Reduction of α,β -Unsaturated Nitroalkenes with Trialkylborohydrides; A Synthesis of Ketones

M. Scubei MOURAD, Rajender S. VARMA, George W. KABALKA* Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, U.S.A.

We recently described a novel preparation of N-substituted hydroxylamines (3) which involves the reduction of α, β -unsaturated nitroalkenes (1) by borane-tetrahydrofuran in the presence of a catalytic amount of sodium borohydride¹. The reaction presumably proceeds via a 1,4-addition of borohydride to the nitroalkene producing the corresponding nitronate (2), which is subsequently reduced by borane-tetrahydrofuran to afford hydroxylamines after hydrolysis.

We reasoned that the hydrolysis of intermediate **2** would produce the corresponding carbonyl compound (a modified Nef reaction ²) if it could be intercepted before a complete reduction occurred. We investigated the use of trialkylborohydrides for the formation of intermediate **2** via the reduction of conjugated nitroalkenes because they had been successfully utilized in conjugate additions to α,β -unsaturated carbonyl compounds³. We found that lithium triethylborohydride⁴ and lithium tri-sec-butylborohydride⁵ cleanly reduce a conjugated nitroalkene to the desired nitronate (**4**) which is then readily hydrolyzed⁶ to the corresponding ketone (**5**).

To avoid the formation of a pyrophoric by-product (triethylborane) and to employ a comparatively mild nucleophile,

Table. Ketones (5) from Nitroalkenes (1) via Reduction and Hydrolysis^a

Substrate 1	Product 5	Reaction Time [min]	Yield ^b [%]	b.p. [°C]/torr	
				found	reported
a \(\sum_\)-NO2	= 0	30	81	58-60°/20	47°/15 ¹³
$\mathbf{b} \stackrel{NO_2}{\longleftarrow} -CH_3$	© -сн ₂ -сн ₃	30	80	[187189°] (80% ethanol)]	[186187° ¹⁰]°
$Br = \begin{array}{c} NO_2 \\ -CH = C - CH_3 \end{array}$	$Br - \!$	30	82	70-72°/0.1 ^d	110°/0.3 11
d $C_2H_5O \longrightarrow CH = C-CH_3$	$\begin{array}{c} C_2H_5O \longrightarrow CH_2 - CH_3 \\ C_2H_5O \end{array}$	30	83°	110-113°/0.1 ^d	125-130°/0.281
CH=C-CH ₃	CH ₂ -C-CH ₃	90	81	9397°/0.1 ^d	121-126°/0.77¹

- * Reduction with lithium tri-sec-butylborohydride and hydrolysis with 4 normal sulfuric acid.
- b Yield of pure, isolated product.
- c m.p. of semicarbazone.

we confined the study to the use of lithium tri-secbutylborohydride for the conjugate reduction. The results demonstrate that the reaction can be used to reduce a variety of conjugated nitroalkenes (1) to the corresponding ketones (5). Interestingly, the reduction of β -nitrostyrene derivatives produced white precipitates⁴ upon reaction with borohydride solution. Acid hydrolysis of the reaction mixtures yielded saturated nitroalkanes predominantly; only traces of aldehydes were obtained.

The abstraction of hydrogen from a secondary nitroal-kane^{4,8} would also generate intermediate 4 which could then be hydrolysed to a ketone. In a related experiment, nitrocyclohexane was added to lithium triethylborohydride and the resultant intermediate (4) was subjected to acid hydrolysis: cyclohexanone was obtained in > 90% yield.

Several modifications of the Nef reaction² have been reported [e.g. reduction of nitro compounds with titanium(III) chloride⁸, ozonolysis⁸ and permanganate oxidation⁹ of nitronates, reverse addition of lithium aluminium hydride to nitroalkenes¹⁰, and reduction of nitroalkenes with iron/hydrochloric acid¹¹]. However, the trialkylborohydride method has the advantages of simplicity, shorter reaction time, and higher yields.

All glassware was thoroughly flame-dried and cooled under dry nitrogen just before use. Tetrahydrofuran was dried with calcium hydride, distilled from lithium aluminium hydride, and stored under nitrogen. Air- and moisture-sensitive borohydride solutions were ^d Kugelrohr distillation.

° ¹H-N.M.R. (CDCl₃/TMS_{int}); $\delta = 6.8-6.74$ (m, 3 H_{arom}); 4.06 (q, 4H, 2QCH₂); 3.6 (s, 2H, CH₂); 2.12 (s, 3H, CO—CH₃); 1.43 ppm (t, 6H, 2CH₃).

tranferred using oven-dried hypodermic syringes. 1-Nitrocyclohexene and the trialkylborohydrides were used as obtained from Aldrich Chemical Co. (L-Selectride**, 1.0 molar in tetrahydrofuran; Superhydride**, 1.0 molar in tetrahydrofuran). All other nitroalkenes were prepared as described earlier¹.

The products were characterized by their physical properties and spectral characteristics (¹H-N.M.R., ¹³C-N.M.R., etc.). The N.M.R. spectra were recorded on a JEOL-FX 90 Q spectrometer.

Phenylacetone (5b) from 2-Nitro-1-phenylpropene (1b); Typical Procedure:

Lithium tri-sec-butylborohydride (11 ml of a 1.0 molar solution in tetrahydrofuran; 11 mmol) is placed in a flame-dried, nitrogenflushed, 100 ml flask equipped with a septum inlet and a magnetic stirring bar. A solution of 2-nitro-1-phenylpropene (1b; 1.63 g, 10 mmol) in tetrahydrofuran (10 ml) is added dropwise to the stirred solution of the trialkylborohydride at room temperature. A mildly exothermic reaction ensues with the disappearance of yellow coloration (nitroalkene). The mixture is stirred for 30 min and then poured onto cold (-10°C) 4 normal sulfuric acid (50 ml). Ice/water (100 ml) is carefully added to the mixture which is stirred for 10 min. The product is extracted with ether (3 \times 50 ml). The combined ether extracts are washed with water (2 \times 50 ml), dried with magnesium sulfate, and evaporated under reduced pressure. The crude product is purified by column chromatography (silica gel; 4% ether/petroleum ether eluant) to give 5b as an oil; yield: 1.1 g (80%); m.p. of **5b** semicarbazone: 187-188°C (Ref. 10, m.p. 186-187°C). 1 H-N.M.R. (acetone- d_{6} /TMS_{int}): δ = 7.24 (m, 5 H_{arom}): 3.71 (s, 2 H, CH₂); 2.08 ppm (s, 3 H, CO—CH₃). [The 13 C-N.M.R. data agree with the literature data 12].

We thank the Department of Energy for support of this research. One of us (M.S.M.) thanks Al-Baath University, Syria, for the financial support and sabbatical leave.

Received: September 10, 1984 (Revised form: October 25, 1984)

^{*} Address for correspondence.

Mourad, M.S., Varma, R.S., Kabalka, G. W. J. Org. Chem. 1985, 50, 133.

- Nef, J.V. Liebigs Ann. Chem. 1894, 280, 264.
 Noland, W.E. Chem. Rev. 1955, 55, 137.
 Seebach, D., Colvin, E. W., Lehr, F., Weller, T. Chimia 1979, 33, 1.
- ³ Fortunato, J. M., Ganem, B. J. Org. Chem. 1976, 41, 2194.
- ⁴ Brown, H.C., Kim, S.C., Krishnamurthy, S. J. Org. Chem. 1980, 45, 1,
- ⁵ Brown, H.C., Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159.
- ⁶ Armand, J. Bull. Soc. Chim. Fr. 1965, 3246.
- ⁷ Feuer, H., Bartlett, R.S., Vincent, B.F., Anderson, R.S. *J. Org. Chem.* **1965**, *30*, 2880.
- 8 McMurry, J. E. Acc. Chem. Res. 1974, 7, 281; and references cited therein.
- ⁹ Kornblum, N., Erickson, A.S., Kelly, W.J., Henggeler, B. J. Org. Chem. 1982, 47, 4534.
- ¹⁰ Gilsdorf, R.T., Nord, F.F. J. Am. Chem. Soc. 1952, 74, 1837.
- ¹¹ Ferreira, A. B. B., Salisbury, K. J. Chem. Soc. Perkin Trans. 2 1978, 995.
- ¹² Vogt, H., Gompper, R. Chem. Ber. 1981, 114, 2884.
- Handbook of Chemistry and Physics, 64th Edn., Weast, R. C., Ed., Chemical Rubber Co., Boca Raton, Florida, 1983/1984, p. C-251
- ¹⁴ Shepard, E. R., Noth, J. F., Porter, H. D., Simmans, C. K. J. Am. Chem. Soc. 1952, 74, 4611.
- ¹⁵ Zimmerman, H. E., McKelvey, R. D. J. Am. Chem. Soc. **197**1, 93, 3638.