK_IMAGE_LAYOUT_UNDEFINED as oldLayout if you don’t care about the
existing contents of the image.

barrier.srcQueueFamilyIndex
barrier.dstQueueFamilyIndex

VK_QUEUE_FAMILY_IGNORED;
VK_QUEUE_FAMILY_IGNORED;

If you are using the barrier to transfer queue family ownership, then these
two fields should be the indices of the queue families. They must be set to
VK_QUEUE_FAMILY_IGNORED if you don’t want to do this (not the default value!).

barrier.image = image;

barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseMipLevel = O;
barrier.subresourceRange.levelCount = 1;
barrier.subresourceRange.baseArraylLayer = 0;
barrier.subresourceRange.layerCount = 1;

The image and subresourceRange specify the image that is affected and the
specific part of the image. Our image is not an array and does not mipmapping
levels, so only one level and layer are specified.

barrier.srcAccessMask = 0; // TODO
barrier.dstAccessMask = 0; // TODO

Barriers are primarily used for synchronization purposes, so you must specify
which types of operations that involve the resource must happen before the barrier,
and which operations that involve the resource must wait on the barrier. We
need to do that despite already using vkQueueWaitIdle to manually synchronize.
The right values depend on the old and new layout, so we’ll get back to this
once we've figured out which transitions we’re going to use.

vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
0,
0, nullptr,

164

0, nullptr,
1, &barrier

)

All types of pipeline barriers are submitted using the same function. The first
parameter specifies in which pipeline stage the operations occur that should
happen before the barrier. The second parameter specifies the pipeline stage in
which operations will wait on the barrier. We want it to happen immediately, so
we're going with the top of the pipeline.

The third parameter is either O or VK_DEPENDENCY_BY_REGION_BIT. The latter
turns the barrier into a per-region condition. That means that the implementation
is allowed to already begin reading from the parts of a resource that were written
so far, for example.

The last three pairs of parameters reference arrays of pipeline barriers of the three
available types: memory barriers, buffer memory barriers, and image memory
barriers like the one we’re using here. Note that we’re not using the VkFormat
parameter yet, but we’ll be using that one for special transitions in the depth
buffer chapter.

Copying images

Before we get back to createTextureImage, we're going to write one more
helper function: copyImage:

void copyImage(VkImage srcImage, VkImage dstImage, uint32_t width,
VkCommandBuffer commandBuffer = beginSingleTimeCommands () ;

endSingleTimeCommands (commandBuffer) ;

}

Just like with buffers, you need to specify which part of the image needs to be
copied to which part of the other image. This happens through VkImageCopy
structs:

VkImageSubresourcelayers subResource = {};
subResource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
subResource.baseArrayLayer = O;
subResource.mipLevel = 0;

subResource.layerCount = 1;

VkImageCopy region = {};
region.srcSubresource = subResource;
region.dstSubresource = subResource;
region.srcOffset = {0, 0, 0};
region.dstOffset = {0, 0, 0};
region.extent.width = width;

165

uint32_t height) {

region.extent.height = height;
region.extent.depth = 1;

All of these fields are fairly self-explanatory. Image copy operations are enqueued
using the vkCmdCopyImage function:

vkCmdCopyImage (
commandBuffer,
srcImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1, ®ion

)

The first two pairs of parameters specify the source image/layout and destination
image/layout. I'm assuming here that they’ve been previously transitioned to
the optimal transfer layouts.

Preparing the texture image

We now have all of the tools we need to finish setting up the texture image, so
we're going back to the createTextureImage function. The last thing we did
there was creating the texture image. The next step is to copy the staging image
to the texture image. This involves three operations:

o Transition the staging image to VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL
e Transition the texture image to VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
o Execute the image copy operation

This is easy to do with the functions we just created:

transitionImagelayout (stagingImage, VK_FORMAT_R8GS8B8A8_UNORM, VK_IMAGE_LAYOUT_PREINITIALIZEI
transitionImagelayout (textureImage, VK_FORMAT_R8GS8B8A8_UNORM, VK_IMAGE_LAYOUT_PREINITIALIZEI
copyImage (stagingImage, texturelmage, texWidth, texHeight);

Both VK_IMAGE_LAYOUT_PREINITIALIZED and VK_IMAGE_LAYOUT_UNDEFINED
are valid values for old layout when transitioning textureImage, because we
don’t care about its contents before the copy operation.

To be able to start sampling from the texture image in the shader, we need one
last transition:

transitionImagelLayout (textureImage, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_LAYOUT_TRANSFER_DST_|

Transition barrier masks
If run your application with validation layers enabled now, then you’ll see that

it complains about the access masks in transitionImageLayout being invalid.
We still need to set those based on the layouts in the transition.

166

There are three transitions we need to handle:

e Preinitialized — transfer source: transfer reads should wait on host writes

e Preinitialized — transfer destination: transfer writes should wait on host
writes

o Transfer destination — shader reading: shader reads should wait on transfer
writes

These rules are specified using the following access masks:

if (oldLayout == VK_IMAGE_LAYOUT_PREINITIALIZED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_SKR(
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;

} else if (oldLayout == VK_IMAGE_LAYOUT_PREINITIALIZED && newLayout == VK_IMAGE_LAYOUT_TRAN:
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;

} else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYQU
barrier.srcAccessMask VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask VK_ACCESS_SHADER_READ_BIT;

} else {
throw std::invalid_argument ("unsupported layout transition!");

}

If we need to do more transitions in the future, then we’ll extend the function.
The application should now run successfully, although there are of course no
visual changes yet. One thing to note is that command buffer submission results
in implicit VK_ACCESS_HOST_WRITE_BIT synchronization at the beginning. Since
the transitionImagelayout function executes a command buffer with only a
single command, we can use this implicit synchronization and set srcAccessMask
to 0 for the first two types of transitions. It’s up to you if you want to be explicit
about it or not, but I'm personally not a fan of relying on these OpenGL-like
“hidden” operations.

There is actually a special type of image layout that supports all operations,
VK_IMAGE_LAYOUT_GENERAL. The problem with it, of course, is that it doesn’t
necessarily offer the best performance for any operation. It is required for some
special cases, like using an image as both input and output, or for reading an
image after it has left the preinitialized layout.

All of the helper functions that submit commands so far have been set up to
execute synchronously by waiting for the queue to become idle. For practical
applications it is recommended to combine these operations in a single command
buffer and execute them asynchronously for higher throughput, especially the
transitions and copy in the createTextureImage function. Try to experiment
with this by creating a setupCommandBuffer that the helper functions record
commands into, and add a flushSetupCommands to execute the commands that
have been recorded so far. It’s best to do this after the texture mapping works
to check if the texture resources are still set up correctly.

167

In this tutorial we used another image as staging resource for the tex-
ture, but it’s also possible to use a buffer and copy pixels from it using
vkCmdCopyBufferToImage. It is recommended to use this approach for
improved performance on some hardware if you need to update the data in an
image often.

The image now contains the texture, but we still need a way to access it from
the graphics pipeline. We’ll work on that in the next chapter.

C++ code / Vertex shader / Fragment shader # Image view and sampler

In this chapter we’re going to create two more resources that are needed for
the graphics pipeline to sample an image. The first resource is one that we’ve
already seen before while working with the swap chain images, but the second
one is new - it relates to how the shader will read texels from the image.

Texture image view

We’ve seen before, with the swap chain images and the framebuffer, that images
are accessed through image views rather than directly. We will also need to
create such an image view for the texture image.

Add a class member to hold a VkImageView for the texture image and create a
new function createTextureImageView where we’ll create it:

VDeleter<VkImageView> textureImageView{device, vkDestroyImageView};

void initVulkan() {

createTextureImage();
createTextureImageView() ;
createVertexBuffer();

void createTextureImageView() {

}

The code for this function can be based directly on createImageViews. The
only two changes you have to make are the format and the image:

VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;

168

https://developer.nvidia.com/vulkan-memory-management
https://vulkan-tutorial.com/code/texture_image.cpp
https://vulkan-tutorial.com/code/shader_ubo.vert
https://vulkan-tutorial.com/code/shader_ubo.frag

viewInfo.image = texturelmage;

viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;

viewInfo.format = VK_FORMAT_R8S8GSBSAS8_UNORM;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMiplLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = O;
viewInfo.subresourceRange.layerCount = 1;

I've left out the explicit viewInfo.components initialization, because
VK_COMPONENT_SWIZZLE_IDENTITY is defined as 0 anyway. Finish creating the
image view by calling vkCreateImageView:

if (vkCreateImageView(device, &viewInfo, nullptr, textureImageView.replace()) != VK_SUCCESS:
throw std::runtime_error("failed to create texture image view!");

}

Because so much of the logic is duplicated from createImageViews, you may
wish to abstract it into a new createImageView function:

void createImageView(VkImage image, VkFormat format, VDeleter<VkImageView>& imageView) {
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = 1;
viewInfo.subresourceRange.baseArrayLayer = O;
viewInfo.subresourceRange.layerCount = 1;

if (vkCreatelImageView(device, &viewInfo, nullptr, imageView.replace()) != VK_SUCCESS) {
throw std::runtime_error("failed to create texture image view!");
}
}

The createTextureImageView function can now be simplified to:

void createTextureImageView() {
createImageView(textureImage, VK_FORMAT_R8G8B8AS_UNORM, texturelmageView);
}

And createImageViews can be simplified to:

void createImageViews() {
swapChainImageViews.resize(swapChainImages.size(), VDeleter<VkImageView>{device, vkDest:

for (uint32_t i = 0; i < swapChainImages.size(); i++) {
createImageView(swapChainImages[i], swapChainImageFormat, swapChainImageViews[i]);

169

Samplers

It is possible for shaders to read texels directly from images, but that is not very
common when they are used as textures. Textures are usually accessed through
samplers, which will apply filtering and transformations to compute the final
color that is retrieved.

These filters are helpful to deal with problems like oversampling. Consider a
texture that is mapped to geometry with more fragments than texels. If you
simply took the closest texel for the texture coordinate in each fragment, then
you would get a result like the first image:

Mo filtering Bilinear filtering

Figure 38:

If you combined the 4 closest texels through linear interpolation, then you would
get a smoother result like the one on the right. Of course your application may
have art style requirements that fit the left style more (think Minecraft), but
the right is preferred in conventional graphics applications. A sampler object
automatically applies this filtering for you when reading a color from the texture.

Undersampling is the opposite problem, where you have more texels than frag-
ments. This will lead to artifacts when sampling high frequency patterns like a
checkerboard texture at a sharp angle:

As shown in the left image, the texture turns into a blurry mess in the dis-
tance. The solution to this is anisotropic filtering, which can also be applied

170

https://en.wikipedia.org/wiki/Anisotropic_filtering

Mo anisotropic filtering 16x anisotropic filtering

_—————— ——
v
e e—

A

Figure 39:

automatically by a sampler.

Aside from these filters, a sampler can also take care of transformations. It
determines what happens when you try to read texels outside the image through
its addressing mode. The image below displays some of the possibilities:

Repeat Mirrored repeat Clamp to edge Clamp to border

Figure 40:

We will now create a function createTextureSampler to set up such a sampler

object. We’ll be using that sampler to read colors from the texture in the shader
later on.

void initVulkan() {

createTextureImage();
createTextureImageView() ;
createTextureSampler () ;

void createTextureSampler() {

171

3

Samplers are configured through a VkSamplerCreateInfo structure, which spec-
ifies all filters and transformations that it should apply.

VkSamplerCreateInfo samplerInfo = {3};

samplerInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
VK_FILTER_LINEAR;
VK_FILTER_LINEAR;

samplerInfo.magFilter

samplerInfo.minFilter

The magFilter and minFilter fields specify how to interpolate texels that
are magnified or minified. Magnification concerns the oversampling prob-
lem describes above, and minification concerns undersampling. The choices
are VK_FILTER_NEAREST and VK_FILTER_LINEAR, corresponding to the modes
demonstrated in the images above.

VK_SAMPLER_ADDRESS_MODE_REPEAT;
VK_SAMPLER_ADDRESS_MODE_REPEAT;
VK_SAMPLER_ADDRESS_MODE_REPEAT;

samplerInfo.addressModeU
samplerInfo.addressModeV
samplerInfo.addressModeW

The addressing mode can be specified per axis using the addressMode fields.
The available values are listed below. Most of these are demonstrated in the
image above. Note that the axes are called U, V and W instead of X, Y and Z.
This is a convention for texture space coordinates.

e VK_SAMPLER_ADDRESS_MODE_REPEAT: Repeat the texture when going be-
yond the image dimensions.

e VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT: Like repeat, but inverts
the coordinates to mirror the image when going beyond the dimensions.

e VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE: Take the color of the edge
closest to the coordinate beyond the image dimensions.

 VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE: Like clamp to edge,
but instead uses the edge opposite to the closest edge.

« VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER: Return a solid color when
sampling beyond the dimensions of the image.

It doesn’t really matter which addressing mode we use here, because we’re not
going to sample outside of the image in this tutorial. However, the repeat mode
is probably the most common mode, because it can be used to tile textures like
floors and walls.

samplerInfo.anisotropyEnable = VK_TRUE;
samplerInfo.maxAnisotropy = 16;

These two fields specify if anisotropic filtering should be used. There is no reason
not to use this unless performance is a concern. The maxAnisotropy field limits
the amount of texel samples that can be used to calculate the final color. A
lower value results in better performance, but lower quality results. There is no

172

graphics hardware available today that will use more than 16 samples, because
the difference is negligible beyond that point.

samplerInfo.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK ;

The borderColor field specifies which color is returned when sampling beyond
the image with clamp to border addressing mode. It is possible to return
black, white or transparent in either float or int formats. You cannot specify an
arbitrary color.

samplerInfo.unnormalizedCoordinates = VK_FALSE;

The unnormalizedCoordinates field specifies which coordinate system you
want to use to address texels in an image. If this field is VK_TRUE, then you can
simply use coordinates within the [0, texWidth) and [0, texHeight) range.
If it is VK_FALSE, then the texels are addressed using the [0, 1) range on all
axes. Real-world applications almost always use normalized coordinates, because
then it’s possible to use textures of varying resolutions with the exact same
coordinates.

samplerInfo.compareEnable = VK_FALSE;
samplerInfo.compareOp = VK_COMPARE_OP_ALWAYS;

If a comparison function is enabled, then texels will first be compared to a value,
and the result of that comparison is used in filtering operations. This is mainly
used for percentage-closer filtering on shadow maps. We’ll look at this in a future
chapter.

samplerInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
samplerInfo.mipLodBias = 0.0f;

samplerInfo.minlLod = 0.0f;

samplerInfo.maxLod = 0.0f;

All of these fields apply to mipmapping. We will look at mipmapping in a future
chapter, but basically it’s another type of filter that can be applied.

The functioning of the sampler is now fully defined. Add a class member to hold
the handle of the sampler object and create the sampler with vkCreateSampler:

VDeleter<VkImageView> textureImageView{device, vkDestroyImageViewl};
VDeleter<VkSampler> textureSampler{device, vkDestroySampler};

void createTextureSampler() {

if (vkCreateSampler(device, &samplerInfo, nullptr, textureSampler.replace()) != VK_SUCCI
throw std::runtime_error("failed to create texture sampler!");

3

173

http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html

Note the sampler does not reference a VkImage anywhere. The sampler is a
distinct object that provides an interface to extract colors from a texture. It can
be applied to any image you want, whether it is 1D, 2D or 3D. This is different
from many older APIs, which combined texture images and filtering into a single
state.

In the next chapter we will expose the image and sampler objects to the shaders
to draw the texture onto the square.

C++ code / Vertex shader / Fragment shader # Combined image sampler

Introduction

We looked at descriptors for the first time in the uniform buffers part of the
tutorial. In this chapter we will look at a new type of descriptor: combined
image sampler. This descriptor makes it possible for shaders to access an image
resource through a sampler object like the one we created in the previous chapter.

We’ll start by modifying the descriptor layout, descriptor pool and descriptor set
to include such a combined image sampler descriptor. After that, we’re going
to add texture coordinates to Vertex and modify the fragment shader to read
colors from the texture instead of just interpolating the vertex colors.

Updating the descriptors

Browse to the createDescriptorSetLayout function and add a VkDescriptorSetLayoutBinding
for a combined image sampler descriptor. We’ll simply put it in the binding
after the uniform buffer:

VkDescriptorSetLayoutBinding samplerLayoutBinding = {3};
samplerLayoutBinding.binding = 1;

samplerLayoutBinding.descriptorCount = 1;

samplerLayoutBinding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
samplerLayoutBinding.pImmutableSamplers = nullptr;
samplerLayoutBinding.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;

std: :array<VkDescriptorSetLayoutBinding, 2> bindings = {ubolLayoutBinding, samplerLayoutBind:
VkDescriptorSetLayoutCreateInfo layoutInfo = {};

layoutInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layoutInfo.bindingCount = bindings.size();

layoutInfo.pBindings = bindings.data();

Make sure to set the stageFlags to indicate that we intend to use the combined
image sampler descriptor in the fragment shader. That’s where the color of the
fragment is going to be determined. It is possible to use texture sampling in

174

https://vulkan-tutorial.com/code/sampler.cpp
https://vulkan-tutorial.com/code/shader_ubo.vert
https://vulkan-tutorial.com/code/shader_ubo.frag

the vertex shader, for example to dynamically deform a grid of vertices by a
heightmap.

If you would run the application with validation layers now, then you’ll see
that it complains that the descriptor pool cannot allocate a descriptor set
with this layout, because it doesn’t have any combined image sampler descrip-
tors. Go to the createDescriptorPool function and modify it to include a
VkDescriptorPoolSize for this descriptor:

std: :array<VkDescriptorPoolSize, 2> poolSizes = {};
poolSizes[0] .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
poolSizes[0] .descriptorCount = 1;

poolSizes[1].type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
poolSizes[1] .descriptorCount = 1;

VkDescriptorPoolCreateInfo poolInfo = {};

poolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
poolInfo.poolSizeCount = poolSizes.size();

poolInfo.pPoolSizes = poolSizes.data();

poolInfo.maxSets = 1;

The final step is to bind the actual image and sampler resources to the descriptor
in the descriptor set. Go to the createDescriptorSet function.

VkDescriptorImageInfo imageInfo = {};

imageInfo.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
imageInfo.imageView = texturelmageView;

imageInfo.sampler = textureSampler;

The resources for a combined image sampler structure must be specified in a
VkDescriptorImageInfo struct, just like the buffer resource for a uniform buffer
descriptor is specified in a VkDescriptorBufferInfo struct. This is where the
objects from the previous chapter come together.

{3

std::array<VkWriteDescriptorSet, 2> descriptorWrites =

descriptorWrites[0]
descriptorWrites[0]

.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
.dstSet = descriptorSet;

descriptorWrites[0]
descriptorWrites[0]
descriptorWrites[0]
descriptorWrites[0]
descriptorWrites[0]

descriptorWrites[1]

.dstBinding = O;
.dstArrayElement =
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
.descriptorCount = 1;

.pBufferInfo = &bufferInfo;

0;

.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;

descriptorWrites[1] .dstSet = descriptorSet;
descriptorWrites[1] .dstBinding = 1;
descriptorWrites[1].dstArrayElement = O;

descriptorWrites[1]

.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;

175

https://en.wikipedia.org/wiki/Heightmap

descriptorWrites[1] .descriptorCount = 1;
descriptorWrites[1] .pImageInfo = &imageInfo;

vkUpdateDescriptorSets(device, descriptorWrites.size(), descriptorWrites.data(), O, nullptr,

The descriptor must be updated with this image info, just like the buffer. This
time we’re using the pImageInfo array instead of pBufferInfo. The descriptor
is now ready to be used by the shaders!

Texture coordinates

There is one important ingredient for texture mapping that is still missing, and
that’s the actual coordinates for each vertex. The coordinates determine how
the image is actually mapped to the geometry.

struct Vertex {
glm: :vec2 pos;
glm: :vec3 color;
glm: :vec2 texCoord;

static VkVertexInputBindingDescription getBindingDescription() {
VkVertexInputBindingDescription bindingDescription = {};
bindingDescription.binding = 0;
bindingDescription.stride = sizeof (Vertex);
bindingDescription.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;

return bindingDescription;

3

static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
std: :array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

attributeDescriptions[0] .binding = 0;
attributeDescriptions[0] .location = 0;
attributeDescriptions[0] .format = VK_FORMAT_R32G32_SFLOAT;
attributeDescriptions[0] .offset = offsetof (Vertex, pos);

attributeDescriptions[1].binding = 0;
attributeDescriptions[1].location = 1;
attributeDescriptions[1].format = VK_FORMAT_R32G32B32_SFLOAT;
attributeDescriptions[1].offset = offsetof (Vertex, color);

attributeDescriptions[2] .binding = 0;
attributeDescriptions[2] .location = 2;
attributeDescriptions[2] .format = VK_FORMAT_R32G32_SFLOAT;
attributeDescriptions[2] .offset = offsetof (Vertex, texCoord);

176

return attributeDescriptions;

};

Modify the Vertex struct to include a vec2 for texture coordinates. Make sure
to also add a VkVertexInputAttributeDescription so that we can use access
texture coordinates as input in the vertex shader. That is necessary to be able
to pass them to the fragment shader for interpolation across the surface of the
square.

const std::vector<Vertex> vertices = {
{{-0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
{{0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
{{0.5f, 0.5f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
{{-0.5f, 0.5f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

In this tutorial, I will simply fill the square with the texture by using coordinates
from 0, O in the top-left corner to 1, 1 in the bottom-right corner. Feel free to
experiment with different coordinates. Try using coordinates below 0 or above 1
to see the addressing modes in action!

Shaders

The final step is modifying the shaders to sample colors from the texture. We
first need to modify the vertex shader to pass through the texture coordinates
to the fragment shader:

layout(location = 0) in vec2 inPosition;
layout(location = 1) in vec3 inColor;
layout(location = 2) in vec2 inTexCoord;

layout(location = 0) out vec3 fragColor;
layout(location = 1) out vec2 fragTexCoord;

void main() {
gl_Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 0.0, 1.0);
fragColor = inColor;
fragTexCoord = inTexCoord;

}

Just like the per vertex colors, the fragTexCoord values will be smoothly inter-
polated across the area of the square by the rasterizer. We can visualize this by
having the fragment shader output the texture coordinates as colors:

#version 450
#extension GL_ARB_separate_shader_objects : enable

177

layout (location
layout (location

0) in vec3 fragColor;
1) in vec2 fragTexCoord;

layout(location = 0) out vec4 outColor;

void main() {
outColor = vec4(fragTexCoord, 0.0, 1.0);
}

You should see something like the image below. Don’t forget to recompile the
shaders!

5| Vulkan - O x

Figure 41:

The green channel represents the horizontal coordinates and the red channel
the vertical coordinates. The black and yellow corners confirm that the texture
coordinates are correctly interpolated from 0, 0 to 1, 1 across the square.
Visualizing data using colors is the shader programming equivalent of printf
debugging, for lack of a better option!

A combined image sampler descriptor is represented in GLSL by a sampler
uniform. Add a reference to it in the fragment shader:

178

layout(binding = 1) uniform sampler2D texSampler;

There are equivalent sampler1D and sampler3D types for other types of images.
Make sure to use the correct binding here.

void main() {
outColor = texture(texSampler, fragTexCoord);

}

Textures are sampled using the built-in texture function. It takes a sampler
and coordinate as arguments. The sampler automatically takes care of the
filtering and transformations in the background. You should now see the texture
on the square when you run the application:

5. Vulkan - O X

Figure 42:

Try experimenting with the addressing modes by scaling the texture coordinates
to values higher than 1. For example, the following fragment shader produces
the result in the image below when using VK_SAMPLER_ADDRESS_MODE_REPEAT:

void main() {
outColor = texture(texSampler, fragTexCoord * 2.0);

}

You can also manipulate the texture colors using the vertex colors:

179

B Vulkan - O *

Figure 43:

180

void main() {
outColor = vec4(fragColor * texture(texSampler, fragTexCoord).rgb, 1.0);

3

I’ve separated the RGB and alpha channels here to not scale the alpha channel.

5| Vulkan — O X

Figure 44:

You now know how to access images in shaders! This is a very powerful technique
when combined with images that are also written to in framebuffers. You can
use these images as inputs to implement cool effects like post-processing and
camera displays within the 3D world.

C++ code / Vertex shader / Fragment shader # Depth buffering

Introduction

The geometry we’ve worked with so far is projected into 3D, but it’s still
completely flat. In this chapter we’re going to add a Z coordinate to the position
to prepare for 3D meshes. We’ll use this third coordinate to place a square over
the current square to see a problem that arises when geometry is not sorted by
depth.

181

https://vulkan-tutorial.com/code/texture_mapping.cpp
https://vulkan-tutorial.com/code/shader_textures.vert
https://vulkan-tutorial.com/code/shader_textures.frag

3D geometry

Change the Vertex struct to use a 3D vector for the position, and update the
format in the corresponding VkVertexInputAttributeDescription:

struct Vertex {
glm::vec3 pos;
glm: :vec3 color;
glm: :vec2 texCoord;

static std::array<VkVertexInputAttributeDescription, 3> getAttributeDescriptions() {
std: :array<VkVertexInputAttributeDescription, 3> attributeDescriptions = {};

attributeDescriptions[0] .binding = 0;
attributeDescriptions[0] .location = 0;
attributeDescriptions[0] .format = VK_FORMAT_R32G32B32_SFLOAT;
attributeDescriptions[0] .offset = offsetof (Vertex, pos);

};

Next, update the vertex shader to accept and transform 3D coordinates as input.
Don’t forget to recompile it afterwards!

layout(location = 0) in vec3 inPosition;

void main() {
gl _Position = ubo.proj * ubo.view * ubo.model * vec4(inPosition, 1.0);
fragColor = inColor;
fragTexCoord = inTexCoord;

}
Lastly, update the vertices container to include Z coordinates:

const std::vector<Vertex> vertices = {
{{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
{{0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
{{0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
{{-0.5f, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

If you run your application now, then you should see exactly the same result as
before. It’s time to add some extra geometry to make the scene more interesting,

182

and to demonstrate the problem that we’re going to tackle in this chapter.
Duplicate the vertices to define positions for a square right under the current
one like this:

vl
0 w2
. ’ p
Wi
Figure 45:

Use Z coordinates of -0.5f and add the appropriate indices for the extra square:

const std::vector<Vertex> vertices = {
{{-0.5f, -0.5f, 0.0f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},
{{0.5f, -0.5f, 0.0f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},
{{0.5f, 0.5f, 0.0f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},
{{-0.5¢, 0.5f, 0.0f}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0£f}},

{{-0.5f, -0.5f, -0.5f}, {1.0f, 0.0f, 0.0f}, {0.0f, 0.0f}},

{{0.5f, -0.5f, -0.5f}, {0.0f, 1.0f, 0.0f}, {1.0f, 0.0f}},

{{0.5f, 0.5f, -0.5f}, {0.0f, 0.0f, 1.0f}, {1.0f, 1.0f}},

{{-0.5¢, 0.5f, -0.5¢}, {1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}}
};

const std::vector<uint16_t> indices = {
o, 1, 2, 2, 3, 0,
4, 5, 6, 6, 7, 4

};

Run your program now and you’ll see something resembling an Escher illustration:

The problem is that the fragments of the lower square are drawn over the
fragments of the upper square, simply because it comes later in the index array.
There are two ways to solve this:

o Sort all of the draw calls by depth from back to front
o Use depth testing with a depth buffer

183

B Vulkan - O *

Figure 46:

184

The first approach is commonly used for drawing transparent objects, because
order-independent transparency is a difficult challenge to solve. However, the
problem of ordering fragments by depth is much more commonly solved using a
depth buffer. A depth buffer is an additional attachment that stores the depth for
every position, just like the color attachment stores the color of every position.
Every time the rasterizer produces a fragment, the depth test will check if the
new fragment is closer than the previous one. If it isn’t, then the new fragment
is discarded. A fragment that passes the depth test writes its own depth to the
depth buffer. It is possible to manipulate this value from the fragment shader,
just like you can manipulate the color output.

#define GLM_FORCE_RADIANS

#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

The perspective projection matrix generated by GLM will use the OpenGL depth
range of -1.0 to 1.0 by default. We need to configure it to use the Vulkan
range of 0.0 to 1.0 using the GLM_FORCE_DEPTH_ZERO_TO_ONE definition.

Depth image and view

A depth attachment is based on an image, just like the color attachment. The
difference is that the swap chain will not automatically create depth images
for us. We only need a single depth image, because only one draw operation is
running at once. The depth image will again require the trifecta of resources:
image, memory and image view.

VDeleter<VkImage> depthImage{device, vkDestroyImagel};
VDeleter<VkDeviceMemory> depthImageMemory{device, vkFreeMemory};
VDeleter<VkImageView> depthImageView{device, vkDestroyImageViewl};

Create a new function createDepthResources to set up these resources:
void initVulkan() {
createCommandPool () ;

createDepthResources() ;
createTextureImage() ;

void createDepthResources() {

}

185

Creating a depth image is fairly straightforward. It should have the same
resolution as the color attachment, defined by the swap chain extent, an image
usage appropriate for a depth attachment, optimal tiling and device local memory.
The only question is: what is the right format for a depth image? The format
must contain a depth component, indicated by _D?7_ in the VK_FORMAT_.

Unlike the texture image, we don’t necessarily need a specific format, because
we won’t be directly accessing the texels from the program. It just needs to
have a reasonable accuracy, at least 24 bits is common in real-world applications.
There are several formats that fit this requirement:

e VK_FORMAT_D32_SFLOAT: 32-bit float for depth

e VK_FORMAT_D32_SFLOAT_S8_UINT: 32-bit signed float for depth and 8 bit
stencil component

e VK_FORMAT_D24_UNORM_S8_UINT: 24-bit float for depth and 8 bit stencil
component

The stencil component is used for stencil tests, which is an additional test that
can be combined with depth testing. We’ll look at this in a future chapter.

We could simply go for the VK_FORMAT_D32_SFLOAT format, because support
for it is extremely common (see the hardware database), but it’s nice to add
some extra flexibility to our application where possible. We're going to write a
function findSupportedFormat that takes a list of candidate formats in order
from most desirable to least desirable, and checks which is the first one that is
supported:

VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling,

}

The support of a format depends on the tiling mode and usage, so we must also
include these as parameters. The support of a format can be queried using the
vkGetPhysicalDeviceFormatProperties function:

for (VkFormat format : candidates) {
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);

}
The VkFormatProperties struct contains three fields:

e linearTilingFeatures: Use cases that are supported with linear tiling
e optimalTilingFeatures: Use cases that are supported with optimal tiling
e bufferFeatures: Use cases that are supported for buffers

Only the first two are relevant here, and the one we check depends on the tiling
parameter of the function:

if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features;
return format;

186

https://en.wikipedia.org/wiki/Stencil_buffer

} else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) ==
return format;

3

If none of the candidate formats support the desired usage, then we can either
return a special value or simply throw an exception:

VkFormat findSupportedFormat(const std::vector<VkFormat>& candidates, VkImageTiling tiling,
for (VkFormat format : candidates) {
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);

if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) ==
return format;
} else if (tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & feat
return format;
}
}

throw std::runtime_error("failed to find supported format!");

}

We’ll use this function now to create a findDepthFormat helper function to select
a format with a depth component that supports usage as depth attachment:

VkFormat findDepthFormat() {
return findSupportedFormat (
{VK_FORMAT_D32_SFLOAT, VK_FORMAT_D32_SFLOAT_S8_UINT, VK_FORMAT_D24_UNORM_S8_UINT},
VK_IMAGE_TILING_OPTIMAL,
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT
)
X

Make sure to use the VK_FORMAT_FEATURE_ flag instead of VK_IMAGE_USAGE_ in
this case. All of these candidate formats contain a depth component, but the
latter two also contain a stencil component. We won’t be using that yet, but we
do need to take that into account when performing layout transitions on images
with these formats. Add a simple helper function that tells us if the chosen
depth format contains a stencil component:

bool hasStencilComponent (VkFormat format) {
return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;

}
Call the function to find a depth format from createDepthResources:
VkFormat depthFormat = findDepthFormat();

We now have all the required information to invoke our createImage and
createImageView helper functions:

187

createImage (swapChainExtent.width, swapChainExtent.height, depthFormat, VK_IMAGE_TILING_OPT:
createImageView(depthImage, depthFormat, depthImageView);

However, the createImageView function currently assumes that the subresource
is always the VK_IMAGE_ASPECT_COLOR_BIT, so we will need to turn that field
into a parameter:

void createImageView(VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, VDelete
viewInfo.subresourceRange.aspectMask = aspectFlags;

}
Update all calls to this function to use the right aspect:

createImageView(swapChainImages[i], swapChainImageFormat, VK_IMAGE_ASPECT_COLOR_BIT, swapCh:
createImageView(depthImage, depthFormat, VK_IMAGE_ASPECT_DEPTH_BIT, depthImageView) ;

createImageView(textureImage, VK_FORMAT_R8G8BSA8_UNORM, VK_IMAGE_ASPECT_COLOR_BIT, texturelr

That’s it for creating the depth image. We don’t need to map it or copy another
image to it, because we’re going to clear it at the start of the render pass like
the color attachment. However, it still needs to be transitioned to a layout that
is suitable for depth attachment usage. We could do this in the render pass like
the color attachment, but here I’ve chosen to use a pipeline barrier because the
transition only needs to happen once:

transitionImagelayout (depthImage, depthFormat, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOQUT_DI

The undefined layout can be used as initial layout, because there are no existing
depth image contents that matter. We need to update some of the logic in
transitionImageLlayout to use the right subresource aspect:

if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;

if (hasStencilComponent(format)) {
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
} else {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}

Although we’re not using the stencil component, we do need to include it in the
layout transitions of the depth image.

Finally, add the correct access masks:

if (oldLayout == VK_IMAGE_LAYOUT_PREINITIALIZED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_SKR(
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;

188

}

3

barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
else if (oldLayout == VK_IMAGE_LAYOUT_PREINITIALIZED && newLayout == VK_IMAGE_LAYOUT_TRANS
barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
else if (oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYQU"
barrier.srcAccessMask VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask VK_ACCESS_SHADER_READ_BIT;
else if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STEI
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_S’
else {
throw std::invalid_argument ("unsupported layout transition!");

The image is now completely ready for usage as depth attachment.

Render pass

We’re now going to modify createRenderPass to include a depth attachment.
First specify the VkAttachementDescription:

VkAttachmentDescription depthAttachment = {};

depthAttachment.format = findDepthFormat();

depthAttachment.samples = VK_SAMPLE_COUNT_1_BIT;

depthAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;

depthAttachment.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
depthAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
depthAttachment.initiallayout = VK_IMAGE_LAYOUT_UNDEFINED;
depthAttachment.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;

The format should be the same as the depth image itself. This time we don’t care
about storing the depth data (storeOp), because it will not be used after drawing
has finished. This may allow the hardware to perform additional optimizations.
Just like the color buffer, we don’t care about the previous depth contents, so
we can use VK_IMAGE_LAYOUT_UNDEFINED as initialLayout.

VkAttachmentReference depthAttachmentRef = {};
depthAttachmentRef.attachment = 1;
depthAttachmentRef .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT OPTIMAL;

Add a reference to the attachment for the first (and only) subpass:

VkSubpassDescription subpass = {};

subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;

subpass.pColorAttachments = &colorAttachmentRef;
subpass.pDepthStencilAttachment = &depthAttachmentRef;

189

Unlike color attachments, a subpass can only use a single depth (+stencil)
attachment. It wouldn’t really make any sense to do depth tests on multiple
buffers.

std: :array<VkAttachmentDescription, 2> attachments = {colorAttachment, depthAttachment};

VkRenderPassCreateInfo renderPassInfo = {};

renderPassInfo.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
renderPassInfo.attachmentCount = attachments.size();
renderPassInfo.pAttachments = attachments.data();
renderPassInfo.subpassCount = 1;

renderPassInfo.pSubpasses = &subpass;
renderPassInfo.dependencyCount = 1;

renderPassInfo.pDependencies = &dependency;

Finally, update the VkRenderPassCreateInfo struct to refer to both attach-
ments.

Framebuffer

The next step is to modify the framebuffer creation to bind the depth image to
the depth attachment. Go to createFramebuffers and specify the depth image
view as second attachment:

std::array<VkImageView, 2> attachments = {
swapChainImageViews[i],
depthImageView

I

VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.renderPass = renderPass;
framebufferInfo.attachmentCount = attachments.size();
framebufferInfo.pAttachments = attachments.data();
framebufferInfo.width = swapChainExtent.width;
framebufferInfo.height = swapChainExtent.height;
framebufferInfo.layers = 1;

The color attachment differs for every swap chain image, but the same depth
image can be used by all of them because only a single subpass is running at the
same time due to our semaphores.

You'll also need to move the call to createFramebuffers to make sure that it
is called after the depth image view has actually been created:

void initVulkan() {

createDepthResources() ;
createFramebuffers();

190

Clear values

Because we now have multiple attachments with VK_ATTACHMENT_LOAD_OP_CLEAR,
we also need to specify multiple clear values. Go to createCommandBuffers
and create an array of VkClearValue structs:

std: :array<VkClearValue, 2> clearValues = {};
clearValues[0] .color = {0.0f, 0.0f, 0.0f, 1.0f};
clearValues[1] .depthStencil = {1.0f, 0};

renderPassInfo.clearValueCount = clearValues.size();
renderPassInfo.pClearValues = clearValues.data();

The range of depths in the depth buffer is 0.0 to 1.0 in Vulkan, where 1.0 lies
at the far view plane and 0.0 at the near view plane. The initial value at each
point in the depth buffer should be the furthest possible depth, which is 1.0.

Depth and stencil state

The depth attachment is ready to be used now, but depth testing still
needs to be enabled in the graphics pipeline. It is configured through the
VkPipelineDepthStencilStateCreateInfo struct:

VkPipelineDepthStencilStateCreateInfo depthStencil = {};

depthStencil.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = VK_TRUE;

depthStencil.depthWriteEnable = VK_TRUE;

The depthTestEnable field specifies if the depth of new fragments should
be compared to the depth buffer to see if they should be discarded. The
depthWriteEnable field specifies if the new depth of fragments that pass the
depth test should actually be written to the depth buffer. This is useful for draw-
ing transparent objects. They should be compared to the previously rendered
opaque objects, but not cause further away transparent objects to not be drawn.

depthStencil.depthCompareOp = VK_COMPARE_OP_LESS;

The depthCompareOp field specifies the comparison that is performed to keep or
discard fragments. We're sticking to the convention of lower depth = closer, so
the depth of new fragments should be less.

depthStencil.depthBoundsTestEnable = VK_FALSE;
depthStencil .minDepthBounds = 0.0f; // Optional
depthStencil.maxDepthBounds = 1.0f; // Optional

191

The depthBoundsTestEnable, minDepthBounds and maxDepthBounds fields are
used for the optional depth bound test. Basically, this allows you to only keep
fragments that fall within the specified depth range. We won’t be using this
functionality.

depthStencil.stencilTestEnable = VK_FALSE;
depthStencil.front = {};
depthStencil.back = {};

The last three fields configure stencil buffer operations, which we also won’t
be using in this tutorial. If you want to use these operations, then you will
have to make sure that the format of the depth/stencil image contains a stencil
component.

pipelinelnfo.pDepthStencilState = &depthStencil;

Update the VkGraphicsPipelineCreateInfo struct to reference the depth sten-
cil state we just filled in. A depth stencil state must always be specified if the
render pass contains a depth stencil attachment.

If you run your program now, then you should see that the fragments of the
geometry are now correctly ordered:

5. Vulkan - O >

Figure 47:

192

Handling window resize

The resolution of the depth buffer should change when the window is resized
to match the new color attachment resolution. Extend the recreateSwapChain
function to recreate the depth resources in that case:

void recreateSwapChain() {
vkDeviceWaitIdle(device) ;

createSwapChain() ;
createImageViews();
createRenderPass();
createGraphicsPipeline();
createDepthResources() ;
createFramebuffers();
createCommandBuffers();

}

Congratulations, your application is now finally ready to render arbitrary 3D
geometry and have it look right. We're going to try this out in the next chapter
by drawing a textured model!

C++ code / Vertex shader / Fragment shader

Loading models

Introduction

Your program is now ready to render textured 3D meshes, but the current
geometry in the vertices and indices arrays is not very interesting yet. In
this chapter we’re going to extend the program to load the vertices and indices
from an actual model file to make the graphics card actually do some work.

Many graphics API tutorials have the reader write their own OBJ loader in a
chapter like this. The problem with this is that any remotely interesting 3D
application will soon require features that are not supported by this file format,
like skeletal animation. We will load mesh data from an OBJ model in this
chapter, but we’ll focus more on integrating the mesh data with the program
itself rather than the details of loading it from a file.

Library

We will use the tinyobjloader library to load vertices and faces from an OBJ file.
It’s fast and it’s easy to integrate because it’s a single file library like stb_image.

193

https://vulkan-tutorial.com/code/depth_buffering.cpp
https://vulkan-tutorial.com/code/shader_depth.vert
https://vulkan-tutorial.com/code/shader_depth.frag
https://github.com/syoyo/tinyobjloader

Go to the repository linked above and download the tiny_obj_loader.h file to
a folder in your library directory.

Visual Studio

Add the directory with tiny_obj_loader.h in it to the Additional Include
Directories paths.

Configuration: | All Configurations ~ | Platform: | Active(Win32) ~ Configuration Manager...
4 Configuration Properties Additional Include Directories CAUsers\, \Documents\Visual Studio 2015\Libraries\tinyo
General Additional #using Directories
Debugging Debu . . .
VCs Directories cor) Additional Include Directories [>
4 C/C++
Cons ez
General Suppl
Optimization Warn ChlUsersh, “DocumentsiVisual Studie 2015\Libraries\tinyobjloader-develop ~
Preprocessor ChlUsersh “Decuments\Visual Studie 2015\Libraries\stb-master
. Treat| | colsersh “Decuments\Visual Studie 2015\Libraries\glm
Code Generation P . Cam e e mmamee LT e a s e

Figure 48:

Makefile
Add the directory with tiny_obj_loader.h to the include directories for GCC:

VULKAN_SDK_PATH = /home/user/VulkanSDK/x.x.x.x/x86_64
STB_INCLUDE_PATH = /home/user/libraries/stb
TINYOBJ_INCLUDE_PATH = /home/user/libraries/tinyobjloader

CFLAGS = -std=c++11 -I$(VULKAN SDK_PATH)/include -I$(STB_INCLUDE PATH) -I$(TINYOBJ_ INCLUDE_!

Sample mesh

In this chapter we won’t be enabling lighting yet, so it helps to use a sample
model that has lighting baked into the texture. An easy way to find such models
is to look for 3D scans on Sketchfab. Many of the models on that site are
available in OBJ format with a permissive license.

For this tutorial I've decided to go with the Chalet Hippolyte Chassande Baroz
model by Escadrone. I tweaked the size and orientation of the model to use it
as a drop in replacement for the current geometry:

o chalet.obj
e chalet.jpg

It has half a million triangles, so it’s a nice benchmark for our application. Feel
free to use your own model, but make sure that it only consists of one material
and that is has dimensions of about 1.5 x 1.5 x 1.5 units. If it is larger than

194

https://sketchfab.com/
https://skfb.ly/HDVU
https://vulkan-tutorial.com/resources/chalet.obj.zip
https://vulkan-tutorial.com/resources/chalet.jpg

that, then you’ll have to change the view matrix. Put the model file in a new
models directory next to shaders and textures, and put the texture image in
the textures directory.

Put two new configuration variables in your program to define the model and
texture paths:

const int WIDTH = 800;
const int HEIGHT = 600;

const std::string MODEL_PATH = "models/chalet.obj";
const std::string TEXTURE_PATH = "textures/chalet.jpg";

And update createTextureImage to use this path variable:

stbi_ucx pixels = stbi_load (TEXTURE_PATH.c_str(), &texWidth, &texHeight, &texChannels, STBI.

Loading vertices and indices

We're going to load the vertices and indices from the model file now, so you
should remove the global vertices and indices arrays now. Replace them with
non-const containers as class members:

std::vector<Vertex> vertices;

std::vector<uint32_t> indices;

VDeleter<VkBuffer> vertexBuffer{device, vkDestroyBuffer};
VDeleter<VkDeviceMemory> vertexBufferMemory{device, vkFreeMemory};

You should change the type of the indices from uint16_t to uint32_t, because
there are going to be a lot more vertices than 65535. Remember to also change
the vkCmdBindIndexBuffer parameter:

vkCmdBindIndexBuffer (commandBuffers[i], indexBuffer, O, VK_INDEX_TYPE_UINT32);

The tinyobjloader library is included in the same way as STB li-
braries. Include the tiny_obj_loader.h file and make sure to define
TINYOBJLOADER_IMPLEMENTATION in one source file to include the function
bodies and avoid linker errors:

#define TINYOBJLOADER_IMPLEMENTATION
#include <tiny_obj_loader.h>

We're now going to write a loadModel function that uses this library to populate
the vertices and indices containers with the vertex data from the mesh. It
should be called somewhere before the vertex and index buffers are created:

void initVulkan() {

loadModel () ;
createVertexBuffer();

195

createIndexBuffer();

void loadModel() {

3

A model is loaded into the library’s data structures by calling the
tinyobj: :Load0Obj function:

void loadModel() {
tinyobj::attrib_t attrib;
std::vector<tinyobj::shape_t> shapes;
std::vector<tinyobj::material_t> materials;
std::string err;

if (!tinyobj::LoadObj(&attrib, &shapes, &materials, &err, MODEL_PATH.c_str())) {
throw std::runtime_error (err);
}
}

An OBJ file consists of positions, normals, texture coordinates and faces. Faces
consist of an arbitrary amount of vertices, where each vertex refers to a position,
normal and/or texture coordinate by index. This makes it possible to not just
reuse entire vertices, but also individual attributes.

The attrib container holds all of the positions, normals and texture coordinates
in its attrib.vertices, attrib.normals and attrib.texcoords vectors. The
shapes container contains all of the separate objects and their faces. Each
face consists of an array of vertices, and each vertex contains the indices of the
position, normal and texture coordinate attributes. OBJ models can also define
a material and texture per face, but we will be ignoring those.

The err string contains errors and warnings that occurred while loading the
file, like a missing material definition. Loading only really failed if the LoadObj
function returns false. As mentioned above, faces in OBJ files can actually
contain an arbitrary number of vertices, whereas our application can only render
triangles. Luckily the LoadObj has an optional parameter to automatically
triangulate such faces, which is enabled by default.

We’re going to combine all of the faces in the file into a single model, so just
iterate over all of the shapes:

for (const auto& shape : shapes) {

3

196

The triangulation feature has already made sure that there are three vertices per
face, so we can now directly iterate over the vertices and dump them straight
into our vertices vector:

for (const auto& shape : shapes) {
for (const auto& index : shape.mesh.indices) {
Vertex vertex = {};

vertices.push_back(vertex);
indices.push_back(indices.size());

}

For simplicity, we will assume that every vertex is unique for now, hence the simple
auto-increment indices. The index variable is of type tinyobj: :index_t, which
contains the vertex_index, normal_index and texcoord_index members. We
need to use these indices to look up the actual vertex attributes in the attrib
arrays:

vertex.pos = {
attrib.vertices[3 * index.vertex_index + 0],
attrib.vertices[3 * index.vertex_index + 1],
attrib.vertices[3 * index.vertex_index + 2]

};

vertex.texCoord = {
attrib.texcoords[2 * index.texcoord_index + 0],
attrib.texcoords[2 * index.texcoord_index + 1]

};

vertex.color = {1.0f, 1.0f, 1.0f};

Unfortunately the attrib.vertices array is an array of float values instead
of something like glm: : vec3, so you need to multiply the index by 3. Similarly,
there are two texture coordinate components per entry. The offsets of 0, 1 and
2 are used to access the X, Y and Z components, or the U and V components in
the case of texture coordinates.

Run your program now with optimization enabled (e.g. Release mode in Visual
Studio and with the -03 compiler flag for GCC*). This is necessary, because
otherwise loading the model will be very slow. You should see something like
the following:

Great, the geometry looks correct, but what’s going on with the texture? The
problem is that the origin of texture coordinates in Vulkan is the top-left corner,
whereas the OBJ format assumes the bottom-left corner. Solve this by flipping
the vertical component of the texture coordinates:

vertex.texCoord = {

197

1 Vulkan

Figure 49:

198

attrib.texcoords[2 * index.texcoord_index + 0],
1.0f - attrib.texcoords[2 * index.texcoord_index + 1]

};

When you run your program again, you should now see the correct result:

5 Vulkan — O X

Figure 50:

All that hard work is finally beginning to pay off with a demo like this!

Vertex deduplication

Unfortunately we’re not really taking advantage of the index buffer yet. The
vertices vector contains a lot of duplicated vertex data, because many vertices
are included in multiple triangles. We should keep only the unique vertices and
use the index buffer to reuse them whenever they come up. A straightforward
way to implement this is to use a map or unordered_map to keep track of the
unique vertices and their index:

#include <unordered_map>

199

std: :unordered_map<Vertex, int> uniqueVertices = {};

for (const auto& shape : shapes) {
for (const auto& index : shape.mesh.indices) {
Vertex vertex = {};

if (uniqueVertices.count(vertex) == 0) {
uniqueVertices[vertex] = vertices.size();
vertices.push_back(vertex);

3

indices.push_back(uniqueVertices[vertex]);

}

Every time we read a vertex from the OBJ file, we check if we’'ve already seen a
vertex with the exact same position and texture coordinates before. If not, we
add it to vertices and store its index in the uniqueVertices container. After
that we add the index of the new vertex to indices. If we’ve seen the exact
same vertex before, then we look up its index in uniqueVertices and store that
index in indices.

The program will fail to compile right now, because using a user-defined type like
our Vertex struct as key in a hash table requires us to implement two functions:
equality test and hash calculation. The former is easy to implement by overriding
the == operator in the Vertex struct:

bool operator==(const Vertex& other) const {

return pos == other.pos && color == other.color && texCoord == other.texCoord;

}

A hash function for Vertex is implemented by specifying a template specialization
for std: :hash<T>. Hash functions are a complex topic, but cppreference.com
recommends the following approach combining the fields of a struct to create a
decent quality hash function:

namespace std {
template<> struct hash<Vertex> {
size_t operator() (Vertex const& vertex) const {
return ((hash<glm::vec3>() (vertex.pos) ~
(hash<glm: :vec3>() (vertex.color) << 1)) >> 1) ~
(hash<glm: :vec2>() (vertex.texCoord) << 1);

200

http://en.cppreference.com/w/cpp/utility/hash
http://en.cppreference.com/w/cpp/utility/hash

This code should be placed outside the Vertex struct. The hash functions for
the GLM types need to be included using the following header:

#include <glm/gtx/hash.hpp>

You should now be able to successfully compile and run your program. If you
check the size of vertices, then you'll see that it has shrunk down from 1,500,000
to 265,645! That means that each vertex is reused in an average number of ~6
triangles. This definitely saves us a lot of GPU memory.

Conclusion

It has taken a lot of work to get to this point, but now you finally have a good
base for a Vulkan program. The knowledge of the basic principles of Vulkan that
you now possess should be sufficient to start exploring more of the features, like:

e Push constants

o Instanced rendering

e Dynamic uniforms

¢ Separate images and sampler descriptors

o Pipeline cache

o Multi-threaded command buffer generation
o Multiple subpasses

The current program can be extended in many ways, like adding Blinn-Phong
lighting, post-processing effects and shadow mapping. You should be able to
learn how these effects work from tutorials for other APIs, because despite
Vulkan’s explicitness, many concepts still work the same.

C++ code / Vertex shader / Fragment shader

201

https://vulkan-tutorial.com/code/model_loading.cpp
https://vulkan-tutorial.com/code/shader_depth.vert
https://vulkan-tutorial.com/code/shader_depth.frag

	Introduction
	About
	Tutorial structure

	Overview
	Origin of Vulkan
	What it takes to draw a triangle
	Step 1 - Instance and physical device selection
	Step 2 - Logical device and queue families
	Step 3 - Window surface and swap chain
	Step 4 - Image views and framebuffers
	Step 5 - Render passes
	Step 6 - Graphics pipeline
	Step 7 - Command pools and command buffers
	Step 8 - Main loop
	Summary

	API concepts
	Coding conventions
	Validation layers

	Windows
	Vulkan SDK
	GLFW
	GLM
	Setting up Visual Studio

	Linux
	Vulkan SDK
	GLFW
	GLM
	Setting up a makefile project

	Base code
	General structure
	Resource management
	Integrating GLFW

	Instance
	Creating an instance
	Checking for extension support

	Validation layers
	What are validation layers?
	Using validation layers
	Message callback
	Configuration

	Physical devices and queue families
	Selecting a physical device
	Base device suitability checks
	Queue families

	Logical device and queues
	Introduction
	Specifying the queues to be created
	Specifying used device features
	Creating the logical device
	Retrieving queue handles

	Window surface
	Window surface creation
	Querying for presentation support
	Creating the presentation queue

	Swap chain
	Checking for swap chain support
	Querying details of swap chain support
	Choosing the right settings for the swap chain
	Surface format
	Presentation mode
	Swap extent

	Creating the swap chain
	Retrieving the swap chain images

	Image views
	Graphics pipeline basics
	Shader modules
	Vertex shader
	Fragment shader
	Per-vertex colors
	Compiling the shaders
	Loading a shader
	Creating shader modules
	Shader stage creation

	Fixed functions
	Vertex input
	Input assembly
	Viewports and scissors
	Rasterizer
	Multisampling
	Depth and stencil testing
	Color blending
	Dynamic state
	Pipeline layout
	Conclusion

	Render passes
	Setup
	Attachment description
	Subpasses and attachment references
	Render pass

	Graphics pipeline construction
	Framebuffers
	Command buffers
	Command pools
	Command buffer allocation
	Starting command buffer recording
	Starting a render pass
	Basic drawing commands
	Finishing up

	Rendering and presentation
	Setup
	Synchronization
	Semaphores
	Acquiring an image from the swap chain
	Submitting the command buffer
	Subpass dependencies
	Presentation
	Conclusion

	Swap chain recreation
	Introduction
	Recreating the swap chain
	Window resizing
	Suboptimal or out-of-date swap chain
	Introduction
	Vertex shader
	Vertex data
	Binding descriptions
	Attribute descriptions
	Pipeline vertex input
	Introduction
	Buffer creation
	Memory requirements
	Memory allocation
	Filling the vertex buffer
	Binding the vertex buffer
	Introduction
	Transfer queue
	Abstracting buffer creation
	Using a staging buffer
	Conclusion

	Index buffer
	Introduction
	Index buffer creation
	Using an index buffer

	Descriptor layout and buffer
	Introduction
	Vertex shader
	Descriptor set layout
	Uniform buffer
	Updating uniform data

	Descriptor pools and sets
	Introduction
	Descriptor pool
	Descriptor set
	Using a descriptor set
	Multiple descriptor sets

	Images
	Introduction
	Image library
	Loading an image
	Staging image
	Texture image
	Layout transitions
	Copying images
	Preparing the texture image
	Transition barrier masks
	Texture image view
	Samplers
	Introduction
	Updating the descriptors
	Texture coordinates
	Shaders
	Introduction
	3D geometry
	Depth image and view
	Render pass
	Framebuffer
	Clear values
	Depth and stencil state
	Handling window resize

	Loading models
	Introduction
	Library
	Sample mesh
	Loading vertices and indices
	Vertex deduplication
	Conclusion

