De-Anonymizing Live CDs through
Physical Memory Analysis

Andrew Case
Senior Security Analyst

..~ Digital Forensics Solutions

Speaker Background

Computer Science degree from the University
of New Orleans

Former Security Consultant for Neohapsis

Worked for Digital Forensics Solutions since
2009

Work experience ranges from penetration
testing to reverse engineering to forensics
investigations/IR to related research

_.- Digital Forensics Solutions

Agenda

* Discuss Live CDs and how they disrupt the
normal forensics process

* Present research that enables traditional
investigative techniques against live CDs

* Discuss issues with Tor s insecure handling of
memory and present preliminary memory
analysis research

_.- Digital Forensics Solutions

Normal Forensics Process

Obtain Hard Drive

Acquire Disk Image

Verify Image

4
Process Image

Perform Investigation

..~ Digital Forensics Solutions

Traditional Analysis Techniques

Timelining of activity based on MAC times
Hashing of files

Indexing and searching of files and
unallocated space

Recovery of deleted files

Application specific analysis

— Web activity from cache, history, and cookies
— E-mail activity from local stores (PST, Mbox, ...)

_.- Digital Forensics Solutions

Problem of Live CDs

* Live CDs allow users to run an operating
system and all applications entirely in RAM

* This makes traditional digital forensics
(examination of disk images) impossible

* All the previously listed analysis techniques
cannot be performed

_.- Digital Forensics Solutions

Acquire Disk Image

Verify Image

/
Process Image

Perform Investigation

..~ Digital Forensics Solutions

No Disks or Files, Now What?

All we can obtain is a memory capture

With this, an investigator is left with very
limited and crude analysis techniques

Can still search, but can’ t map to files or dates
— No context, hard to present coherently

File carving becomes useless
— Next slide
* Good luck in court

_.- Digital Forensics Solutions

File Carving

Used extensively to recover previously
deleted files/data

Uses a database of headers and footers to find
files within raw byte streams such as a disk
Image

Finds instances of each header followed by
the footer

Example file formats:
— JPEG - \xff\xd8\xff\xe0O\x00\x10 - \xff\xd9
— GIF - \x47\x49\x46\x38\x37\x61 - \x00\x3b

_.- Digital Forensics Solutions

File Carving Cont.

* File carving relies on contiguous allocation of
files
— Luckily modern filesystems strive for low
fragmentation

* Unfortunately for memory analysis, physical
pages for files are almost never allocated
contigously
— Page size is only 4k so no structured file will fit

— |s the equivalent of a completely fragmented
filesystem

_.- Digital Forensics Solutions

People Have Caught On...

 The Amnesic Incognito Live System (TAILS) [1]

— “No trace is left on local storage devices unless
explicitly asked.”

— “All outgoing connections to the Internet are
forced to go through the Tor network”

e Backtrack [2]

— “ability to perform assessments in a purely native
environment dedicated to hacking.”

_.- Digital Forensics Solutions

What It Really Means...

* |nvestigators without deep kernel internals
<nowledge and programming skill are basically
nopeless

* |tis well known that the use of live CDs is
going to defeat most investigations

— Main motivation for this work

— Plenty anecdotal evidence of this can be found
through Google searches

_.- Digital Forensics Solutions

What is the Solution?

* Memory Analysis!
* Itis the only method we have available...

* This Analysis gives us:

—The complete file system structure
including file contents and metadata

— Deleted Files (Maybe)

— Userland process memory and file system
information

_.- Digital Forensics Solutions

Goal 1: Recovering the File System

* Steps needed to achieve this goal:

1.
2.

Understand the in-memory filesystem

Develop an algorithm that can enumerate
directory and files

Recover metadata to enable timelining and
other investigative techniques

_.- Digital Forensics Solutions

The In-Memory Filesystem

* AUFS (AnotherUnionFS)

— http://aufs.sourceforge.net/

— Used by TAILS, Backtrack, Ubuntu 10.04 installer,
and a number of other Live CDs

— Not included in the vanilla kernel, loaded as an
external module

.- Digital Forensics Solutions

AUFS Internals

* Stackable filesystem
* Presents a multilayer filesystem as a single one to users

* This allows for files created after system boot to be
transparently merged on top of read only CD

 Each layer is termed a branch

* |n the live CD case, one branch for the CD, and one for all
other files made or changed since boot

_.- Digital Forensics Solutions

AUFS Userland View of TAILS

cat /proc/mounts -
aufs / aufs rw,relatime,si=4ef94245,noxino f;?\jzm
/dev/loop0 /filesystem.squashfs squashfs - to AUFs
tmpfs /live/cow tmpfs

tmpfs /live tmpfs rw,relatime
The

cat /sys/fs/aufs/si_4ef94245/br0 mount
/live/cow=rw e o
AUFS
cat /sys/fs/aufs/si_4ef94245/br1 branch

[filesystem.squashfs=rr

_.- Digital Forensics Solutions

Forensics Approach

* No real need to copy files from the read-only
branch
— Just image the CD

* On the other hand, the writable branch
contains every file that was created or
modified since boot
— Including metadata

— No deleted ones though, more on that later

_.- Digital Forensics Solutions

Linux Internals Overview |

e struct dentry
— Represents a directory entry (directory, file, ...)

— Contains the name of the directory entry and a
pointer to its inode structure

e structinode

— FS generic, in-memory representation of a disk inode

— Contains address_space structure that links an inode
to its file’ s pages

e struct address_space

— Links physical pages together into something useful
— Holds the search tree of pages for a file

_.- Digital Forensics Solutions

Linux Internals Overview ||

 Page Cache

— Used to store struct page structures that
correspond to physical pages

— address_space structures contain linkage into the
page cache that allows for ordered enumeration
of all physical pages pertaining to an inode

* Tmpfs
— In-memory filesystem
— Used by TAILS to hold the writable branch

_.- Digital Forensics Solutions

Enumerating Directories

Once we can enumerate directories, we can
recover the whole filesystem

Not as simple as recursively walking the
children of the file system’ s root directory

AUFS creates hidden dentrys and inodes in
order to mask branches of the stacked
filesystem

Need to carefully interact between AUFS and
tmpfs structures

_.- Digital Forensics Solutions

Directory Enumeration Algorithm

1) Walk the super blocks list until the “aufs”
filesystem is found

 This contains a pointer to the root dentry

2) For each child dentry, test if it represents a
directory

If the child is a directory:

e Obtain the hidden directory entry (next slide)
 Record metadata and recurse into directory

If the child is a regular file:
 Obtain the hidden inode and record metadata

_.- Digital Forensics Solutions

Obtaining a Hidden Directory

* Each kernel dentry stores a pointer to an au_dinfo
structure inside its d_fsdata member

*The di_hdentry member of au_dinfo is an array of
au_hdentry structures that embed regular kernel
dentrys

{

}

struct dentry

d_inode
d _name
d_subdirs
d_fsdata

:

struct au_dinfo

{
au_hdentry

}

/ Branch

Dentry

0

Pointer

1

Pointer

.- Digital Forensics Solutions

23

Obtaining Metadata

e All useful metadata such as MAC times, file
size, file owner, etc is contained in the hidden
inode

* This information is used to fill the stat
command and istat functionality of the

Sleuthkit
* Timelining becomes possible again

_.- Digital Forensics Solutions

Obtaining a Hidden Inode

* Each aufs controlled inode gets embedded in an
aufs_icntnr

* This structure also embeds an array of au_hinode
structures which can be indexed by branch number to
find the hidden inode of an exposed inode

struct | struct au_iinfo Branch struct inode
aufs_icntnr { / 0 Pointer
i / ii_hinode .
iinfo) 1 Pointer
—> inode
}

.- Digital Forensics Solutions 2

Goal 2: Recovering File Contents

The size of a file is kept in its inode’ s i _size
member

An inode’ s page tree member is the root of
the radix tree of its physical pages

In order to recover file contents this tree
needs to be searched for each page of a file

The lookup function returns a struct page
which leads to the backing physical page

_.- Digital Forensics Solutions

Recovering File Contents Cont.

* Indexing the tree in order and gathering of
each page will lead to accurate recovery of a

whole file
* This algorithm assumes that swap isn’ t being

used
— Using swap would defeat much of the purpose of
anonymous live CDs

 Tmpfs analysis is useful for every distribution

— Many distros mount /tmp using tmpfs, shmem,
etc

_.- Digital Forensics Solutions

Goal 3: Recovering Deleted Info

* Discussion:
1. Formulate Approach

2. Discuss the kmem cache and how it relates
to recovery

3. Attempt to recover previously deleted file
and directory names, metadata, and file
contents

_.- Digital Forensics Solutions

Approach

* We want orderly recovery

* To accomplish this, information about deleted
files and directories needs to be found in a
non-standard way

— All regular lists, hash tables, and so on lose track
of structures as they are deleted

* Need a way to gather these structures in an
orderly manner

— kmem_cache analysis to the rescue!

_.- Digital Forensics Solutions

Recovery though kmem cache analysis

* A kmem cache holds all structures of the
same type in an organized manner

— Allows for instant allocations & deallocations

— Used for handling of process, memory mappings,
open files, and many other structures

* Implementation controlled by allocator in use
— SLAB and SLUB are the two main ones

_.- Digital Forensics Solutions

kmem _cache Internals

* Both allocators keep track of allocated and
previously de-allocated objects on three lists:

— full, in which all objects are allocated
— partial, a mix of allocated and de-allocated objects
— free, previously freed objects™

* The free lists are cleared in an allocator
dependent manner
— SLAB leaves free lists in-tact for long periods of

time

— SLUB is more aggressive

_.- Digital Forensics Solutions

kmem _cache lllustrated

* /proc/slabinfo contains information about
each current kmem_cache

* Example output:
#name <active objs><num_objs> | hedifference
— — between

task struct 101 154 num_objs and
active_objs is

mm__struct /6 99 how many free

: objects are
ﬁ /p 201 1420 being tracked by

the kernel

_.- Digital Forensics Solutions

Recovery Using kmem _cache Analysis

 Enumeration of the lists with free entries
reveals previous objects still being tracked by
the kernel
— The kernel does not clear the memory of these

objects

* Our previous work has demonstrated that
much previously de-allocated, forensically
interesting information can be leveraged from
these caches [4]

_.- Digital Forensics Solutions

Recovering Deleted Filesystem

Structure

* Both Linux kernel and aufs directory entries
are backed by the kmem cache

* Recovery of these structures reveals names of
previous files and directories

— If d_parent member is still in-tact, can place
entries within file system

_.- Digital Forensics Solutions

Recovering Previous Metadata

* |Inodes are also backed by the kmem cache
* Recovery means we can timeline again

* Also, the dentry list of the AUFS inodes still
have entries (strange)
— This allows us to link inodes and dentrys together

— Now we can reconstruct previously deleted file
information with not only file names & paths, but
also MAC times, sizes, inode numbers, and more

_.- Digital Forensics Solutions

Recovering File Contents — Bad News
* Again, inodes are kept in the kmem_cache

* Unfortunately, page cache entries are

removed upon deallocation, making lookup
impossible

— A large number of pointers would need to stay in-
tact for this to work

* This removes the ability to recover file
contents in an orderly manner

 Other ways may be possible, but will require
more research

_.- Digital Forensics Solutions

Summary of File System Analysis

* Can completely recover the in-memory
filesystem, its associated metadata, and all file
contents

* Ordered, partial recovery of deleted file
names and their metadata is also possible

* Traditional forensics techniques can be made
possible against live CDs

— Making such analysis accessible to all investigators

_.- Digital Forensics Solutions

Implementation

 Recovery code was originally written as
loadable kernel modules

— Allowed for rapid development and testing of
ideas

— 2nd implementation was developed for Volatility

 Vmware workstation snapshots were used to
avoid rebooting of the live CD and
reinstallation of software

— TAILs doesn’ t include development tools/headers

— This saved days of research time

_.- Digital Forensics Solutions

Testing

* Output was compared to known data sets
— Directories and files with scripted contents
— Metadata was compared to the stat command
— File contents were compared to scripted contents

* Deleted information was analyzed through
previously allocated structures

— While a file was still allocated, its dentry, inode,
etc pointers were saved

— File was deleted and these addresses were
examined for previous data

_.- Digital Forensics Solutions

Memory Analysis of Tor

..~ Digital Forensics Solutions

Tor Overview

e Used by millions of people worldwide to
perform anonymous Internet communications

* Anonymity of communications is essential to
whistleblowers, journalists from nations
without freedom of the press, and to a
number of other professions

* Any recovery of Tor related activity can have
dire consequences for such people

_.- Digital Forensics Solutions

One Slide Technical Overview

* Tor encrypts and sends traffic from clients to a
number of other hosts before being sent to
the recipient destination

* Only the final Tor endpoint can decrypt the
actual packet contents

— All others can only decrypt necessary routing
information

 The endpoint used is changed at regular
intervals to ensure that a compromise does
not remove all anonymity

_.- Digital Forensics Solutions

Tor Analysis Motivation

* Forensics/IR Perspective

— TAILS and a number of other live CDs use Tor to
avoid network forensics

— Not being able to obtain or reconstruct traffic can
make certain investigation scenarios impossible

— If memory analysis can reveal useful evidence
then the inability to perform network analysis is
not as painful

_.- Digital Forensics Solutions

Tor Analysis Motivation

* Privacy Perspective

— Tor provides an extremely useful platform to
perform anonymous communications

— To ensure that communications are indeed
secure, memory analysis needs to be performed
on all systems that process unencrypted data

_.- Digital Forensics Solutions

Analyzing Memory Activity of Tor

* Analysis reveals that Tor does not always
securely erase memory after its used

e Sound Familiar?

* Since we have access to the process memory
of Tor we should be able to recover data of
interest....

— Papers discussing how to recover userland process
memory are referenced in the white paper

_.- Digital Forensics Solutions

Initial Setup & Analysis

Privoxy is a Tor-aware HTTP proxy

Tor was installed along with Privoxy on the
test virtual machine

wget was then configured to use Privoxy
which would relay the information to Tor

Before digging into source code, performed
the Poor Man’ s Test (next slide)

_.- Digital Forensics Solutions

The Poor Man’ s Test

. Used wget to recursively download
digitalforensicssolutions.com

2. Verified Tor network connections closed
3. Used memfetch [3] to dump the heap of the

tor process

4. Ran strings on heap file

. # grep -c digitalforensics strings-output

7/
Looking good so far....

_.- Digital Forensics Solutions

Initial Analysis Results

* Analysis revealed that HTTP headers,
downloaded page contents, server

information, and more were contained in its
memory

* |t seemed that the last used HTTP header was
kept in memory

— Possibly a single buffer used for this?

— Numerous instances were found for the other
types of data

_.- Digital Forensics Solutions

Interesting Output from Strings

1) HTTP REQUEST

GET /incidence-response.html| HTTP/1.0

Referer: http://www.digitalforensicssolutions.com/
User-Agent: Wget/1.12 (linux-gnu)

Accept: */*

Host: www.digitalforensicssolutions.com

2) HTML fragments from downloaded webpage

<h2>Evidence Preservation</h2>

<p>Our evidence preservation methodology provides an exact
copy of any digital evidence and ensures that the authenticity
and integrity of both the duplicate copy and the original data
source is preserved.</p>

<h2>Evidence Custody</h2>

_.- Digital Forensics Solutions

Digging Deeper into Tor
After seeing the previous results, source code
analysis was performed
Again, orderly collection of data is our goal

Much more analysis is possible than what was
covered in this initial analysis

Still on-going research...

_.- Digital Forensics Solutions

Developed Analysis Scripts

* Two Python scripts were developed that pull
information from a Tor process

— The first enumerates and obtains the Tor freelist

— The second enumerates Tor cells

_.- Digital Forensics Solutions

Script 1 - Walking Tor s freelist

* Tor keeps “chunks” in its global freelist in
order to provide fast allocation of new
memory
— Very similar to the workings of the kmem cache

— The script enumerates the freelist array and
dumps all memory contained

_.- Digital Forensics Solutions

Freelist Structure

typedef struct chunk_freelist_t { freelist is an

size_t alloc_size; // size of chunk instance of
int cur_length; // number on list this structure

chunk_t *head;

}
typedef struct chunk_t {
struct chunk_t *next; Each chunk is
size_t datalen; represented
by a chunk_t

char *data;
} chunk_t;

_.- Digital Forensics Solutions

Script 2- Tor’ s Cell Pool Cache

In Tor, all data is sent and received as a
packed cell

cell poolis a memory pool that holds cells
allocated and deallocated by Tor

— Unless the pool is cleaned

Walking of this pool enumerates every cell
structure including its contents (payload)

Unfortunately the payloads are encrypted

_.- Digital Forensics Solutions

Cell Pool Structures & Enumeration

* cell poolis of type mp _pool t

* The recovery script walks the three mp _chunk_t lists
as well as the doubly linked list contained in each

mp_chunk_t

* This leads to the type-agnostic mem buffer of each
chunk

struct mp_pool t{ struct mp_chunk_t {
struct mp_chunk_t *empty_chunks, mp_chunk_t *next;
*used_chunks, *full_chunks; mp_chunk_t *prev;
size_t item_alloc_size; } size_t mem_size;

char mem[1]; }

_.- Digital Forensics Solutions

Recovery of Packed Cells

* mp _chunk t structures hold type-agnostic
data

* |In the cell pool these are represented by a:
typedef struct packed cell t{
struct packed_cell t *next;
char body[CELL_NETWORK_SIZE];
} packed cell t;

 Walking the next list retrieves reachable
packed cells

_.- Digital Forensics Solutions

Conclusion

* Memory Analysis of Live CDs is no longer
difficult

* Use of the presented research enables
traditional forensics techniques to be used

* Asif we didn’ t know already, applications are
really bad about handling of sensitive data in
memory

_.- Digital Forensics Solutions

Future Work — Live CD Filesystems

* Integrate analysis code into Volatility

* Test against more Live CDs / aufs
configurations

— aufs has a number of configuration options

* Look into stackable filesystems used by other
Live CDs

— Unionfs is a good target (used by Debian, Gentoo,
etc)

_.- Digital Forensics Solutions

Future Work - Tor

 Work on recovery of encrypted Tor cells

— Need to find the encrypted key, match to
packed cell, and then decrypt the payload
section

* Tor developers are aware of the memory
handling issues, response will determine
amount of further work possible

_.- Digital Forensics Solutions

Comments? Questions?

* Full details of work are in our whitepaper
* Contact: andrew@digdeeply.com

_.- Digital Forensics Solutions

B LN B

References

https://amnesia.boum.org/
http://www.backtrack-linux.org
lcamtuf.coredump.cx/soft/memfetch.tgz

A. Case, et al, "Treasure and Tragedy in kmem_cache Mining
for Live Forensics Investigation," Proceedings of the 10th
Annual Digital Forensics Research Workshop (DFRWS 2010),
Portland, OR, 2010.

_.- Digital Forensics Solutions

