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■ Abstract Learning the relationships between aversive events and the environmen-
tal stimuli that predict such events is essential to the survival of organisms throughout
the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning
that is exhibited by both rats and humans. Recent years have seen an incredible surge in
interest in the neurobiology of fear conditioning. Neural circuits underlying fear con-
ditioning have been mapped, synaptic plasticity in these circuits has been identified,
and biochemical and genetic manipulations are beginning to unravel the molecular
machinery responsible for the storage of fear memories. These advances represent an
important step in understanding the neural substrates of a rapidly acquired and adaptive
form of associative learning and memory in mammals.

INTRODUCTION

To sum up, we may legitimately claim the study of the formation and
properties of conditioned reflexes as a special department of physiology.

I. P. Pavlov, 1927

Seventy-five years ago, Ivan Petrovich Pavlov advocated the physiological anal-
ysis of the simple form of associative learning that carries his name: Pavlovian or
classical conditioning (Pavlov 1927). If Pavlov were alive today, he would most
certainly be impressed with the amazing progress we have made in delineating the
brain circuits and neuronal mechanisms underlying Pavlovian conditioning in a
variety of behavioral systems and species (Holland & Gallagher 1999, Krasne &
Glanzman 1995, Thompson & Krupa 1994). One form of Pavlovian conditioning
that has received considerable attention in the last 10 years isfear conditioning
(Davis 1992, Fendt & Fanselow 1999, LeDoux 2000, Maren 1996). Simply stated,
Pavlovian fear conditioning involves learning that certain environmental stimuli
predict aversive events—it is the mechanism whereby we learn to fear people,
places, objects, and animals. Evolution has crafted this form of learning to pro-
mote survival in the face of present and future threats, and it is an essential
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component of many mammalian defensive behavior systems (Fanselow 1994).
Fear conditioning has attracted such great interest in recent years because it is
squarely seated at the interface of memory and emotion (LeDoux 2000). More-
over, disturbances in fear conditioning may contribute to disorders of fear and
anxiety in humans, such as panic disorder and specific phobias (Rosen & Schulkin
1998, Wolpe 1981).

John Watson and Rosalie Rayner’s famous experiment with the infant, Albert
B, is an instructive example of the Pavlovian fear conditioning procedure
(Watson & Rayner 1920). In this experiment Watson and Rayner set out to con-
dition fear to a white rat by sounding a loud and aversive noise after presenting
the rat to “Little Albert.” Before pairing the white rat with noise, the rat did
not evoke fear in Albert (Figure 1A). Not surprisingly, the loud noise, which
Watson generated by striking a hammer on a suspended steel bar, produced a ro-
bust fear response in Albert. Upon hearing the noise, Albert “startled violently”
and “broke into a sudden crying fit.” After several pairings of the rat and noise,
Albert came to fear the rat. When Watson presented the rat to Albert after con-
ditioning, Albert fell over, cried, and attempted to crawl away from the animal
(Figure 1B). In Watson and Rayner’s words, “This was as convincing a case of a
completely conditioned fear response as could have been theoretically pictured.”
Although this experiment nicely illustrates fear conditioning, it is important to
note that this type of experiment would not be acceptable by current ethical
standards.

Appealing to the semantics of Pavlovian conditioning, Little Albert had learned
that an innocuous conditional stimulus (CS; the white rat) predicted the occurrence
of a noxious unconditional stimulus (US; the loud noise). Learning was manifest
as a conditional response (crying) that, in this case, took the form of the un-
conditional response that was elicited by the loud noise prior to conditioning.
Watson and Rayner’s experiment with Albert exemplifies the traditional view of
Pavlovian conditioning that one stimulus comes to evoke the response of another—
the so-called conditioned reflex. However, as Rescorla has powerfully argued,
current thinking holds that Pavlovian conditioning involves learning the hierarchi-
cal relationships among events (Rescorla 1988). Indeed, Pavlovian conditioning
enables organisms to form neural representations of their worlds. Hence, the rep-
resentation of the relations between aversive or traumatic events and the stimuli
that predict them is at the core of Pavlovian fear conditioning.

The aim of this review is to describe recent developments in our understanding
of the neurobiological basis of Pavlovian fear conditioning in mammals, including
humans. The review focuses on work in rodent models, although data from other
mammals and humans is included as necessary. It begins with a brief history of the
brain and fear, proceeds with an outline of the neuroanatomical circuitry required
for fear conditioning, and concludes with a discussion of the cellular and synaptic
mechanisms within that circuitry that are responsible for the formation, storage,
and expression of fear memories.
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Figure 1 Still frames captured from a film of Watson and Rayner’s famous experiment with the
infant, Albert B (“Little Albert”) (Watson 1920). (A1-A3) Watson presents Albert with a novel
white rat. Albert responds with curiosity and reaches out to touch the animal. Although not shown,
Watson subsequently paired presentations of the white rat with a loud and aversive noise. (B1-B3)
Watson again presents Albert with the white rat after the rat had been paired with the loud noise.
Unlike his initial reaction to the rat shown inA, Albert now responds to the rat with fear. He moves
away from the rat and cries. (Still images courtesy of The Archives of the History of American
Psychology, Akron, OH.)

THE BRAIN AND FEAR: HISTORICAL PERSPECTIVES

Our modern appreciation of the brain circuits involved in fear conditioning emerged
from early observations of the effects of brain damage on emotional behavior in
animals. In 1888, Brown & Sch¨afer (1888) described profound alterations in emo-
tional reactivity following temporal lobe injuries in monkeys. Kl¨uver & Bucy
(1937) elaborated this effect in 1937. Both groups found that temporal lobe re-
sections, which damaged both cortical and subcortical tissue, produced marked
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behavioral changes, including hyperorality, hypersexuality, visual agnosia, and
notably, a loss of fear. For example, resected monkeys readily consumed novel
and normally avoided foods, such as meat, and they would mouth inedible ob-
jects. Moreover, monkeys that once cowered in the presence of humans readily
approached and contacted their caretakers after surgery. This work heralded the
study of the neural substrates of emotion and focused intense interest on the role
of the temporal lobes in the mediation of fear.

Subsequent work by Weiskrantz and others (Weiskrantz 1956, Zola Morgan et al
1991) demonstrated that the loss of fear in monkeys with temporal lobe lesions
results from damage to the amygdala, a heterogeneous group of nuclei buried deep
within the temporal lobes. Indeed, a recent study confirms that selective excitotoxic
damage to amygdala neurons results in a fear reduction similar to that observed by
Kl üver & Bucy (Meunier et al 1999). Numerous other studies have demonstrated
reduced fear (“taming”) after amygdala damage in several mammalian species
including rats, cats, rabbits, dogs, and humans (Goddard 1964). Moreover, both
electrical stimulation of the amygdala and amygdaloid seizures are associated with
autonomic and behavioral changes characteristic of fear (Davis 1992, Gloor 1960).
Hence, consensus has emerged from these studies that the amygdaloid complex
has an indispensable role in the regulation of fear.

Soon after the discovery of the amygdala’s role in fear, several investigators set
out to further quantify this function by employing learning and memory tasks. The
earliest studies to investigate the involvement of the amygdala in fear-motivated
learning used instrumental avoidance tasks, in which animals could avoid an
aversive stimulus by making the appropriate behavioral response (Fonberg 1965,
Horvath 1963, King 1958, Robinson 1963). For example, Brady and colleagues
trained cats in a footshock-motivated shuttle avoidance task and found that large
amygdala aspirations impaired the acquisition, but not retention, of the avoidance
response (Brady et al 1954). In addition to instrumental learning, Pavlovian fear
conditioning has been used to assess the involvement of the amygdala in emo-
tional behavior. For example, Kellicutt & Schwartzbaum (1963) demonstrated a
critical role for the amygdala in the acquisition of a conditioned emotional re-
sponse, which they indexed by measuring bar-press suppression to a CS previ-
ously paired with shock. The Blanchards extended this work by demonstrating
a direct role for the amygdala in the acquisition of contextual fear conditioning
(Blanchard & Blanchard 1972), in which animals learn that the situational or
contextual cues associated with conditioning predict the occurrence of footshock.
Amygdala lesions completely eliminate shock-elicited freezing (somatomotor
immobility), as well as unconditional freezing elicited by a predator (a cat)
(Blanchard & Blanchard 1972). These studies established that forms of learning
and memory that are motivated by fear require the amygdala.

In recent years several investigators have revealed an important role for the
human amygdala in fear conditioning (Davidson & Irwin 1999). For example, a
patient with bilateral amygdala pathology associated with the rare genetic disorder,
Urbach-Wiethe disease, does not exhibit Pavlovian fear conditioning to either
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visual or auditory cues paired with loud noise (Bechara et al 1995). Patients who
have received a unilateral amygdalectomy for the treatment of epilepsy also have
deficits in auditory fear conditioning (LaBar et al 1995), and patients with amygdala
damage fail to recognize fear in facial expressions (Adolphs et al 1995, 1999;
Young et al 1995). Functional neuroimaging has extended these lesion studies
by revealing amygdala activation to visual or vocal expressions of fear (Morris
et al 1996, Phillips et al 1997, Whalen et al 1998) and during Pavlovian fear
conditioning (Buchel et al 1999, LaBar et al 1998). Thus, the neural mechanisms
of fear conditioning appear to exhibit homology across several mammalian species.

NEURAL SYSTEMS FOR FEAR CONDITIONING

In the light of this work, the analysis of the neural circuitry of fear condition-
ing has largely concentrated on describing the intrinsic anatomy of the amygdala
and mapping the sensory afferents and motor efferents of the amygdala. In the
rat the amygdala consists of several anatomically and functionally distinct nuclei,
including (but not limited to) the lateral (LA), basolateral (BL), basomedial, and
central (CE) amygdaloid nuclei (Brodal 1947, Krettek & Price 1978). Anatomical
and behavioral evidence indicates that these nuclei are components of two distinct
subsystems within the amygdala that are important for fear conditioning (LeDoux
1995, Maren & Fanselow 1996). The first subsystem of the amygdala is comprised
of LA, BL, and basomedial. Collectively referred to as the basolateral complex
(BLA), these nuclei form the primary sensory interface of the amygdala. Thus,
selective lesions of the BLA produce severe deficits in both the acquisition and ex-
pression of Pavlovian fear conditioning independent of the stimulus modality used
to train fear responses (Campeau & Davis 1995b, Cousens & Otto 1998, LeDoux
et al 1990, Maren et al 1996a). Within the BLA, the LA appears to be essential
for fear conditioning (Amorapanth et al 2000). Selective lesions of the BL do not
impair fear conditioning but do attenuate the acquisition of instrumental avoidance
behavior (Amorapanth et al 2000). Killcross and colleagues have reported a similar
effect, although their lesions encompassed both LA and BL (Killcross et al 1997).

The second subsystem of the amygdala consists of the CE and it constitutes the
amygdala’s interface to fear response systems. For example, electrical stimulation
of CE produces behavioral responses similar to those evoked by stimuli paired with
shock (Iwata et al 1987, Kapp et al 1982). Lesions of the CE also produce profound
deficits in both the acquisition and expression of conditional fear (Hitchcock &
Davis 1986, Iwata et al 1986, Kim & Davis 1993, Roozendaal et al 1991, Young
& Leaton 1996), and pharmacological studies suggest that this is due to a deficit
in the performance of conditional fear responses, rather than an associative deficit
(Fanselow & Kim 1994, Goosens et al 2000). Moreover, lesions placed in structures
efferent to the CE, such as the lateral hypothalamus or periaqueductal grey, produce
selective deficits in either cardiovascular or somatic conditional fear responses,
respectively (Amorapanth et al 1999, De Oca et al 1998, LeDoux et al 1988). This
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suggests that the CE is the final common pathway for the generation of learned
fear responses.

The major afferent and efferent projection systems of the amygdala that are
relevant to fear conditioning are illustrated in Figure 2. For simplicity, this figure
shows only unidirectional connections and ignores interconnections between extra-
amygdaloid structures. It is readily appreciated that the BLA is a locus of conver-
gence of afferents from both subcortical and cortical sensory regions (McDonald
1998, Pitkanen et al 1997, Swanson & Petrovich 1998). As such, projections from
either the auditory thalamus or the auditory cortex to the BLA are essential for con-
ditioning to auditory CSs (Campeau & Davis 1995a, LeDoux et al 1986, McCabe
et al 1993, Romanski & LeDoux 1992), projections from the hippocampal forma-
tion to the BLA underlie conditioning to contextual CSs (Kim & Fanselow 1992,
Maren 1999c, Maren & Fanselow 1995, Phillips & LeDoux 1992), and projections
from the perirhinal cortex transmit visual CS information to the BLA (Campeau &
Davis 1995a, Rosen et al 1992). Information about the aversive footshock US might
reach the BLA via parallel thalamic and cortical pathways (Shi & Davis 1999).
Consistent with this anatomy, single neurons in the BLA respond to auditory, visual,
and somatic (shock) stimuli (Romanski et al 1993), which indicates that the amyg-
dala is a locus of convergence for information about CSs and USs. Thus, the BLA is
anatomically situated to integrate information from a variety of sensory domains.

Several models posit a role for the BLA in CS-US association during fear con-
ditioning (Davis 1992, Fanselow & LeDoux 1999, Maren 1999a). In these models
it is assumed that direct projections from the BLA to the CE enable associations
established in the BLA to elicit fear responses via the CE. Indeed, the CE projects
to several diverse brain areas involved in the generation of various fear responses.
Hence, amygdala lesions block fear conditioning to contextual (Antoniadis &
McDonald 2000, Maren 1998), auditory (Campeau & Davis 1995b, LeDoux et al
1990, Maren et al 1996a), olfactory (Cousens & Otto 1998), and visual CSs
(Sananes & Davis 1992), and these deficits are manifest when one measures
freezing (Cousens & Otto 1998, Maren et al 1996a), defecation (Antoniadis &
McDonald 2000), hypoalgesia (Helmstetter 1992, Watkins et al 1993), potentiated
acoustic startle (Campeau & Davis 1995b), increased heart rate (Antoniadis &
McDonald 2000, LeDoux et al 1990), or corticosterone secretion (Goldstein et al
1996).

Association Formation and the Amygdala

An important goal of the neurobiological analysis of fear conditioning is to identify
the essential substrate for the encoding and storage of fear memories (i.e. CS-US
associations). There is now strong evidence that the amygdala, and the BLA in
particular, is a locus for the formation and storage of CS-US associations during
Pavlovian fear conditioning. This evidence has been obtained from studies em-
ploying permanent and reversible lesions of the amygdala and neurophysiological
recordings of amygdala spike firing during learning.
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Figure 2 Anatomy of fear conditioning circuits in the brain. The amygdaloid nuclei (shown
in the center) can be roughly divided into two subsystems. These include the lateral (LA),
basolateral (BL), and basomedial (BM) nuclei, which together form the basolateral complex
(BLA) and the central nucleus (CE). The BLA receives and integrates sensory information
from a variety of sources. These include the medial and ventral divisions of the thalamic
medial geniculate nucleus (MGm and MGv, auditory), the perirhinal cortex (PRh, visual),
primary auditory cortex (TE), the insular cortex (INS, gustatory and somatosensory), the
thalamic posterior intralaminar nucleus (PIN, somatosensory), the hippocampal formation
(spatial and contextual) including area CA1, the ventral subiculum (vSUB), the entorhi-
nal cortex (ENT), and the piriform cortex (PIR, olfactory). Thus, the BLA is a locus of
sensory convergence and a plausible site for CS-US association within the amygdala. Intra-
amygdaloid circuitry conveys the CS-US association to the CE, where divergent projections
to the hypothalamus and brainstem mediate fear responses such as freezing (periaqueductal
gray, PAG), potentiated acoustic startle (nucleus reticularis ponits caudalis, RPC), increased
heart rate and blood pressure (lateral hypothalamus, LH; dorsal motor nucleus of the vagus,
DMN), increased respiration (parabrachial nucleus, PB), and glucocorticoid release (par-
aventricular nucleus of the hypothalamus, PVN; bed nucleus of the stria terminalis, BNST).
For simplicity, all projections are drawn as unidirectional connections, although in many
cases these connections are reciprocal.
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Permanent or Temporary Lesions of the Amygdala Disrupt the Acquisition
and Expression of Conditional Fear Selective neurotoxic lesions of the BLA
severely attenuate the acquisition of fear conditioning to both contextual and dis-
crete CSs when made before training (Cousens & Otto 1998, Maren et al 1996a,
Sananes & Davis 1992). Moreover, neurotoxic BLA lesions completely abolish the
expression of conditional fear responses when made either shortly after training
(Campeau & Davis 1995b; Cousens & Otto 1998; Maren 1998, 1999b; Maren et al
1996a), two weeks following training (Cousens & Otto 1998, Maren et al 1996a),
or even up to one month following training (Lee et al 1996, Maren et al 1996a).
Posttraining neurotoxic BLA lesions also abolish conditional fear after extensive
overtraining (Maren 1998, 1999b). It is important to note that neurotoxic BLA
lesions do not affect footshock sensitivity nor do they alter baseline locomotor ac-
tivity (Campeau & Davis 1995b, Maren 1998). Neurotoxic lesions of the CE also
attenuate the acquisition and expression of fear conditioning (Campeau & Davis
1995b, Helmstetter 1992), but there is reason to believe that the CE is primarily
involved in expressing, as opposed to encoding, CS-US associations (Fanselow &
Kim 1994, Goosens et al 2000).

As mentioned earlier, it is well documented that amygdala damage disrupts not
only learned fear, but also innate fear under some conditions. For example, rats
with amygdala lesions do not exhibit freezing or analgesia in the presence of a
cat (Blanchard & Blanchard 1972, Fox & Sorenson 1994), they show attenuated
unconditional analgesia and heart rate responses to loud noises (Bellgowan &
Helmstetter 1996, Young & Leaton 1996), and they exhibit reduced taste neophobia
(Nachman & Ashe 1974). Amygdala damage does not disrupt all unconditional
fear responses, however. Amygdala lesions do not affect either open arm avoidance
in an elevated plus maze (Treit & Menard 1997, Treit et al 1993) or unconditional
analgesia to shock (Watkins et al 1993). Nonetheless, the impact of amygdala
lesions on unconditional fear raises questions regarding the nature of the deficits
observed in associative tasks (Cahill et al 1999, Vazdarjanova 2000). It has been
argued that deficits in conditional freezing in rats with neurotoxic BLA lesions, for
example, may represent a deficit in performing the freezing response, as opposed
to a deficit in learning and memory per se (Vazdarjanova & McGaugh 1998).

We have addressed this issue by submitting rats to an extensive overtraining
procedure in which they receive more than 10 times the number of footshocks
needed to produce asymptotic levels of freezing in controls (Maren 1998, 1999b).
Under these conditions, rats with BLA lesions acquire the conditional freezing
response and perform the response at the same high level as control subjects.
It is noteworthy that the same overtraining procedure does not eliminate the se-
vere deficits that are induced by posttraining BLA lesions, nor does it facilitate
reacquisition of conditional fear during subsequent training (i.e. overtraining does
not promote savings of the fear memory) relative to a naive group of animals
(see Figure 3). These and other data reveal that fear conditioning deficits in rats
with BLA lesions are not simply due to performance deficits. In contrast, they
imply a role for the BLA in associative processes underlying fear conditioning
(Maren 2000).
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Figure 3 Overtraining does not mitigate the effects of posttraining basolateral amygdala
(BLA) lesions. The left panel illustrates the phases of behavioral training and testing. All
rats received fear conditioning, consisting of either 0 or 75 unsignaled footshocks in a novel
chamber. For each training condition, the rats were further divided into those that received
posttraining BLA lesions (BL–no shock, BL–75 shocks) or sham surgery (SH–no shock,
SH–75 shocks). All rats then received three 4-min extinction tests, with 25 additional trials
following both the first and second test. The right panel illustrates the mean (±) SEM per-
centage of freezing in these groups of rats. Posttraining BLA lesions completely eliminated
conditional freezing measured during Test 1, despite presurgical overtraining. However,
rats with BLA lesions were able to acquire conditional fear with additional training. BLA
rats with presurgical overtraining (BL–75 shocks) acquired conditional freezing at the same
rate as conditioning-naive BLA rats (BL–no shock). Overtraining did not yield savings of
the fear memory in rats with BLA lesions. (Adapted from Maren 1999b.)

One experimental strategy that oversteps the problems associated with perma-
nent brain lesions employs pharmacological agents to temporarily inactivate brain
regions. This technique has now yielded important information concerning the
role of the amygdala in the acquisition and expression of conditional fear. For
example, inactivation of BLA neurons with muscimol, a GABAA receptor agonist,
prevents both the acquisition and expression of fear conditioning (Helmstetter &
Bellgowan 1994, Muller et al 1997, Wilensky et al 1999). In addition, muscimol
only blocks conditioning when it is infused prior to training—immediate post-
training infusions of muscimol do not affect the acquisition of fear conditioning
(Wilensky et al 1999). A similar outcome is obtained with intra-amygdaloid in-
fusions of theN-methyl-D-aspartate (NMDA) receptor antagonist, APV (Maren
et al 1996b). APV blocks the acquisition of conditional freezing when infused
into the BLA before, but not immediately after, training. These results suggest
that activity in BLA neurons is required when CS-US association occurs. Post-
training inactivation of the amygdala with either lidocaine or tetrodotoxin, which
inhibits both cellular and axonal excitability, does in fact impair fear conditioning
(Sacchetti et al 1999, Vazdarjanova & McGaugh 1999). This may indicate a role
for amygdala neurons in consolidating fear memories (see below), although the
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effects of these drugs onen passantaxons may be responsible for the observed
deficits.

Fear Conditioning–Related Spike Firing in the AmygdalaElectrophysiologi-
cal recordings of amygdaloid neuronal activity support a role for the amygdala in
encoding and storing fear associations. In a series of elegant single-unit recording
studies, LeDoux and colleagues have discovered that auditory fear conditioning
induces short-latency plasticity in LA neurons (Quirk et al 1995, 1997). This plas-
ticity takes the form of enhanced spike firing elicited by acoustic CSs. The short
latency of learning-related changes in spike firing is consistent with plasticity in
thalamo-amygdala projections, specifically, projections from the medial division of
the medial geniculate nucleus (MGm). Amygdala neurons exhibit plasticity earlier
in training than auditory cortical neurons, further suggesting that direct thalamo-
amygdala projections, rather than cortico-amygdala projections, mediate neuronal
plasticity in the LA (Quirk et al 1997). As shown in Figure 4, we have recently
demonstrated that conditioning-related increases in CS-elicited spike firing in LA
neurons are also evident in overtrained rats (Maren 2000). Again, the latency of
peak conditional activity is consistent with plasticity in thalamo-amygdala projec-
tions. It is noteworthy that the amygdala is not essential for short-latency plasticity
in the auditory cortex (Armony et al 1998), although the behavioral relevance of
cortical plasticity in rats with amygdala damage is unclear.

In addition to enhancing CS-elicited spike firing in the amygdala, fear condi-
tioning also increases anticipatory, pre-CS firing (Pare & Collins 2000). Lateral

Figure 4 Conditioning-related plasticity in lateral amygdala neurons after overtraining. (Leftmost
panel) Electrode placement in the dorsal division of the lateral amygdaloid nucleus. Spike firing
rate from a single LAd neuron (inset, spike waveform) during three phases of training is shown
in the three unithistograms. Thehistogramsdisplay the summed spike activity obtained during
10 auditory continual stimulus (CS) presentations (50-ms bins). Auditory CSs elicited spike firing
in lateral amygdala neurons prior to fear conditioning (pretraining) 50–100 ms following CS
onset (dashed lines, CS onset and offset). After five conditioning trials, significant increases
in CS-elicited spike firing were observed in several post-CS bins, most notably the short-latency
(0–50 ms) bin. Extensive overtraining (75 trials) did not mitigate the enhancement in short-latency,
CS-elicited spike firing. (Adapted from Maren 2001a.)
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amygdala neurons have also been found to exhibit discriminative plasticity in a
differential fear-conditioning paradigm in cats (Collins & Pare 2000). In this case,
LA neurons actually show decreases in spike firing elicited by the CS− over the
course of training. The cellular mechanism for increases in firing to the CS+ on
the one hand and decreases in firing to the CS− on the other are not known but
may involve synaptic plasticity mechanisms such as long-term potentiation (LTP)
and long-term depression (LTD) (Maren 1999a).

The critical role for the amygdala in both the acquisition and expression of
Pavlovian fear conditioning implies that conditioning-related plasticity in amyg-
dala neurons is due to local synaptic plasticity rather than passive transmission
of plasticity from afferent brain areas. In the case of auditory fear condition-
ing, however, cellular plasticity develops in both the thalamic medial geniculate
nucleus (medial division, MGm), which is the primary auditory afferent of the
amygdala (Edeline & Weinberger 1992, McEchron et al 1995, Supple & Kapp
1989), and the auditory cortex (Weinberger 1995) after auditory fear conditioning.
The latency of CS-elicited plasticity in LA is not consistent with transmission of
plasticity from the cortex (Maren 2001a, Quirk et al 1997). However, transmission
of plasticity from the MGm cannot be ruled out (Cahill et al 1999, Weinberger
1993). Indeed, MGm neurons are capable of LTP (Gerren & Weinberger 1983),
and synaptic plasticity has been demonstrated to occur in the MGm during fear
conditioning (McEchron et al 1996). Therefore, further studies are required to
determine whether learning-induced changes in amygdala spike firing arise from
local or remote synaptic plasticity.

Is the Amygdala Only Involved in Pavlovian Association Formation?The role
of the amygdala in aversive conditioning is not limited to encoding and storing
Pavlovian CS-US associations. There is substantial evidence that the amygdala
is involved in consolidating memories for aversive experiences outside of the
amygdaloid circuitry (Cahill & McGaugh 1998, McGaugh 2000). Amygdaloid
involvement in memory consolidation is particularly robust for fear-motivated in-
strumental learning tasks (Liang et al 1982, Tomaz et al 1991), and the BL, in
particular, has an important role in instrumental avoidance learning (Amorapanth
et al 2000, Killcross et al 1997, Maren et al 1991, Poremba & Gabriel 1999). The
role for the amygdala in Pavlovian association formation and memory consolida-
tion is dissociable. For example, posttraining inactivation of the amygdala with
muscimol produces deficits in the retention of inhibitory avoidance conditioning
but not Pavlovian fear conditioning (Wilensky et al 2000). Therefore, the nature
of the amygdala’s involvement in aversive learning, whether it be local memory
storage or remote memory consolidation, depends importantly on the associative
structure of the conditioning situation (Kapp et al 1978).

Of course, it is also important to stress that the amygdala does not encode every
aspect of an aversive learning experience. For example, humans with amygdala
damage exhibit intact declarative memory for a fear conditioning experience, de-
spite failing to exhibit conditional fear responses to stimuli paired with loud noise
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(Bechara et al 1995). Similarly, rats with amygdala lesions avoid a compartment in
which they have received footshock, despite failing to exhibit conditional freezing
to the contextual cues associated with shock (Vazdarjanova & McGaugh 1998).
These results indicate that multiple memory systems are engaged during relatively
simple learning and memory tasks.

Context Processing and the Hippocampus

In a typical fear conditioning experiment rats acquire fear to not only the CS
paired with the US, but also to the contextual cues associated with US delivery. As
mentioned above, fear conditioning to both contextual and discrete CSs requires
neurons in the amygdala. However, the neural pathways involved in processing
these types of stimuli before they come into association with shock are quite
different. Whereas information regarding discrete CSs appears to reach the amyg-
dala via direct projections from primary sensory areas in both the thalamus and
the cortex, information concerning contextual CSs is transmitted to the amygdala
via multisensory brain areas. In fact, recent work has elucidated neural circuitry
in the hippocampal formation that is responsible for assembling contextual repre-
sentations and transmitting these representations to the amygdala for association
with USs.

Contextual Encoding The first clues to the neural pathways involved in con-
textual fear conditioning came from a series of studies indicating that electrolytic
lesions of the dorsal hippocampus (DH) prevented both the acquisition and expres-
sion of contextual fear conditioning (Kim & Fanselow 1992, Phillips & LeDoux
1992, Selden et al 1991). The impairment of contextual fear conditioning exhibits
a temporal dependence typical of that found in human amnesia (Squire & Zola
Morgan 1991). Hippocampal lesions only impaired the memory for contextual fear
conditioning when made within one month of training (Kim & Fanselow 1992).
This pattern of results has now been demonstrated using an elegant within-subjects
design (Anagnostaras et al 1999a) and neurotoxic hippocampal lesions (Maren et al
1997). DH lesions tend to spare fear conditioning to auditory CSs (Anagnostaras
et al 1999a; Kim & Fanselow 1992; Phillips & LeDoux 1992, 1994), although
larger neurotoxic lesions that include the subiculum appear to produce deficits
in auditory fear conditioning in many cases (Maren 1999c, Maren et al 1997,
Richmond et al 1999). Nonetheless, there is considerable evidence that indicates
that contextual and auditory fear conditioning are mediated, at least in part, by
dissociable neural systems (Pugh et al 1997, Rudy 1993, Rudy et al 1999).

The fact that auditory conditioning is largely spared in rats with DH damage
suggests that the DH does not play a direct role in CS-US association per se. What
is the role, then, of the hippocampus in processing contextual information? One
possibility is that the hippocampus is involved in mediating context-US associ-
ations. There is some evidence for this possibility (Frohardt et al 2000, Wilson
et al 1995). However, there are many cases in which context-US associations are
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Figure 5 A model illustrating the roles for hippocampal and amygdaloid long-term poten-
tiation (LTP) in Pavlovian fear conditioning. Contextual stimuli (elements) are assembled
into configural representations in the hippocampus, and hippocampal LTP is posited as
a mechanism underlying this process. Elemental or configural representations of context
can come into association with footshock in the amygdala, although configural representa-
tions do so at the expense of elemental representations in intact animals (indicated by the
inhibitory link, open circle). Discrete conditional stimuli (CS) and unconditional stimuli
(US) converge upon amygdala neurons, and amygdaloid LTP is posited to play a role in
CS-US association formation.

formed in animals with hippocampal damage (see below). Another possibility is
that the hippocampus is required for assembling the elemental cues within a par-
ticular training context into a configural representation (Fanselow 1990) that then
comes into association with footshock in the amygdala (see Figure 5). Support
for this view comes from the finding that hippocampal lesion–induced deficits in
contextual fear conditioning can be eliminated if preexposure to the context oc-
curs one month prior to conditioning (Young et al 1994). Presumably, contextual
conditioning (and the formation of a context-US association) proceeds normally
in this case because the contextual representation was encoded and consolidated
prior to the hippocampal damage.

Although initial reports found that electrolytic DH lesions produced impair-
ments of contextual fear conditioning (Kim et al 1993a; Maren & Fanselow 1997;
Phillips & LeDoux 1992, 1994), more recent reports indicate that axon-sparing
neurotoxic lesions of the DH do not yield contextual conditioning deficits when
made prior to training (Cho et al 1999, Frankland et al 1998, Gisquet-Verrier et al
1999, Maren et al 1997). However, posttraining neurotoxic DH lesions produce
massive deficits in contextual fear conditioning (Maren et al 1997). The differential
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effects of pre- and posttraining neurotoxic DH lesions suggest the existence of al-
ternate strategies for acquiring contextual fear (Maren et al 1997, 1998). We have
proposed that intact rats use a hippocampal-dependent configural strategy in which
a unified representation of the situational cues associated with training is assem-
bled and associated with footshock. Indeed, recent work by Rudy and colleagues
indicates that intact rats do use a configural strategy to acquire contextual fear
conditioning (Rudy & O’Reilly 1999). Once acquired in this manner, the contex-
tual fear memory is sensitive to posttraining hippocampal lesions. In contrast, rats
with pretraining hippocampal lesions do not use a configural strategy and they
default to a hippocampus-independent elemental strategy in which individual cues
in the context come into association with footshock. Both strategies can be used
to successfully acquire contextual fear, although only the configural strategy re-
quires hippocampal involvement and it is presumed to operate at the expense of
the elemental strategy in intact rats (Figure 5) (Anagnostaras et al 2001, Fanselow
2000, Maren et al 1997, 1998).

Why then do rats with pretraining electrolytic DH lesions have impairments
in the acquisition of contextual fear conditioning? Deficits in the acquisition
of contextual fear conditioning in rats with electrolytic DH lesions appear to
be the result of a disruption of connections between the ventral subiculum and
the nucleus accumbens. We have found that electrolytic or neurotoxic lesions
of the ventral subiculum, a major afferent of the nucleus accumbens, produce
contextual fear conditioning deficits (Maren 1999c). Lesions of the fornix, the
tract through which subiculo-accumbens fibers travel, also impair contextual fear
conditioning (Maren & Fanselow 1997, Phillips & LeDoux 1995). Moreover,
Westbrook and colleagues have found that pharmacological inactivation of the
accumbens produces selective deficits in the acquisition of contextual fear condi-
tioning (Haralambous & Westbrook 1999, Westbrook et al 1997; see also Riedel
et al 1997). Disruption of subiculo-accumbens projections appears to disregulate
exploratory behavior and may interfere with the process by which rats sample
contextual cues in their environment (Fanselow 2000, Maren 1999c).

Needless to say, the pattern of deficits following damage to the hippocampal
system is complicated. Some have argued for a more parsimonious account of these
data that centers around the influence of hippocampal damage on the performance
of behavioral responses commonly used to assess fear, such as freezing (Gewirtz
et al 2000). For example, Davis and colleagues have found that hippocampal
lesions do not affect either contextual fear conditioning (McNish et al 1997) or
contextual blocking (McNish et al 2000) assessed by measuring fear-potentiated
startle. To account for this pattern of results, they and others have argued that
deficits in contextual conditioning are due to a disruption of freezing behavior
by the locomotor hyperactivity that typically accompanies hippocampal damage
(Gewirtz et al 2000, Good & Honey 1997). However, it is clear that freezing-
performance deficits are not sufficient to account for the full range of deficits
associated with hippocampal damage (Anagnostaras et al 2001, Maren et al 1998).
For example, rats with DH lesions exhibit a robust impairment for freezing when
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tested in a context in which they received shock 1 day before the lesion, but
exhibit normal and high levels of freezing when tested in a context in which they
received shock 50 days before the lesion (Anagnostaras et al 1999a). Because the
same rats are freezing at high levels in one context and at low levels in another
context, one cannot explain their deficits in expression of the recent memory in
terms of a freezing-performance problem. Although hippocampal damage surely
interacts with freezing behavior, there is strong evidence that such damage is also
characterized by associative deficits in contextual fear conditioning.

Contextual Memory Retrieval In addition to its role in encoding contextual
representations, we have recently discovered an important role for the hippocampus
in the regulation of memory retrieval by context (Holt & Maren 1999, Maren &
Holt 2000). In many Pavlovian conditioning paradigms a CS can acquire more than
one meaning. For example, in latent inhibition a phase of CS-alone presentations
(CS preexposure) precedes the conditioning phase, in which the CS is paired with
the US. In this paradigm the CS comes to have two meanings: It first comes to
predict nothing (e.g. CS–no event) and subsequently comes to predict the US
(e.g. CS–shock). Latent inhibition is characterized by a reduction in conditional
responding to the CS that is produced by interference between these two conflicting
memories (Bouton 1993). Contextual cues can be used to disambiguate these
competing memories. Hence, if preexposure and conditioning occur in different
contexts, latent inhibition is greatly reduced. Moreover, if an animal is returned
to the preexposure context after the training phase latent inhibition is renewed.
That is, conditional responding to the CS is once again reduced if testing occurs
in the context of preexposure. It is apparent that animals can use contextual cues
to retrieve the meaning of the CS appropriate to that context.

Early theories of hippocampal function posited a role for the hippocampus in this
type of contextual memory retrieval (Hirsh 1974). However, recent investigations
of retrieval phenomena using permanent hippocampal lesions have yielded mixed
results (Frohardt et al 2000, Honey & Good 1993, Wilson et al 1995). To further
investigate the role of the hippocampus in memory retrieval, we used muscimol to
reversibly inactivate hippocampal neurons during a latent inhibition retrieval test
(Holt & Maren 1999). The use of a reversible lesion technique for these experiments
was critical because it allowed us to selectively target the hippocampus during re-
trieval testing. As previously reported, we found that control rats exhibited robust
contextual retrieval. That is, they showed attenuated conditional responding when
exposed to the CS in the context of preexposure and high levels of responding when
the CS was tested in a context different from that of preexposure. It is important
that hippocampal inactivation eliminated the contextual regulation of conditional
responding—rats receiving intrahippocampal muscimol infusions exhibited low
levels of conditional responding in both test contexts. They were unable to use
contextual cues to regulate performance of the different CS memories and in fact,
performed purely according to the sum of their experiences with the CS. Because
they had 30 times as many CS–no event trials as CS-US trials, they performed
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according to the former association and exhibited little conditional responding
(Maren & Holt 2000). A similar role for the hippocampus in contextual retrieval has
been demonstrated in studies of human memory (Chun & Phelps 1999). Together,
these studies are beginning to open up a new realm of hippocampal function in the
processing of contextual cues, conditional relations, and high-order learning phe-
nomenon such as occasion setting (Holland & Bouton 1999, Honey & Good 2000).

Fear Inhibition and the Prefrontal Cortex

In addition to understanding the processes by which fear memories are estab-
lished and expressed, there is considerable interest in the mechanisms by which
fear memories are inhibited. Understanding fear reduction has important clini-
cal implications for treating disorders of fear and anxiety, such as posttraumatic
stress disorder and panic disorder. There is considerable evidence implicating the
prefrontal cortex (PFC) in emotional processes (Davidson & Irwin 1999), and
there is an emerging, but complicated, literature suggesting a role for the PFC in
the inhibition of conditional fear. For example, PFC lesions have been reported
to attenuate extinction of fear under some conditions (Morgan & LeDoux 1995,
Morgan et al 1993). However, others have not found an effect of PFC lesions on
extinction (Gewirtz et al 1997). Recently, Quirk and colleagues reported that PFC
lesions do not affect the acquisition or extinction of conditional fear per se, but
either impair consolidation or affect the contextual modulation of the extinction
memory (Quirk et al 2000).

One paradigm that has been adopted to study fear reduction is conditioned
inhibition. A number of brain structures known to be important for excitatory fear
conditioning, including the amygdala, perirhinal cortex, and medial geniculate
nucleus, do not appear to be involved in conditioned inhibition of fear (Falls et al
1997, Falls & Davis 1995, Heldt & Falls 1998). Moreover, the PFC does not appear
to be required for conditioned inhibition (Gewirtz et al 1997, Vouimba et al 2000),
although recordings of prefrontal cortical activity reveal that there is an amygdala-
dependent reduction of spike firing to a conditioned inhibitor (Garcia et al 1999).
Thus, the neural substrates underlying the inhibition of fear remain elusive.

SYNAPTIC AND MOLECULAR MECHANISMS
OF FEAR CONDITIONING

Considerable progress in mapping the neural circuitry underlying fear condition-
ing has opened the door to analyses of the synaptic and molecular mechanisms
underlying the formation and storage of fear memories. In general, the focus of
these studies has been to describe the properties of synaptic plasticity in the amyg-
dala and hippocampus, to examine whether fear conditioning is accompanied by
synaptic plasticity in these brain structures, and to investigate the influence on fear
conditioning of manipulations that perturb synaptic plasticity in fear conditioning



P1: FQP

April 4, 2001 18:39 Annual Reviews AR121-29

PAVLOVIAN FEAR CONDITIONING 913

circuits. The evidence supports the view that synaptic plasticity in the amygdala
is involved in CS-US association, whereas synaptic plasticity in the hippocampus
is involved in contextual encoding.

Long-term potentiation (LTP) is the prototypical form of enduring synaptic
plasticity in the mammalian brain (Bliss & Collingridge 1993, Maren & Baudry
1995, Martin et al 2000). It was first discovered in the hippocampus (Bliss &
Lomo 1973), and has now been demonstrated to occur at synapses in the amygdala
(Chapman et al 1990, Clugnet & LeDoux 1990, Maren & Fanselow 1995). Several
properties of LTP, such as its rapid induction and associativity, make it an ideal
candidate for encoding Pavlovian fear memories (Fanselow 1993, Maren 1999a,
Rogan & LeDoux 1996). Although there is considerable debate concerning the
role of LTP in learning and memory (Izquierdo & Medina 1995, Martin et al 2000,
Shors & Matzel 1997), we have argued that Pavlovian fear conditioning is the ideal
model system for examining the LTP-learning connection (Maren 2001b).

Glutamate Receptors and Fear Conditioning

The first series of studies to implicate LTP in Pavlovian fear conditioning used
antagonists of the NMDA subclass of glutamate receptors. NMDA receptors are
required for the induction of some forms of LTP in both the hippocampus (Bliss &
Collingridge 1993, Maren & Baudry 1995) and the amygdala (Huang & Kandel
1998, Maren & Fanselow 1995). In a groundbreaking study, Davis and colleagues
demonstrated that infusion of the NMDA receptor antagonist, APV, into the BLA
prevents the acquisition of conditional fear to a visual CS in a fear-potentiated
startle paradigm (Miserendino et al 1990). The attenuation of fear conditioning
by APV was dose-dependent and was not due to an APV-induced decrease in
footshock sensitivity. It is important to note that APV infusion into the BLA before
testing did not affect the performance of a fear conditional response acquired
in an earlier phase of training. Furthermore, APV infusion into the cerebellar
interpositus nucleus, a brain structure that is not required for fear conditioning, did
not affect acquisition of fear-potentiated startle. Subsequent work demonstrated
that intra-amygdala APV also blocks the acquisition, but not the expression, of
fear-potentiated startle to acoustic CSs (Campeau et al 1992). The deleterious
effect of APV on fear-potentiated startle acquisition has also been demonstrated
for second-order conditioning, suggesting that APV impairs fear conditioning by
attenuating an associative mechanism, rather than affecting CS or US processing
per se (Gewirtz & Davis 1997).

The effects of intra-amygdala APV have also been examined in the conditional-
freezing paradigm (Maren et al 1996b). We have reported that infusions of APV into
the BLA before fear conditioning produce a robust impairment in the acquisition
of conditional freezing measured either immediately after footshock or 24 hours
following conditioning. APV only blocked conditioning when it was infused into
the BLA before training; immediate posttraining infusions of APV did not affect
the acquisition of conditional freezing (Maren et al 1996b). However, unlike the
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results obtained from the fear-potentiated startle paradigm, we found that the effects
of APV were not specific to acquisition; the expression of a previously acquired
fear conditional response was also impaired by APV (Maren et al 1996b). This
pattern of results has recently been replicated (Lee & Kim 1998) and may be due to
the influence of NMDA receptor antagonists on evoked potentials in the amygdala
(Li et al 1995, Maren & Fanselow 1995). Thus, it appears that amygdaloid NMDA
receptor activation has a general role in the acquisition of fear CRs and a selective
role in the expression of the conditional freezing (see Lee & Kim 1998 for a
discussion of this issue). Intracerebroventricular administration of APV (Fanselow
et al 1994; Kim et al 1991, 1992) and intrahippocampal APV infusions (Young
et al 1994) indicate that hippocampal NMDA receptors appear to have a more
selective role in contextual fear conditioning.

Recent work indicates that, as in the hippocampus (Grover & Teyler 1990),
there are forms of amygdaloid LTP that do not depend on NMDA receptor acti-
vation (Chapman & Bellavance 1992, Weisskopf et al 1999) but do require the
activation of voltage-gated calcium channels (Weisskopf et al 1999). Calcium
channel–dependent plasticity may play an important role in fear conditioning, al-
though this possibility has yet to be explored. Similarly, non-NMDA (i.e. AMPA)
receptors also play an important role in fear conditioning. For example, Davis and
colleagues have shown that intra-amygdala infusion of AMPA receptor antagonists
impair both the acquisition and expression of fear-potentiated startle (Kim et al
1993b, Walker & Davis 1997). Additionally, LeDoux and colleagues have shown
that AMPA receptor agonists infused into the amygdala prior to training enhance
the acquisition of conditional freezing (Rogan et al 1997a). Recent studies also
suggest that both cholinergic (Anagnostaras et al 1999b, Rudy 1996) and dopamin-
ergic (Guarraci et al 1999, Nader & LeDoux 1999) neurotransmission play a role in
the acquisition and expression of conditional fear. It is therefore likely that several
interacting neurochemical systems regulate the synaptic plasticity in the amygdala
that is critical for fear conditioning.

Synaptic Plasticity in Fear Conditioning Circuits

The foregoing studies indicate that both hippocampal and amygdaloid NMDA
receptors are involved in the acquisition of Pavlovian fear conditioning in rats.
These results implicate NMDA receptor–dependent LTP in these brain areas in
the acquisition of conditional fear. A number of studies have used a correlational
approach to examine the role of hippocampal LTP in contextual fear conditioning.
Moreover, several studies have directly assessed amygdaloid synaptic transmission
during, or shortly after, fear conditioning. These studies suggest that hippocampal
LTP is involved in encoding contextual representations, whereas amygdaloid LTP
is involved in the formation and storage of CS-US associations (Figure 5).

Correlations Between Hippocampal LTP and Contextual Fear Conditioning
To explore the relationship between hippocampal LTP and Pavlovian fear con-
ditioning, we examined the influence of behavioral manipulations that enhance
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learning rate on both the induction of hippocampal LTP and the acquisition of
contextual fear conditioning. We submitted rats to acute water deprivation and
found that deprivation reliably enhanced the magnitude of hippocampal LTP in-
duced by high-frequency stimulation and augmented the rate of contextual fear
conditioning; deprivation did not augment auditory fear conditioning (Maren et al
1994a,b; Maren & Fanselow 1998). Similar correlations between hippocampal
LTP induction and contextual fear conditioning have emerged from studies of sex
differences in LTP and fear conditioning (Anagnostaras et al 1998, Maren et al
1994c). Moreover, synaptic plasticity in hippocampo-septal projections has also
been found to play a role in contextual fear conditioning (Garcia & Jaffard 1992,
Vouimba et al 1998). These correlations are consistent with hypotheses that invoke
hippocampal LTP as a mechanism for contextual fear conditioning (Fanselow 1997,
Maren 1997). More specifically, these results suggest that hippocampal LTP has an
important role in processing contextual CSs and may be involved in establishing
configural representations of contextual stimuli (Maren 2001b).

Fear Conditioning Induces LTP in the Amygdala As indicated above, the block-
ade of fear conditioning by NMDA receptor antagonists in the amygdala suggests
that amygdaloid LTP mediates fear conditioning (Maren 1999a). This possibi-
lity has received support from a series of experiments performed by LeDoux and
colleagues. Rogan & LeDoux (1995) found that induction of LTP at thalamo-
amygdaloid synapses in vivo potentiates auditory evoked potentials in the amyg-
dala that use this pathway. Auditory evoked potentials in the thalamo-amygdaloid
pathway were also augmented during the acquisition of auditory fear condition-
ing (Rogan et al 1997b). The similar increase in auditory evoked potentials in the
amygdala following both tetanic LTP induction and fear conditioning suggests that
LTP-like increases in thalamo-amygdaloid synaptic transmission contribute to the
acquisition of auditory fear conditioning.

McKernan & Shinnick-Gallagher (1997) have shown that fear conditioning
enhances the amplitude of synaptic currents in amygdaloid neurons in vitro. Rats
receiving paired CS-US trials, but not those receiving unpaired trials, exhibited a
marked increase in synaptic currents evoked in amygdaloid neurons by stimulation
of thalamic afferents. This increase in synaptic transmission was due to an elevation
of presynaptic neurotransmitter release. Synaptic transmission in the endopyriform
nucleus, which is not believed to play a role in fear conditioning, was not altered
by the conditioning procedures. Insofar as tetanus-induced amygdaloid LTP is
associated with both increased evoked responses and enhanced neurotransmitter
release (Huang & Kandel 1998, Maren & Fanselow 1995), it would appear that
fear conditioning induces a form of “behavioral” LTP. Further studies are required
to determine whether these forms of plasticity share common cellular mechanisms.

Long-Term Depression In addition to LTP, both the amygdala and hippocam-
pus exhibit use-dependent decreases in synaptic efficacy under some conditions
(Bramham & Srebro 1987, Heinbockel & Pape 2000, Li et al 1998, Wang & Gean
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1999). The precise role for long-term depression (LTD) in fear conditioning is not
known, although one can certainly imagine the necessity for bidirectional synaptic
plasticity in fear conditioning circuits. In the amygdala LTD may be responsible
for limiting synaptic transmission in CS pathways that are uncorrelated or anticor-
related with US occurrence. For example, amygdala neurons decrease their firing
to a CS that is not explicitly paired with a US (Collins & Pare 2000). In general,
amygdaloid LTD may be a mechanism whereby stimuli acquire inhibitory proper-
ties, which is consistent with a role for the amygdala in some forms of inhibitory
learning, such as extinction (Falls et al 1992).

Molecular Cascades for Fear Memories

The elaboration of LTP as a mechanism for fear conditioning has been fostered not
only by pharmacological and electrophysiological experiments but also by a new
breed of experimentation that is driven by our expanding knowledge of intracel-
lular signal transduction pathways and the molecular genetics of these pathways.
These studies have taken two approaches. The first is a standard pharmacological
approach, in which various components of the signal transduction cascade asso-
ciated with LTP, for example, are targeted with drugs in behaving animals. The
second approach takes advantage of powerful new molecular techniques to disable,
eliminate, or even enhance key proteins associated with synaptic plasticity.

Protein Kinase Inhibitors It is well documented that NMDA receptor activation
is only the first step in a biochemical cascade that ultimately leads to synaptic
modification. Activation of intracellular protein kinases, which are stimulated by
NMDA receptor activation, is essential for the induction of LTP in both the hip-
pocampus and amygdala (Huang & Kandel 1998, Huang et al 2000). Examinations
of the role for protein kinases in fear conditioning are in their infancy, but there
is already evidence that various kinases are required for establishing long-term
fear memories. For instance, Kandel and colleagues have shown that posttraining
intracerebroventricular (ICV) administration of protein kinase A (PKA) inhibitors
impairs memory consolidation for contextual fear conditioning (Bourtchouladze
et al 1998). Likewise, LeDoux and colleagues have found that posttraining ICV
administration of PKA and mitogen-activated protein kinase (MAPK) inhibitors
disrupts memory for contextual and auditory fear conditioning (Schafe et al 1999).

We have recently examined the influence of intra-amygdala infusions of H7,
an inhibitor of protein kinase C (PKC) and PKA. This procedure allowed us to
address the question of whether the attenuation of fear conditioning observed af-
ter ICV administration of kinase inhibitors was due to an effect on amygdaloid
kinase activity. Consistent with the ICV data, we found that intra-amygdala in-
fusions of H7 selectively inhibited the formation of long-term fear memories
(Figure 6B)—short-term fear memories were spared (Figure 6A). Moreover, we
found that H7 only affected long-term memory formation when infused into the
BLA; CE infusion of H7 did not attenuate fear conditioning (Figure 6C). The
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Figure 6 Intra-amygdala infusion of the protein kinase inhibitor H7 into the basolateral
amygdala (BLA) selectively attenuates the acquisition of long-term, but not short-term,
conditional fear memories. All panels display mean (±SEM) percentage of freezing. (A)
Immediate postshock freezing during the conditioning session is not affected by intra-BLA
infusions of H7. (B) Contextual freezing expressed 24 hours after fear conditioning is
attenuated by pretraining, but not pretesting, (VEH, dark bar; H7, open bar) infusions of
H7. This effect was not state dependent. (C ) Infusions of H7 into the central nucleus (CE)
did not affect the acquisition of contextual freezing. (Adapted from Goosens et al 2000.)

effect of H7 in the BLA on fear conditioning was not modality specific insofar
as both auditory and contextual fear memories were attenuated. Also, it should
be noted that H7 did not affect the expression of already learned fear memories
(Figure 6B). These data suggest that protein kinase activation in the BLA is re-
quired for consolidating long-term fear memories. Ultimately, the consolidation
(and reconsolidation) of fear memories requires de novo protein synthesis, inso-
far as intra-amygdala infusions of protein synthesis inhibitors, such as anisomycin
(Nader et al 2000), and mRNA synthesis inhibitors, such as actinomycin-D
(Bailey et al 1999), impair long-term memory formation. The induction of im-
mediate early genes, such asc-fosandzif268, in the amygdala after fear condi-
tioning may be a key component of the molecular cascade that leads to protein
synthesis–dependent memory consolidation (Beck & Fibiger 1995, Campeau et al
1991, Malkani & Rosen 2000, Rosen et al 1998).

Genetically Modified Mice As indicated above, it is clear that the NMDA re-
ceptor plays an important role in Pavlovian fear conditioning. Recently, transgenic
techniques have been used to manipulate NMDA receptors in the hippocampus
(Tsien et al 1996). Elimination of key NMDA receptor subunits in mice has been
found to attenuate the acquisition of contextual fear conditioning (Kiyama et al
1998). Recent work indicates that trace fear conditioning, which is dependent
on the hippocampus (McEchron et al 1998), is also impaired in mice that lack
hippocampal NMDA receptors (Huerta et al 2000). Contextual fear condition-
ing deficits in hippocampal NMDA receptor–knockout mice are overcome by
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environmental enrichment (Rampon et al 2000). Perhaps one of the more interest-
ing results to emerge in recent years is the finding that mice that overexpress the
NMDA receptor 2B subunit, which prolongs the activation of NMDA receptors, ac-
tually exhibit enhanced hippocampal LTP and contextual fear conditioning (Tang
et al 1999). Collectively, these data confirm pharmacological data that indicate an
important role for NMDA receptors in synaptic plasticity and fear conditioning.
Unfortunately, amygdala-specific NMDA receptor knockouts have not been de-
veloped. However, as discussed above, pharmacological and electrophysiological
data clearly support a role for amygdaloid NMDA receptors and LTP in Pavlovian
fear conditioning.

Studies using genetically modified mice also implicate various protein kinases
that are linked to NMDA receptor activation in both LTP and learning and me-
mory. Mice that lack PKCγ exhibit mild deficits in contextual, but not auditory, fear
conditioning (Abeliovich et al 1993b). They also exhibit normal immediate post-
shock freezing, suggesting that only their long-term memory for contextual fear is
impaired. The selective deficit in contextual conditioning is interesting insofar as
these mice also exhibit impairments in hippocampal LTP (Abeliovich et al 1993a).
Mice that lack theβ isoform of PKC mice exhibit normal hippocampal LTP, but
they exhibit robust impairments in both auditory and contextual fear conditioning
(Weeber et al 2000). A similar pattern of behavioral results has been observed in
mice that either express an inhibitory form of the regulatory subunit for PKA or
overexpress Ca2+-calmodulin-dependent protein kinase II , which also play a role
in the induction of LTP (Abel et al 1997, Mayford et al 1996). These transgenic
mouse strains exhibit long-term, but not short-term, impairments in both contex-
tual and auditory fear conditioning, and both transgenic strains exhibit deficits in
hippocampal LTP induction. Unfortunately, amygdaloid LTP was not examined
in any of these studies. Deficits in amygdaloid LTP might account for the global
fear conditioning impairments in PKCβ, PKA, and Ca2+-calmodulin-dependent
protein kinase II mice. Nonetheless, these findings are consistent with the involve-
ment of protein kinases in both synaptic plasticity and fear conditioning. Indeed,
our pharmacological data indicate that PKC and PKA activity in the amygdala is
critical for both auditory and contextual fear conditioning (Goosens et al 2000).

Another recent series of studies has examined the influence of a targeted mu-
tation of the cAMP-responsive, element-binding (CREB) protein, which is a tran-
scription factor thought to play an important role in establishing long-term me-
mories, on both fear conditioning and LTP. Mice with a disruption of theα andδ

isoforms of CREB exhibit robust impairments in both contextual and auditory fear
conditioning (Bourtchuladze et al 1994). These impairments are time dependent,
insofar as freezing to both contexts and tones is intact when measured within 30
or 60 minutes of training, respectively. However, conditional freezing is nearly
absent at long (24 hour) retention intervals. Thus, CREB mutants are capable of
normal freezing under some conditions, and the time-dependent loss of condi-
tional freezing over long retention intervals indicates that CREB is essential for
consolidating long-term fear memories. In parallel with the time course of fear
conditioning deficits, mice that lacked CREB also exhibited impairments in a late
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phase of hippocampal LTP; short-lasting, posttetanic potentiation is not impaired
in these mice (Bourtchuladze et al 1994). The time period over which LTP decayed
appears to parallel the time period over which fear memories are lost in CREB
mutants. Not all CREB mutants exhibit impaired learning and synaptic plasticity,
however. A recent study has found that mice expressing a dominant-negative form
of CREB exhibit normal amygdaloid LTP and only minimal fear conditioning
deficits in one of three transgenic lines (Rammes et al 2000). Nonetheless, Impey
et al (1998) recently reported that both contextual and auditory fear conditioning
rapidly induce CREB in the hippocampus and amygdala.

A more direct demonstration of a specific role for amygdaloid LTP in fear
conditioning is revealed by studies of mice that lack Ras-GRF, a neuron-specific
guanine nucleotide–releasing factor that is activated by both Ca2+ and G-protein-
coupled messengers. Electrophysiological recordings from brain slices obtained
from mice lacking Ras-GRF indicate a pronounced deficit in the induction of
LTP in the BL (Brambilla et al 1997). These mice also exhibit impairments in
consolidating long-term fear memories for both contextual and acoustic stimuli.
These deficits in LTP and learning are selective for the amygdala and Pavlovian
fear conditioning insofar as both hippocampal LTP and spatial learning in Ras-
GRF knockouts are normal (Brambilla et al 1997). Ras-GRF modulates CREB
activity through the MAPK pathway, and a role for MAPK in fear conditioning
has recently been demonstrated (Atkins et al 1998, Schafe et al 1999). Together,
these results provide strong support for the view that synaptic LTP in the amygdala
is required for the establishment and maintenance of emotional memories. Further
studies are required, however, to more precisely specify the role for amygdaloid
and hippocampal synaptic plasticity in Pavlovian fear conditioning.

CONCLUSIONS

Pavlovian fear conditioning has undergone an extensive neurobiological analysis
in recent years. This analysis has revealed that the amygdala and hippocampus are
critical components of the neural circuitry underlying association formation and
contextual processing, respectively, during fear conditioning. Moreover, synaptic
plasticity mechanisms, such as LTP, in the hippocampus and amygdala play dis-
tinct and critical roles in these processes (see Figure 5). Most recently, molecular
techniques are beginning to unravel the intracellular cascades that underlie the
formation and storage of fear memories. Collectively, these advances yield great
promise for understanding the neurobiology of learning and memory, in general,
and in understanding the neurobiological basis of disorders of fear and anxiety in
humans.
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