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“Art is always a bonus to synthssi. . .the artistic aspect of synthesis, beautiful and marvelous

as it is, should not be a justification for carrying out a total synthesis. If your problem is truly es-
sential then you dont care about the elegance. The more essential your first E is, the less impor-
tant your last E becomes.”

“Will we be able to recapture the many millions of presumed ‘transient’ natural products that were
evolutionarily de-selected along the paths that eventually led to the natural products synthesized
on Earth today? . .| cannot imagine that in a young synthetic chemist’s lifetime, it will not be ac-
complished.”™

Organic Synthesigjuo vadi€® has been a phrase, perhaps in a more modern language, on the lips
of the practitioners of this demanding science-art, undoubtedly from the earlieéttimesre vig-

orously in the last two decade€omparison of achievements of yestefdayd today suggests
progress in our abilities to construct molecules of complexity, with higher stereocontrol, faster analy-
sis, and greater prediction of eventual success. However, the practical aspects, on any scale, of brevi-
ty, efficiency, safety, eco-consciousness, and energy- and resource-frugality remain, as noted by a
major synthetic craftsmahgrudely addressed. The Y2K symbolism is perhaps also appropriate for
urgently dedicating our efforts to making headway in the solution of these interrelated goals.

Our central scien®@ progresses on fronts of method development and total synthesis with a
great deal of cross-talk and interdependency (see Fig. 1). The burgeoning literature of new methods
suggests that 70% are not repeated, perhaps even in the original laboratories, a situation with dire
consequences for ascertaining true yield ranges and reproducibility &0egtH@ynreligion. Fur-
thermore, as judged from a cursory glance of tables in recent journals, much is left to be desired in
giving confidence to the user that a method has generality (substrate diversity, FG and steric toler-
ance, catalyst or reagent minimization, and temperature and solvent optimization). Although the
beauty of judiciously modeled use of PGs is to be applatiB&dprotection is a continuing embar-
rassment and annoyance. Synthetic chemists are challenging the dogma by daring the multi-FG mol-
ecules to behave in the manner desired. Ugi multicomponent redetmascombinatorial synthe-
sis'*will undoubtedly soon influence the PG-expediency problem. In industry, statistical prég§rams
at times drive optimization of reactions thus meeting the normal intense time constraints to produce
mulit-kg of commercial substances.

Atom-economy term coined by another influential synthetic chedfibias brought awareness
of an issue to academic scientists which their industrial process and development colleagues un-
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Figure 1. Method development.

flinchingly face in their task to produce a commercial drug or agrochemical within defined cost con-
straints. Actuality is a multidimensional term which embodies efficiency, economy, of course, but as
justly demanded by society, safety, energy and resource sentience, and enviro—compassion. The
greening of synthesis is a timely subj&tat the basic levels of hazardous organic solvent and waste
byproduct (organic, inorganic) curtailment is receiving attention in initiatives in fluorous Phase,
supercritical fluid*® and ionic liquid” research. Metal catalysis, both heterogeneous and homoge-
neous, advancing to a competitive position with natural enzyme rates, has exceptionally influenced
how we conceptualize C&bond;C bond formatfdand now require increase in turnover nuniter,

in addition to the continuing discovery and mechanistic understanding of new catalytic systems.
Stimulated by availability of such catalytic processes, sequential/tandem/domino/cascade reac-
tions?Care increasingly not@8and may constitute new horizons in industrial practice. Although still
considered as intrusions into chemical synthesis by some, biotransfor#ghmsd be welcomed

into our armementarium, especially in view of exciting new developments in modular erfZymes.

To extrapolate to industrial process operation aghthe trouble with scale-up synthesis in-
cludes, in addition to factors of academic or industrial drug discovery labs mentioned above, the more
often-than-not divergence from the method established in a mg-scale route, impurities, chromatog-
raphy, engineering, and clock-ticking, among other factors, play demoni@tatesll of our trials
and tribulations, the definition of a perfect chemical reaction is still far from our grasp.

In the realm of multistep (tot#)) synthesis, the oft-cited definition of an ideal synthesis attrib-
uted to a cutting-edge synthetic cheffistill also remain a challenge in Y2K. In initiating a syn-
thesis, the economic and “ready” availability of starting materials and reagents requires more than
lip service; at the end, the number of steps and overall % yield demands cold-daylight realism and a
thought on future credibility® In setting out on the expedition for a challenging multistep synthe-
sis, the retrosynthetic analysis paradigm (disconnection approach, synthetic “trees”) all of us learned
from Corey® and the pointers of convergent/linear, relay (also in the new dimension of to/from bio-
transformation-derived material), and the arithmetic demon vividly taught to some of us by?freland
are our constant guideposts (see Figs. 2 and 3). To this conceptual tool box, Corey added computer-
assisted design (CABYwhich spawned great activity that continues totbayhe scribbling of ret-
rosynthetic arrows are prevalent wherever synthetikers gather but it would appear that the impact of
the actual mechanics of CAD on research and teaching on our art has been modest. Nevertheless,
these contributions have more recently spawned attempts to devise semiquantative graphical repre-
sentations of topology, connectivity,and molecular complexitf and relate them to the discon-
nection approach and chemical intuition “measures.” And at the conclusion of a multistep synthesis
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Figure 2. Multistep synthesis.

of a complex target? Aside from the well-deserved euphoria, shared by university and industrial
chemists alike, the cost, engaged personpé®aard environment and energy impact should receive
close scrutiny. This is (or is becomingkime qua norfor an industrial process which must go

on stream (the ultimate reproducilileg. Syn.prep); it is incompletely practiced in small-scale
synthesis whether it be in university or industrial labs but this is destined to change. Of course, the
academic researcher must answer to the ultimate question: what have we ¥amtiereby con-

tribute in some way to advances in our discipline.

Quo vadisThemical synthesis, being only a recent component of human evolution, will con-
tinue to respond to the solution of societal problems in health, food, environment, and material
requirements. Furthermore, the logic and technologic of our science assures that it will impact sur-
rounding disciplines?

Since prognosis is always danger8®snly certain progressive elements on the horizon may
be mentioned. In asymmetric synthesis, enantioenrichment and amplifiatimstitute some of
the new conceptual elements in evolutionary stages. Biotransformations, practiced since the advent
of penicillin drugs, are increasingly applied in industry where prejudice and inhibition are over-
ridden by business consideratidi#side from development of new effective and ecofriendly re-
action media,15—17 solid support, microencapsulated, and aqua-stable reagents are beirfg devised.

As part of the combinatorial chemistry surge, ancillary areas of analytical chemistry, robotics,
and informatics are forcing a closer chemist—engineer intetfdoelubitably, combichem is be-
coming part of the common practice of a synthetic lab for optimization of new métratsscreen-
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Figure 3. Evolving concepts and technology.
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ing of new ligands and catalystéNo combinatorial magic bullets as yet exist and the field is chang-
ing from the numbers game to focused biological relevant diversity with, as always, chemistry be-
ing the limiting factor. Such an approach essentially admits that we cannot make all the molecules
and therefore should focus on simplest dites.

In industry, the Discovery Chemist is now leaning over the shoulder of the process ¢Remist.
Together, with ingenuity, practical savy, and with the help of the blossoming custom synthesis cot-
tage industry,” the high-pressure time lines to the go/kill phase of the potential drug are being met
more rapidly.

Optimization in Organic Synthesibge title of the symposium held during the 3rd Winter Con-
ference on Medicinal and Bioroganic Chemistry in Steamboat Springs, CL, January 22—-28, 1998,
encompasses the content of this Introduction and defines some of the components addressed by the
invited speakers. Carsten Bolm illustrates how design of new enantioselective catalytic systems ad-
vances our utility of the classical (Baeyer-Villiger) reaction; Gilbert Stork instructs all of us on the
origin and the significance of selectivity in organic synthesis with illustrations, now textbook, of
work from his laboratories; Paul Wender shows how complex biological activity of natural products
drives the invention of new synthetic reactions; and Matthias Beller demonstrates the importance to
focus on the need for simple building blocks and to develop new regioselective catalytic reactions.

The many facets @ptimization in Organic Synthesasd our responsibility to its achievement
justifies continuing meetings under this or similar titfe® bring home the message which, by the
nature of the vitality of the field, is a moving target.
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